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Abstract

In this article, we explore neurobiological principles that could be deployed in systems requiring 

self-preservation, adaptive control, and contextual awareness. We start with low-level control for 

sensor processing and motor reflexes. We then discuss how critical it is at an intermediate level 

to maintain homeostasis and predict system set points. We end with a discussion at a high-level, 

or cognitive level, where planning and prediction can further monitor the system and optimize 

performance. We emphasize the information flow between these levels both from a systems 

neuroscience and an engineering point of view. Throughout the paper, we describe the brain 

systems that carry out these functions and provide examples from artificial intelligence, machine 

learning, and robotics that include these features. Our goal is to show how biological organisms 

performing self-monitoring can inspire the design of autonomous and embedded systems.

Keywords

Adaptive Control; Artificial Intelligence; Attention; Homeostasis; Machine Learning; 
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I. Introduction

NEUROBIOLOGY has a long history of inspiring engineering systems. The field of 

neural networks was derived from the architecture of the nervous system with nodes 

and connections that mimic neurons and synapses, respectively. Many machine learning 

algorithms are based on discoveries from the neuroscience of learning and memory. Robot 

navigation systems have been modeled after regions of the rodent brain that are important 

for spatial memory.

In this paper, we explore neurobiological principles that monitor and regulate an organism’s 

health and performance. Figure 1 provides a roadmap, which we follow throughout the 

paper. The left side of the figure lists components of the nervous system involved in 

primitive reflexive behavior and sensory process (lower left, Figure 1), the maintenance 

of system stability (middle left, Figure 1), and higher level planning and control (upper 
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left, Figure 1). The right side of Figure 1 lists possible parallels in engineered autonomous 

systems.

At the lower level, the periphery and spinal cord do much of the heavy lifting with reflexive 

movements and rapid adjustments. Similarly, a robot would have motor controllers and 

drivers to handle and monitor the movement of actuators. On the sensory side, the peripheral 

nervous system and specialized sensors (eyes, ears, touch receptors) handle incoming 

signals. These are not merely passing signals through. Rather, they are smart sensors that 

preprocess information and adapt to conditions.

At the intermediate level, subcortical systems maintain the organism’s health. These portions 

of the nervous system regulate basic bodily functions such as hunger, thirst, heart rate, 

temperature control, mating, maternal/paternal instincts, defensive and escape behaviors. 

These systems monitor internal organs and external conditions, and then drive systems to set 

points appropriate for the current conditions or organism’s needs.

At the highest level, the central nervous system carries out functions that could be 

called ”cognitive”. These include attention, executive control, decision-making, navigation 

strategies, and planning. These functions often require learning and long-term memory. 

They may take time to develop and be applied. Therefore, it is critically important for 

the intermediate and lower levels to rapidly handle events and system health, while the 

higher, ”cognitive” levels plan for the future.

In the remainder of the paper, we use Figure 1 as a roadmap to discuss in more detail these 

levels and how the system monitors the self. In addition to covering the neurobiology behind 

these ideas, we will provide examples, mainly from robotics work we are personally familiar 

with. By no means is this meant to be a comprehensive review. Rather the examples are 

meant to illustrate our points. It is our hope that these ideas can inspire future autonomous 

systems.

II. Sensory and Motor Primitives

At the lowest level of control in Figure 1, the organism or autonomous system needs some 

primitive functionality to get it out of the box. This includes actuators with motor drivers so 

that when a motor command for a behavioral response comes to the motor system, actuators 

move limbs or wheels a desired direction and distance. A copy of that motor command is 

sent to the level above. In neuroscience, this is known as a motor efference copy, and it 

is critical for the intermediate controller to monitor the movement and make corrections if 

necessary [1]. Similarly, sensory systems need low level processing so that when a stimulus, 

whether it is light, sound or vibration, reaches the organism, the signal is converted into 

something the controller can interpret. Having some processing handled by these smart 

sensors and actuators, reduces the load on the rest of the nervous system, which in turn saves 

time and energy.
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A. Reflexive Behavior

Similar to biological organisms, autonomous systems need innate behaviors or reflexes to be 

minimally competent. For example, an organism will reflexively move away from a noxious 

stimulus. It may also have innate food preferences. When designing an autonomous system, 

engineers typically build in primitive behaviors, reflexive movements and even preferences 

to give it basic functionality.

