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Improving the precision of shock 
resuscitation by predicting fluid 
responsiveness with machine 
learning and arterial blood pressure 
waveform data
Chitrabhanu B. Gupta 1,9, Debraj Basu 1,2,9, Timothy K. Williams 3, Lucas P. Neff 4, 
Michael A. Johnson 5, Nathan T. Patel 4, Aravindh S. Ganapathy 4, Magan R. Lane 4, 
Fatemeh Radaei 6,8, Chen‑Nee Chuah 1 & Jason Y. Adams 7*

Fluid bolus therapy (FBT) is fundamental to the management of circulatory shock in critical care but 
balancing the benefits and toxicities of FBT has proven challenging in individual patients. Improved 
predictors of the hemodynamic response to a fluid bolus, commonly referred to as a fluid challenge, 
are needed to limit non‑beneficial fluid administration and to enable automated clinical decision 
support and patient‑specific precision critical care management. In this study we retrospectively 
analyzed data from 394 fluid boluses from 58 pigs subjected to either hemorrhagic or distributive 
shock. All animals had continuous blood pressure and cardiac output monitored throughout the study. 
Using this data, we developed a machine learning (ML) model to predict the hemodynamic response 
to a fluid challenge using only arterial blood pressure waveform data as the input. A Random Forest 
binary classifier referred to as the ML fluid responsiveness algorithm (MLFRA) was trained to detect 
fluid responsiveness (FR), defined as a ≥ 15% change in cardiac stroke volume after a fluid challenge. 
We then compared its performance to pulse pressure variation, a commonly used metric of FR. 
Model performance was assessed using the area under the receiver operating characteristic curve 
(AUROC), confusion matrix metrics, and calibration curves plotting predicted probabilities against 
observed outcomes. Across multiple train/test splits and feature selection methods designed to 
assess performance in the setting of small sample size conditions typical of large animal experiments, 
the MLFRA achieved an average AUROC, recall (sensitivity), specificity, and precision of 0.82, 0.86, 
0.62. and 0.76, respectively. In the same datasets, pulse pressure variation had an AUROC, recall, 
specificity, and precision of 0.73, 0.91, 0.49, and 0.71, respectively. The MLFRA was generally well‑
calibrated across its range of predicted probabilities and appeared to perform equally well across 
physiologic conditions. These results suggest that ML, using only inputs from arterial blood pressure 
monitoring, may substantially improve the accuracy of predicting FR compared to the use of pulse 
pressure variation. If generalizable, these methods may enable more effective, automated precision 
management of critically ill patients with circulatory shock.

Resuscitation of circulatory shock requires judicious management of fluid bolus therapy (FBT) to optimize 
end-organ perfusion and minimize adverse effects such as end-organ congestion and injury to the endothelial 
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 glycocalyx1. Multiple studies have documented an association between the volume of fluid administered and 
adverse outcomes, including death, leading to the concept of “fluid toxicity” from excess  administration2. Despite 
this body of research, recent randomized, controlled studies of protocolized, fluid-sparing approaches to shock 
resuscitation using traditional resuscitation endpoints have failed to show improvements in patient-centered 
 outcomes3–7. While several studies have explored novel methods to tailor FBT to specific patient states, critical 
gaps remain in the armamentarium of methods to optimize the hemodynamic response to FBT for individual 
 patients8,9.

Research over the past half century has sought to develop accurate, patient-specific predictors of a favorable 
hemodynamic response to a fluid challenge, commonly referred to as fluid responsiveness (FR). FR has been 
defined historically as ≥ 15% increase in cardiac output (CO) in response to an intravenous fluid  bolus10, although 
studies of FR have varied by fluid type, administered volume, and the CO threshold used to classify  FR11. Studies 
have consistently shown that FR is present only 50% of the time when a fluid bolus was thought to be clinically 
 indicated12, highlighting the need for accurate predictors of FR to prevent both under- and over-administration 
of fluids. Additional predictive methods, particularly those amenable to automated clinical decision support 
(CDS), are needed to enable delivery of the right dose of FBT, at the right frequency, and at the right phase of a 
resuscitation to enable personalized hemodynamic  optimization2.

