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ABSTRACT 

This thesis describes several studies in which nuclear magnetic 

resonance (nmr) spectroscopy has been used to probe the structure, 

orientation and dynamics of liquid crystal mesogens and molecules 

dissolved in liquid crystalline phases. In addition, a modern high 

field nmr spectrometer is described which has been used to perform 

such nmr studies. 

Chapter 1 introduces the quantum mechanical formalisms used 

throughout this thesis and briefly reviews the fundamentals of nuclear 

spin physics and pulsed nmr spectroscopy. First the density operator 

is described and a specific form for the canonical ensemble is derived. 

Then Clebsch-Gordon coefficients, Wigner rotation matrices, and 

irreducible tensor operators are reviewed. An expression for the 

equilibrium (Curie) magnetization is obtained and the linear response 

of a spin system to a strong pulsed r.f. irradiation is described. 

Finally, the spin interaction Haimiltonians relevant to this work are 

reviewed together with their truncated forms. 

Chapter 2 is a deuterium magnetic resonance study of two "nom" 

liquid crystals which possess several low temperature mesomorphic 

phases. Specifically, deuterium quadrupolar echo spectroscopy is used 

to determine the orientation of the liquid crystal molecules in 

smectic phases, the changes in molecular orientation and motion that 

occur at smectic-smectic phase transitions, and the order of the 

phase transitions. For both compounds, the phase sequence is deter-

mined to be isotropic, nematic, sinectic A, smectic C, smectic BA) 
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smectic BC3  and crystalline. The structure of the smectic A phase 

is found to be consistent with the well-known model of a two dimen- 

sional liquid in which molecules are rapidly rotating about their long 

axes and oriented at right angles to the plane of the layers. Molecules 

in the smectic C phase are found to have their long axes tilted with 

respect to the layer normal, and the tilt angle is temperature dependent, 

increasing from zero at the sme :tic A - smectic C transition and 

reaching a maximum at 
90 
 at the smectic C - smectic BA  transition. This 

finding contradicts the results of X-ray diffraction studies which 

indicate that the tilt angle is 180 and temperature independent. The 

smectic BA - smectic Bc  phase transition is observed for the first 

time, and is found to be first order, a result that contradicts the 

prediction of a mean theory by McMillian. 

Chapter 3 is a multiple quantum nmr study of n-hexane oriented 

in a nernatic liquid crystal solvent. The basic three pulse multiple 

quantum experiment is discussed which enables the observation of 

transitions for which iml>1, and then the technique of the separation 

of multiple quantum orders by phase incrementation in the multiple 

quantum evolution period is reviewed (TPPI). An explicit example of 

multiple quantum nmr is given by the calculation of the multiple 

quantum spectrum of an oriented methyl group. 

Having introduced the fundamentals of multiple quantum nmr, the 

method is then used to study the configurational statistics of 

n-hexane-d6  oriented in a nematic solvent. The symmetry group of a 

4-methylene chain is derived (C2h)  and the energy level diagram is 

obtained. From the energy level diagram is determined that the six 
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quantum spectrum contains 29 lines (14 pairs and a central line) and 

the seven quantum spectrum contains 4 lines (two pairs). A general 

expression for the dipolar coupling in a nonrigid alkyl chain 

molecule in a uniaxial phase is derived assuming a rotational isomeric 

model of motion. Six and seven quantum spectra of a 4-methylene chain 

are calculated assuming varying populations of isomeric states. The 

best fit is found to occur for the configurational probabilities: 

P 	=.2 
ttt 

P ±P± 	± = 
ttg 	tt 	

P 
tgt 	

.l 
 

P± ± = P ± ±= .05 
gtg 	gtg 

P ± ± ±= P ± ± = P ± ± = 0 
ggg 	tgg 	ggt 

A refinement of the above values was attempted using the dipolar 

coupling constants as parameters in an iterative calculation of some 

five quantum lines and all the six and seven quantum lines. It was 

found that while there was a slight improvement in the 5 quantum fit, 

there is no improvement at all in the 6 and 7 quantum fits. In fact, 

the 6 and 7 quantum fits are not as close after iteration. It is 

concluded that convergence has occurred to a non-global minimum. 

P1 
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Chapter 1: INTRODUCTORY TOPICS 

In this chapter we introduce basic physical concepts and formalisms 

that will be used throughout this thesis. In section 1.1 we introduce 

the density operator which provides the connection between statistics 

and quantum mechanics. We will derive the equation of motion of the 

density operator, expressions for expectation values using the density 

operator, and finally, we will derive the explicit form of the canonical 

density operator. 

In section 1.2 we discuss the transformation properties of spheri-

cal tensors. We begin by deriving an expression for the rotation 

operator and the elements of the Wigner rotation matrix. Finally, we 

will review Clebsch-Gordon coefficients and introduce equations gover-

ning the rotations of spherical tensors. 

In section 1.3 we introduce the basic principles of nuclear 

magnetic resonance required to understand the material in this thesis. 

We begin by introducing the equilibrium magnetization of a diamagnetic 

substance in a magnetic field. Then we consider the displacement of 

the system from equilibrium by pulsed radio frequency field. Finally, 

we consider the general forms of the spin interaction Flarniltonians 

relevant to this work, and their truncated forms. 

1. Introductory Topics 

1.1 The Density Operator 

1.1.1 Equation of Motion 

We begin by introducing the basic tool of quantum mechanics, the 

density operator. Suppose we have an ensemble of N identical systems 
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where N is much greater than 1. Suppose also that these systems have 

a common Hamiltonian IC. Then at time t, the state of the kth system 

is described by a wavefunction i.,' (r.,t) where r. denotes physical 

coordinates required to describe the system and t is the time coordinate. 

The evolution of ip1 (r.,t) is governed by Schr8dinger's equation 

= i(r.,t) 
	

(1) 

where 1C is written in frequency units. 

Now the set of JJk(ri,t)  may be expanded in an orthonormalized 

basis 

where 

k(r.,t ) = E  a' (t)(r) 	 (2) 

k 	 * 	k 
a (t) = fdT (r.) 	(r.,t), 	 (3) n 	 n 1 	1 

and therefore, the probability that the kth  system is in the state 

q(r.) is jak(t)12. 

Of considerable physical interest is the time development of 

the probability amplitude a 1 (t). We differentiate with respect to 

time to obtain: 

iak( t ) = ifdT*(ri)lpk(ri,t) = fdT * (r.)CiPk(r.,t) 	(4) n n 1 

*  
= fdT 	

k 
(r )C (a (t) (ri ) 	 (5) 

a 1 	mm 	m 

= E H ak(t) 	 (6) m nmm 

where 

* 
H 
nm = fdt U  (r I 

 );ICq;
m  (ri  ) 	 (7) 



We finally introduce the density operator p(t) via its matrix 

element 

p(t) = 	ak(t)a1(t) 	 (8) 

and clearly p(t) is the ensemble average of a k 
	k* 
(t)a (t). In 

particular 

Pnn(t) = 1/N 	
ak(t)a1(*(t) 	 (9) 

= 1 /N Ia'(t)I 2 	 (10) 

and represents the ensemble average of the probability that at time 

	

t, a system will be in a state 	• Furthermore since 

Ia(t)I =lthen Ep 	=1 n n 	 nnn 

Also the principle of detailed balance requires that p = p 
nm 	uin 

in any basis set. We can easily get the equation motion of 

p(t) 

1 	N•k 	k* 	+ ak(t)a (t) 
n 	 (11) ip (t) = IN 	i(a(t)a Ct) 	

m 1 

= (t)a ( H a 	
k* 	k 	* k* 

(t) - a (t)(EH a (t) 

	

k=l k M9, z 	n 	m 

(12) 

= E(Hp 	- 	 (13) 

and finally 

; flfl  = -i(Cp - 
30tTlfl 	

(14) 

or in operator form 

3 

= i[p,1C] 	. 	 (15) 



The solution of the first order differential equation is 

-iiCt 	i Ct 
p(t) = e 	p(0)p 	which can be easily verified: 

	

-iXt 	iICt 	-iJCt 	i 

	

p(t) = -iX(e 	p(0)e 	) + (e 	
(t 

p(0)e 	)(i() 	(16) 

	

= iCp(t) + p(t)iC 	 (17) 

	

= i[p(t),J( ] 	 (18) 

1.1.2 Expectation Values 

We are also interested in developing an expression for the 

ensemble average of the expectation value of a dynamical variable 0, 

using the density operator formalism. We begin with the double 

average 

1 	N 	k* 	k 

	

<0> = IN E fdT 	(r 4 t)O (r.,t) 	 (19) 

	

k=l 	 -I- 

We now éxpánd 	in the (ri)  orthonormalized basis to get 

1 	N 	k** 	k 

	

<0> = IN 
kl 	

(t)4(r.)O(Ea(t)(r.) 	(20) 

l/N 	 k* k 	* 
= 	 E a (t)a (t)fdT (r.)O (r ) 	 (21) 

	

inm n 	m 	n 1 m I 

= 1 /N Z E ak(t)ak(t)0 	 (22) 

	

klnm n 	m 	nm 

* 
where 0nm fdT(r)0(r) 

	
(23) 

We now use the definition of the density matrix, the principle of 

detailed balance, and the definition of the trace of a matrix to 

4 

get 
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N 
<0> = 	E ak*(t)ak(t)O 	 (24) 

k=inm n 	m nm 

=Ep 0 
nm inn nm 

(25) 

= (pO) 	(since En><nI = 1) 	 (26) 
nm 

= Tr(pO) 	 (27) 

1.1.3 Equilibrium: Microcanonical Ensemble 

We now concern ourselves with the expression for the density 

operator of an ensemble of systems in equilibrium with a heat bath. 

Specifically we will obtain an expression for the canonical density 

operator corresponding to the classical canonical distribution 

function, which provides the connection between quantum mechanics 

and statistical mechanics. 

