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Abstract The first measurement of the jet mass mjet of
top quark jets produced in tt events from pp collisions at√
s = 8 TeV is reported for the jet with the largest transverse

momentum pT in highly boosted hadronic top quark decays.
The data sample, collected with the CMS detector, corre-
sponds to an integrated luminosity of 19.7 fb−1. The mea-
surement is performed in the lepton+jets channel in which the
products of the semileptonic decay t → bW with W → �ν

where � is an electron or muon, are used to select tt events
with large Lorentz boosts. The products of the fully hadronic
decay t → bW with W → qq′ are reconstructed using a sin-
gle Cambridge–Aachen jet with distance parameter R = 1.2,
and pT > 400 GeV. The tt cross section as a function of
mjet is unfolded at the particle level and is used to test the
modelling of highly boosted top quark production. The peak
position of the mjet distribution is sensitive to the top quark
mass mt , and the data are used to extract a value of mt to
assess this sensitivity.

1 Introduction

The top quark may play a special role in the standard model
(SM) of particle physics owing to its large mass and its pos-
sible importance in electroweak symmetry breaking [1,2].
Measurements of tt production provide crucial information
about the accuracy of the SM near the electroweak scale [3,4],
and in assessing the predictions of quantum chromody-
namics (QCD) at large mass scales. In turn, they can be
used to determine the fundamental parameters of the the-
ory, such as the strong coupling constant or the top quark
mass [5,6].

Previous differential measurements of the tt production
cross section [7–15] at the Fermilab Tevatron and CERN
LHC show excellent agreement with SM predictions. How-
ever, investigations of top quarks with very large transverse
momenta pT have proven to be difficult, since in this kine-
matic range the decays of the top quark to fully hadronic

� e-mail: cms-publication-committee-chair@cern.ch

final states become highly collimated and merge into single
jets. In this highly boosted regime, the tt reconstruction effi-
ciency deteriorates for previous, more-traditional measure-
ments. Special reconstruction techniques based on jet sub-
structure are often used to improve the measurements [16,17]
or to implement searches for new physics [18–28]. A detailed
understanding of jet substructure observables, and especially
the jet mass mjet, is crucial for LHC analyses of highly
boosted topologies. While measurements of mjet corrected
to the particle level have been carried out for light-quark and
gluon jets [29,30], the mjet distribution for highly boosted
top quarks has not yet been measured.

Apart from testing the simulation of mjet in fully hadronic
top quark decays, the location of the peak of themjet distribu-
tion is sensitive to the top quark mass mt [31]. This measure-
ment therefore provides an alternative method of determining
mt in the boosted regime, independent of previous mass mea-
surements [32–37]. Calculations from first principles have
been performed in soft collinear effective theory [38–41]
for the dijet invariant mass distribution from highly boosted
top quark production in e+e− collisions [42,43], and work
is ongoing to extend this to the LHC environment [44,45].
Such calculations account for perturbative and nonperturba-
tive effects, and provide particle-level predictions. Once pre-
dictions for the LHC become available, the measurement of
themjet distribution can lead to an extraction ofmt without the
ambiguities that arise from the unknown relation between mt

in a well-defined renormalisation scheme and the top quark
mass parameter used in Monte Carlo (MC) simulations [45–
48].

We present the first measurement of the differential tt
production cross section as a function of the leading-jet
mass, where leading refers to the jet with the highest pT.
The measurement is based on data from pp collisions at√
s = 8 TeV, recorded by the CMS experiment at the LHC

in 2012 and corresponding to an integrated luminosity of
19.7 fb−1. It is performed on tt events in which the lead-
ing jet includes all t → bW+ → bqq′ decay products. The
other top quark is required to decay through the semileptonic
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mode t → bW− → b�ν�, where � can be either an elec-
tron or muon. The use of charge-conjugate modes is implied
throughout this article. The semileptonic top quark decay
serves as a means for selecting tt events without biasing the
mjet distribution from the fully hadronic top quark decay. The
highly boosted top quark jets used in the measurement are
defined through the Cambridge–Aachen (CA) jet-clustering
algorithm [49,50] with a distance parameter R = 1.2 and
pT > 400 GeV. The mjet distribution is unfolded to the par-
ticle level and compared to predictions from MC simulations.
The measurement is also normalised to a fiducial-region total
cross section defined below, and shows the expected sensi-
tivity to the value of mt . An extraction of the value of mt is
performed to assess the overall sensitivity of the measure-
ment.

2 The CMS detector

The central feature of the CMS detector is a superconducting
solenoid of 6 m internal diameter, providing a magnetic field
of 3.8 T. A silicon pixel and strip tracker, a lead tungstate
crystal electromagnetic calorimeter (ECAL), and a brass and
scintillator hadron calorimeter (HCAL), each composed of
a barrel and two endcap sections reside within the magnetic
volume. In addition to the barrel and endcap detectors, CMS
has extensive forward calorimetry. Muons are detected using
four layers of gas-ionization detectors embedded in the steel
flux-return yoke of the magnet. The inner tracker measures
charged particle trajectories within the pseudorapidity range
|η| < 2.5. A two-stage trigger system [51] is used to select for
analysis pp collisions of scientific interest. A more detailed
description of the CMS detector, together with a definition of
the coordinate system and relevant kinematic variables, can
be found in Ref. [52].