The neuroanatomist Valentino Braitenberg described a series of thought experiments for 

his Vehicles to demonstrate a range of reflexive behaviors [2]. These vehicles had innate 

preference or aversion for sensory sources such as lights or sounds. The purpose of 

these Vehicles was to provide simple lessons in neuroscience principles. For example, 

in the peripheral nervous system, sensory signals from one side of the body cross over 

to the motoneurons on the other side of the body. These contralateral connections lead 

to rapid, reflexive avoidance behavior. He further showed how switching the wires from 

sensors to ipsilateral actuators would change avoidance behavior to orienting behavior. Such 

organization is found throughout the nervous system. For example, the left side of the visual 

cortex receives information from the right eye and part of the left eye. The left side of the 

motor cortex mainly drives limbs on the right side of the body. Furthermore, the type of 

connection makes a big difference. Changing a connection from excitatory to inhibitory will 

change the vehicles behavior from avoiding to orienting and vice versa. Reflexive circuits 

from peripheral sensory receptors to motor neurons in the spinal cord and then to muscles 

are made up of these excitatory and inhibitory circuits. This organization is maintained 

throughout the periphery and into the central nervous system.

The spinal cord and subcortical controllers execute a number of pre-programmed behaviors 

[3]. These do not require learning from scratch or remembering. They are similar in 

vein to the idea of subsumption architecture [4], [5], which demonstrated intelligence 

without representation or reasoning. The subsumption architecture by Rodney Brooks′ 
group introduced a multi-task scheduler, where different low-level sensory systems could 

trigger different reflexive behaviors. Arbitration between signals and prioritizing signals led 

to interesting behavioral repertoires. Similarly, Central Pattern Generators (CPGs) in the 

spinal cord arbitrate between motor primitives [6].

B. Innate Values and Preferences

Organisms know the difference between good and bad without needing to experience and 

learn these preferences. Gustatory circuits have innate preferences for certain foods. Noxious 

stimuli are painful and lead to avoidance behavior. In general, biological organisms and 

artificial autonomous systems need preferences and reflexive responses, out-of-the-box, to 

survive. Value systems signal important events causing the organism to be aware or attend 

to the stimuli, and trigger adaptive mechanisms that lead to remembering what to do in the 

future in case such an event occurs again.

In the Darwin series of Brain-Based devices [7], all the robots had innate values for what 

is good and bad. For example, different metal objects had preferred tastes depending on the 

metal’s conductivity, which led to the robot learning to pick up good tasting objects and 
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putting down bad tasting objects based on their associated auditory and visual cues [8]. In 

another set of experiments, the different reflectivity of the surface the robot traversed could 

also have positive or negative value, leading to orienting or fleeing behavior, respectively 

[9], [10]. These innate values allowed the robots to explore its environment without 

catastrophic failure. The exploration allowed neural networks to experience and then learn 

which sensory cues predicted these values and to plan accordingly. Without innate values, 

such learning would not be possible.

Similarly, field robots, edge devices and Internet of Things (IoT) should have built-in 

preferences to maintain connectivity and ensure system health. Building multiple innate 

values into the system and tying these to appropriate actions, can result in adaptive behavior 

with minimal control policies.

III. Homeostasis and Allostasis

At the intermediate level of control in Figure 1, the organism or autonomous system needs 

to monitor external environmental conditions and internal body states to maintain system 

health. In biological systems, this is carried out by processes known as homeostasis and 

allostasis. These critical systems allow the organism to be aware of internal responses to 

changes in the environment (e.g., hunger, pain, thermoregulation.)