Predictors of FR can be divided into those requiring active patient intervention, such as the passive leg raise 
maneuver (PLR), and those calculated from passively-acquired physiologic data such as pulse pressure varia-
tion (PPV)9. Studies have shown the PLR to discriminate well between FR and non-responsive (NR)  states12. 
However, the PLR is time and labor-intensive and requires patient manipulation, specialized beds for proper 
patient positioning, and measurement of CO before and after the maneuver. These factors limit the ability to 
incorporate the PLR into automated CDS systems. In contrast, passive metrics like PPV can be reassessed fre-
quently and incorporated into automated CDS. PPV utilizes changes in pulse pressure measured from arterial 
blood pressure (ABP) waveforms across the respiratory cycle in mechanically ventilated patients to predict FR. 
Performance of PPV has been variable across studies, ranging from poor to excellent depending on the patient 
population and clinical  setting8,13, and its performance may vary over the course of a  resuscitation14. Suboptimal 
performance of PPV in critically ill patients has been well-documented in the settings of arrhythmias, low tidal 
volume ventilation, patient-generated respiratory effort, and poor pulmonary compliance, limiting its widespread 
use in critical  care15.

The digital transformation of healthcare presents new opportunities to advance critical care medicine. Increas-
ing integration of medical devices (e.g. bedside physiologic monitors), advanced analytical methods like machine 
learning (ML), and the democratization of secure cloud computing are facilitating the development of novel 
predictive algorithms for use in artificial intelligence-enabled  CDS16,17. To this end, several recent studies have 
demonstrated the potential of ML models to predict hypotensive events, blood pressure response to FBT, and 
changes in urine output after fluid  resuscitation18–20. To expand upon work in this space, we aimed to develop 
a novel ML-based FR algorithm (MLFRA) and hypothesized that our algorithm would outperform PPV when 
used to predict FR in large animal models of circulatory shock.

Methods
Cohort description
ML model development was performed using ABP data from 394 fluid challenges derived from 58 adult pigs 
across three injury models of circulatory shock including hemorrhagic shock (n = 134 fluid challenges from 13 
pigs), ischemia–reperfusion injury (n = 119 fluid challenges from 13 pigs), and ischemia–reperfusion injury 
with intermittent variable balloon occlusion of the proximal descending aorta (n = 141 fluid challenges from 32 
pigs). All animals were treated with continuous infusion norepinephrine, adjusted to maintain mean arterial 
pressure (MAP) above 60 mmHg before initiating FBT then locked into a baseline rate. Hemorrhagic shock 
(HEM) involved controlled hemorrhage of 25% of estimated blood volume. Ischemia–reperfusion injury (IRI) 
involved controlled hemorrhage followed by 30 min of complete aortic occlusion and then restoration of flow 
to the lower  body21. Ischemia–reperfusion injury followed by intermittent occlusion of the supraceliac aorta 
(EPACC) was performed as previously  reported22. The HEM and IRI shock models, developed specifically for 
our MLFRA experiments, were subdivided into hypovolemic, euvolemic, and hypervolemic phases correspond-
ing to pure blood loss, transfusion of the shed blood, and transfusion of an additional 25% blood volume from a 
donor animal, respectively. During each phase animals received four separate 500 ml boluses of VetivexTM pHy-
LyteTM solution each delivered over 10 min with a 5-min pause between boluses. Each bolus was administered 
in micro-boluses of 100 ml over 60 s with 60-s pauses between micro-boluses (Supplementary Fig. 1). EPACC 
animals were originally treated as part of experiments unrelated to this work but were included in this cohort 
after our initial experiments with HEM and IRI animals suggested potential benefit from a greater diversity of 
pathophysiology and resuscitation strategies (see below). EPACC animals were treated with weight-based boluses 
of VetivexTM pHyLyteTM solution (5 ml/kg) each delivered over 2 min (Supplementary Fig. 1), with titration 
of both norepinephrine infusion and/or intra-aortic balloon volume determined by a resuscitation algorithm 
targeting a MAP > 60 and CVP ≥  522. Boluses from EPACC animals were only included from time periods where 
both the norepinephrine infusion rate and intra-aortic balloon volume were held constant such that the only 
factor affecting hemodynamics was the infusion of fluid. All animals were sacrificed using intravenous ethanol 
(1 ml/10 pounds of body weight) while under general anesthesia. Death was confirmed through electrocardio-
gram and blood pressure measurements. Additional methods describing the animal experiments can be found 
in the Methods section of the Supplement. The Institutional Animal Care and Use Committee at Wake Forest 
Baptist Medical Center approved this study (approval numbers A18-098 and A21-092). All animal experiments 
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were performed and reported in accordance with Animal Research: Reporting of In vivo Experiments (ARRIVE) 
guidelines and in strict compliance with the Guide for the Care and Use of Laboratory Animals.