3 Event reconstruction

The CMS experiment uses a particle-flow (PF) event recon-
struction [53,54], which aggregates input from all subdetec-
tors. This information includes charged particle tracks from
the tracking system and energies deposited in the ECAL and
HCAL, taking advantage of the granularity of the subsys-
tems. Particles are classified as electrons, muons, photons,
and charged and neutral hadrons. Primary vertices are recon-
structed using a deterministic annealing filter algorithm [55].
The vertex with the largest sum in the associated track p2

T
values is taken to be the primary event vertex.

Muons are detected and measured in the pseudorapidity
range |η| < 2.1 using the information collected in the muon
and tracking detectors [56]. Tracks from muon candidates

must be consistent with a muon originating from the primary
event vertex, and satisfy track-fit quality requirements [57].

Electrons are reconstructed in the range |η| < 2.1, by
combining tracking information with energy deposits in the
ECAL [58,59]. Electron candidates are required to origi-
nate from the primary event vertex. Electrons are identified
through the information on the energy distribution in their
shower, the track quality, the spatial match between the track
and electromagnetic cluster, and the fraction of total cluster
energy in the HCAL. Electron candidates that are consis-
tent with originating from photon conversions in the detector
material are rejected.

Since the top quark decay products can be collimated at
high values of top quark pT, no isolation requirements on the
leptons are imposed in either the trigger or in the offline selec-
tions (see Sect. 4). The imbalance in event pT is quantified
as the missing transverse momentum vector pmiss

T , defined
as the projection on the plane perpendicular to the beams of
the negative vector sum of the momenta of all PF candidates
in the event. Its magnitude is referred to as pmiss

T .
The PF candidates are clustered into jets by using the

FastJet 3.0 software package [60]. Charged hadrons asso-
ciated with event vertices other than the primary event vertex
are removed prior to jet clustering. Isolated leptons (either
electron or muon) are not part of the input list for jet find-
ing [53,54]. Small-radius jets are clustered with the anti-
kT jet-clustering algorithm [61] with a distance parameter
R = 0.5 (AK5 jets). These small-radius jets are used at
the trigger level, in the first steps of the event selection,
and for the identification of jets coming from the hadro-
nisation of b quarks. If a nonisolated lepton candidate is
found within the angular distance �R < 0.5 of an AK5
jet, its four-momentum is subtracted from that of the jet
to avoid double counting of energy and ensure proper jet
energy corrections. The angular distance is given by �R =√

(�φ)2 + (�η)2, where �φ and �η are the differences in
azimuthal angle (in radians) and pseudorapidity, respectively,
between the directions of the lepton and jet. Large-radius jets
are obtained by using the CA jet-clustering algorithm [49,50]
with R = 1.2 (CA12 jets). When a lepton candidate is found
among the PF candidates clustered into a CA12 jet, its four-
momentum is subtracted from that of the CA12 jet. In this
paper, the unmodified term ”jet” will refer to the broad CA12
jets.

All jets could contain neutral particles from additional pp
collisions in the same or nearby beam crossings (pileup). This
extra contribution is subtracted based on the average expec-
tation of the pileup in the jet catchment area [62]. This is done
by calculating a correction for the average offset energy den-
sity in each event as a function of the number of primary
vertices [63,64]. The AK5 jets are identified as originating
from the fragmentation of a b quark with the combined sec-
ondary vertex algorithm (CSV) [65]. A tight operating point
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is used, which has a misidentification probability of 0.1%
for tagging light-parton jets with an average pT of about
80 GeV, and an efficiency of about 50% for a heavy-flavour
jet with pT in the range 50–160 GeV. Above 160 GeV, the
efficiency decreases gradually to about 30% for a pT value
of 400 GeV [65]. All jets are required to satisfy quality selec-
tions to minimize the impact of calorimeter noise and other
sources of misidentified jets [66]. Events are also required to
satisfy selection criteria to remove events with large values
of pmiss

T from calorimeter noise, as described in Ref. [67].
The jet mass mjet is calculated from the four-vectors pi of

all i PF particles clustered into a jet:

m2
jet =

( ∑
i in jet

pi
)2

, (1)

where the pion mass is assigned to all charged hadrons. The
reconstruction of mjet for CA12 jets is studied by using a
sample of highly boosted W → qq′ decays merged into a
single jet, as described in Sect. 5.5.

4 Trigger and data

The data were recorded by using single-lepton triggers with
no isolation requirement applied to the leptons. Events in the
muon+jets channel use a trigger that requires at least one
muon with pT > 40 GeV and |η| < 2.1. The efficiency for
this trigger, measured in a Z → μ+μ− sample, is 95% for
muons measured within |η| < 0.9, 85% for muons within
0.9 < |η| < 1.2, and 83% for 1.2 < |η| < 2.1.

The trigger for the electron+jets channel requires at least
one electron with pT > 30 GeV in conjunction with two
AK5 jets that have pT > 100 and > 25 GeV, for the lead-
ing and next-to-leading AK5 jet, respectively. Events are also
included if triggered by a single AK5 jet with pT > 320 GeV.
The additional events obtained through this single-jet trigger
often contain an electron merged into a jet that cannot be
resolved at the trigger stage. The resulting combined trig-
ger efficiency is 90% for events with a leading AK5 jet with
pT < 320 GeV. Above this value, the trigger has a turn-on
behaviour and is fully efficient above a value of 350 GeV.
The trigger efficiencies are measured in data and simula-
tion using a tag-and-probe method in Z/γ ∗(→ ��)+jets and
dileptonic tt events. Small differences between data and sim-
ulation are corrected for by applying scale factors to the sim-
ulated events.

