
Lawrence Berkeley National Laboratory
Recent Work

Title
DYNAMICAL EFFECTS OF SYMMETRY ALONG A REACTION PATH; MODE-SPECIFICITY IN THE 
UNIMOLECULAR DISSOCIATION OF FORMALDEHYDE

Permalink
https://escholarship.org/uc/item/2hs51152

Author
Miller, William H.

Publication Date
1982-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2hs51152
https://escholarship.org
http://www.cdlib.org/


LBL-14300 
Preprint 

Lawrence Berkeley Laborat9!X 
UNIVERSITY OF CALIFORNIA BERKEL~YWRENCE 

Materials & Molecular 
Research Division 

v L);•J 1 1 1982 

LIBRARY AND 
DOCUMENTS SECTION 

Submitted to the Journal of the American Chemical 
Society 

DYNAMICAL EFFECTS OF SYMMETRY ALONG A REACTION PATH; 
MODE-SPECIFICITY IN THE UNIMOLECULAR DISSOCIATION 
OF FORMALDEHYDE 

William H. Miller 

May 1982 

TWO-WEEK LOAN COPY 

This is a Library Circulating Copy 
which may be borrowed for two weeks. 

For a personal retention copy~ call 

Tech. Info. Division~ Ext. 6782. 

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness; or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



LBL-14300 

Dynamical Effects of Symmetry along a Reaction Path; 

Mode-Specificity in the Unimolecular Dissociation of Formaldehyde 

William H. Miller 

Department of Chemistry, and Materials and Molecular Research 
Division, Lawrence Berkeley Laboratory 

University of California, 
Berkeley, CA 94720 

and 

Lehrstuhl fur Theoretische Chemie 
Technische Universitat Munchen 

8046 Garching bei Munchen, West Germany 

This work was supported by the Director, Office of Energy Research, 
Office of Basic Energy Sciences, Chemical Sciences Division of the 
U.S. Department of Energy under Contract DE-AC03-76SF00098, and by 
the National Science Foundation Grant CHE-79-20181. 

This manuscript was printed from originals provided by the author. 



.. 

-1-

Abstract 

If there is a geometrical symmetry (i.e,, Cs~ CJv' etc.) that is 

conserved along a reaction path (the steepest descent path in mass~ 

weighted cartesian coordinates from a transition state to reactants 

and to products), then it is shown that this leads to selection 

rules in the dynamical coupling between the reaction coordinate and 

the vibrational modes that are orthogonal to it. Namely, states 

corresponding to different irreducible representations do not interact. 

Thus even if one makes a statistical (i.e., transition state theory) 

approximation to the dynamics within a given irreducible representation-.­

i.e., a "symmetry adapted transition state theory"--there can still 

be mode-specific effects between the different symmetries. The 

unimolecular decomposition of formaldehyde, H2co ~ H2 + CO, which 

has a planar reaction path, is taken as an example, and it is seen 

that the A' and A" microcanonical rate constants d;i.ffer by a factor 

of ~ 20 in the tunneling regime, and still by a factor of 2 at 

~ 5-6 kcal/mole above the classical threshold of the reaction . 
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I. Introduction. 

Symmetry plays an important role in many aspects of chemistry, 

e.g., in crystallography, in spectroscopy~ and also in kinetics and 

reaction dynamics, which is the concern of this paper and for which 

there are several different kinds of symmetry effects. The "conservation 

f 1 ,l f f fl o orbita symmetry o electronic wave unctions in .uences whether 

a given reaction will have a high activation barrier, or not, and 

also its stereochemical aspects. Quite different from this are the 

effects caused by identical atoms in a reaction, i.e., the appearance 

of "symmetry numbers" or "statistical factors" in transition state 

2 3 theory rate constants. ' 

The present paper discusses yet another kind of symmetry and its 

consequences for reaction dynamics; namely, the effect of a symmetry 

that is maintained along a reaction path. (Furthermore, as discussed 

in Section IV, the symmetry that is maintained along the reaction path 

is the same as the symmetry of the transition state.) It is shown that 

such a symmetry implies selection rules in the coupling between the 

reaction coordinate and the transverse vibrational modes of the 

dynamical system, and this can in turn lead to mode-specific effects 

in the rate constants. 