Data acquisition
Waveform data from intra-aortic ABP catheters and CO monitors were collected for 60 s immediately before 
and after each bolus. CO was measured using either an intra-cardiac pressure–volume (PV) loop catheter or 
ultrasound flow probe placed over zone 1 of the descending aorta as a surrogate for  CO23. Stroke volume (SV) was 
measured by dividing the median CO by the median heart rate during the measurement period. The observed 
change in SV after each bolus was calculated and used to label boluses as fluid responsive (FR) or fluid non-
responsive (NR). FR was defined as a post-bolus increase in SV of ≥ 15%10,11.

Physiologic data were visualized using the LabChart™ software platform (ADInstruments, Sydney Australia, 
version 8.1.19). Waveform data were downsampled from 1000 to 100 Hz. Downsampled data were visually 
inspected by JYA, DB, and CG and pre-bolus and post-bolus intervals with substantial signal artifacts (e.g., gross 
motion artifacts, severe signal dampening) were excluded prior to all MLFRA model development to prevent 
bias from bolus selection (Supplementary Fig. 2). High-frequency noise was removed using a Savitsky-Golay 
filter (window = 19, polynomial order = 2), followed by labeling of systolic blood pressure, diastolic blood pres-
sure, and the dicrotic notch pressure and their associated timestamps, using “core feature” detection algorithms 
developed for the study (Supplementary Fig. 3).

Train/test splitting
To avoid data leakage, we split bolus-associated data at the pig-level for all experiments. Preliminary experiments 
designed to explore model generalizability involved training on data from a single injury model (e.g., HEM) and 
testing on pigs from the remaining pathophysiologies. Test performance was inconsistent under these condi-
tions. To assess whether overfitting was the result of small sample sizes in general or to fitting pathophysiology-
specific models, we used k-fold cross validation (CV; k = 5) in the training datasets where good performance 
was observed in the k-folds suggesting models were overfitting to training set pathophysiology and failing to 
generalize to different pathophysiology rather than overfitting random noise from small sample sizes in general 
(Supplementary Table 1).

Thus, to test the hypothesis that a more diverse learning space would improve generalizability across different 
pathophysiologies, subsequent experiments were performed by pooling pigs from all three injury models into a 
combined dataset. Given our still relatively small dataset (394 boluses from 58 pigs), we used multiple randomly 
selected train/test splits (n = 29, half of the 58 total pigs) to avoid a biased estimation of model performance from 
any one random train/test split. We implemented a stratified random pig-level allocation strategy designed to 
generate train/test splits with a prevalence of FR boluses as close to 50% as possible to reflect the native prevalence 
reported in the clinical  literature12. Characteristics of each train/test split can be seen in Supplementary Table 2.

All subsequent model development experiments including algorithm selection, feature selection, hyperpa-
rameter tuning, and model training were performed by further splitting the training data using fivefold CV to 
assess model stability and estimate the anticipated generalization error. Boluses were again split between CV 
folds at the pig-level using a stratified random allocation attempting to balance FR and NR boluses across folds. 
Test datasets, also referred to here as “holdout” sets, were not analyzed until all model development experiments 
were completed. 29 models (one per train/test split) were  serialized24 and evaluated on the holdout datasets (see 
section below).

Feature engineering and selection
ABP waveforms were processed to identify “core features”, which were then used to calculate another set of 
expert-informed physiologic features similar to prior methods (Supplementary Table 3)18. The median and 
standard deviation of each feature were calculated using all beats from the 60 s prior to each bolus, resulting in 
a set of 50 features. Four different feature selection mechanisms were compared to select the most informative 
features, minimize overfitting, and optimize computational requirements. Statistical feature selection used Kol-
mogorov–Smirnov  tests25 to retain features with non-overlapping target label distributions (p > 0.1), followed 
by removal of highly correlated features (correlation coefficient threshold ≥ 0.9). Non-statistical methods were 
assessed including permutation  importance26, recursive feature  elimination27 (RFE) and mutual  information28. 
The four feature selection methods were applied to each of the 29 training datasets resulting in 116 feature selec-
tion trials. RFE showed optimal model performance in cross-validation using 10 features, so all non-statistical 
selection methods used 10 features to ensure comparability across experiments. One additional method was 
evaluated where features that were selected in ≥ 50% of the 116 feature selection trials were included to create a 
consensus feature set (Supplementary Fig. 4).