Homeostasis refers to stability through constancy and allostasis refers to predictive control 

of physiological conditions. Allostasis and homeostasis are complementary, that is, when 

predictions fail, there needs to be error correction and new set points [12]. Homeostatic 

mechanisms can maintain stability at these set points. These processes are governed by the 

hypothalamus and other sub-cortical regions. We will discuss later how cortical predictive 

control can further regulate allostasis. In Figure 1, we suggest that allostasis and homeostasis 

are important for system monitoring and regulating basic behaviors. However, they are 

constantly sending system status to high-level controllers and are receiving context and 

system signals from higher levels. If predicted outcomes do not match expectations (e.g., 

a motor action did not result in being in an expected position), signals are sent from the 

intermediate controller to the higher-level controller for error correction and adaptation.

A. System Health and Self-Monitoring

In the brain, the autonomic nervous system and associated physiological processes maintain 

system health and respond to changes [13]. There are a variety of homeostatic systems to 

maintain set points in the body, including thermoregulation, hunger, thirst, and protection 

against predators and disease. Many of these mechanisms are subconscious and reflexive, 

others are under voluntary control. The term allostasis is a process by which the body 

responds to stressors or changes in order to regain stability in the face of change. For 

example, a set point can change and the system must adapt and take action to restore order. 

Order may come in the form of a new set point that is more suitable to the current state of 

the environment and the current state of the organism. Matching the dynamics of the system 

to the dynamics of the environment or the load that is placed on the system can serve the 

purpose of finding a new stable state that maximizes efficiency, given the context [14], [15].
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Self-monitoring and allostasis can lead to behavioral trade-offs. The autonomic nervous 

system monitors whether its needs are met. If the physiological system is intent on fulfilling 

basic needs, such as food and sleep, it can temporarily withstand a number of problems. 

However, as the duration of responding in the face of unmet needs increases, the likelihood 

that the system will become depleted and undergo a state-change also increases. For 

example, humans under stress might exhibit an observable allostatic change in the form 

of the system’s compensatory down-regulation of thyroid production [16]. This lowers the 

system’s metabolic rate, altering its energetic and restorative needs. It comes with costs, 

however. Low thyroid production can lead to some short-term memory deficits. The benefit 

of allowing the organism to continue functioning under substandard conditions, however, 

can outweigh the costs.

Some researchers have suggested that monitoring system health and internal states is a step 

toward ”self-awareness” [17], [18]. The internal representations lead to self-monitoring and 

can set a context for the system. On the one hand, this results in the system adjusting its 

actions based on system health or needs. On the other hand, internal representations are 

often thought to lead to the notion of ”feelings” and ”awareness.” In humans, monitoring of 

internal states often occurs below the level of awareness, however, people have the ability 

to bring things like feeling heart rate, respiration rate, and other signals into awareness. 

The concept of interoception in humans includes sensing the state of visceral organs or the 

internal state of the body [17]. The circuits that are proposed to support such a function 

(including the amygdala and insular cortex) receive input from all of the visceral organs. 

This ability to sense one’s own state is often thought to be fundamentally necessary for 

emotion regulation and for assessing the state of another being [18].

The concepts of allostasis and homeostasis have implications for autonomous systems. 

Seeking an energy source, transitioning into a power savings mode when idle, or shutting 

down a computer if its hardware gets too hot are examples where control modeled after 

homeostasis and allostasis could be advantageous. These functions do not need central 

top-down control to operate. Not only do autonomous systems need to monitor their health 

and maintain working levels for their power consumption, sensors and actuators, but they 

also need to adapt and respond to perturbations; especially if they are operating at the 

edge far away from power sources and support. Understanding how to maintain stability 

through change, as a nervous system under chronic load does, could benefit the adaptability 

of autonomous systems to substandard conditions or even unusually dynamic or unstable 

conditions, ultimately aiding survival.