To keep the presentation physically transparent, it is first 

carried through in Sections II and III for a specific reaction, the 

unimolecular dissociation of formaldehyde (in its ground electronic 

state) 

(1.1) 

which has.recently been the focus of considerable experimental and 

h . 1 . 4 t eoret~ca ~nterest. 
4a 

The reaction path in this case is planar, 
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i.e., C symmetry, and the first point of the paper (Section II) is to s . 

show that this leads to a decoupling of the even (A') and odd (A") 

vibrational states of the out-of-plane bending mode. Thus even within 

a statistical approximation (i.e., microcanonical transition state theory) 

for the dynamics one should take account of the fact that (due to 

symmetry) A' and A" states do not interact. Section III thus introduces 

a "symmetry adapted transition state theory," i.e., a microcanonical 

transition state theory rate constant separately for A' and A" states. 

For the formaldehyde reaction (1.1), the symmetry-induced mode-specificity 

-i.e., the difference between the rate constants (at the same total energy) 

for A' and A" states - is quite significant: in the tunneling region, the 

A' rate constant is a factor of ~20 larger than the A" rate constant, and 

it is still a factor of 2 larger at ~5-6 kcal/mole above the classical 

threshold of the reaction. 

Section IV then shows how these ideas can be generalized. The basic 

result is that symmetry of the transition state (and thus the reaction 

path) leads to decoupling of states corresponding to different irreducible 

representations of the symmetry group, so that even if a statistical 

approximation (i.e., microcanonical transition state theory) is assumed 

for the dynamics, one should calculate a distinct microcanonical transition 

state theory rate constant for each irreducible representation. In the 

limit of energies far above the reaction threshold, these different rate 

constants become equal, but as seen with the formaldehyde reaction (1.1), 

symmetry-induced mode-specificity (i.e., difference in the rate constants) 

can be significant at chemically relevant energies. 
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II. Consequences of Reaction Path Symmetry for the Reaction Path 

Hamiltonian. 

It is useful to base the discussion of the reaction dynamics 

on the reaction path Hamiltonian as formulated by Miller, Handy, 

5 and Adams. This describes the polyatomic reactive system in 

terms of a reaction coordinate6 (the distance along the reaction 

path, the steepest descent path in mass~weighted cartesian 

coordinates from the saddle point of the potential energy surface, 

i.e., the transition state, back to reactants and forward to 

products) plus local normal mode displacements about it. The 

overall picture of the potential surface is that of a (multidimensional) 

harmonic valley about the reaction path. For zero total angular 

h 1 . 1 . f h H '1 · · S momentum t e c ass1ca vers1on o t e am1 ton1an 1s 

1 F-1 
2 [p - k~'=l 2 s QkPk,Bk,k'(s)] 

+ ' (2.la) 
F-1 2 

[1 + r QkBk F(s)] 
k=l ' 

where 

(2.lb) 

(2.lc) 
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Here (s,p ) are the reaction coordinate and its conjugate momentum 
s 

(labeled as the Fth degree of freedom) and (nk,qk) 1 k=l~·· '?F-1 

are the classical action-angle variables 7 for the (F..-1) vibrational 

modes orthogonal to the reaction path; nk is the classical analog 

of the vibrational quantum number for mode k, and qk is the classical 

phase of the oscillator. F=3N-6 is the number of degrees of freedom 

of the non-rotating system in its center of mass, where N is the 

number of atoms. v0 (s) is the reaction profile, i.e., the potential 

energy along the reaction path, and {wk(s)} are the frequencies .of 

the (F-1) local normal modes. The coupling elements {Bk k, Cs}}, which .. 
couple the vibrational modes to each other and to the reaction 

coordinate, are given by 

a~k' (s) 
~k(s)• as (_2. 2a) 

for (k,k') = l, ... ,F, k#k', where ~k(s) is the (3N..-~imensional) 

eigenvector of the projected force constant matrix5 for mode k at 

the distance s along the reaction path. (~F(s) is the normalized 

gradient vector itself, which by definition points along the reaction 

path. The elements Bk,F(s), k=l, •.. ,F..-1 depend on how the curvature 

of the reaction path couples into mode k, and the elements 

Bk,kr(s), (k,k') = 1, ... ,F-1, k#k 1 , are coriolis-like coupling 

elements. There are also diagonal coupling elements given by 

w~ (s) 

2wk(s) 
( 2. 2b) 
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for k=l, ... ,F-1. A more detailed discussion of the reaction path 

Hamiltonian, its generalization to non-zero total angular momentum~ 

. 5 8 
and its applications have been given in earlier papers. ' 