Top quark events, produced via the strong and electroweak
interactions, are simulated with the next-to-leading-order
(NLO) generator powheg 1.380 [68–72] with a value of
mt = 172.5 GeV. The W(→ �ν)+jets and Z/γ ∗(→ ��)+jets
processes are simulated with MadGraph 5.1.5.11 [73],
where Madspin [74] is used for the decay of heavy reso-

nances. Diboson production processes (WW, WZ, and ZZ)
are simulated with pythia 6.424 [75]. Simulated multijet
samples are generated in MadGraph, but constitute a neg-
ligible background. For the estimation of systematic uncer-
tainties, additional tt samples are generated with mc@nlo
v3.41 [76] or withMadGraph for seven values ofmt ranging
from 166.5 to 178.5 GeV.

All the samples generated inMadGraph and powheg are
interfaced with pythia 6 for parton showering and fragmen-
tation (referred to as MadGraph+pythia and
powheg+pythia, respectively). The MLM algorithm [77]
used in MadGraph is applied during the parton match-
ing to avoid double counting of parton configurations. The
MadGraph samples use the CTEQ6L [78] parton distri-
bution functions (PDFs). The powheg tt sample uses the
CT10 [79] PDFs, whereas the single top quark processes use
the CTEQ6M [80] PDFs. The pythia 6 Z2* tune [81,82]
is used to model the underlying event. Top quark events
produced with mc@nlo use the CTEQ6M PDF set and
herwig 6.520 [83] for parton showering and fragmentation
(mc@nlo+herwig). The default herwig tune is used to
model the underlying event.

The normalisations of the simulated event samples are
taken from the NLO calculations of their cross sections that
contain the next-to-next-to-leading-logarithm (NNLL) soft-
gluon resummations for single top quark production [84],
the next-to-next-to-leading-order (NNLO) calculations for
W(→ �ν)+jets and Z/γ ∗(→ ��)+jets [85–87], and the NLO
calculation for diboson production [88]. The normalisation of
the tt simulation is obtained from QCD NNLO calculations,
again including resummation of NNLL soft-gluon terms [89–
95].

A detailed simulation of particle propagation through the
CMS apparatus and detector response is performed with
Geant4 v9.2 [96]. For all simulated samples, the hard col-
lision is overlaid with simulated minimum-bias collisions.
The resulting events are weighted to reproduce the pileup
distribution measured in data. The same event reconstruction
software is used for data and simulated events. The resolu-
tions and efficiencies for reconstructed objects are corrected
to match those measured in data [56,58,64,65,97].

5 Cross section measurement

5.1 Strategy

The measurement is carried out in the �+jets channel, which
allows the selection of a pure tt sample because of its dis-
tinct signature at large top quark boosts. The measurement
is based on choosing kinematic quantities that do not bias
the mjet distribution from fully hadronic top quark decays.
A bias would be introduced by, e.g. selecting the leading
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jet based on the number of subjets, or requiring a certain
maximum value of the N -subjettiness [98,99], as applied
in common top quark tagging algorithms [100–104]. Such
a selection would lead to a distinct three-prong structure of
the jet and thus reject events with one quark being soft or
collinear with respect to the momentum of the top quark
decay.

The fiducial region chosen for this investigation is studied
through simulations at the particle level (defined by all parti-
cles with lifetimes longer than 10−8 s). The exact selection is
detailed below. It relies on having a highly boosted semilep-
tonic top quark decay, where the lepton from W → �ν� is
close in �R to the jet from the hadronisation of the accom-
panying b quark (b jet). A second high-pT jet is selected,
which is assumed to originate from the fully hadronic top
quark decay. A veto on additional jets is employed, which
ensures that the fully hadronic decay is merged into a single
jet. The jet veto is also beneficial for calculating higher-order
terms, as it suppresses the size of nonglobal logarithms [105],
which appear because of the sensitivity of the jet mass to
radiation in only a part of the phase space [106]. The event
selection at the reconstruction level is chosen to ensure high
efficiency while reducing non-tt backgrounds. Finally, the
mjet distribution is unfolded for experimental effects and then
compared to different MC predictions at the particle level. A
measurement of the normalisedmjet distribution is performed
as well, where the normalisation is performed by using the
total measured tt cross section in the fiducial phase-space
region.

5.2 Definition of the fiducial phase space

The tt cross section as a function of the mass of the leading jet
is unfolded to the particle level, correcting for experimental
effects, with the fiducial phase space at the particle level
defined through the selection described below.

As mentioned previously, the measurement is performed
in the �+jets channel, where � refers to an electron or muon
from the W boson decay. The τ lepton decays are not consid-
ered as part of the signal. Leptons are required to be within
|η| < 2.1 and have pT > 45 GeV. Jets are clustered by
using the CA algorithm with a distance parameter R = 1.2
and required to have |η| < 2.5. The value of R is chosen
to optimize the relationship between obtaining a sufficient
number of events and maintaining a narrow width in the jet-
mass distribution. The four-momentum of the leading lepton
is subtracted from the four-momentum of a jet if the lepton
is found within an angular range of �R < 1.2 of the jet axis.
Events are selected if at least one jet has pT,1 > 400 GeV
and a second jet has pT,2 > 150 GeV. The leading jet in
pT is assumed to originate from the t → Wb → qq′b
decay, merged into a single jet. Consequently, the second
jet is considered to originate from the fragmented b quark
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Fig. 1 Simulated mass distributions of the leading jet in tt events for
the �+jets channel at the particle level. The events are generated with
powheg+pythia, and normalised to the integrated luminosity of the
data. The distribution for the total number of selected events (dark solid
line) is compared to events where the leading jet originates from the
fully hadronic top quark decay (light solid line, “fully merged”), and to
events where the leading jet does not include all the remnants (dotted
line, “not merged”) from the fully hadronic top quark decay