B. Safety and Damage Control

Allostasis and homeostasis have similarities to Self-Integrating and Self-improving Systems 

or SISSY, which has been used in space systems and engineering, to guarantee safety [20]. 

In SISSY, the system needs to detect faults, self-protect (or safeing), and determine the 

minimal acceptable performance. Similarly, the hypothalamus is monitoring fault detection 

and setting the minimal acceptable performance by making new set points. Some differences 

may be that the nervous system and the body has self-protection built in and determining 
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the appropriate performance level is dynamic and dictated by multiple signals (i.e., different 

brain areas). In this way, the nervous system is a more distributed variant of SISSY.

Similar to SISSY, self-monitoring and self-modeling in robotics can allow the system to 

recognize damage and attempt to fix or overcome an injury. For example, Cully and 

colleagues developed a method for adapting gaits on a hexapod robot [11]. Through self­

modeling, the robot controller had a memory of potential gaits. If one or more of the robots 

legs were damaged, the robot would detect the damage, imagine different ways of moving, 

and then choose the new gait it thought would work best under the new circumstances. In 

this way, at a low level of control, the robot monitored itself and adapted its behavior quickly 

without intervention (see Figure 2).

C. Neuromodulation and Value Systems

Allostasis and homeostasis can be maintained by so-called ”value systems”. Organisms 

adapt their behavior by generating predictions that recruit value systems to maintain 

adequate performance and behavior. When recruited, these systems signal contextual 

information, trigger learning, and select actions. In the brain, these value systems are 

supported by neuromodulatory systems. The neuromodulatory systems are subcortical 

regions in the brain that have a strong influence on a number of brain areas thought to 

be involved in cognition.

Neuromodulators include dopamine, serotonin, norepinephrine, acetylcholine, and other 

neurochemicals that are released to a wide network of neural structures. The function 

of these neuromodulatory systems varies according to their actions on different target 

structures and receptors. For example dopamine is thought to signal aspects of reward, 

saliency, novelty, invigoration, motor timing, and prediction error [4], [21], [22]. Serotonin 

typically contributes to feelings of well being and security or safety. However, serotonergic 

producing neurons in the Raphe Nucleus undergo a paradoxical switch under conditions 

of high levels of threat [23], whereby these neurons then trigger threat escape behavior, 

including harm aversion, and might also trigger anxious states, which can lead to protective 

behaviors [21], [24], [25]. Under conditions of safety or lower threat, these same neurons 

will trigger ”freezing” behavior or cessation of movement. Norepinephrine can create state 

changes in brain processing, signal vigilance, arousal, and under conditions of learning, 

track unexpected uncertainty [26], [27]. Acetylcholine is critical for inducing cortical 

state changes, map plasticity, sensory coding, incrementing and decrementing attention, 

responding to conditions of memory load, memory consolidation, attention, and tracking 

expected uncertainty [27]-[29]. The basal forebrain neurons, which produce acetylcholine, 

receive projections from all other neuromodulatory systems, perhaps serving as a final 

common pathway to different regions of cortex [30].

In robotics, neuromodulatory value systems can control behavior by changing the systems 

contextual state. For example, a robot was created to mimic rodent behavior by staying 

near walls or near a nest when it was anxious about an unfamiliar environment [19]. 

However, once it sensed the environment was safe, curiosity took over and the robot 

explored novel objects in the middle of the environment (Figure 3). Simulated acetylcholine 

and norepinephrine allowed the robot to respond quickly to novel events and habituate to 
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uninformative events. Increasing serotonin levels in the model led to risk averse behavior 

(i.e., staying near the walls or nest), whereas increasing dopamine levels led to invigorated, 

curious behavior (i.e., examining objects in the middle of the environment).

