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CAPILLARY SURFACES DEPEND DISCONTINUOUSLY 
ON BOUNDARY DATA 

PHENOMENON OCCURS WHEN THERE ARE LARGE RELATIVE 
CHANGES IN BOUNDARY CURVATURE 

by 
PauZ Concus and Robert Finn 

The first recorded observations of capillarity phenomena seem 

due to Leonardo da Vinci, who observed the rise of water in a small 

tube. These phenomena have since attracted the attention of leading 

natural philosophers in every generation, to the extent that one can 

trace the development of many methods of modern analysis and computa-

tion by observing the techniques applied in attempts to determine the 

shape and height of capillary free-surface interfaces. 

Geometrical formulation 

By the beginning of the nineteenth century it was recognized 

that the problem can be cast in geometrical language. Consider a 

surface separating air and liquid in an equilibrium configuration 

(e.g., a capillary free surface in a soda straw). Then this surface 

can be determined by the condition that its mean curvature H at a 

point be proportional to the height u of that point above a certain 
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reference level -- 2H KU(X,y), where K is a physical constant --

and by the condition that the surface meets the bounding walls in an 

angle y, called the contact angle, which depends only on the materials. 

This last condition has been and continues to be a source of some 

uncertainty; in the authors' view, the results discussed below lend 

strong support to its validity. 

H can be expressed analytically in terms of the derivatives of u; 

thus, the surface is described by the solution of a (nonlinear) partial 

differential equation, with nonlinear boundary condition. 

Given K and y, it is easy to find the average rise height u 

over a section. For the case of a tube with sectional area A and 

sectional boundary length L, placed vertically in an infinite reservoir, 

there holds u (L/KA) cos y. This classical formula of Laplace yields, 

as a special case, the well-known result for a circular tube of radius 

r, u=(2/Kr)cosy. 

The wedge phenomenon 

The formula for the average height can be deceptive if taken as 

an indication of the distribution of heights over the section. To see 
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what can happen, we consider a water~air interface in a tube with 

the section shown in fig. 1, with ~ at least 0.8 cm and with 

o ~ y < n/2. It turns out: (i) whenever a + y ~ n/2, the maximum 

fluid height is less than 0.8 cm; (ii) if a + y < n/2 the fluid 

rises to an infinite height in the corner. 

Thus the fluid surface near the vertex depends discontinuously 

on the angle a. 

Fig. 2 shows an experiment made by T. Coburn at the Stanford 

University Medical School. Here a drop of water has been placed 

between two acrylic plastic plates meeting at angles a ~ 12° in 

fig. 2a, and a ~ 9° in fig. 2b. In the latter case the measured 

rise height is more than ten times the maximum possible for any con-

figuration with a + y ~ n/2. 

In gravity-free environments, such as those encountered in space 

vehicles, the discontinuity in behavior becomes startling. It can be 

shown that in the absence of gravity~ if a + y < n/2 the equations 

defining the surface possess no solution! This result holds at any 

corner, and depends in no other way on the shape of the container. 
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Our prediction of this phenomenon was tested by W. Masica at the 

NASA zero-gravity facility in Cleveland. Fig. 3 shows observations 

during a five-second interval of free fall, for a regular hexagonal 

cylinder of acrylic plastic, partly filled with alcohol solutions whose 

concentrations were varied to change y. In fig. 3a, y ~ 48°; the free 

surface is a lower spherical cap (as can be derived exactly for any 

regular polygonal container whenever a + y ~ TI/2). 