Let us begin with the microcanonical ensemble. Such an ensemble 

is composed of systems characterized by a fixed volume V, particle 

number N, and energy lying within the interval (E-i/2, E±/2) and M<E. 

Furthermore, the number of states accessible to a system is F(N,V,E:A). 

Evaluating matrix elements of the density operator in the eigenbasis 

of the Hamiltonian (i.e. an energy representation) and applying the 

postulate of equal a priori probabilities we obtain the following 

form for the microcanonical density matrix 

p Mn 
=6 

inn pn 	
and 	 (28) 

p = 	accessible states 

0 ; otherwise 



and, corresponding to classical mechanics, the entropy is 

	

S = kini' 	 (29) 

Suppose now thatthe ensemble could be decoupled into components, 

so that the total wave function could be factored. Then we could 

associate with each system a definite wavefunction. This means that 

for any given system F1, which is called the pure case. Then in any 

basis 

N 

	

1 ,, 	kk* 	* 

	

= N Eaa = a a 	 (30) 
Mn 	k=lmn 	mn 

and then 

2 	
EP 

mn = mi%i 	rn1,2,n 	
(31) 

* 	 * 
= Ea a a a = a a = p 

mn 	imi 
(32) 

This means that the density operator in a pure state is idempotent: 

p2 =p 	. 	 (33) 

If r>>l  we have a mixed case. Now to assure that equation 28 is 

fulfilled we must invoke an additional postulate, the postulate of 

random a priori phases. This postulate assures us that for all k, 

in an incoherent superposition of the basis {} . Now we have 

k k* 	1 	
2 .(0k0k) 

p 	= IN Ea a 	/N Elal  e 	 (34) 
k m m 	k 

k k )  

= 	e m n 	 (35) 

=e5 	 . 	 (36) 
=1 
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1.1.4 Equilibrium Canonical Ensemble 

We now consider an ensemble in which each system is parametrized 

by N, V, and T, and the energy is variable. In such an ensemble, a 

system is at equilibrium if it does not evolve under its Hamiltonian 

which means that 

[1C,p] = 0 
	

(37) 

and so the density operator must be a function of the Hamiltonian 

p = 
	

(38) 

The form of the density operator may be deduced from the 

following considerations. Suppose two separate systems are in contact 

with a heat bath and are in equilibrium with the heat bath. They 

may be imagined to form a composite system with a Hamiltonian 

= l + J
C2 . On the other hand, the composite density operator is 

a product of the individual density operators. Thus it is reasonable 

to assume that the density operator is an exponenti3l function of 

the Hamiltonian 

p = ce 	 (3•9) 

and is a function of the temperature. c is a normalizing 

constant and it can easily be shown that 

c = [Tr(eC)J 	 (40) 

which is the inverse of the partition function. Furthermore, it 

can be deduced, from the correspondence with classical mechanics 

that = 1/kT. 



LV 

Of interest is the expression for the canonical density 

operator for the limit kT >> II0I , which is termed the high tern-

perature limit. This is usually the case for nrnr. If kT >> 11X1 

then IIX1I << 1, and we can expand the exponent in equation 39 to 

get 

p 	c(l-() 
	

(41) 

to first order. Also we note that 

	

Tr(l) 	. 	 (42) 

1.2 Transformations of Spherical Tensors 

Throughout this thesis we will concern ourselves with the 

effect of coordinate transformations on tensor operators. The purpose 

of this section is to define the conventions to be used in this 

work. For a thorough discussion of the theory of angular momentum 

and tensor operators, the reader is referred to any of the standard 

texts by Rose (1), Edmunds (2), Tinkham (3), Brink (4), or especially 

Silver (5). 

1.2.1 The Rotation Operator 

By convention, a rotation of a function in real space is defined 

by a sequence of three rotations. The initial rotation is through 

an angle a about the z axis corresponding to an operation by 
ial 

R(ct) = e 	
Z 	

The second rotation is through an angle about the 
iI 

y' axis corresponding to an operation by Ry'() = e 	, and the 

final rotation is through an angle y about the z" axis corresponding 
iyl 

11 to an operation by R,,(y) = e 	Z 	
For a sketch of the appropriate 

rotations, see figure 1. The angles ct,3, and y are called Euler 



y *%. 

(a) 

(b) 	 (c) 

Figure 1. The Euler angles relate on initial coordi-

nate system (x,y,z) to a final coordinate system 

(xtt,ytt,z1t). An initial rotation by an angle a 

about the z axis carries (x,y,z) into an intermediate 

system (x',y',z'). A second rotation by B about y' 

carries (x',y',z') into (x'',y'',z'') and a third 

rotation by y about z'' carries (x'',y''z'') into 

(xI I I 
" ytI ,z' ') 
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angles and I, I. and I are the familiar angular momentum operators 

related by the commutation relations 

I = i[ I ,I ] 	 (43a) 
x 	y z 

	

jE t,L] 	 (43b) 

= i[ 1,1] 	. 	 (43c) 

These commutation relations lead, in turn, to the equations 

I 	11,m> = intl 	>  
z Ui 

1211,m> = 1(1+1)11 > in 
 

1 2  
I +ji,m> = [1(1+1) - m(m-+-1)1 II,m+1>  

1 
I - 	I,m> = [1(1+1) - m(m-l)] /211,m_l>  

where the phase terms e 
±iq

have been set to 1 	( 	= 0). 

Suppose we have a function f(r) and rotate it about z by a. 

The expression for f1 (r), the function in the new coordinate system 

is 

f1 (r) = R(a)f(r) 	 (45) 

ial z 
f(r) 

The next rotation is by a about y': 

E 2 (r') = R,()R,(ct)f(r') 	 (46) 

iI , ictl , 
=e 	

Zf(v) 

The final rotation is by y  about z": 
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f 3 (r") = R, 1 (y)R,,()R,,(ct)f(r") 	 (47) 

	

iylz 
	y 

iI ,, ial z it 

=e 	e 	e 	f(r) 

Dropping the primes we obtain an expression where all coordinates 

and operators are in the final frame: 

i'(I iI ictl 
f 3 (r) = e 	Ze 	e 	Zf(r) 	. 	 (48) 

Finally we define the rotation operator as: 

iyl iI ictl 
z 

	

z 	y D(cty) = e 	e 	e 	. 	 (49) 

1.2.2. Wigner Rotation Matrices 

Having defined the rotation operator D(ct,,y), we now consider 

the effect of a coordinate rotation upon the angular momentum eigen-

functions jm>. We note that the (2j+l) functions jjm> span the 

irreducible representation 	of R3  and so a rotation transforms 

jm> into a linear combination of the (2j+1) functions 

D(cLy)ljm> = ,E .Iim'>D(aY) 	 (50) 
mm 

where the states urn'> are represented as a row vector. If we use 

a column vector then the equation is 

j 	t. 
D(cLy)Ijrn> = 	E 	Dnun ((ty)Iirn'> 	 (51) 

and (D()t  is the transpose of 
mm 	 mm 

We get an explicit expression for D 
mm

l(a6y) by premultiplying 

equation 50 by <j'm'I and noting that, 
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<j'm'Ijm> = 	 (52) 
33 	rpm - 

to get 

D((Ly) = <im'ID(cty)im> 	 (53) 
mm 

A final expression for the matrix element is obtained by expanding 

D(a): 

D(cy) = 
mm 

iyI iI ial 
z 	y 	z 

= <jm'Ie 	e 	e 	lita> 

iI 
i' ym 	 am 

= e 	< 3 m le 	Yjm>el  

e iym' e ictmd (i)() 	. 	 (54) =  
m 

Several properties of Wigner rotation matrices will be 

utilized throughout this work and are now tabulated: 

D((xy) is a unitary operator and so D(cL6y) is a 
m f M 

unitary matrix. As a consequence, the inverse of 

is equal to the adjoint. That is, 

[D(cy)] 	= D(-y,-,-a) 

= (D(ct,,y)) 

= (D(ay))* 	 () 

D(ctThy) is a unitary matrix so the rows and columns 
M

I
M 

are orthogonal: 

=m'm" 	
(56a) 

ED(cxy)D,(cty) = m'm" 
	

(56b) 
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(iii) Elements of rotation matrices, considered as functions of 

ct, , and y are orthogonal to each other within the domain 

covered by the Euler angles. 

(j2) 	 8 
= C 	/2j+l) (cy)D 	(cty)dQ ni2  j u1m1 	u2m2 u 

1  u  2 
 m1 1j 2  

(57) 

where 

2rr 	it 	2ir 
fdc2 = I d Id6sinI dy 	. 	 (58) 

0 0 	0 

1.2.3 Clebsch-Gordon Coefficients 

	

Given a representation D 	spanned by the 2j 1+1 eigenfunctions

02)  

	

and a representation D 	spanned by the 2j 2+1 eigenfunctions 

what is the form of the (2j 1+1)(2j 2+1) basis functions lim>

02  
which span D 	X D 	? Evidently urn> is obtained by a unitary 

transformation of the direct product states Ijlml>1j2m2>  and so 

we would expect 

urn> = E 	Crnm m1m2 	2m1j1rn1>1j2m2> 	
. 	 (59) 

To get an expression for the coefficients C 	, define m1m2m 

tim> = Ii 1i 2im> and 
	

(60a) 

Ii 1 i 2m,m2 > 	Ii1a>Ii2m2> 	. 	 (60b) 

Now use the identity 

= 1 	 (61) 



to obtain the expression 

j 1 j 2 jm> = 

	

	1i1i21n1m2><i1i2nLfn2li1i2m> 
mlm2 

and we realize that 

1 11 2 1  
C 	= <j1j2m1m2lj1j2jm> 

The geometric interpretation of equation 62 is that a given Ij
lj 2

j> 

vector exists in a space spanned by (2j 1+1)(2j 2+1) orthonornial 

direct product vectors 
ljlj2mlm2> 

 and can be expressed as a linear 

combination of those vectors. Therefore the projection of the vector 

1j 1j 2 m1 m2 > onto 
1jlj2j> 

 is the Clebsch-Gordon coefficient given by 

equation 63. 