For an autonomous system design, such modulation could allow a system to detect 

important signals from noise, and switch from one activity to another. For example, in our 

neural network modeling, we have shown how neuromodulation can overcome catastrophic 

forgetting [31], and can lead to goal-driven perception [32]. Moreover, the noradrenergic 

system, which has been shown to be important for one-shot learning and task switching [26], 

[33], [34], has important implications for solving shortcomings in deep neural networks. A 

strong phasic response from the noradrenergic system can clear a memory that is no longer 

valid, and cause rapid adaptation to new information [33]. This may be the brain’s way of 

performing task switching and goal-directed perceptions.

IV. Cognitive Control

At the highest level of control in Figure 1, long-term strategies are planned and executed. 

Such planning requires being able to predict outcomes and adapt when there are unexpected 

results. Making predictions requires the construction of internal models, which necessitates 

learning and memory. Since an organism or autonomous system can’t possibly monitor 

every signal from the environment, the higher level must prioritize which signals to receive 

and act upon through attention mechanisms.

The cognitive control level has similarities to Cognitive Architectures (for a review, 

see [35]). Many of these architectures include modules for attention, perception, action 

selection, learning and memory, reasoning, and other cognitive functions. However, most 

of these cognitive architectures do not consider systems level neuroscience. Rather their 

goal is to extract principles from human cognitive neuroscience into modules with specific 

functions. What we argue for here is an approach that takes into consideration the anatomy 

and dynamics of the cortical and subcortical nervous systems. Moreover, we argue that all 

levels of our approach are closely coupled to the body. In the sections that follow, we look at 

many of these cognitive functions and how they monitor the self and body.

A. Predictive Control

Predictions can be generated based on prior experience and knowledge about the world, 

including benefits, liabilities, salience and the statistics of the natural world. Whereas the 

elements of the neural system develop predictive capacities, cortical regions (frontal and 

parietal) that continually receive highly processed incoming sensory input and input from 

systems with memory or motor capacity, can realize predictive coding at a pivotal level 

for the organism [36]. These brain areas set goals and predict outcomes [37]. Preempting 

reflexes, predicting value, and goal seeking can improve system performance. Moreover, 

prediction is related to minimizing energy from an information theory standpoint [38]. By 

minimizing surprises and unanticipated events, the system can reduce energy expenditure.

Prediction requires the construction and maintenance of internal models. The brain 

maintains internal models for a wide range of behaviors; from motor control to language 
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processing [39], [40]. There is evidence for neural correlates of model-based reinforcement 

learning in the prefrontal cortex, where an internal model is maintained to predict the value 

of future decisions [41]. In the rodent hippocampus, neural traces have been observed that 

appear to be evaluating different options before taking action [42], [43]. Prediction and 

inference are fundamental computations in cognitive systems [44].

Predictive models in the brain allow the organism to plan for the future and are advantageous 

when deliberation before action is possible. Notably, predictions and internal models in 

humans are prone to error in probabilistic reasoning. Whereas the propensity for human 

decision making ”errors” are often viewed as irrational, it also remains possible that at 

least a subset of these errors are adaptive to survival [45]. For example, overestimating the 

possibility of life-threatening events might be important for survival.

These predictive strategies have been deployed in a wide-range of robot applications. For 

example robot controllers develop internal models to predict movement of objects and of 

other robots [46], [47]. In other cases, robots predict positive and negative value, which 

leads to maximizing exposure to positive objects and minimizing encounters with aversive 

objects [8], [48]. Through experience, these robots learned auditory and visual categories 

in an unsupervised manner. Encounters with objects caused the appropriate reflex action 

and value system response to associate the value and appropriate action with the object. 

In this way, perception of an object would result in the value being anticipated and the 

action occurring earlier. Another robot modeled a predictive motor control region, known 

as the cerebellum, to develop preflexes [49]. Specifically, the robot used optic flow to 

predict collisions. Awkward, erratic movements due to collisions were replaced with smooth 

collision-free navigation through cluttered environments (Figure 4). Other neurobiologically 

inspired models of navigation build predictions of object and goal locations. Robots were 

able to learn pathways, and even communicate spatial trajectories and temporal references to 

other robots using this knowledge [50], [51].