of the semileptonic top quark decay. To select events with
a highly boosted topology, a veto is employed on additional
jets with pT,veto > 150 GeV. The jet veto removes about 16%
of the signal events, but increases the fraction of fully merged
top quark decays to about 40%, where an event is called fully
merged if the maximum distance in �R between the leading
jet at the particle level and each individual parton from the
fully hadronic top quark decay is smaller than 1.2.

Two additional selection criteria are introduced to ensure
that the leading jet includes all particles from the fully
hadronic top quark decay. The angular difference �R(�, j2)
between the lepton and the second jet has to be smaller than
1.2. This, together with the veto on additional jets, ensures
that the top quarks are produced back-to-back in the trans-
verse plane. In addition, the invariant mass of the leading
jet has to be greater than the invariant mass of the combina-
tion of the second jet and the lepton, mjet,1 > mjet,2+�. This
improves the choice of the leading jet as originating from the
fully hadronic top quark decay.

The simulated distribution of the jet mass at the particle
level after this selection is shown in Fig. 1. The distribution
of all jets passing the particle-level selection is compared to
distributions in jet mass from fully merged and not merged
tt decays. After the selection outlined above, jets that do not
originate from fully merged top quark decays with a fully
hadronic final state are expected to constitute about 35% of
all jets in the final data sample, as determined by using the
powheg+pythia simulation.
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5.3 Selection of events at the reconstruction level

A selection is applied at the reconstruction level to obtain
an enriched tt sample with high-pT top quarks, based on
leptons without an isolation requirement. As a second step,
high-pT jets are required to be kinematically similar to those
selected at the particle level. Comparable kinematic prop-
erties between the reconstruction and particle levels lead to
small bin-to-bin migrations and therefore to small corrections
when unfolding the data.

Selected events must contain exactly one muon or elec-
tron with pT > 45 GeV and |η| < 2.1. Events with more
than one lepton are vetoed to suppress contributions from
dileptonic tt decays. To select highly boosted tt events, at
least one AK5 jet is required to have pT > 150 GeV and
another AK5 jet pT > 50 GeV, where both jets have to ful-
fil |η| < 2.4. The suppression of background from multi-
jet production is accomplished by using a two-dimensional
(2D) isolation variable that is efficient at large top quark
boosts, yet notably reduces multijet background. This 2D
isolation requires the angular difference between the lepton
and the nearest AK5 jet directions �Rmin(lepton, jets) to be
greater than 0.5, or the perpendicular component of the lep-
ton momentum relative to the nearest AK5 jet prel,T to be
larger than 25 GeV. In the calculation of these quantities,
only AK5 jets with pT > 25 GeV are considered. The effi-
ciency of the 2D isolation requirement has been studied in
data and simulation by using Z/γ ∗(→ ��)+jets events [26].

A requirement on pmiss
T > 20 GeV and on the scalar sum

pmiss
T + p�

T > 150 GeV reduces the contribution from multi-
jet and Z/γ ∗(→ ��)+jets production, where p�

T is the lepton
transverse momentum. Given the presence of two b quarks in
the events, at least one AK5 jet is required to be identified as
originating from the fragmentation of a b quark by using the
CSV algorithm, which reduces the contribution from W+jets
production. The electron channel includes an additional topo-
logical selection criterion to suppress the remaining residual
contribution from multijet production:

|�φ({e or jet}, pmiss
T ) − 1.5| < pmiss

T /50 GeV,

with �φ measured in radians and pmiss
T in GeV. This crite-

rion rejects events in which pmiss
T points along the transverse

momentum vector of the leading jet or the lepton. After these
requirements, the background contribution from multijet pro-
duction is negligible.

The selection procedure outlined above results in a tt sam-
ple with high purity and selection efficiency at large top
quark pT. In addition, events are selected with kinematic
requirements similar to those at the particle level. For each
event to pass the selection, at least one jet is required with
pT > 400 GeV and another with pT > 150 GeV, where both
jets have to fulfil |η| < 2.5. Contributions from not fully

merged tt events are suppressed with a veto on additional jets
with transverse momentum pT > 150 GeV and |η| < 2.5.
The jet veto has an efficiency of 93% for fully-merged signal
events. The fraction of fully merged events with a back-to-
back topology is further enhanced by selecting events with
an angular difference �R(�, j2) < 1.2 between the direc-
tions of the lepton and the subleading jet. To ensure that the
leading jet originates from the fully merged top quark decay,
its invariant mass is required to be larger than the mass of
the subleading jet. With these selection criteria, the recon-
struction efficiency for tt events where one top quark decays
semileptonically in the fiducial region of the measurement
is 23.2%. Several of the above criteria are relaxed in the
unfolding procedure to define sideband regions included as
additional bins in the response matrix, increasing thereby the
reconstruction efficiency.

After the selection procedure, the contribution of non-
signal tt events from tt decays to the τ+jets, dilepton, and
all-jets channels constitute, respectively, 7.3, 11.6, and 0.4%
of the selected events. These contributions are accounted for
in the unfolding.