;. Specializing now to the formaldehyde reaction {1.1), it was 

noted in the Introduction that the reaction path is planar. One 

has. F=6 here, and of the F-1=5 vibrational modes orthogonal to the 

reaction path, four(k=1,2,3,4) .are·in the plane of the four atoms, 

and one (k=5) is perpendicular to the plane. Since for all values 

of the reaction coordinates the normal mode vectors ~(s), k=l,2,3,4, 

and 6 correspond to atomic displacements in the plane, the vectors 

a~k(s)/as, k=l,2,3,4, and 6 also have all atomic displacements in 

the plane. Then, since ~5 (s) has all atomic displacements out of 

the plane, Eq. (2.2a) shows that all the coupling elements B
5 

k(s) 
' 

vanish for k~S, i.e., 

(2.3) 

for k=l,2,3,4, and 6. 

"Therefore the only coupling of the out of plane mode k=S is 

that caused by the variation of its frequency with reaction coordinate, 

i.e., the diagonal coupling element from Eq. (2.2b), 

-w5' (s) 
85,5{s) = 2 w

5
(s) (2.4) 

The dependence of the Hamiltonian on· the angle variable q5 that goes 

with this coupling element is seen from Eq. (2.1) to be 
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and its square, and this means (via standard, semiclassical 

correspondence9) that the quantum mechanical Hamiltonian operator 

only has matrix elements in mode 5 with 6n
5 

= 0,±2,±4, i.e., even 

and odd vibrational states of the o~t-of~plane bend ~ode are 

uncoupled. 

It should be emphasized that it is the planar symmetry of the 

reaction path that leads to this decoupling of the even and odd 

out-of-plane vibrational states and that it has nothing to do with 

the identity of the two hydrogen atoms. Thus the situation is 

entirely the same for the reaction 

HDCO -+- HD + CO 

which of course also has a planar reaction path. 

To make contact with customary group theoretic language one 

notes that the planar, C symmetry of the reaction path means that 
s 

for each value of the reaction coordinate s the transverse vibrational 

modes will belong to one of the irreducible representations of C , 
s 

A' (symmetric on reflection in the plane) or A" (antisymmetric on 

reflection). Here the four in-plane modes k=l,2,3,4 are A1 , and 

the out-of-plane mode k=5 is A", (The reaction coordinate itself, 

k=6, is A'; it is always of the totally symmetric representation.) 

Since these synnnetry classifications are maintained along the reaction 

path. the coupling elements Bk k' must vanish if k and k' belong to 
' 

different irreducible representations. The diagonal coupling elements 
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Bk k never vanish, however, so that the quantum number for mode k=5 
' 

is not completely conser-Ved, only its eveness or oddness is. 
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III. The Microcanonical Rate Constant. 

Even in a statistical theory, such as transition state theory, 

one should take account of any quantities conserved by the Hamiltonian 

and not assume that non-interacting states are mixed statistically. 

In microcanonical transition state theory, for example as it is used 

. h RRKM f . 1 1 . lO . . 11 1n t e treatment o un1mo ecu ar react1ons, 1t 1s we -

recognized that since total angular momentum is a conserved quantity 

one should calculate a microcanonical rate constant for each value 

of J separately, k
3

(E), and then combine the rate constants for 

various J's according to the appropriate experimental situation. 

(In many cases, too, one also averages over the total energy E, but 

in favorable situations experiments may determine the rate constant 

for a given energy E and a given total angular momentUm J.) 

The discussion in the previous section has shown that (at least 

for J=O) even and odd (i.e., A' and A', states of the out~of-plane 

vibrational mode, k=S, are uncoupled, so one should calculate a 

microcanonical rate constant for A'.and A" symmetry separately. 