B. Attention systems

Given the vast number of potential stimuli available to an organism at any given moment, 

attention systems are necessary to reduce processing and focus responses to only those 

stimuli that are salient to the organism [52]-[54]. Saliency can depend on context or 

priorities, and attention can be reactive or predictive. Stimulus-driven or bottom-up attention 

cause rapid responses to salient stimuli. For example, an object (say a dog) moving in the 

periphery may cause a rapid shift of the eyes to focus attention on the dog and follow its 

movements. Goal-driven or top-down attention can cause the system to filter signals being 

processed by the brain. For example, looking for a specific object (again, say a dog) may 

cause visual search to only pay attention to objects with the size, shape, and texture of dogs. 

Areas such as the prefrontal cortex or the parietal cortex drive attention to features and 

spatial locations, respectively [52], [55].

In addition to cortical influences, neuromodulatory systems are well situated to drive 

attention in cortex and other brain regions. For example, the basal forebrain cholinergic 

system has cortically projecting neurons that can quickly change the firing properties and 

the structure of firing correlations in cortex to maximize sensory coding for processing and 
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increase attention for learning [56], [57]. This region of the basal forebrain can result in 

clearer visual coding or superior auditory tracking. Another region of the basal forebrain 

contains neurons that project to the hippocampus to change its processing state in order to 

decrement attention to irrelevant aspects of the environment. This implies that the attention 

system increases the signal to noise ratio to take in highly valued information while ignoring 

irrelevant information. Interestingly, the basal forebrain has temporal dynamics that might 

allow information to be conveyed to cortex via principles of multiplexing from information 

theory [58]. As such, the cortex might engage in demultiplexing in order to gain access to 

temporally precise information to guide attention and action.

In addition to the cholinergic system, the neuromodulator norepinephrine can rapidly switch 

the organism’s focus of attention and induce scanning that is effective for assessing threats 

[59]. The locus coeruleus, which is the source of norepinephrine, has sweeping projections 

to the cortex, providing a mechanism by which the entire cortex can be aroused when very 

large state changes must be induced. Such a state change can, for example, change the 

perception of time, by speeding the system up enough to take in information and rapidly 

switch attention for advantageous decision making and survival purposes [60].

Modeling attention systems has become popular in artificial neural networks [61]. Similar to 

the basal forebrain, some of these artificial attention systems have an incremental component 

with a mask acting as a decrementing component [62]. Furthermore, ideas from how the 

neuromodulators acetylcholine and norepinephrine track uncertainties in the environment 

[27], have led to the design of goal-driven attention neural networks [32].

Being able to track the uncertainties in the world and rapidly change the focus of attention 

is critically important for self-monitoring and safety. Take, for example, an instance on the 

road in which an autonomous car might be avoiding an accident, changing states quickly 

would allow it to consider different sources of incoming information, switch attention to the 

most salient information, make adaptive decisions, and modify its actions before damage 

could occur.

C. Learning and Memory

A critically important aspect of humans and other animals is the ability to learn and retain 

information. We are able to learn over a lifetime and rapidly learn new information or 

skills. Learning allows us to remember facts and events of our lives and this leads to an 

awareness of how our past might influence the present and future. This is very different 

than how artificial neural networks learn and remember. Typically, artificial neural networks 

are trained on huge datasets for thousands to millions of training epochs. When there is 

new information, these networks need to be retrained and often succumb to catastrophic 

forgetting of old information. Moreover, slight changes to the data can cause dramatic 

failures [63].