The distributions in pT and η for the leading jet in selected
events are shown in Fig. 2 from data and simulation. The mass
distribution of the leading jet at the reconstruction level is
shown in Fig. 3 for the pT regions of 400 < pT < 500 GeV
(upper) and pT > 500 GeV (lower). In these plots the tt sim-
ulation is scaled such that the number of simulated events
matches the number of selected events observed in data.
Overall good agreement between data and the predictions
is observed. The slight slope in the data/MC ratio of the jet
mass distribution in Fig. 3 (upper) is covered by the jet energy
and mass scale uncertainties, as described below.

Table 1 shows the total number of events observed in
data together with the total number of signal and background
events determined from simulation.

5.4 Unfolding from the reconstruction level to the particle
level

The transformation from the reconstruction to the particle
level is carried out through a regularised unfolding based on
a least-squares fit, implemented in the TUnfold [107] frame-
work. This procedure suppresses the statistical fluctuations
by a regularisation with respect to the count in each bin. The
optimal regularisation strength is determined through a min-
imization of the average global correlation coefficient of the
output bins [108]. Contributions from background processes
such as W+jets, single top quark, and multijet production
are determined from simulation and subtracted from the data
prior to the unfolding. Non-signal tt events are accounted for
in the unfolding by including them in the response matrix,
described below.
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Fig. 2 Distributions of pT (upper) and η (lower) of the leading jet from
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below show the ratio of the data to the simulation. The uncertainty
bands include the statistical and experimental systematic uncertainties,
where the statistical (light grey) and total (dark grey) uncertainties are
shown separately in the ratio

The response matrix is evaluated by using tt events sim-
ulated with powheg + pythia. It is obtained for the two
regions in the leading-jet pT of 400 < pT < 500 GeV
and pT > 500 GeV. This division is needed to account for
the distribution of the pT spectrum. The response matrix
includes three additional sideband regions to account for
migrations in and out of the phase-space region of the mea-
surement. These are obtained for a lower leading-jet pT

of 300 < pT < 400 GeV, a lower second-leading-jet pT
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Fig. 3 Distributions of the leading-jet invariant mass from data (points)
and simulation (filled histograms). The vertical bars on the points show
the statistical uncertainty and the horizontal bars show the bin widths
for the combined electron and muon channels. The distributions for pT
bins of 400 < pT < 500 GeV (upper) and pT > 500 GeV (lower) are
given. The hatched region shows the total uncertainty in the simulation,
including the statistical and experimental systematic uncertainties. The
panelsbelow show the ratio of the data to the simulation. The uncertainty
bands include the statistical and experimental systematic uncertainties,
where the statistical (light grey) and total (dark grey) uncertainties are
shown separately in the ratio

of 100 < pT < 150 GeV, and a higher veto-jet pT of
150 < pT < 200 GeV. Events that are reconstructed, but do
not pass the particle-level selections, are also included in the
response matrix. The electron and muon channels are com-
bined, and the combined distribution is unfolded to ensure a
sufficient number of events in the unfolding procedure. The
electron and muon channels are also unfolded separately, and
the results are compared to verify their consistency.
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Table 1 Number of events obtained after applying the full selection.
The results are given for the individual sources of background, tt signal,
and data. The uncertainties correspond to the statistical and systematic
components added in quadrature

Source Number of events

Multijet 21 ± 21

W+jets 60 ± 13

Single top quark 90 ± 21

Total background 171 ± 32

tt signal 1410 ± 152

Data 1434

5.5 Uncertainties

5.5.1 Statistical uncertainties

Statistical uncertainties in the unfolding procedure arise from
three sources. The dominant source reflects the statistical
fluctuations in the input data. Second are the uncertainties
from the finite number of simulated events used to calculate
the response matrix. The third source reflects the statistical
uncertainties in the simulation of the background processes.
After the unfolding, a total statistical uncertainty is obtained
for each bin of the mjet distribution that includes the effects
from all three sources, which are correlated among the indi-
vidual measurement bins.

5.5.2 Experimental systematic uncertainties

Systematic uncertainties related to experimental effects are
evaluated by changing calibration factors and corrections
to efficiencies within their corresponding uncertainties. The
resulting covariance matrix of the unfolded measurement is
computed through standard error propagation. The uncertain-
ties are evaluated by unfolding pseudo-data simulated with
MadGraph+pythia. Pseudo-data are preferred over data
because of the smaller statistical fluctuations in the estimation
of the systematic uncertainties. The change in each parameter
that yields the largest variation in the unfolded measurement
is taken as the uncertainty owing to that parameter. The fol-
lowing sources of experimental systematic uncertainties are
considered.

The applied jet energy corrections (JEC) depend on the pT

and η of the individual jets. The JEC are obtained by using
anti-kT jets with R = 0.7 (AK7) [64], and their use is checked
on CA12 jets by using simulated events. Residual differences
between generated and reconstructed jet momenta caused by
the larger jet size used in this analysis result in increased
uncertainties in the JEC by factors of two to four with respect
to the AK7 values. Changes of the JEC within their uncer-

tainties are made in the three-momenta of the jets to estimate
the effect on the measured cross section. The jet mass is
kept fixed to avoid double-counting of uncertainties when
including the uncertainty in the jet-mass scale. A smearing is
applied in the jet energy resolution (JER) as an η-dependent
correction to all jets in the simulation. The corrections are
again changed within their uncertainty to estimate the sys-
tematic uncertainty related to the JER smearing. The uncer-
tainties are found to be small compared to the ones from the
JEC. The jet-mass scale and the corresponding uncertainty
in the CA12 jets have been studied in events that contain a
W → qq′ decay reconstructed as a single jet in tt produc-
tion. The ratio of the reconstructed jet-mass peak positions
in data and simulation is 1.015 ± 0.012. No correction to
the jet-mass scale is applied, but an uncertainty of 1.5% is
assigned, corresponding to the difference in peak positions.
The widths of the jet mass distributions are about 15 GeV,
consistent between data and simulation.