Clebsch-Cordon coefficients have several properties that we 

will find useful and are listed below without proof 

C 	= <j 1j 2 m1 m2 j 1j 2 j> = 0 unless 

m1  + m2  = m and 
	

(64a) 

Ii1i2I 2: j 	1i1i21 	((j 1j 2j)) 	 (64b) 

The coefficients C 
l 2 form a real, orthogonal matrix 

m1m2 m 

and so 

<j 1j 2 m1tu2 j 1j 2 jm> = <j1j2jm1j1j2mn1m2> 
	

(65a) 

E 	<j in1m2 	
1j 2 m1m2 j 1j 2 jm><j 1j 2 m1m2 j 1j 2 j'm'> = S. 

JJ 

(65b) 

>=6 	, (65c) E<j 1j 2mj,mmjI j 1j 2 jm><j 1j 2 JmIj ;j2m1,m-m. 	
mlml 
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1.2.4 Spherical Tensors 

Spherical tensor notation will be used extensively in this 

work. In this section we introduce the concept via Cartesian 

tensors, and then define irreducible spherical tensors. We will 

also consider the behavior of spherical tensors under rotations. 

A Cartesian vector is a set of three elements that transform as 

the coordinates of a point. If R is a vector in some coordinate 

system and R' is the vector in a rotated system, R and R' are 

related by 

R'=AR 	 (66) 

where A is a real, orthogonal matrix, and R' = (x',y',z') and 

R = (x,y,z). R is said to be a first rank Cartesian tensor. 

Now consider the quadratic combinations of x, y, and z that 

span the direct product space (x, y, z) X (x, y, z), i.e. x 2 , xy, yz 

etc. These 9 entities are related to the quadratic combinations of 

x', y', and z' (which span (x', y', z') X (x', y', z')) by a 

9 X 9 matrix which is A X A. The 9 elements are a second rank 

tensor. These relations are directly generalized to a higher rank. 

In fact, an n th  rank Cartesian tensor may be treated as a 1 X n 

vector, that is, its algebra is isomorphic to the algebra of a 

first rank Cartesian tensor. 

What is the relationship between Cartesian rotations and 

rotations in 	We realize that A corresponds to D 	and 

A X A corresponds to D 	X D 	which reduces to D 	+ D 1  + 

We define the set of 2k+1 entities that span D 
(k) 

 a k 
th

rank 

-, 

	

	 irreducible speherical tensor, Tkq  since 
D(k)  is an irreducible 

representation of R3 , the continuous group of all rotation operators 

15 



D(cy). Transformations of spherical tensors are governed by 

the equation: 

D(Y)Tkq  = EtTkqID(Y) 	 (67) 

a relationship that will appear frequently in the following 

chapters of this thesis. 

Another useful relationship allows us to express a spherical 

tensor as a sum of products of two other tensors. 

T (A ,A ) = 	C(2. 22.,m ,m-m,)T 	(A )T 	(A2 ) . (68) 
2m 1 2 	1 2 	1 	 1 2 2m2  

i may vary from 1l2I to i 1-2 2  land m = mfrm2 . C( 1 ,2 2 ,9.;m1 ,m-m) 

is a Clebsch-Gordon coefficient. 

In Appendix 1.1 we use equation 68 to give relationshps between 

tensors of zeroth, first, and second rank. In Appendix 1.2 we 

give the relationship between spherical tensor and Cartesian tensors. 

Finally, in Appendix 1.3 we compile values of d 3 1 () for j = 0, 1, 
Mm 

and 2. 

1.3 Nuclear Magnetic Resonance 

1.3.1 Introduction 

The central phenomenon discussed in this thesis is nuclear 

magnetic resonance (nmr), the resonant absorption of radio frequency 

(r.f) energy by a diamagnetic substance in a magnetic field. The 

purpose of this section is to review the basic theory of ninr and to 

clarify the "jargon" of the field to the general reader. The reader 

is referred to the excellent textsby Abragam (6), Slichter (7), or 

Goldman (8). 

W. 



1.3.2 Equilibrium Magnetization 

We assume that a system of N nuclear spins I are equilibrated 

with a lattice which has a very large heat capacity compared to 

the spin system. Equilibration occurs via some relaxation phenomenon 

or combination of phenomena, and by equilibration is meant that the 

temperature of the nuclear spin system equals the lattice temperature. 

The Hainiltonian of the nuclear spin system has two parts: 

	

=JC+ 
	

(69) 

where 

WC = -hYB.E1I = yhIB0 	 (70) 

is the Zeetnan term and X is the spin interaction term, describing 

spin-spin couplings and the quadrupolar coupling. 

Given an ensemble of such systems in contact with the lattice, 

the canonical density operator is given by equation 39: 

Peq 	

- (C0-fW) 

	

= ce 	 (71) 

where 

	

(o1) 	. 	 (72) 1 	Tr(e 
/c 

The equilibrium magnetization Mk is the expection value of the 

magnetic tment yhl which is 

M0  = Tr(yhlp) 	. 	 (73) 

Since nmr is normally in the high temperature limit we can 

expand p as was indicated by equations 41 and 42: 

M0 - Tr(yI(C0-fC1)p) 	
(74) 

Tr(1) 
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where we have used the fact that I is a traceless operator, Now 

we use the fact that for spin-spin couplings and the quadrupolar 

coupling Tr(IC1) = 0 with the result 

N 	Tr(yIC0) 	. 	 (75) 
Tr(l) 

Now we substitute the expression for the X into equation 

75 to get 

N0 - Tr(y2Bort2) 	 (76) 

Tr (1) 

Ny21(I+l)B0  

3 

where we have used the fact that 

Tr[ 	
J ) 2]  = (21+1)(I)(I+l) 	

(77) 
z 	 3 

and 

Tr(l) = 21+1 	. 	 (78) 

Finally, equation 76 may be written in the form M = 

where 

- y2 1(I+l) xo  - 	3 	
. 	 (79) 

We call X the static magnetic susceptibility and M is the 

Curie magnetization. 

1.3.3 Linear Response of a Spin System to a Pulsed R.F. Field 

In the last section we considered the nature of equilibrium 

in a system of nuclear spins in a strong magnetic field in the 

high temperature limit, in which the spin system is coupled through 

relaxation to some large heat bath. We now consider the linear 

I3 



response of the spin system to a pulsed r.f. field. 

Suppose we have a spin system at equilibrium in a strong 

magnetic field. The density matrix is 

p(0) = e(l-6C0) 	 (80) 

where 

1iC0  = hyB0 I 

	

=hW 
O I 
	 (81) 
z 

and 

	

Tr(l) 	 (82) 

If we turn on an r.f. field, the complete Hatniltonian is, 

neglecting relaxation, 

C= - I -Icost+C. 
Oz 	lx 	mt 

(83) 

where the first term is the Zeeman term, the second term is the 

r.f. field and the third term is an interaction Hatniltonian (see 

next section). We transform J C into a frame rotating about the 

z-axls at w by rewriting the Hamiltonian as 

iwlt 	-iwlt 

O z -w 
	z 	z 
1 	x 
e 	I e 	+C mt  

. 	, 	 (84) 

where we have introduced a counter-rotating component to the field. 

We now define the transformation operator 

iwl t 
Ue 	Z 	 (85) 

i1 

and the rotating frame Hainiltonian is defined as 



JCR= U
1  U - iUU 

1w]: t 	-lw] t 

	

=U1(-w01 
z 
 -w 

 1 
 e Z I x 
	 mt 

Z +C )U 

	

-iwl t 	+iwl t 
1e 	z(+iwIe 	

Z) 

z 

= -w O z 	1 k 
I - w I + JC mt 	z 

. 	+ wI 	 (86) 

where we have used the fact that [I,C.] = 0(8). We rewrite thisint 

expression as 

C 
R 	z 
=-AwI -w l x 

I +IC 
mt  
. 	 (87) 

In all the work which follows we will use rotating frame 

Hamiltonians. Thus we drop the R subscript. 

Now if the pulse is of very high power, w1 >> iw,HCint Il , 

and the Hamiltonian is 

JC 	w1 I 	 (88) 

So the density matrix immediately after the pulse is 

	

-iwtl 	iwtl 
p(tp)=-cw0e 	1 PX ]e  ipx 

= -cw0 (Icosw1t + Isinw1t) 	, 	 (89) 

and we have neglected the scalar part of the density matrix. 

Now the spin system evolves for a time t under the Hamiltonian 

C= -I 
z 	mt 
+C 	 (90) 

and the density matrix is 

	

p(t +t) = - c 	
ict 

e 	p(t ) e-iCt 	 . 	 (91) 
p 	 0 	p 

20 
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We will neglect the I term in p(t) since it commutes withC. 