The brain can offer clues on how to overcome these shortcomings in artificial lifelong 

learning systems. For example, the hippocampus can learn new information rapidly, and 

this information gets consolidated in the neocortex over time [64]. This idea of interleaved 

learning can overcome catastrophic forgetting. Recent results have also shown that the 
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cortex can rapidly learn new information if it fits within a context or schema [65]-[67]. It has 

been shown that in neural networks that having a schema memory can alleviate catastrophic 

forgetting and lead to contextual awareness, that is, taking the appropriate action depending 

on the situation [31], [68]. For example, schemas for rooms in a house may assist in a robot 

finding an object, such as a piece of fruit is typically found in the kitchen (Figure 5).

Hippocampal memory is also important for navigation and has neurons that encode 

heading, place, and path integration [69]. These spatial representations have inspired a 

number of robotic navigation systems [9], [70]. A recent discovery in neuroscience was 

a repeating pattern in animals as they move through space [71]. These neurons, known 

as grid cells, have inspired deep neural networks capable of navigation [72] and robot 

Simultaneous Localization and Mapping (SLAM) systems that rival non-neural SLAM 

systems in performance [73]. In general, the hippocampus and surrounding regions has been 

an important inspiration for developing neurobiologically based navigation systems (for a 

review, see [74]). Most of these robot systems have been based on rodent experiments. 

Any navigation system that could come close to the rodent’s capabilities would be a huge 

advance for robot navigation as anyone who has witnessed how well the rodent gets around 

complex environments can attest.

D. Affective Behavior

An important part of cognition is the ability to express and recognize affect or emotions 

[17], [18]. For robots and intelligent agents to interact more naturally with people, they may 

need to have or emulate emotions [75]. The eyes can convey a wide range of emotions. 

Balkenius and colleagues have developed a detailed model of the brain areas that control 

pupil dilation [76]. This led to the development of a robot with eyes that have a strong 

emotional affect (Figure 6). Robots that seem more natural and are easier to understand 

through non-verbal signals may overcome the so-called ”uncanny valley” and be more 

reliable companions.

Socially affective robots have been introduced for rat-robot interaction studies [77]. Initial 

studies demonstrated that rats discriminated between a social and non-social robot and were 

more likely to release a trapped robot from a cage who had helped them out of the cage 

in the past [78]. This suggests that rats not only monitor themselves, but also the their 

relation to other individuals. The next generation robot, PiRat, engaged the rats and featured 

a control scheme capable of adapting its behaviour to the state of a rat (Figure 7). Results 

showed that the rats took different trajectories according to the different behaviours of the 

robot. This could lead to a framework where social interaction could be studied in more 

controlled situations. It may also allow the robot to adapt its behavior in response to the state 

of another agent, which could lead to applications for robotic caretakers, assistants or search 

and rescue teams.

V. Conclusion

In this paper, we cover a range of neurobiological topics with the potential to inform 

self awareness in autonomous systems. Starting from innate reflexes, which allow the 

system to have basic competency, to cognitive functions, such as attention, memory and 
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social behavior. The autonomic nervous system monitors system health, keeps the organism 

within operating range and triggers system repair. Value systems, which are based on 

neuromodulation, can provide alerts, drive learning, and change context. Predictive coding 

leads to planning, goal-driven behavior, and model-based learning. Attention and memory 

systems have applications in computer vision systems, search systems and navigation.

All of the above brain inspired principles have implications for autonomous systems. The 

organizing principles of the nervous system, which are described here, could be applied to 

embedded systems, IoT, self-driving vehicles and robots (Figure 1). In general, the nervous 

system is monitoring the self at multiple levels. It is making predictions on what to expect, 

and dynamically setting expectations based on environmental conditions, as well as internal 

needs. This functionality could lead to more autonomy and more flexibility in embedded 

systems. Moreover, it could realize a new class of devices and artifacts that demonstrate the 

intelligent and complex behavior we associate with biological systems.