Within the standard10 separable harmonic approximation for the energy 

levels, these microcanonical rate constants are given by (jncluding 

1 . 11) tunne 1ng 

N A" (E) /2rm pA" (E) 

(3,la) 

(3 .lb) 

where the N's are the cummulative reaction probabilities for each 

symmetry, 



00 

NA' (E) = L 
nl,n2 
n

3
,n

4
=0 

00 

NA11 (E) = [ 

nl,n2 

n3 ,n4=0 

00 
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5 1 
P [E-V- t""· hc_uk(~+2)j,(J.Zb) 
ld 0 L 

k=l 

and the p's are the density of states of the reactant molecule of the 

corresponding symmetry, 

00 00· 6 1 
p A' (E) = L: r o[E- [hwk(~+-z)J 

nl,n2,n3 ns=0,2,4 k=l 
(3.3a) 

n
4

,n
6

=0 

00 00 6 1 
PA"(E) = I: E o[E- r hwk(~ +-z)J 

nl,n2,n3' ns=l,3,5 k=l 
(3.3b) 

n4 ,n
6

=o 

Various quantities in the above expressions have their usual meaning: 

* {~} and {wk} are the frequencies of H2co and the transition state, 

respectively, v0 is the barrier height, and P1d(Et) is the one 

dimensional tunneling probability as a function of the translational 

energy Et. The fact that formaldehyde itself, i.e., the minimum 

point on the potential energy surface, has higher symmetry than C 
s 

is irrelevant for present purposes, for it is only C symmetry that s 

is conserved along the reaction path and thus determines the quantities 

that are conserved by the reaction path Hamiltonian. 
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The most dramatic consequence of this dynamical symmetry appears 

in the tunneling regime of reaction (1.1) where only the ground 

state of the transition state contributes in Eq. (3.2). In this 

energy region it is not hard to show that 

(3.4) 

where p(E) is the total density of reactants states computed without 

regard to A' and A" symmetry (i.e., p = p A 1 + p A'') 1 so that for the 

tunneling region Eq. (3,1) becomes 

(3. 5a) 

(3.5b) 

where V ZP is the barrier height plus zero point energy of the 
0 

transition state, 

V ZP 
0 

If C symmetry were ignored, the rate in this tunneling region, 
s 

k(E), would be given by 

k(E) (3.6) 

so that the effect of taking C symmetry into account is to enhance 
s 

the rate of the A' states by a factor of 2, 
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(3.7a) 

and to depress the rate of the A" states because the effective 

* activation energy is increased by the amount hw
5

, 

(3. 7b) 

Figure 1 shows the A' and A" microcanonical rate constants for 

reaction (1.1) (J=O), as calculated from Eqs. (3.1)-(3.3) with the 

f . d . 1 . kll 1 1 h E (3 7) requenc1es use 1n ear 1er wor ; one sees c ear y ow qs. _ , 

describe the tunneling region. There is approximately a factor of 

20 difference between the two rate constants (at the same total 

energy) in this low energy region. 

At energies sufficiently far above the classical threshold one 

can show that the two rate constants become equal 1 i.e., the effect 

of reaction path symmetry disappears. It is easy to see how this 

limit is approached if one uses the usual classical approximation 

to the various sums over states (i.e., replaces sums by integrals). 

It is not hard to show that this gives 

k(E) (3.8) 

where k(E) is the ordinary classical rate expression (ignoring 

tunneling and C symmetry), and the"+" and"-" signs correspond 
s 

to A' and A", respectively. For E >> hw
5

, as is the case, the 

denominator is essentially unity, so that Eq. (3.8) gives the ratio 
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of rate constants as 

(.3. 9a) 

where 

(3.9b) 

As noted, therefore, for sufficiently high energy A ~ 0 

and the ratio of rate constants, Eq. (3.9), approaches unity, but 

it may require a very high energy before this limit is effectively 

reached. Equation (3.9) shows, in fact, that the ratio of rate 

constants is still 2 at an energy given by 

1 * (21/F-1 + 1) 
E - V =- !i.w 

0 2 5 ( 21/F-1 _ l) 

which for large F is well-approximated by 

* E - v
0 

~ !i.w
5

(F.,..l)/f),n 2 (3.10) 

* For the present case !i.w
5 

~ 2.3 kcal/mole, so that the RHS of Eq. 

(3.10) is~ 16-17 kcal/mo1e. Since the zero point energy of the 

transition state is ~ 11 kcal/mole, Eq. (3.10) predicts that the 

energy (relative to the classical threshold) at which kA' has fallen 

to a factor of 2 greater than kA" is (E-v
0

2p) ~ 5-6 kcal/mole, and 

this is indeed seen in Figure 1. 
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Before concluding this discussion of the formaldehyde reaction 

(1.1), it is interesting to note that the usual photochemical 

excitation of formaldehyde actually prepares the molecule in a 

state of definite C symmetry (at least for J=O), so that the 
s 

"symmetry-induced mode-specificity" discussed above should be 

relevant. This is because the photochemical excitation S
0

+ s1 is 

to a definite vibrational state of the out-of-plane mode (v
4 

in 

usual spectroscopic designation, but mode k:S in the present paper). 