There fore 

	

iC t -iAwI 	iiwI 	-iC. t 
(92) 

	

mt 	z 	z e 

	

p(t+t) = -cw sinw t e 	e 	I e 	
mt 

0 	ip 	 y 

where we have used the fact that I z 	mt 
and C 	commute. We obtain 

mt t  
p(t p +t) 	Cf y 

O 	i p i1C 
B sini t e 	(I 

y 
 cosAwt + I 

x 
 sinAwt)e 

-QC 
 mt 

iJ(t 	-iKt 	iKt 	-iJCt 

	

= -cay B sin t (e 	I e 	cos&t + e 	I e 	siniwt) 
yO 	lp 	y 	 x 

= -Cf' B 
O 	l 	p 	y p 
sinu t (p (t +t) + p (t +t) 	. 	 (93) 
yp x  

The x component of the transverse magnetization has the form 

<I > = Tr(pI ) 
x 	x 

= Tr(p x
.1 
x ) 

=E(p) (I) 
ua xma xrm 

= -cw0sinw t siniwt E e 	(I )nm 2 

	

i 	

-iw nm t 

p 	_ 	 x 

	

-i((j +&J)t 	i(w nm -&)t 	
2 = - c 0sin(w1t) Z (e 	

nm 	 1 

	

- e 	 )I('X)fll fl 

 

Similarly, 

-i(w +iw)t 	-i(w -w)t 

<'> = - 	
sin(w1t) E (e 	

nm 	 nm 	
)I(I 	

2 

mn 	 ynm 

 

t/T 
We can add a decay term e ' 2 to obtain 
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(-i(w +oi)_1/T 	(i(w 	L\w)- 1- 1T 2 )t 
<I > = ic' 	(e 	

nm 	)t 	nm- -e 	 1(1) 	I 2  
x 	 xnm 

 

(-i(wnm  +AW) - 	
am

- /T)t 	(-i(w -AW)-'/T)t 	2 
+e 

y 	trn 	 ynm 

 

where c' = cw sinw t 
0 	ip 

To calculate the linear frequency response F(w) we Fourier 

transform the complex function <I x 	y 
> + 1<1 > 

F(w) = F(w) + iF() = 4_.rdt e_ t (<Ix> + i<I>), 	(96a) 

and we find that 

	

________________________________ 	2 
F (w) = 	lit 	 (I ) 	 (96b) 
x 	 M (T2 ) 2  + (U) +Aw -u) 

	

2 	xnm 
am 

F (w) 	
c' 	 am 	 1(1 ) 	2 	(96c) 

	

mn 	
2 

= 	
(T )_2+(w + 	

y nm 
am 

We notice that the quantities F(w) and F(w) defined in 

96b and 96c are proportional to the components of the complex 

susceptibility 

x(w) = x'(w) - ix"(w) 	 (97) 

obtained by solving the Bloch equations (la) in the limit of 

negligible saturation, that is, 
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1 2 T  1  T  2 
>> 1 	. 	 (98) 

Specifically, 

F(w)ax"(w) and F(w)ctx'(w) 	. 	 (99) 

Therefore, the Fourier transform of the transient response of a 

spin system to a high power pulsed rf. field, isproportional to 

the steady state response of a spin system to continuous irradiation 

by a weak r.f. field. 

Finally, we notice that F(w) and F y (W) are proportional to 

2 
(I x nm 	y nm ) 	and (I ) 	, respectively. It is evident that in the 

case of the linear response of a spin system to an r.f. field, 

the magnetic quantum number m can only change by 1: 

IAmf = 1 
	

(100) 

In chapter 3 we will discuss nmr experiments in which this 

condition does not apply. 

1.3.4. Spin Interaction Hamiltonians; General Expressions 

We now introduce the Hatniltonians relevant to this work. 

For convenience, all Hatniltonians will be written in frequency units. 

Therefore: 

h1C=h(JC 
z 	rf 	cs 	Q 	J 

~ C +C +JC +C +C 
D  ) 
	 (101) 

.  

a) Zeetnan Hamiltonian: C 

This Hatniltonian has already been introduced. It describes 

the interaction between the dc magnetic field, taken to be 

in the z direction, and the magnetic dipole moments of the nuclei. 
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hC = - hE uB = -hB EyI = _hEwuIi 	 (102) 
z 	 0 	z 	iz 	Oz 

y. is the magneto-gyric ratio of the i th  nucleus and 

BO = (0,0,Bk), and ui = y.(11,11,11) 

Radio-Frequency (R.F.) Hamiltonian 

This Hamiltonian describes the coupling of the spins with the 

magnetic components of an r.f. field. The field is assumed to be 

linearly polarized in the x direction 

h3C 	= - hEu1 •B (t) = - hBcos(t + flt)) Ey.1 1 	(103) 
rf 	j 	1 	

1 
 

where B1 (t) = (B1cos(wt + qt)) i,o,o) 

Chemical Shielding Hamiltonian: 

This Hamiltonian describes the interaction of the nuclear 

spin with magnetic fields induced by electron currents. It has 

the form 

hEuc•B 	 (104) 
i 

where a is a Cartesian tensor of rank 2 and -cTB is the 

th 
magnetic field induced by the electrons at the i nucleus. 

Quadrupolar Hamiltonians: JCQ  

This Hamiltonian describes the interaction between the electric 

quadrupole moment of the nucleus and the surrounding electric field 

gradients. Nuclei with spin = 1/2 have no quadrupole moment. 
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= E 	
eQ 3.

i.;i.i 	
(105) 

Q 	- 61 1 (1 1_1) 

eQ1  is the electric quadrupole moment of the i th  nucleus, v 

is the electric field gradient tensor at the i th  nucleus, i.e. 

the second derivative of the electric potential. V is a second 

rank Cartesian tensor. 

Indirect Spin-Spin (J) Coupling Hamiltonian (iC) 

This Hamiltonian describes the through-bond interaction of 

two nuclear spins. It has the form 

hJC = E I.•J. .I 	 (106) 
J 	jjli.3 	 - 

where J.. 
13 
 is a second rank Cartesian tensor. 

Direct Spin-Spin (Dipolar) Coupling Hatniltonian: J CD  

This Hamiltonian describes the through-space coupling of the 

magnetic dipole moments of the nuclei. It has the form 

hICD  = - 21i2 	'r.. 
XZ[iij] 

i<j 1 J ct3 	a 
(107) 

is the a component of D 	the second rank Cartesian tensor 
Ota 

describing the coupling between the nuclear spins ij. 

1.3.5. Spherical Tensor Forms 

We may refer to CQ  JC 
' cs' and JCD  as internal Hamiltonians 

since they describe interactions internal to the spin system as 

opposed to interactions with externally applied fields, described 

by C 
rf 	z 

and C . We also notice that the internal Hamiltonians 

involve second rank Cartesian tensors. It is also possible to 

describe these Hamiltonians as scalar products of spherical 



tensors, (11, 12) given by the equation 

= E 	mA 	T 	 (108) 

	

m- 	21-m 2.,m 

where A is a tensor involving spin operators and T is a tensor 

involving interaction parameters. 

Now the tensor A is written in the laboratory frame. Spin 

interaction parameters, however, are simply linked to some 

principal axis system (PAS) in which the interaction tensor is 

diagonal. Therefore we use equation 67 to relate T with the 

principal axis system tensor TPAS 

T 	= E 	 . 	 (109) 
2m 	' 2.m mm 

Now the equation for the Hamiltonian is 

E E (_)m(E TPA D(c2))A 

	

2.,m- 	m' m 	m m 	9..,-m 	. 	 (110) 

1.3.6. Truncation of Spin Hamiltonian 

The nuclear magnetic resonance experiment is usually carried 

out in very high magnetic fields. Typical field strengths reach 

tens of thousands of Gauss. However, nuclear spin interactions 

normally only involve fields of a few Gauss at best. The quadrupole 

interaction is an exception and may in some species like 79Br exceed 

the Zeeman interaction for realistic magnetic fields, but we will 

not concern ourselves with such systems. The point to be realized 

is that for all spin systems discussed here, the spin interaction 

Hamiltonian may be considered a perturbation on the Zeeman Hamil-

tonian. Therefore, to first order, we need only concern ourselves 

with that portion of the interaction Hamiltonian which commutes with 

Mi 
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the Zeenian Hainiltonian. The conimuting portion of the interaction 

Hamiltonian is called the secular Hamiltonisn, and only the secular 

Hamiltonian determines line positions to first order. Now by Racah's 

definition (13) of an irreducible tensor operator we have that 

[I ,A ] = mA 
z £m 	9m 

 

and so only the A2,0  components occur in the secular Hamultonian. 

We now have, as an expression for the general interaction Hamul-

ton ian 

PAS 	
) A 0  ,D, 	c1 

secular =E(E ' T im m 
 

As an example let us consider the dipolar Hantiltonian. T2, 

is a second rank traceless tensor which is uniaxial in its PAS. 

Thus only T(ij) = (3/2)1/2 r.._3(_2)hy1yJ is nonzero. We obtain 

/2 	2h.'y. 
d,secular 	

- (3/2)1 	
1 	

D() A20 	 (113) 
3 00 

r 
ij 

where D(c) = 1 /2(3cos 2 -1) and a is the angle between the inter-
00 

nuclear vector and the z axis of the laboratory frame. 

From equation 7 of appendix 1.2 we find that 

A20  = (2/3)/211 	- (1/6)/2(1 I 	+ I 
xlx2 	yl 

I 
 y2 

= 6/2(21 
zi z2 

I 	
- (I xl x2 	yl y2  

I 	+ I I )) 

= 6/2(31 
zi z2 

I 	- I1•12) 	 (114) 



and we finally get 

je ecular = _(3/2)12 
hY.Y.2 	

I 1 2 -I ' ) 	(115) 
3 

r;. 
1J 

as the expression for the secular dipolar Hatniltonian in the 

laboratory frame. In all work that follows, only the secular part 

of the interaction Hainiltonian will be considered. Therefore the 

superscript "secular' t  will be dropped. 