Whereas this form of self-monitoring presented here can often be done fluidly and below the 

level of self-awareness, it can also be brought into awareness for heightened comprehension 

or decisive action. The concept that an organism can switch between self-monitoring and 

self-awareness also allows for continuous processing of crucial functions. Bringing self­

awareness into play can be energetically costly but it can also be beneficial. For example, 

self-awareness may be socially necessary for making important self-other distinctions. An 

animal might feel distressed by the actions of another animal. Disambiguating this feeling 

with respect to self or other could call attention to the fact that the other animal is in pain 

and requires help. This highlights the potential of this view of systems not only for building 

single robots but also for building functional teams.

Although what we presented here has parallels with Cognitive Architectures [35] and 

the human-like architecture for cognition and affect or H-CogAff [79], our proposed self­

monitoring architecture is taken from a systems neuroscience point of view. Sloman and 

Chrisley do discuss self-monitoring in H-CogAff, but in the context of conscious experience, 

which is not considered here. Rather, we take an approach grounded in experimental 

neuroscience. One of us is an experimental neuroscientist who studies the neural circuits 

that lead to behavioral repertoires. The other of us is a computational neuroscientist who 

implements these neural circuits in devices that demonstrate the behaviors observed in 

animals. We believe following the neuroscience and the neurorobot examples given in this 

paper could lead to new designs for autonomous systems. Certainly, deep learning networks 

[80], and deep reinforcement learning algorithms [81] would gain by incorporating more 

realistic neuroanatomy and neurodynamics into their models. Therefore, it is our hope this 

article can inspire new innovations in the design of autonomous and embedded systems.
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Fig. 1. 
A schematic for neurobiologically inspired autonomous systems. On the left are terms and 

regions derived from neuroscience. On the right, are terms adapted from autonomous robots, 

but could be applied to many embedded systems. Blue denotes low-level sensory processing 

and motor control. Green represents homeostasis, maintenance, and monitoring. Orange 

represents high-level planning, adapting, and goal-driven behavior.
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Fig. 2. 
Using an imagined trial and error algorithm, robots, like animals, can quickly adapt to 

recover from damage. A. The undamaged, hexapod robot. RGB-D stands for red, green, 

blue, and depth. B. Hexapod robot with a broken leg. C. After damage occurs, the robot 

recognizes it cannot walk fast and in a straight line. The robot tests different types 

of behaviors until it discovers an effective compensatory behavior. Adapted from [11]. 

Reprinted by permission from Springer Nature.
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Fig. 3. 
Neuromodulatory robot controller. A. Neural network architecture to control robot behavior. 

Cholinergic and noradrenergic neurons acted as an attentional filter neurons (AchNE) and 

the dopaminergic and serotonergic neurons (DA and 5-HT), set the level of curious or 

anxious behavior, respectively. The most active OFC or mPFC neuron dictated the robot’s 

action. B and C. Wall following behavior and find home (i.e., a charging station) were 

examples anxious behaviors. D and E. Exploring the middle of the room or approaching a 

novel object were examples of curious behaviors. Adapted from [19] with permission.

Chiba and Krichmar Page 19

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2021 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
A. Segway Robotic Mobile Platform navigated a path dictated by orange traffic cones. 

An adaptive control model based on the cerebellum allowed the robot to learn smooth 

obstacle free trajectories through predictive learning. B. The diagram shows the layout of the 

different courses. Adapted from [49]. Copyright (2006) National Academy of Sciences.
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Fig. 5. 
The schema network from [31], [68] was implemented on the Toyota Human Support Robot 

(HSR). The HSR retrieved objects in a breakroom and a classroom schema. Search times 

decreased as the HSR learned which items belong to each schema.
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Fig. 6. 
Epi is a humanoid robot developed by LUCS Robotics Group at Lund University in 

Sweden (https://www.lucs.lu.se/epi). It is designed to be in used in developmental robotics 

experiments. The irises of its eyes can change color and the pupils can dilate and contract.
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Fig. 7. 
Rodent-robot interaction using the PiRat robot. Adapted from [77] with permission.
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