Model development and performance assessment
We evaluated four candidate ML algorithms using the Python Scikit-learn software  library24 (Python version 
3.8.3 was used throughout this study) including logistic regression (LR), support vector machine (SVM), ran-
dom forest (RF), and gradient boosted machine (GBM) algorithms. To minimize overfitting and evaluate the 
consistency of retained features, we used four different feature selection techniques and k-fold cross-validation 
method (k = 5) to tune  hyperparameters29. Model selection targeted the area under the receiver operating curve 
(AUROC). After all model development experiments were completed in the training sets, models were refitted 
using all data in each training set and serialized, followed by final testing on the corresponding holdout sets. 
The primary outcome measure was the AUROC. Models were also evaluated by the area under the precision-
recall curve (AUPRC), recall/sensitivity, specificity, precision/positive predictive value, negative predictive value 
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(NPV), and overall accuracy. Confusion matrix-based measures used a model decision threshold of ≥ 50% but 
models were also evaluated across deciles of decision threshold to better understand the range of performance. 
As a comparative benchmark, the performance of pulse pressure variation (PPV) was evaluated in the holdout 
datasets using the same metrics. PPV was calculated from ABP data in the 60-s period immediately prior to 
each fluid bolus by dividing the difference between the largest and smallest pulse pressures by the mean of the 
largest and smallest pulse  pressures15. PPV was evaluated using AUROC and using a threshold of ≥ 12% for 
confusion matrix-based  measures13. Metrics were reported with 95% confidence intervals calculated using all 29 
holdout sets; results of individual train/test splits are also reported in the Supplementary Table 4. We followed 
the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) 
recommendations for evaluating the prediction models (Supplementary Table 5)30.

Error analysis
To investigate systematic contributors to misclassification in the holdout datasets, we examined several factors. 
First, we looked to see if misclassifications were more common when the change in SV after FBT was near the 
defined FR boundary condition. In this regard, use of a target label defined by a statistically-derived threshold 
value of a continuous  variable10 can challenge the development of a binary  classifier31. We thus classified boluses 
into three subgroups, one in the grey zone encompassing the 15% threshold used to define FR (change in SV of 
10–20%), a < 10% change group, and a > 20% group and examined the proportion of grey zone boluses as a func-
tion of model performance (by AUROC). Next, we looked for an association between performance and injury 
model by plotting the proportion of boluses from each injury model in each holdout dataset against each MLFRA 
model’s AUROC. Finally, because of our relatively small dataset size, we looked to see if model performance 
might be related to having randomly split the data into particularly similar or dissimilar train/test splits. We 
thus used two-sample Kolmogorov–Smirnov  tests25 (using an a priori p value of > 0.1) to identify features with 
non-overlapping distributions in each train/test split and plotted the proportion of non-overlapping features 
per split against the AUROC. Best fit lines (using Python’s NumPy  library32) and Pearson correlation coefficients 
(using Python’s SciPy  library33) were used to describe the relationships described above.

Results
The average number of boluses allocated to training and test splits across all 29 pig-level dataset splits, includ-
ing the proportion of FR boluses and the proportion of boluses derived from each injury model is described in 
Table 1. Our stratified random sampling approach was able to achieve a near 50% proportion of FR  boluses12 and 
roughly equal proportions of boluses derived from each injury model despite different numbers of pigs from each 
injury model, different numbers of boluses from each pig, and different proportions of FR boluses from each pig 
in the overall dataset. Details of each train/test split can be seen in Supplementary Table 2 and hemodynamic vari-
ables including the median change in stroke volume after a fluid challenge can be seen in Supplementary Table 6.

Results of CV experiments in the training data showed comparable performance of the RF, GBM, LR, and 
SVM models (Supplementary Table 7). Due to its simplicity and inherent tendency to resist  overfitting34, all 
subsequent experiments were performed using the RF algorithm. Comparative feature selection experiments 
using CV in the training data showed similar performance between methods; results in the holdout test sets are 
reported in Table 2 and also showed comparable performance across methods. Supplementary Fig. 5 shows the 
list of features retained in ≥ 50% of models across the 4 feature selection methods along with their SHAP  values35.