In the radiationless transition from s
1 

back to S
0 

(highly 

vibrationally excited), the overall symmetry of the molecule is 

conserved, and since the electronic symmetry (in C ) of S is A" 
s 1 

and that of S i.s A', the parity of the out-of-plane vibrational 
0 

state must change. Thus, if an odd out-of-plane vibrational state 

of sl is excited, the out-of-plane state in st will be even, so 

that it is kA 1 (E) that is relevant in this case. Conversely, for 

excitation of an even out-of-plane vibrational state of s 1 , it is 

kA11 (E) that is relevant for the unimolecular decay in S
0

• 

Unfortunately, however, the lifetimes that have been measured 

the S
0

+ s1 excitation appear to be a complicated combination of the 

rate of unimolecular transition s + 
1 

s+ and the rate of unimolecular 
0 

decomposition in s o' and as yet it has not been possible to unravel the 

two processes to determine the rates of each process individually. The 

experiments by Weisshaar and Moore 13 , however, on the electric field 

dependence of the lifetimes offers the promise of doing this. 



-15-

IV. More General Discussion of Reaction Path Symmetry 

It is now relatively easy to see how these ideas can be applied 

more generally. The situation is even more profound (and useful) by 

' b . 2 f 3a noting Pechukas o servat~on , allowing Pearson , that the symmetry 

of the transition state is the same as the symmetry that is maintained 

along the reaction path, provided only that the reaction is indeed a 

reaction (and that the reaction path is ''simple," i.e., does not bi-

furcate). That is, the "reaction" 

(4 .1) 

is c3v along the reaction path and n3h at the transition state, but 

this "reaction" is really no reaction; i.e., the reactants and products 

are the same. The legitimate reaction 

BrCH3 + I (4. 2) 

Is c3v along the reaction path and also at the transition state. The 

basic idea is that the transition state, a point on the reaction path, 

is not a special point on the react;i.on path, synnnetry-wise. 

In.general, therefore, one must first find the symmetry of the 

transition state which, as noted above, is the symmetry along the 

reaction path. The rnicrocanonical transition state theory rate 

constant for each irreducible representation of the symmetry group 

is then given by 
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kA(E) 
NX (E) 

= 
2n1ip/. (E) 

(_4. 3) 

where 

(4.4a) 

• (4.4b) 

and A denotes the particular irreducible representation (e.g., 

>.=A' or A" for the formaldehyde example, or A
1

, A2 , orE for the 

c3v case as in reaction (4.2)). The factor PA(n1 ~ ... ,nf.,..l) in 

Eq. (4.4) is the fraction that the state with quantum numbers 

Cn1 ,n2 , ... ,nF-l) is in the irreducible representation A. For 

the formaldehyde reaction it is quite trivial to determine this 

factor: for A=A' PA(n1 , ... ,n5) = 1 or 0 for n5 even or odd, 

respectively, and.vice-versa for A=A''. If any of the irreducible 

representations are multidimensional (e.g., as in c
3
v)' then the 

determination of these factors is somewhat more complicated, but the 

h . f d . . 14 mac ~nery or o~ng_ so ex~sts. One simplifying observation is 

that PA(n1 , ... ,nF-l) is in general independent of the quantum 

numbers for the totally symmetry modes; this is the reason for 

omitting nF as an argument of PAin Eq. (4.4b). One also has in 

alJ cases, the g~neral relation 

,.. 
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1 (4. 5) 

and from this one can easily show that the average microcanonical 

rate constant k(E), 

k(E) - (4.6) 

is the standard microcanonical transition state expression without 

regard to symmetry. 

To give another illustration of how the group theoretic 

reasoning and the dynamical arguments based on the reaction path. 

Hamiltonian are consistent, consider the case of a planar transition 

state, i.e., Cs symmetry, for a 5 atom reaction. Of the F-1 = 3N-7=8 

vibrational modes .of the transition state, six will be of A' symmetry 

(i.e., in plane) and two will be A" (out of plane). If modes k-7 ,8 

1 or 0 if (n
7
+n8) is even or odd, respectively, and vice-versa for 

A.=A". 