Truncated forms for the other Hamiltonians are (14): 

(1) CQ 
WQ 	

(312  

where 
W - - 21(21-1) 

e2qQ 	( 1 /2(3cos 2 O-1) + nsin 2 Ocos2O) 

(116) 

Chemical Shift: 

= - kj 	
Ii 	 (117) 

cs 	j zzz 

Scalar: 

JC = J(11 •12 ) 	 (118) 

4.11 
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Appendix 1.1 Spherical Tensor Forms 

Using equation 68 of section 1.2.4 

T(A1,A2) = m1 
	12 	

T m1,m-m1) 
2,1m1 

 (A )T 
1 	92m2 (A 2

) 
	

(1) 

we obtain the following relationships: 

T00 (A1 ,A2 ) = IV (T 1 (A) T11 (A2 ) - T10 (A1 ) T10 (A2 ) + T11 (A1 ) T11 (A2 ) (2) 

T11 (A1A2 ) = - 11/2 (T11 (A1 )T10 (A2 ) - T10 (A1 )T11 (A2 ) 	 (3) 

T10 (A1 ,A2 ) = - // (T11 (A1 )T11 (A2 ) - T11 (A1 )T11 (A2 ) 	 (4) 

T11 (A1 ,A2 ) = - l,/ (T10 (A1 )T11 (A2 ) - T11 (A1 )T10 (A2 ) 	 (5) 

T22 (A1 ,A2 ) = T11 (A1 )T11 (A2 ) 	
(6) 

T21(A1,A2) = h /v,  (T11 (A1 )T11 (A2 ) + 2T10 (A1 )T10 (A2 ) + T11 (A1 )T11 (A2 ) 	(7) 

T20(A1,A2) =1 /v' (T11 (A1 )T11 (A2 ) + 2T10 (A1 )T10 (A2 ) + T11 (A1 )T11 (A2 )) 	(8) 

T21(A1,A2) = h/V' (T10 (A1 )T11 (A2 ) + T11 (A1 )T10 (A2 )) 	 (9) 

T22 (A1 ,A2 ) = T11 (A1 )T11 (A2 ) 	 (10) 
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Appendix 1.2 

The relationship between a second rank Cartesian tensor and the 

irreducible spherical tensor are: 

T00  = - 	(x1x2  + y1y2  + z 1z 2 ) 
	

(1) 

T11  = - 1 /V (x1  + iy1 )z 2  - z1 (x2  + iy2 )) 	 (2) 

T1_1 = 
	

((x1  - iy1 )z 2  - z 1 (x2  - iy2 )) 	 (3) 

T10 = /v (x1y2  - x2y1 ) 	 (4) 

T22 = 1/2 (X1  + iy1 )(x2  + iy2 ) 	 (5) 

T21  = - 1/2 ((x1  + iy1 )z 2  + z 1 (x2  + iy2)) 	
(6) 

T20  =/J z 1  z  2 - /
b/•  (x1x2  + y1y2 ) 	 (7) 

T21 = 1/2 ((x1  - iy1 )z 2  + z 1 (x2  - iy2 )) 	 (8) 

T22  = /2(x1  - iy1 )(x2  - iy2 ) 	 ( ) 



Appendix 1.3 

The Wigner rotation matrix element is given by 

	

-i m () 	-in D(ct,,'r) = e 	() d 	e 
mn 	 mn 

d() = 1 00 

= d (l) 1 () = 4(1  + cos) 

d() = d(l) (a) = 4(1 - cos) 

d() = d() = -d(6) = -d() = -(sin) 
/2 

= cos 
00 

4 d() = d 2 () = cos (-) 

d() = d 2 () = -d ] () = -d 2 () = sin(1 + cos) 

= d() = d() = d2() =J sin6 

d 2 () = d() = -d() = -d() = 4sin(cos_1) 

d 2 () = d() = sin 

= d 1 () = 4(2 cos- 1)(1 + cos) 

d 2 () = d(B) = 4(2c os + 1)(1 - cos) 
1-1 	11 

= d() = -d() = -d() = _incos 

= 4(3cos2 - 1) 
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2. A DEUTERIUM MAGNETIC RESONANCE (DMR) STUDY OF THE 

SMECTIC PHASES OF A THERMOTROPIC LIQUID CRYSTAL 

2.1 Introduction 

In this chapter we will study the structure of some of the low 

temperature mesophases of a thermotropic liquid crystal, using 

deuterium magnetic resonance (DMR) as a probe of molecular order 

and orientation. In particular, we will concern ourselves with the 

changes that occur in molecular orientation at the smectic A- 

smectic C phase transition. We will also study two lower temperature 

smectic B phases. 	- 

In section 2.2, the study begins by briefly reviewing the 

structure of the various liquid crystalline mesophases as obtained 

via X-ray diffraction and conopscopic studies. In section 2.3 will 

be described the nmr method used as a probe of molecular orientation: 

deuterium magnetic resonance and in particular, quadrupolar echo 

spectroscopy. The quadrupolar echo experiment will be described 

by expanding the density matrix in a basis of fictitious spin 1/2 

operators. We will consider the experiment in the limit in which 

the r.f. power (in frequency units) exceeds the quadrupolar splitting 

(W1 >WQ ). In section 2.4 we will introduce a single domain model 

of the smectic A mesophase and a multidomain model of the smectic C 

mesophase. Both models assume that the liquid crystal has been 

aligned in a strong magnetic field. These models will be used to 

simulate experimental DMR spectra. Finally, in section 2.5 we will 

use the models introduced in section 2.4 to interpret DMR spectra 

of a monodeuterated liquid crystal in its smectic A and C mesophases. 
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From the DMR spectra we will extract information on the changes in 

molecular orientation and order that occur at the smectic A-C phase 

transition. Comments will also be made on the order of the low 

temperature smectic BA_BC  phase transition. 

2.2 Liquid Crystalline Mesophases 

Throughout this thesis we will study either compounds that 

possess, within certain temperature ranges, liquid crystalline 

phases, or molecules dissolved as solutes in such phases. In 

this section we will qualitatively describe various common liquid 

crystalline phases. The reader is referred to several general texts 

on liquid crystals: deGenne (15), Priestley et.al . (16), and 

Chandrasekhar (17), and Taylor (18). 

It is well-known that certain organic compounds, rather than 

showing a single transition from liquid to crystal, pass instead 

through one or more phases that have mechanical and symmetry 

properties intermediate between isotopic liquids and ordered crystal-

line solids. Such compounds are called liquid crystals and their 

peculiar phases are called mesomorphic phases or simply mesophases. 

While the molecular structures of compounds with mesomorphic phases 

vary greatly, a broad class of liquid crystalline compounds have 

the general pattern shown in figure 2. R and R' are commonly alkyl 

or alkoxy groups while A=B may be a Schiff base linkage or an 

azoxy linkage. In figure 3 we show examples of several thermotropic 

liquid crystals. Empirically derived rules on the influence of 

R and R' on the stability of the various mesophases have been 

extensively reviewed in the literature (21), so we will not consider 

the subject here. Rather, we will turn toa descriptive review of the 
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Figure 2. Generalized structure of a molecule with 

mesomorphic phases. R and R' may be alkyl or alkoxy 

groups while A = B may be a Schiff base or an azoxy 

linkage. In a series of liquid crystals called 

cyanobiphenyls, R would be an alkyl or an alkoxy group, 

R' would be a CN group and A = B would be replaced by a 

single bond. 
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Figure 3. 	A. 	Teraphthalbisbutylaniline (TBBA) 

Heptyloxyazoxybenzene (HOAB) 

R-cyanobiphenyl. R is an alyki or 

an alkoxy group. 



mesophases to be studied in this chapter. 

2.2.1 Nematic 

The first mesomorphic phase below the isotropic phase is 

usually the nematic. The main characteristics of the nematic 

phase are as follows: 

There is no long-range translational order in a nematic 

liquid crystal, and so there is no Bragg peak in an x-ray 

diffraction pattern (23,24). The correlations between 

molecular centers of gravity are liquid-like. In fact, 

nematics flow, with typical viscosities of about .1 Poise. 

Although there is no long-range translational order, there 

is long-range orientational order in the sense that the 

long axes of the individual molecules tend to align 

parallel to a common direction, labelled by a vector 

is called the director. This long-range orientational 

order causes macroscopic properties, such as the refractive 

index and the diamagnetic susceptibility, to be highly 

anisotropic. For instance, a nematic is optically 

uniaxial with the optical axis parallel to ii (25). 

In the absence of external fields, the direction of ii is 

arbitrary, and can be influenced by wall conditions, for 

example. Static distortions of the director field can be 

described by an elastic continuum theory (18, 19, 22). 

The states i and -ii are equivalent. Thus, if the individual 

molecules have permanent electric dipole moments, ii and -i 

are equally populated. Therefore the phase is not ferro-

electric. 
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The component molecules of a nematic phase are either 

achiral or if chiral, the phase is a racemic mixture. 

From the remarks above, we conclude that in a crystallographic 

sense, the neuiatic phase has D h ymmetrv. A sketch of the 

nematic phase is shown in Figure 4b. 

2.2.2 Smectic A 

This phase is cotmnonly the highest temperature smectic phase, 

if several smectic mesophases exist. Its characteristics are 

A well-defined layer structure in which the layer thickness 

is about equal to the molecular strength. This thickness 

can be measured by x-ray diffraction (26,27). 

Absence of long-range translational order within the layer 

structure. 

Long-range orientational order within the layer structure 

described by the director i as in nematics. The phase is 

optically uniaxial. 

As in nematics, ii and -ii are equivalent. 

Figure 4c shows the layer structure of the smectic A phase. 

Its crystallographic group is D. 

2.2.3 Smectic C 

A smectic C phase is a two-dimensional liquid as is the 

smectic A. However the phase is observed to be optically biaxial (28). 

An interpretation of the phenomenon is that the molecules are 

tilted within the layer, an idea that has the support in the x-ray 
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Figure 4. The common high temperature phases found in 

liquid crystaline systems. 

Isotropic: this phase is characterized by an 

absence of long range translational and 

orientational order. 

Nematic: this phase is characterized by an 

absence of long range translational order but 

orientational order occurs about a direction 

defined by a vector called the director. 

Smectic A: 	in this phase, orientational 

order is again described by the director, but 

molecules are confined to layers within which 

layer occurs isotropy of motion. 	The 

director is normal to the plane of each 

layer. 

Smectic C: this phase is similar to the 

smectic A except that the director is tilted 

relative to the normal vector of each plane. 
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literature since the layer thickness is found to be less than the 

molecular length (26,27,29). The tilt angle would also appear to be 

temperature dependent (30). Figure 4d shows the structure of the 

smectic C phase. There is a 2-fold axis parallel to the layer and 

a plane normal to it. Therefore, the smectic C phase has C2h 

symmetry. 