Table 1.  Number of boluses in training and test datasets overall, and proportions by fluid responsiveness 
and source injury model across all 29 pig-level train/test dataset splits. FR fluid responsive, IRI ischemia–
reperfusion, EPACC  endovascular perfusion augmentation for critical care, HEM hemorrhage.

Training set (n) Test set (n) % FR, training % FR, test % IRI, training
% EPACC, 
training

% HEM, 
training % IRI, test % EPACC, test

% HEM, 
test

269 125 58 58 30 34 36 30 40 30

Table 2.  Classification performance metrics for machine learning-based prediction of fluid responsiveness 
in the 29 holdout datasets across different feature selection methods. AUROC Area under receiver operating 
characteristic curve, AUPRC area under precision recall curve. *For statistical feature selection, this value is the 
mean of the number of features retained across the 29 holdout datasets.

Feature selection method
Number of retained 
features Accuracy AUROC Precision Recall Specificity AUPRC

Statistical feature selection 18* 0.77 ± 0.01 0.84 ± 0.02 0.77 ± 0.02 0.86 ± 0.02 0.64 ± 0.04 0.85 ± 0.02

RFE 10 0.76 ± 0.01 0.82 ± 0.01 0.76 ± 0.01 0.86 ± 0.03 0.62 ± 0.04 0.84 ± 0.01

Permutation Importance 10 0.75 ± 0.02 0.82 ± 0.02 0.75 ± 0.01 0.86 ± 0.03 0.60 ± 0.04 0.85 ± 0.01

Mutual Information 10 0.76 ± 0.01 0.82 ± 0.02 0.76 ± 0.02 0.86 ± 0.03 0.62 ± 0.04 0.84 ± 0.02

Top 12 Features (> 50% 
Frequency) 12 0.76 ± 0.02 0.82 ± 0.02 0.77 ± 0.02 0.86 ± 0.02 0.64 ± 0.03 0.83 ± 0.02
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Results in both the training and holdout test datasets showed higher AUROC for the MLFRA than for PPV in 
discriminating between FR and non-FR boluses (Supplementary Table 8). Figure 1 and Supplementary Tables 4 
and 8 show consistently higher performance of the MLFRA compared to PPV albeit with a wider distribution 
of AUROCs across MLFRA models and experimental conditions. We also evaluated our MLFRA models with 
multiple confusion matrix statistics at a prediction threshold of ≥ 0.5 and compared this to the commonly used 
PPV threshold of ≥ 12%. Results in Supplementary Table 8 showed lower sensitivity (i.e., recall) of the MLFRA 
models compared to PPV but higher average specificity, precision (i.e., positive predictive value), and overall 
accuracy. Table 3 shows the performance of the MLFRA as assessed by confusion matrix statistics across deciles 
of model classification threshold.

In addition to characterizing MLFRA model discrimination, we also examined model calibration. Figure 2 
shows the predicted probability of FR for each bolus in the holdout datasets, grouped into deciles of predicted 
probability, against the proportion of fluid responsive boluses in each corresponding decile and the number of 
boluses in each decile. While the number of boluses in each decile was not uniform, the MLFRA appeared to be 
well-calibrated across the range of model predictions.

Our error analysis showed a moderately negative correlation (correlation coefficient of − 0.6) between the 
AUROC of each model and the proportion of boluses with a change in SV between 10 and 20% in each cor-
responding holdout dataset (Supplementary Fig. 6). Analysis showed weak correlations between model perfor-
mance and the proportion of pigs from each injury model allocated to each holdout dataset, with correlation 
coefficients for the proportion of HEM, IRI, and EPACC pigs of -0.15, 0.19, and -0.03 (Supplementary Fig. 7–9). 
Finally, despite our use of multiple random splits of the overall dataset to mitigate the effects of selection bias on 
performance estimates, we evaluated whether model performance was related to the degree of dissimilarity in 
input feature distributions between training and test splits generated by our stratified random splitting method. 
We observed a weak correlation (− 0.15) between model performance and the proportion of input features with 

Figure 1.  Distribution of area under receiver operating characteristic curve (AUROC) values for machine 
learning-based fluid responsiveness prediction in the holdout datasets for all 29 pig splits using all four feature 
selection methods (a) and in the same 29 holdout datasets for pulse pressure variation (PPV) based prediction 
(b).
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statistically different distributions between the training and holdout test sets of each of the 29 dataset splits 
(Supplementary Fig. 10).