Corrections in b tagging efficiency are applied as pT-
dependent scale factors for each jet flavour. The correspond-
ing systematic uncertainties are obtained by changing the
scale factors within their uncertainties. Pileup correction fac-
tors are applied to match the number of primary interactions
to the instantaneous luminosity profile in data. The uncer-
tainty is obtained by changing the total inelastic cross sec-
tion by ±5% [109]. Trigger and lepton identification scale
factors are used to correct for differences in the lepton selec-
tion efficiency between data and simulation. The correspond-
ing uncertainties are computed by changing the scale factors
within their uncertainties [56,58].

5.5.3 Normalisation uncertainties

The effects from uncertainties in background processes are
calculated by changing the amount of background subtracted
prior to the unfolding and propagating the effect to the out-
put. The uncertainty in the W+jets cross section is taken to be
19%, as obtained from a measurement of W+heavy-flavour
quark production [110]; an uncertainty of 23% is applied to
the single top quark cross section [111]; and an uncertainty
of 100% is assumed for multijet production, estimated from
the comparison of various kinematic distributions between
data and simulation. Uncertainties affecting the overall nor-
malisation are added in quadrature to the total uncertainty
after the unfolding. An uncertainty of 2.6% is applied subse-
quently for the integrated luminosity [112].

5.5.4 Modelling uncertainties

The unfolding is checked for its dependence on the simula-
tion of tt production through the use of alternative programs
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to generate events. The effect on the measurement is esti-
mated by using one simulation as pseudo-data input to the
unfolding, and another for the calculation of the response
matrix. The unfolded result is then compared to the particle-
level distribution from the simulation used as pseudo-data.
Differences between the unfolded result and the truth-level
distribution are taken as the modelling uncertainties.

The uncertainty from the choice of MC generator is
estimated by unfolding pseudo-data simulated with Mad-
Graph+pythia through a response matrix evaluated with
powheg+pythia. The effect from the choice of the parton-
shower simulation is estimated from events generated with
mc@nlo+herwig.

The dependence on the choice of mt in the simulation
used to correct the data is also checked. While the unfolded
measurement is largely independent of the choice of mt ,
residual effects from the kinematic properties of the lep-
tons and jets can lead to additional uncertainties. These
uncertainties are evaluated by using events simulated with
MadGraph+pythia for seven values of mt from 166.5 to
178.5 GeV, as pseudo-data. This range is considered because
no measurement of mt in this kinematic regime exists, and
a stable result, independent of the specific choice of mt ,
is therefore crucial. For this check, the response matrix is
obtained with MadGraph+pythia and a value of mt =
172.5 GeV. The envelope of the uncertainty obtained for dif-
ferent values of mt is used to define an additional modelling
uncertainty.

The uncertainty from the uncalculated higher-order terms
in the simulation is estimated by changing the choice of the
factorisation and renormalisation scales μF and μR. For this
purpose events simulated with powheg+pythia are used,
where the scales are changed up and down by factors of two
relative to their nominal value. This is set to μ2

F = μ2
R = Q2,

where the scale of the hard process is defined by Q2 = m2
t +∑

p2
T with the sum over all additional final-state partons

in the matrix-element calculation. Events with varied scales
are unfolded through a response matrix obtained with the
nominal choice of scales. The uncertainty in the measurement
is defined by the largest change found in the study.

Uncertainties from the PDF are evaluated by using the
eigenvectors of the CT10 PDF set with the powheg+pythia
simulation. The resulting differences in the response matrix
are propagated to the measurement. The individual uncer-
tainties for each eigenvector are scaled to the 68% confidence
level and added in quadrature [79].

5.5.5 Summary of uncertainties

A summary of the relative uncertainties in this measurement
is shown in Fig. 4. The largest contribution is from the statisti-
cal uncertainties. The experimental systematic uncertainties
are far smaller than those from the modelling of tt produc-
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Fig. 4 Statistical uncertainties compared to the individual experimen-
tal systematic uncertainties (upper), and statistical uncertainties com-
pared to the systematic uncertainties originating from the modelling of
tt production (lower), as a function of the leading-jet mass. The total
uncertainties are indicated by the grey cross-hatched regions. The statis-
tical and total uncertainties in the last bin are around 300% and exceed
the vertical scale. The size of the horizontal bars represents the bin
widths

tion. The largest uncertainties are expected to improve con-
siderably with more data at higher centre-of-mass energies.
Besides a reduction of the statistical uncertainties, an unfold-
ing of the data using finer bins and as a function of more
variables will then be possible, which will result in a reduc-
tion of the systematic uncertainties from the simulation of tt
events. More data will also allow for a measurement that uses
smaller jet sizes, which will reduce the uncertainties coming
from the jet energy and jet mass scales.
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Table 2 Summary of the selection criteria used to define the fiducial
region of the measurement

Leptons p�
T > 45GeV |η�| < 2.1

Jets
pT,1 > 400GeV }

|η| < 2.5pT,2 > 150GeV
pT,veto > 150GeV

Event ΔR(�, j2) < 1.2
mjet,1 > mjet,2+�
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Fig. 5 Fiducial-region particle-level differential tt cross sections as a
function of the leading-jet mass. The cross sections from the combined
electron and muon channels (points) are compared to predictions from
the MadGraph+pythia, powheg+pythia, and mc@nlo+herwig
generators (lines). The vertical bars represent the statistical (inner) and
the total (outer) uncertainties. The horizontal bars show the bin widths

5.6 Cross section results

The particle-level tt cross section for the fiducial phase-space
region is measured differentially as a function of the leading-
jet mass in the �+jets channel. The selection criteria defining
the fiducial measurement region are summarised in Table 2
(cf. Sect. 5.2).