2.2.4 Smectic B Phases 

There exist lower temperature uniaxial and biaxial smectic 

phases, and x-ray studies indicate that there is some order within 

each layer, although the exact type of packing is controversial 

(27,31,32,33,34). Uniaxial phases are called smectic BA  and biaxial 

phases are called smectic Bc  Smectic  Bc  phases are often called 

smectic H in the literature. Other more exotic phases have been 

reported, but they will not be discussed here. 

2.3 Quadrupolar Echo Spectroscopy 

In order to appreciate the utility of nmr as a method for 

studying the structure of liquid crystalline phases, we need only 

consider equation 110 of chapter 1: 

= Z E 	m(E TPAS D(2)A 
2. m- 	m' im' m m 	im 	 (1) 

Recall that A is a spherical tensor involving spin operators and 

TPAS is a spherical tensor involving interaction parameters in 

some principal axis system. The D(c)'s are elements of the 

Wigner rotation matrix that transform T into the laboratory frame. 

We assume throughout this thesis that the z axis of the laboratory 



frame is parallel to the magnetic field. Now the principal axis 

system is always related in some manner to molecular geometry. For 

example, the z axis of the principal axis system of the dipolar 

tensor is defined by the internuclear vector, and for deuterium 

bonded to trigonally hybridized carbon, the major axis of the 

electric field gradient tensor lies along the axis of the C-D 

sigma bond (see figure 5). Thus, by measuring the interaction in 

nmr, we effectively obtain the products TPSD()(  which yield m mm 

directly, information on the orientation of a molecular-fixed frame 

to the laboratory frame (we will develop these ideas thoroughly in 

the following section). Therefore nmr has come to be a popular 

tool in the study of liquid crystals. Since liquid crystals are 

organic compounds, natural abundance 13C runr has been used (35-37). 

Single quantum proton nmr spectroscopy has not been used extensively 

since oriented proton spectra are dominated by direct dipolar 

interactions. Since liquid crystal molecules contain large numbers 

of protons, the number of intramolecular dipolar couplings can be 

very large, resulting in very complex and often intractable spectra. 

In recent years multiple quantum proton nmr has been used to 

simplify such spectra, but we will reserve discussion of that 

technique for the next chapter. 

Deuterium magnetic resonance has seen extensive use in the 

last fifteen years as a tool for liquid crystal study (38-51) as 

has the pure quadrupolar resonance spectroscopy (52-54) of 
14N and 

deuterium. THe NNR spectrum of selectively deuterated or perdeu-

terated liquid crystal molecules is dominated by the quadrupolar 
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Figure 5. Principal axis systems of the dipolar and 

quadrupolar Hamiltonians. The dipolar Hamiltonian is 

uniaxial in its principal axis system (pas) and the z 

axis is parallel to the internuclear vector. In the 

case of the quadrupolar Hamiltonian, assuming the 

asymmetry parameter is small (n - 0) the Hamiltonian is 

approximately uniaxial in its pas. For deuterium 

bonded to carbon, the z axis is approximately parallel 

to the sigma bond axis. 



interaction, the interaction of the nuclear electric quadrupolar 

moment with anisotropic electric fields which results in a first 

order splitting of the Zeetnan resonance (see figure 6). The doublet 

splitting can vary from a few thousand hertz in very disordered 

nematic phases to almost 80 khz in very highly ordered smectic 

B phases. 

The general form of the quadrupolar Hamiltonian was given by 

equation 105 of chapter 1: 

hC = 	eQ' 	1i•i•1i 	
(2) 

- 61(211_i 

However, we will use the truncated version of the quadrupolar 

Hamiltonian, which is obtained from equaltion 2 above by the 

tnethod described in section 1.3.6. The Hamiltonian for a single 

nucleus is: 

h3(secular = _(3I2 - 1(1+1)) 	 (3) 
Q 	3 	z 

where 

WQ = 	

e qQ 

21(21-1) (-(3cos 2 O - 1) + flsin 20cos2) 

We define e 
q 	zz 	 xx 

= V and r = (V - V yy zz )/V . q is called the 

field gradient and r is the asymmetry parameter. 

When deuterium magnetic resonance is performed in the time 

domain, the free induction decay (fid) is detected after a high 

power "ninety degree" pulse. The free induction decay is the 

evolution of the single quantum coherence under the spin system's 

internal Hamiltonian, which includes the quadrupolar Hamiltonian. 
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Figure 6. Energy level diagram of an oriented spin 1 

nucleus. ' The interaction of a nuclear quadrupole 

moment with surrounding electric field gradients, 

results in a first order perturbation of the Zeeman 

Hamiltonian. The result is a splitting of the Zeeman 

resonance at w0 into a doublet. 
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However, the initial part of the fid may be unobservable since 

the preamplifier will be driven into saturation after the high 

power pulse and will require a finite time to recover. 

An elegant solution to the problem is to produce a quadrupolar 

echo. Figure 7 is a schematic of the quadrupolar echo experiment. 

The spin system is first given a ninety degree pulse, and subsequently 

evolves under its internal Hamiltonian for a time T. After the time 

T a second ninety degree pulse is given where the phase of the 

of the irradiation is shifted ninety degrees relative to the first 

pulse. Further evolution occurs for a second period T'. However, 

the evolution of the spin system during T' is the reverse of the 

evolution during 'r, and so at T' = T the signal is without quadru-

polar information. If the acquisition system is triggered at T' = 

and if after a time 2T the preamplifier has recovered from saturation, 

the complete fid will be accurately recorded. Let us now describe 

the quadrupolar echo experiment quantitatively. 

Suppose we have a system of noninteracting spin 1 particles. 

In general the density matrix may be expanded in as basis of 

(21 + 1)2 operators. For I = 1 this is nine operators which includes 

the identity operator: 

8 
p(z) = E a. 

1 	1 
(t)I. 	0 + a 1 	 (4) 

i=l  

If the Hamiltonian is linear in spin operators, only three of 

these operators, I. I, and I, are relevant and are related by 

the commutation rules given by equation 43 of chapter 1. As a 
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Figure 7. A pulse sequence used to produce a quadrupo-

lar echo. Assuming w 1 >>WQ I the two pulses would be 900 

pulses (w1 tpl, w 1 tp2 = 1/2). Then the density matrix 

after the x pulse is proportional to lyl. Evolution 

under the quadrupolar Hamiltonian for a time T produces 

a coherent state described by a linear combination of 

lyl and 1y2. The second pulse is phase shifted 

relative to the first by 90° and echos 1y2 back to lyl 

at a time equal to 2r. 



I 
x,l 	2x I 	=11 

y,l 	2y 

I 	=1(11 +11) 	I 	=(II +11) 
x,2 	2 yz 	zy 	y,2 	2 zx 	xz 

result, the density matrix may be represented by a vector, and the 

effect of strong pulses irradiation may be represented as vector 

rotations. The effect of internal Hatniltonians in the absence of 

irradiation may also be represented as vector rotations, but only 

if those Hamiltonians are linear in spin operators. Once bilinear 

Hamiltonians are included, we require all (21+1)2  operators. There-

fore, in a system of noninteracting spin 1 nuclei, 9 operators are 

required, including the identity operator. We are free to use any 

basis, but an especially convenient basis is related to I X2  1 '  

and I by the relations: 
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I 	= 11 
z,l 	2 z 

Tz,2 = (I I + I I ) 
2 xy 	yx 

=1(12_I2) 	I 	1(12_12) 	I 	=1(I2_12) 
x,3 	2 z 	y 	y,3 	2 x 	z 	z,3 	2 y 	x 

 

Since there are nine operators, we must have the condition 

I 	+1 	+1 	=0 
z,1 	z,2 	z,3 

 

This set of operators was originally used to describe pure quadrupolar 

resonance (55), and has also been used to describe double quantum 

nmr in systems of noninteracting spin 1 nuclei (56, 51, 58). The 

convenience of this bases lies in the fact that I 	, I 	, and 
p,1 	p,2  

1p3 are related by the commutation rule 

[Ii I 	] = ii p,3 
 or cyclic permutation of 1,2,3 

(7) 



In other words the spin space has been divided into three subspaces, 

each spanned by a set of operators I p,1 1  Ip,2' 	The operators 

of each set have transformation properties identical to spin 

operators due to the existence of the commutation relations given 

above. That is: 

-jOT lei 

e 	I 	e 	= I 	cosO + I 	sinO 	. 	(8) 
p,2 	 p, 2 	p, 3  

We are finally ready to describe the quadrupolar echo experiment. 

In Appendix 2.4 is listed the commutation relations and rotations that 

will be of use to us. 