Discussion
In this study, we developed a novel approach to the prediction of FR using classical ML methods and only ABP 
waveform data as input. Our ML fluid responsiveness algorithm (MLFRA) demonstrated good discrimination 
between FR and NR states (average AUROC 0.82 across different modeling approaches) and performed substan-
tially better than PPV (average AUROC 0.73), a widely used automated FR prediction method and resulted in 
good model calibration across deciles of predicted probabilities. While our total dataset size was relatively small 

Table 3.  Model performance characteristics across a range of predicted probability thresholds using results 
from the 12-feature prediction model averaged across all 29 holdout datasets. *Precision is NA since there were 
no positive classifications at that threshold.

Threshold Accuracy Precision Sensitivity Specificity

0 0.58 0.58 1 0

0.1 0.60 0.60 0.99 0.08

0.2 0.70 0.67 0.96 0.35

0.3 0.74 0.71 0.94 0.46

0.4 0.75 0.73 0.91 0.55

0.5 0.77 0.77 0.86 0.64

0.6 0.78 0.80 0.83 0.71

0.7 0.76 0.82 0.77 0.76

0.8 0.70 0.83 0.61 0.83

0.9 0.48 0.83 0.13 0.96

1 0.42 NA* 0 1

Figure 2.  Model calibration curve. Calibration curve for machine learning models trained on the 29 pig splits 
across all 4 feature selection methods and evaluated on the corresponding holdout datasets.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2227  | https://doi.org/10.1038/s41598-023-50120-5

www.nature.com/scientificreports/

(n = 394 boluses from 58 pigs), MLFRA models performed consistently well across dataset splits and different 
ML modeling approaches.

As healthcare undergoes a rapid digital transformation, algorithm driven CDS systems will be used to opti-
mize patient outcomes, reduce costs, and improve patient and provider experience in multiple domains including 
critical care and resuscitation  medicine16,17,36. In this context, our MLFRA performed well compared to the two 
most well-studied predictors of FR – PLR and PPV—with several potential advantages. Across meta-analyses, 
PLR has performed consistently well in predicting FR with AUROC ranging from 0.84–0.96 when using a change 
in CO or SV as the FR  metric8,12,37,38. Despite excellent predictive characteristics, performing the PLR properly is 
labor intensive, time consuming, requires specialized beds and CO monitoring, and may be contraindicated in 
highly unstable patients thus prohibiting its use in automated CDS systems or where resources are  unavailable39.

Like our MLFRA, PPV uses ABP waveform data as input and requires no patient intervention or other 
monitoring making it suitable for automated CDS. Unlike the PLR, PPV’s reported performance has varied 
considerably across studies, ranging from poor to excellent, with suboptimal performance in circumstances 
common in critically ill patients including arrhythmias, poor respiratory system compliance, and when the tidal 
volume (TV) is < 8 ml/kg of predicted body weight (PBW)8,13,15. While ventilator management in our study was 
ultimately at the discretion of the treating team, lung protective ventilation was recommended including TV 
of 6–8 ml/kg of PBW and a low PEEP-FiO2  strategy40. In this context, our finding that the MLFRA performed 
consistently better than PPV across dataset splits and feature selection methods suggests that our approach may 
be more performant than PPV across a broader range of clinical conditions encountered in the intensive care 
unit (Supplementary Tables 4 and 8)41. It is also notable that all features retained in > 50% of 116 dataset splits 
and feature selection approaches were standard deviation-based features suggesting that MLFRA models were 
learning to predict FR using indicators of cardiopulmonary interactions over the respiratory cycle similar to 
 PPV15. It remains unclear whether the MLFRA’s performance advantages over PPV resulted from use of multiple 
hemodynamic indicators of cardiopulmonary interactions (versus PPV’s univariate approach) or from the com-
bined use of features representing cardiopulmonary variability and absolute values. Additional studies will need 
to be performed to determine if the MLFRA consistently outperforms PPV across a broader range of conditions 
known to compromise PPV  performance14,15.