To see this conservation of symmetry directly from the reaction 

path Hamiltonian one notes that the only non-zero coupling elements 

of Eq. (2.2) involving modes k=7 and 8 are B
7 7

, B
8 8

, and B7 8
. , , , 

The angle dependences associated with these couplings are 
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sinq
7 

1 2iq7 -2iq7 
cosq

7 
=- (e ... e · } 

4i 

sinq
8 

1 
(e 

2iq8 -2iq8 
cosq8 = 4i -e } 

sinq
7 

1 (e 
i (q7+q8) -i(q7+q8) i (q7 ..... q8) 

cosq 8 4i -e -e 

-i(q -q ) 
+ e 7 8 ) 

which imply that there will be matrix elements of the Hamiltonian 

involving these modes only for 

o. ±2~ ±4 

0, ±2~ ±4 

(L'm
7

,t.n
8

) = (1,1), (-1,1), (1,-1), (-1,-1), .•. 

i.e., only matrix elements for which 

Thus the "evenness" or "oddness" of (n
7
+n

8
) is conserved, and this 

is the decoupling of the A' and A" manifolds of states. 

This discussion also suggests how rotation, i.-e., J>O, should 

be incorporated, First, if coriolis coupling is neglible along the 

reaction path, then vibrational state symmetry is unaffected, and 

the only modification of Eqs. (4.3)-(4.4) is that the rotational 

energy is added to the transition state and to the reactant molecule, 
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and the sums in Eq. ( 4. 4) are augmented by a sum over K, the 

(unconserved) angular momenttnn projection quantum number; the rate 

constants are designated kJ,A(E). (If the reaction path is a 

symmetric top, as for reaction (4.2), then the projection quantum 

number K is also conserved, so that in this case one should 

determine the microcanonical transition state theory rate constant 

for given values of K also, k ,(E).) 
J,K,A 

If, on the other hand, coupling between rotation and vibration 

is strong, then one should utilize the composite symmetry of 

rotation and vibration. This is more complicated, but the 

methodology is essentially identical to that for ordinary stable 

15 molecules. 

In general, in fact, the procedure for counting states in 

Eq. (4.4) for each irreducible representation of the transition 

state is essentially the same as that for ordinary stable molecules. 

This is because the reaction coordinate itself is always of the 

totally symmetric representation--because the symmetry is maintained 

along the reaction path--so that this degree of freedom does not 

affect any of the symmetry aspects of the state counting. 
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V. Concluding Remarks. 

The main point of this paper has been to point out that when 

there is a symmetry maintained along the reaction path, there are 

selection rules involving the dynamical coupling betw~~ the 

reaction coordinate and the vibrational modes orthogonal to it. 

Then even if one makes a statistical approximation to the dynamics 
. 

within each separate manifold of states, there can be symmetry-

induced mode-specific effects between states of different symmetry. 

With the additional observation that the symmetry that is 

maintained along the reaction path is precisely the symmetry of the 

transition state, one is able to employ a "symmetry-adapted 

transition state theory" by knowing only the transition state, 

its symmetry, and its other usual properties (i.e., frequencies and 

moments of inertia). 

Finally, although it has been emphasized that reaction path 

symmetry can induce mode-specific effects between states of 

different symmetry, without more detailed dynamical calculations 

there is no way to know that there might not also be mode-specificity 

within a given irreducible representation. For the formaldehyde 

reaction (1.1), for example, it is possible that the rate constant 

might not be a smooth function of the total energy even within the 

A' or the A" manifold. The kind of detailed dynamical calculations 

that can answer this question have been carried out by Waite and 

Miller
16 

for model problems, and depending on the nature of the 

coupling one can obtain statistical or mode-specific behavior 

within a given symmetry. To carry out calculations of this type for 

the formaldehyde reaction requires the coupling elements in Eq. (2.2) 
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and the frequencies along the reaction path that fully characterize 

h . h H '1 . Th ' ' h b d · .dlS t e react1on pat am1 ton1an. ese quant1t1es ave een eterm1ne 

for the formaldehyde dissociation, and calculations for it like 

those of Waite and Miller are in progress. 
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Figure Caption 

Microcanonical rate constant for the reaction H2co -+ H2 + CO 

(for J=O) for the symmetries A' and A", as a functio~ of total 

energy E relative to v
0

2p (the barrier height plus zero point 

energy of the transition state). The values plotted include an 

additional factor of 2 than indicated in Eq. (3.1), due to the 

two equivalent transition states (or equivalently, due to the 

symmetry number for H2CO). 
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