We begin by considering the form of the rotating frame 

Hamiltonian during the first pulse: 

 JC 
= 	Z - Wi x  + 	Q(3Iz - 1(1+1)) 	• 	 (9) 

Converting to the new operator basis we get 

= -2&I 	- 2w I 	+ 	(I -  I 	) 	. 	(10) 3 z,l 	1 x,l 	Q x,3 	y,3 

For simplicity, let us assume that the irradiation is on resonance 

so Aw = 0. Then we get 

= 2Wl 1x l + j1J)Q (I 3  + Iy3 ) 	 (11) 

Now we make the assumption that during the pulse the Hatniltonian 

is JC - 2w 
l x,l 	1 	Q 
I 	since w >> w . Since the initial density matrix 

is given by p(0) 	I,  the density matrix after the first pulse 
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is given by: 



i(2w I 	)t 	-i(2w I 
x, 	 (12) 

	

lx,1 p11 	e 	l 

	

P(t 1+T) = e 	 z,l 

	

= I 	cosu) t 	+ I 	sinw t 
z,l 	ipi 	y,l 	lpl 

The spin system now is allowed to evolve under the Hamiltonian 

2 

	

= -w (I 	- I 	) for a time T. After a time T the density 
Q 	3Q x,3 	y,3 

matrix is given by 

	

-i..w (I 	-I ) 	 (I 	-I 3 ) 
p(t 1+'t) = e 	Q x,3  Y3 	e 	x,3 y, cosui t 

	

'z,I 	 1 p1 

	

].U) (I 3_Iy3 ) 	i 	(I 	-I 3 ) 
~ e 	x, 	 e 	x,3 y, 

	

1y,l 	 1 p1 

(13), 

The first term is unaffected since [I 
z ,1 ,I x,3 

 -I 
 y,3 I 

= 0. To 

evaluate the second term we make the substitution 

(I-I 	) = w I 	- -(I 	_ X, 3 I) 	 (14) 
3 Q x,3 

	

y,3 	Q y,3 	3 z,3 

and realize that [I y,l  , z,3 x,3 
I 	-I 	]  = 0. We easily obtain the 

expression 

iW I 
Q y, 

	

e 	
3T 	

ety3T 
= I 1coswQ  - I  y,2 SflWQT 

y,1

(15) 

So at the end of the first evolution time T the density matrix is 

P(t1+T) = I 1cosw1t 1  + (I 1coswQT 
- Iy,25iWQ )sinw1t1 

Now a second pulse is applied ninety degrees out of phase with 

the first pulse, and we must now evaluate the expression: 

(16) 
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i2w I 	t 	 -i2w I 	t 

p2 	
1  + T) e 	 p2 

p(t 1  + T  + t ) = e 	
1 y,l p2 p(t  

(17) 

The first term becomes (I cosw t + I 5mw t )cosw t 
z,1 	1 p2 	x,l 	1 p2 	1 p1 

The second term contains 1y,1 so it is unaffected by the pulse. To 

obtain the third term we must evaluate the expression 

e 
i2w1I1t2 i 
	e12ty1tp2 = i y,2 cos2w 1  t 2  - I 	sin2w1 t 2  
y,2 	 ,3 	

(18) 

The form of the density matrix at the conclusion of the second pulse 

is 

P(t1+T+t2) = (Iicosw1t2 + Iisinwit2)coswiti + I 1coswQTsinkL 1 t 1  

+ (I 2 cos2w1t 2  - Iy3sin2w1tp2 )sinwQT Sinw1t 1 ) 

(19) 

The spin system now evolves for a time T' under the Hamiltonian 

jC = w(I 	-Iy,3) 	 (20) 

= WQIx3 - Qy3 - I z 3) 

= WQIy3 - )Q(I3 - 1X 3 )  

The 1z,1 
 term is again unaffected since it commutes with the 

Hamiltonian, and the evolution of the I 
1 
 term is obtained by 

evaluating 

iwl 	T' iw I 	
e 	.x,3 	= 	cosw T' + I 	Sinw T' •e 	Qx 	Lxi 	 x,i 	Q 	x,2 	Q 

(21) 
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The evolution of the I y,l 	y,2 
and I 	terms is given by the 

expressions 

iwl 	' 	-iwl 	T' 
e Q 	

-r 
y,3 	i 	e 	

Qy,3 
y, 1  

iwl 	T 	
-iwl 	T' 

y,2 
e Qy,3 i 	e 	

Qy,3  

I 	5mw T' 	(22) = I 	COSW T'+ 
y,l 	Q 	y,2 	Q 

= I  y,2 cosw 
Q 
T' - I y,l 
	Q 
sinw T' .(23) 

The I 	term is unaffected since it commutes with I 	- I 
y,3 	 x,3 	z,3 

So the final expression for the density matrix is 

p(t + T+t + ') = I 	cosw t cosw t 	- I 	sin2w t Sinw TSiflW t 
p1 	p2 	z,l 	1 p2 	1 p1 	y,3 	1 p2 	Q 	1 p1 

+ (I 	cosw T'+ 
x,l 	Q 	

I 
x,2 

 sinw Q 
	l pl 
T')cOSW t sinw t 1p2 

+ (I 1coswQT' + Iy2sinwQT)coswQTSinw1tp1  

+ (I 	cosw 	- I 	sinw T')cos2w t sinw T5iflW t 

	

y,2 	Q 	y,l 	Q 	1p2 	Q 	ipi 

(24) 

We consider the case of two ninety degree pulses, w t = w t = - 

	

lpl 	1p2 	2, 

p(t p1 	p2 	y,l 	Q 	Q 
+T+t +T') = I 	(cosw T'cosw T 	

Q 	Q 
+ sinw T'sinw T) 

	

+ I 
y,2 	Q 	Q 

(cosw TSiflW T' 	
Q 	Q 

- cosw T'Sflw T) 	(25) 

andforT=T'wegetp(t 
p1 	p2 	y,l 

+t 	+2T)=I 	 (26) 

We note that the density matrix P(t 1  + t 2  + 2'r) is identical to 

and subsequent evolution is identical to evolution after a 

single pulse. 

We should also note that the phase shift is quite important 

for efficient echoing. Suppose the second pulse were in phase with 



with the first pulse. The expression for the density matrix after 

the second pulse is 

i2w ,I t 	 -i2w1 ,I 	t 
1 xp2 	 x,1p2 

p(t p1 +-r+t p2 ) = e 	 (I 
y,1 

 cosw 
Q 
T- I 

y92  sinw Q 
T)e 

 

TheI 	term is 
y, 1  

e 
12w1Iit2 i 
	e12W11tp2 = icosw t + t sinwt 

1 p2 	z,1 

 

and the I y,2term  is 

l , 
i2w 

1  I  x p  2 	i2wiIit2 = I 
	12 	

z 
sinw  

,2 	
1p2 -I e 	

y,2 
cosw t e 	

y,2 

 

If we assume that w 1 t  2 = we get for the density matrix after the 

the second pulse 

p(t 1 
	p2 	z,1 	Q 	z,2 	Q 
+r+t ) = I 	cosw t + I 	sinw T 	 (30) 

We realize that there can be no echo since both terms commute with 

I 
x,  3 y, 

1 
3 
 . Thus, if the pulses are in phase the double quantum 

transition is pumped since 'z,2 is a double quantum operator. 
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2.4 Theory of the Orientational Dependence of the Quadrupolar.  

Splitting in Smectic Phase Liquid Crystals 

Having introduced the liquid crystalline mesophases of interest 

and having completed a study of quadrupolar echo spectroscopy, we 

are ready to develop a theory of the orientational dependence of 

the quadrupolar splitting in smectic phases. Of course, such a 

theory would apply equally to the chemical shift anisotropy or the 

dipolar interaction, so we will keep the notation quite general. 

2.4.1 Smectic A 

As we mentioned in chapter 1, spin interaction Hamiltonians may 

be written as scalar products of spherical tensors 

JCE E 	mA T 	 (31) 
2-m 2.,m 

where A is a tensor involving spin operators and T is a tensor 

involving interaction parameters. 

Suppose T is the tensor in some principal axis system. We 

now obtain T in a molecular-fixed coordinate system by the 

expression 

Tm = E T ,D(2 ) 
9m m' mt mm 0 

(32) 

where Q = ((, 0 y0 ) are the Euler angles relating the principal 

axis system of T to a molecular-fixed coordinate system (see figure 

8). 

We now wish to transform T into a domain coordinate system in 

which the z axis is parallel to ri, the director. However, this 
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Figure 8. The molecular coordinate system of a liquid 

/ crystal (Xm,Ym,Zm). The arrow parallel to the C-D 

sigma bond axis indicates the z axis of the pas of the 

quadrupolar tensor. Zm is parallel to the "long axis" 

of the molecule. Xm is normal to the plane of the 

Schiff base linkage and Yin completes the right-handed 

coordinate system. 



transformation must be averaged over all molecular orientations 

relative to ii, since ordering is not perfect in a liquid crystalline 

phase. Therefore, we obtain 

T d = E ( T d D9( ) <D(c2 )> 	 (33) 
2,m m' q Zq qm 0 	m'm 1 

where <D( 1 )> = fd21P(c1)D mm 1(Q ) 	 (34) 

and P(21) is the probability of a solid angle Q, = 

occuring between the molecular-fixed frame and the domain frame. 

Now P( 1 ) may be expanded in terms of generalized spherical harmonics, 

P( 1 ) = (8ir2)1Z (2+l)(_)k 	D 9 (Q ) 	(35) 
9kp 	 kp kp 1 

If we substitute equations 34 and 35 into equation 33, and carry 

Out the integration making use of the orthonorinality property of 

Wigner rotation matrices and the relation 

= 	k_pD(2) * 
kp 	 -k-p (c) (36) 

we obtain the result: 

T' = E,(E TD?(c20)) (_)mC(2)() 	 (37) 

The C(21 )'s are called complex motional constants or order 
MIM 

parameters. 

We will concern ourselves with second rank spherical tensors 

so 2= 2. In general, we must have 25 motional constants since both 

m and m' vary integrally from -2 to 2. However, the smectic A 

phase is uniaxial and this requires that m = 0, since P must be 
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independent of.y1 . Therefore we .obtain 

= 	(E T 	D 2 ( 0 )) 
c 2 0 (c21 ) 	. 	 (38) 

0 	m'q  2q qm  

We conclude that in a uniaxial phase there are at most 5 order 

parameters. A further reduction in the number of order parameters 

may be achieved on the basis of molecular symmetry. If, for 

example, the molecule is linear, or rotates rapidly about its 

"long axis", P must be independent of a. Then m' = 0 and we get 

	

T d = E T 	 ) C() 	. 	 (39) 
20 	q  2q qO 	0 	0,0 1  

If a smectic A or nematic liquid crystal is placed in a strong 

magnetic field, the molecules will align so that the director 

A is parallel to the magnetic field. Then after truncation the 

Hamiltonian is 

	

JC = AT 	= A(E T 	D 2 (c )) C 2 (c2) 	 (40) 

	

20 2 	20  
2q qO 	0 	0,0 1 

where we have neglected the isotropic term A00T0  

If, however, the uniaxial liquid crystal is first aligned 

in a magnetic field and is then rotated through an angle a 2  (see 

figure 9) we obtain the expression 

= A20T2  = A20T2 D(22 ) 	 (41) 
 00 

= A (E T P  D(Q0)) c(c2 1) D(c22 ) 
20 q 2q q 

where (c2) = (012,0). 
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Figure 9. Rotation of a smectic A liquid crystal. 