Fig. 3b shows the case y ~ 25°; here the fluid flows up into the 

corner and covers part of the top of the container. Were the cylinder 

infinitely long, the fluid presumably would flow out along the corners 

to infinity~ 

The above mathematical results cannot be attributed to the failure 

of the contact-angle condition at a sharp corner. First, the mathemati-

cal solutions, when they exist, are uniqueZy determined by the data at 

the smooth boundary points, among all possible such solutions, with no 

growth conditions imposed. (Such a strong uniqueness theorem does not 

hold, for example, for the Laplace equation.), 

Second, all results can be obtained as a limiting case for a 
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sequence of smooth boundaries having rounded corners. For the gravity-

free case, one finds the result: Suppose there is a point on the 

boundary at which the boundary curvature exceeds L/A. Then there~s 

a critical angle YO' 0 < YO ~.TI/2, such that there ~s no solution 

whenever o < Y < Y . - 0 Thus, in the absence of gravity, there may be no 

solution even when the boundary is smooth. 

The reasoning that shows this behavior shows also that solutions 

are always unstable with respect to boundary perturbation. This fol-

lows because one could always alter the boundary in a smooth way (e.g., 

by a groove scored into the cylinder wall) so as to obtain a new 

boundary surface for which there is no solution. 

Another corollary of the method is that in a gravitational field 

all solutions are bounded, depending only on distance to the boundary 

(and depending in no other way on the shape of the boundary). 

We note that in the case of "negative" gravity, as occurs for a 

drop of liquid pendent from a ceiling, such a universal bound no longer 

seems to hold. There exists, in this case, a "singular" solution in 

the form of an infinite spike, tending to minus infinity. In the 
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positive- or zero-gravity cases, which correspond to the situations 

described above, no such solution can exist. 

The trapezoid phenomenon 

Much progress has been made recently in clarifying the effects 

of boundary geometry on the solution surface in positive gravitational 

fields; however, for the negative- and zero-gravity situations a sat is-

factory theory is not yet available. For example, it can be shown 

that in -the gravity-free case if the section ~s a rectangle of any side 

ratio~ a solution exists if y > n/4 and no solution exists if y < n/4. 

Thus, the criterion for a regular polygon still holds in this case. (It 

should be remarked that the solution, when it exists, is no longer known 

explicitly if the sides are unequal.) 

Now pick a y > n/4, say y n/3. Then there exists a trapezoid 

whose angles are as close to n/2 as desired~ and whose opposite sides 

are as nearly equal as desired~ such that there is no solution in the 

trapezoid for boundary angle y. Thus again a discontinuity in behavior 

is encountered. In this case no satisfactory general criteria for 

deciding when a solution will exist have yet been found. 
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The pendent drop 

The situation becomes in some ways still more striking when one 

studies the configuration of a pendent drop (negative-gravity case). 

If one attempts in practice to increase the size of the drop, it soon 

becomes unstable and breaks apart; however, formal solutions of the 

equations continue to exist for any vertex height, and exhibit remark-

able analytical properties. Fig. 4 shows the result of a lengthy 

calculation made by W. Thomson in 1886. 

In fig. 5 are shown the results of numerical calculations of 

vertical sections for vertex heights Uo -4, -8, and -16 (dotted 

curves); these are compared with the singular "spike" solution 

described above (solid curve). The analytical properties of these 

solutions are discussed in some detail in a paper by these authors to 

appear shortly, and it is conjectured -- but not completely proved --

that the solutions converge to the "spike" as Uo -+ -00. 

Extremal properties 

Extremal problems for capillary surfaces have apparently been 

neglected in the literature since Laplace's time. We mention a few: 
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(i) Among all sections with given boundary length, which raises 

the largest (or smallest) volume of liquid? Answer: the classical for-

mula of Laplace yields the result that all sections with given boundary 

length raise the same volume, independent of the shape! 

(ii) Among all sections of given area, which raises the largest 

(or smallest) volume? Answer: a section of given area can be con-

structed so as to raise an arbitrarily large volume; however, a circu-

lar disk raises the smallest possible volume, as follows from (i) and 

the isoperimetric inequality. 

(iii) Among all sections of given area, for which is the maximum 

rise height a minimum? We conjecture the answer is a circular disk, 

but as yet we have no proof. 
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