Our findings extend recent work applying ML to predicting hemodynamic trajectories and the response 
to FBT. Bataille et. Al.42 used ML to predict FR using features derived from echocardiography in 100 patients 
with sepsis. While performance was comparable to PLR, the acquisition of echocardiographic data required 
active intervention from experts, hindering use in automated CDS. Several other recent studies have applied 
ML methods using data from the Medical Information Mart for Intensive Care database to predict the blood 
 pressure20 and urine  output19 response to FBT. ML operating on ABP waveform data has also been used to 
predict hypotensive episodes in both ICU and operative patients up to 15 min prior to an  event18. These studies 
highlight the potential of learning algorithms to predict hemodynamic trajectories and the response to FBT. To 
our knowledge, no other study to date has shown the ability of ML to predict the cardiac response to FBT using 
passively collected ABP waveform data.

Our study has several limitations. First, while our sample size is large for large animal resuscitation studies, 
it is relatively small compared to many clinical studies. In this regard, we attempted to maximize use of available 
data by training and testing our MLFRA with three different critical illness models and multiple feature selection 
methods, and characterized performance using multiple dataset splits to minimize sampling bias and multiple 
measures of both model discrimination and calibration. While our error analysis did not find clear reasons for 
FR misclassification other than the proportion of boluses near the SV boundary condition (Supplementary 
Fig. 6–9), additional large animal studies involving a broader range of clinical conditions will be necessary to 
better understand the MLFRA’s strengths and weaknesses across disease states and approaches to resuscita-
tion (e.g., type of shock, depth of shock, fluid conservative versus fluid liberal strategies). Ultimately, carefully 
conducted clinical studies will be necessary to understand how well the MLFRA translates to the bedside under 
real-world conditions. Second, we recorded ABP tracings measured directly from the femoral artery (HEM 
and IRI) or aorta (EPACC) and it is possible that our results could be different at other sites of measurement, 
where differences in ABP waveform morphology could potentially affect input feature calculations. Additional 
experiments to determine whether our MLFRA continues to outperform PPV across different sites of ABP 
measurement will be important to determine generalizability to clinical practice. Similarly, our selection of 
ABP-based input features was not exhaustive, and it is possible that performance would improve with use of a 
different feature set or the use of deep learning algorithms that don’t require expert feature design. Third, we only 
compared the MLFRA to PPV and not to other predictors such as the  PLR15 given the inability to incorporate 
these predictors into automated CDS systems, and it’s possible that some could have outperformed our MLFRA. 
Fourth, we developed the MLFRA as a binary classifier. Like PPV, this classification scheme may not perform 
well around the SV threshold used to separate FR and NR  states10,41. Our error analysis findings showing an 
inverse relationship between MLFRA model performance and the proportion of boluses near the SV threshold 
used to define FR (Supplementary Fig. 6) support this hypothesis, and it is possible that a multi-class classifier 
trained on minimally-responsive, marginally-responsive, and highly-responsive states, or a regression model 
predicting the expected change in SV might perform better and provide more clinically-relevant information. In 
this regard, we selected a 50% voting threshold for the classification of FR by the Random Forest model to enable 
consistent model evaluation across experimental conditions, and it is possible that a lower or higher threshold of 
classification (Table 3) might be more desirable at different time points in a resuscitation rather than a “one size 
fits all” approach to predicting  FR2,14. Finally, the limitations of the historical definition of fluid responsiveness 
must be considered. We used a 15% increase in SV to define fluid responsiveness. This commonly used boundary 
condition is based on the limits of precision of measuring the cardiac response to  FBT10 and may not necessarily 
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correlate with improvements in tissue perfusion. Future research should explore the ability to predict FR defined 
by improved end-organ perfusion rather than changes in SV or CO alone.

In conclusion, we report the development of a novel ML model to predict the SV response to FBT using ABP 
waveform data as the sole input. Our model outperformed pulse pressure variation – a widely used predictor of 
FR – in multiple injury models of circulatory shock. Additional research is needed to understand the generaliz-
ability of our approach in a broader range of disease states and to develop models that predict FBT-mediated 
improvements in end-organ function rather than hemodynamics alone. Incorporation of such models into 
automated clinical decision support systems will ultimately enable providers to maximize the benefits of FBT, 
minimize risks of fluid toxicity, and enable precision resuscitation.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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