The measured differential cross section as a function of the
leading-jet mass in this fiducial region is shown in Fig. 5, and

the numerical values are given in Table 3. The full covariance
matrices are given in Appendix A. The data are compared
to simulated distributions obtained with powheg+pythia,
MadGraph+pythia, andmc@nlo+herwig. The total mea-
sured tt cross section for 140 < mjet < 350 GeV in the fidu-
cial region is σ = 101 ± 11 (stat) ± 13 (syst) ± 9 (model) fb,
where the last uncertainty is from the modelling of the tt
signal. Combining all the uncertainties in quadrature gives a
value of σ = 101±19 fb. The predicted fiducial-region cross
sections from theMadGraph+pythia and powheg+pythia
tt simulations, assuming a total tt cross section of 253 pb [89–
95], are 159 +17

−18 and 133 +18
−28 fb, respectively, where the uncer-

tainties are systematic and come from the variations of μR

and μF. The predictions exceed the measurements, consis-
tent with previously measured tt cross sections at large top
quark pT [16,17]. A similar trend is observed when com-
paring the data to the prediction from mc@nlo+herwig.
Recent NNLO calculations [113] of the top quark pT spec-
trum alleviate this discrepancy.

The normalised differential cross section (1/σ)(dσ/dmjet)

is obtained by dividing the differential cross sections by the
total cross section in the mjet range from 140 to 350 GeV.
The result is shown in Fig. 6, together with the predictions of
MadGraph+pythia for three values of mt . The numerical
values of the measured particle-level cross sections are given
in Table 4, together with the individual and total uncertain-
ties. The covariance matrices of the measurement are given
in Appendix A. The data are well described by the simu-
lation, showing that the overall modelling of the top quark
jet mass is acceptable, once the disagreement with the total
cross section at large pT is eliminated by the normalisation.
The sensitivity of the measurement to mt is clearly visible,
albeit compromised by the overall uncertainties.

6 Sensitivity to the top quark mass

Calculations of mjet for tt production from first principles,
by using a well-defined definition of mt and not relying on
parton shower and hadronisation models, are not yet avail-
able for the LHC. Still, a determination of the top quark mass
parameter in general-purpose event generators that uses the
normalised particle-level cross sections provides a proof of

Table 3 Measured
particle-level tt differential cross
sections in the fiducial region as
a function of mjet, with the
individual and total
uncertainties in percent

Range in mjet (GeV) 140–170 170–200 200–240 240–290 290–350

Integrated cross section (fb) 12 42 27 18 1.7

Statistical uncertainty (%) 54 13 21 34 300

Systematic uncertainty (%) 40 9 16 20 25

Model uncertainty (%) 52 10 11 35 36

Total uncertainty (%) 85 19 28 53 300
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Fig. 6 The normalised particle-level tt differential cross section in the
fiducial region as a function of the leading-jet mass. The measurement
is compared to predictions from MadGraph+pythia for three values
of mt . The vertical bars represent the statistical (inner) and the total
(outer) uncertainties. The horizontal bars show the bin widths

principle for the feasibility of the method, a cross-check on
other determinations of mt , and an estimate of the current
measurement’s sensitivity. The value of mt is determined
from the normalised differential cross section measurements
given in Table 4, since only the shape of the mjet distribution
can be reliably calculated. Correlations are taken into account
through the full covariance matrix of the measurement, which
is given in Appendix A. Theoretical predictions are obtained
from MadGraph+pythia for different values of mt . A fit
is performed based on the χ2 evaluated as χ2 = dT V−1d,
where d is the vector of differences between the measured
normalised cross sections and the predictions, and V is the
covariance matrix, which includes the statistical, experimen-
tal systematic, modelling, and theoretical uncertainties. The
latter are calculated by changing up and down by factors of
two the scales μR and μF in theMadGraph+pythia simula-
tion. The resulting uncertainties are added to the covariance
matrix. The χ2 values obtained for different values of mt are
fitted by a second-order polynomial to determine the mini-
mum, and the uncertainty is determined by a change in χ2

of 1.0. The result is

mt = 170.8 ± 6.0 (stat) ± 2.8 (syst) (2)

± 4.6 (model) ± 4.0 (theo) GeV

= 170.8 ± 9.0 GeV, (3)

where the total uncertainty in Eq. (3) is the sum in quadra-
ture of the individual uncertainties in Eq. (2). The fit has
a minimum χ2 of 1.6 for three degrees of freedom. This
measurement is the first determination of mt from boosted
tt production, calibrated to the MadGraph+pythia simu-
lation. It is consistent with recent determinations of mt that
use MC event generators [33,35–37], cross section measure-
ments [6,34,114], and indirect constraints from electroweak
fits [115].

7 Summary and outlook

The first measurement of the differential tt cross section has
been performed in the �+jets channel as a function of the
leading-jet mass mjet in the highly boosted top quark regime.
The measurement is carried out in a fiducial region with
fully merged top quark decays in hadronic final states, cor-
rected to the particle level. The normalised differential cross
section as a function of mjet agrees with predictions from
simulations, indicating the good quality of modelling the jet
mass in highly boosted top quark decays. The total fiducial-
region cross section for mjet between 140 and 350 GeV
is measured to be 101 ± 19 fb, which is below the pre-
dicted value. This difference is consistent with earlier mea-
surements of a softer top quark pT spectrum observed in
data than in simulation [16,17]. This measurement is a first
step towards measuring unfolded jet substructure distribu-
tions in highly boosted top quark decays. A detailed under-
standing of these is crucial for measurements and searches
for new physics making use of top quark tagging algo-
rithms.

The peak position in the mjet distribution is sensitive to
the top quark mass mt . This can be used for an independent
determination of mt in the boosted regime, with the prospect
of reaching a more reliable correspondence between the top
quark mass in any well-defined renormalisation scheme and
the top quark mass parameter in general-purpose event gen-
erators.

Table 4 Values of the
particle-level tt differential cross
section in the fiducial region,
normalized to unity, as a
function of the leading-jet mass.
The individual and total
uncertainties are given in
percent

Range in mjet (GeV) 140–170 170–200 200–240 240–290 290–350

Integrated normalised cross section 0.12 0.42 0.27 0.18 0.017

Statistical uncertainty (%) 51 15 21 29 290

Systematic uncertainty (%) 34 5 9 13 27

Model uncertainty (%) 48 9 10 34 36

Total uncertainty (%) 78 18 25 47 300
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The normalised particle-level tt differential cross sec-
tion measurement as a function of mjet is used to extract
a value of mt in order to estimate the current sensitivity
of the data. The value obtained, mt = 170.8 ± 9.0 GeV,
is consistent with the current LHC and Tevatron average of
173.34 ± 0.27 (stat) ± 0.71 (syst) GeV [116], albeit with a
much larger uncertainty.

New data at higher centre-of-mass energies and with
larger integrated luminosities will lead to an improvement
in the statistical uncertainty. More data can also lead to
reductions in the experimental systematic uncertainties, most
notably that from the jet mass scale, which is expected to
improve with smaller jet distance parameters. In addition,
improvements in the modelling uncertainty are expected
because of stronger constraints on the simulation in the
highly boosted regime. A reduction in the theoretical uncer-
tainty is also foreseen with the emergence of higher-order
calculations. The results obtained in this analysis show the
feasibility of the method to obtain the top quark mass in
the highly boosted regime. This can provide an important
ingredient for studies of the relation between the value
of the top quark mass obtained from MC event gener-
ators and the one obtained from first-principle calcula-
tions.
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A Covariance matrices

The covariance matrices that involve just the statistical com-
ponents, and the ones involving the total uncertainty (i.e.
the statistical, experimental systematic, and modelling uncer-
tainties) are provided in this appendix. All experimental, as
well as the PDF and parton-shower uncertainties, are treated
as fully correlated in the calculation of the covariance matri-
ces. The uncertainties in the renormalisation and factorisa-
tion scale include correlations in the first three bins, and the
uncertainties coming from the choice of mt are treated as
uncorrelated. Bins 1 to 5 correspond to the following ranges
in mjet: 140–170, 170–200, 200–240, 240–290, and 290–
350 GeV. The covariance matrices for the differential mjet

measurement are given in Tables 5 and 6 for the statistical
and total uncertainties, respectively. The covariance matrices
for the normalised measurement are given in Tables 7 and 8.
Note that the covariance matrices of the normalised measure-
ment are singular, and only four out of the five measurement
bins are used in the determination of mt .

Table 5 Covariance matrix for the statistical uncertainties in the dif-
ferential cross section. All entries are given in units of (fb2)

Bin 1 2 3 4 5

1 +40.1 −4.3 −8.0 −0.2 −0.6

2 +31.7 −1.5 −8.1 +0.8

3 +30.7 +1.0 −4.5

4 +38.1 +7.3

5 +26.2
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Table 6 Covariance matrix for the total uncertainties in the differential
cross section, including all systematic and modelling uncertainties. All
entries are given in units of (fb2)

Bin 1 2 3 4 5

1 +100.4 +10.4 −0.3 −22.5 +1.6

2 +66.1 +11.0 +1.4 +0.8

3 +57.4 +12.0 −4.7

4 +93.8 +5.3

5 +26.7

Table 7 Covariance matrix for the statistical uncertainties in the nor-
malised differential cross section. All entries are given in units of (10−4)

Bin 1 2 3 4 5

1 +35.0 −11.2 −13.0 −6.7 −4.2

2 +38.3 +0.7 −17.2 −10.6

3 +30.1 −6.0 −11.8

4 +28.1 +1.8

5 +24.8

Table 8 Covariance matrix for the total uncertainties in the normalised
differential cross section, including all systematic and modelling uncer-
tainties. All entries are given in units of (10−4)

Bin 1 2 3 4 5

1 +83.2 −18.9 −21.0 −40.7 −2.6

2 +55.5 −2.6 −23.7 −10.4

3 +43.1 −7.4 −12.0

4 +72.4 −0.5

5 +25.4
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