Given the uniaxial syininetry of the smectic A phase and 

assuming that the layer structure is preserved after 

the rotation, the quadrupolar splitting should be 

proportional to 3cos 2 8 - 1 where B is the angle between 

the z axis of the original laboratory frame (a) and the 

final laboratory frame (b). 
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/ 	 24.2 Smectic C 

We now describe a multidomain model of the smectic C phase 

in a strong magnetic field that will be used to simulate dmr 

spectra. Similar models were first proposed independently by 

Luz (41) and Wise (40), and later by Allison (59). The assumptions 

upon which multidomain models are based are: 

The molecules align with their long axes parallel to the 

magnetic field, but the smectic layers, rather than being 

normal to the magnetic field, are tilted. 

The azimuthal distribution of molecular domains about the 

magnetic field direction is random (see figure 10). 

If the sample is rotated, the domain structure is maintained, 

but molecules reorient in such a way as to minimize their 

magnetic energy (-H.X.H)  while maintaining their tilt angle 

and orientation relative to one another. Since the subse-

quent angle between molecular long axes and the magnetic 

field is not the same for all domains, there will result a 

distribution of molecular orientations (see figure 11). 

The maintenance of domain structure after sample rotation is supported 

by ntnr (40,41) and esr (60) evidence while the reorientation of 

molecules on a cone is supported by magnetic torque studies (61). 

The model involves six coordinate systems and five transformations. 

As in the last section, we will rotate from the principal axis 

system to the laboratory-fixed coordinate system. As before, the 

Hatniltonian is written as a scalar product of spherical tensor 

operators 



Rotation of Smectic—C 

H0 

domain I 
	

domain 2 
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domal moin 2 

XBL 751-5494 

Figure 10. Multidomain structure of a smectic C liquid 

crystal. The domains are oriented on a cone about the 

direction of H0 . The angle between the layer normal 

and the molecular long axis is the tilt angle. 

Rotation of smectic C phase preserves the domain 

structure, but molecular reorientation occurs within 

each domain in order to minimize magnetic energy while 

preserving the tilt angle. 



Molecules reorient with 
fixed tilt angle to minimize 
magnetic energy 

E= -HXH 

XBL 751-5493 

Figure 11. Detail of molecular reorientation within a 

domain after rotation of a smectic c phase. Assuming 

preservation of the multidomain structure, molecules 

within a given domain will assume a position on a cone 

that minimizes the magnetic energy E = - H • x H 

while preserving the tilt angle. 
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c= E I 	 T 	 (42) 
m=-Z 	9-m P..m 

with A and T defined as before. We wish to rotate T from its 

principal axes system, through a molecular-fixed frame, into the 

director frame. The expression for Td  is identical to equation 

7 of the preceding section: 

Tdir = I (I TPa5D()(  )) ()mC()(Q  ) 	. 	 (43) 
in 	n q iq qn 0 	-nm 1 

We next rotate into the domain-fixed coordinate system or 

the domain frame. The z axis is normal to the plane of the layer 

while the y axis points radially away from the direction of axis 

of radial symmetry of the domain, and the direction of x defines 

a right-handed coordinate system 

Tdom = I dir 
zP 

 
m 	 L 

	 (44) 

= I 	TPa5D( qn(Q )()mC() ( )D(Q,) 
tnm'q 2q 	0 	-fin 1 mp 	z. 

where 0 = (0292 ,y2). a 2 is the tilt angle and y 2  specifies 

the position of the cone. 

The next rotation is from the domain frame to the initial 

laboratory frame of the unrotated aligned sample (see figure 12). 

The expression is 

Tab = 	I (_)PasD()( 	 )D() 
Zr 	mapq 	9q qn 0 -am 1 mp 2 pr 

(45) 

where Q = (0, 3 ,'y 3 ) and 	= 	
and y specifies the domain. 
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Figure 12. Relationship between the domain coordinate 

system and the initial and final laboratory frames. 

The z axis of the domain frame is parallel to the layer 

normal, the y axis lies within a plane of symmetry of 

the cone and the x axis completes a right-handed 

coordinate system. The domain frame (xd, 
Yd'  zd) is 

related to the initial lab frame (xLi, 
Li'  zLi) by the 

Euler angles (0, 8 3 1 13) where 8 3  is the tilt angle and 

1 3  specifies the domain. The initial lab frame is 

related to the final lab frame (xLf, Lf'  zLf) by the 

Euler angles (0, B 4  0) where 84  is the sample 

rotation. ZLf  is parallel to H0. 
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The final rotation is from the initial laboratory frame to 

the final laboratory frame. This frame has the magnetic field 

direction as the z axis (see figure 12). The expression is 

=E 	()m[PasD(Z)(Q )C 9 (Q )D 9 (c )D 2 (Q )D 9 (c2 ,) 
9s 	mnpqr 	Zq qn 0 -nm 1 mp 	2 pr 	3 rs ' 

 

where (Q4 ) = (0, 4 ,0) and 	is the rotation angle. Again, we 

are only interested in a second rank tensor so Z = 2. Truncation 

of the Hamiltonian leads us to consider only the T 	 component: 
20 

T 	= 	E 	mTPasD(2)( )C 2 (c2 )D 2 (2 )D 2 (Q )D 2 (c2 ) 
20 	imipqr 	2q qn 0 -nm 1 mp 2 pr 3 ro 4 

 

Combining equation 47 with equation 42 we obtain the final 

expression for the Hamiltonian: 

= A20 	E 	m1PasD(2)( )c 2 (Q )D 2 (c2 )D 2 (Q )D 2 (Q 

	

mnpqr 	2q qn 0 -nm 1 mp 2 pr 3 ro 4 

 

In order for equation 48 to be of use to us in calculating 

nmr spectra, we need to determine the number of order parameters 

required by the symmetry of the smectic C phase. We also need to 

determine the position of a molecule on a cone 	as a function 

of the tilt angle 	the domain (13)  and the rotation angle (-y'4 ). 

In appendix 1 of this chapter we will rigorously derive the 

number of order parameters required by the symmetry of the smectic C 

phase. For our present purposes it is sufficient to make the 

following simplification. Let us assume that liquid crystal 
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molecules are of low symmetry and so no simplification of the 

order tensor is possible. We rewrite equation 49 as: 

= A20 	rnQ (2) 
	

)D 2 2 )D 2 (Q )D 2 4 ) 	(50) 
mpr 	m 	0' 1 mp 2 pr 3 ro 

where 

) = E TPa5D(2)(2  )c 2 ( 1 ) . 	 (51) 
1 	qn 2q qn 0 -nm 

The assumption that we wish to make is that the only term that 

we will retain in equation 50 is Q0 
(2) 	 This simplification, 

which has been used in earlier studies (41, 47, 51), means that the 

biaxial order parameters are much smaller than the uniaxial order 

parameters and so the symmetry of the ordering may be approximated 

as cylindrical. Biaxial order parameters have not been extensively 

studied, however, Bos et.al . (45) report values better than an 

order of magnitude smaller than the uniaxial ordering. Therefore, 

we rewrite equation 50 as 

C= A20 	 . 	(52) 

It remains to determine the molecular orientation within a 

given domain 	as a function of the tilt angle 	domain (1 3 ). 

and rotation angle (4).  It should be noted that reorientation 

in a liquid crystal is a cooperative effect, since it is done to 

minimize the magnetic energy 

E = -HXH 	. 	 (53) 

Therefore the reorientation as specified by 12  is a domain 
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reorientation. We emphasize that intermolecular orientations do 

not change (i.e. a = 0), since intermolecular interactions are 

much greater than magnetic interactions. We determine y in terms 

of a 29Y39and  6 by writing the magnetic energy in terms of 

''2' 2' Y3  and 

E = E(2, 2' Y39 4 ) 	 (54) 

and extretnizing E with respect to 

The value of y that yields the extreme magnetic for given 

2' Y3  and 6 is obtained by solving equation 55 for y2.  E is 

a minimum if for the given a 
2' 2' Y32 and 

4>0. 
ay 

(56) 

We begin by assuming that the z axis of the magnetic suscep-

tibility tensor is parallel to the z axis of the director frame. 

We write an expression for the magnetic energy with X  and H2  

in the spherical tensor form 

E = - 	E()(H2)X 	 . 	 (57) 

It will be shown in appendix 2 of this chapter that in the 

director frame the magnetic energy is 
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E = - Hj 2 ( 	x00 	x20 - ( x22 + 	- 

	

23 	1 
(H10) c' 	- 	± x2_2 )) - 

(H11  + H11 ) 2  ((x22  ± x2_2)) 	. 	 (58) 

H 
l,n  is the first rank magnetic field tensor in the director 

frame. If we again approximate the symmetry as cylindrical then 

we get 

E 	- - H12X00 -- (3(H10)2 - 1H1 2 )x20 	 (59) 

The only term dependent on y 
2 
 is H10 . Therefore 

aHio 
- - V H10 	

2 20 
	 (60) 

For an extremum the condition is 

3E 	H10 
- Oor 	=0 	. 	 (61)ay  - 

Now H10  is related to H in the laboratory frame (H) by the 
10 

trans formation 

Hdir = E 	 )D 1 (-Q )D(-Q ) 	 (62) 10 	, 10 om 	4 inn 	3 no 	2 

where 	2 = (-y2,-2,0). 	3 = (_Y3,2,0), c24  = (0_40) 



In appendix 2 it will also be shown that equation 62 leads to 

dir 	(in 1 H abd(l) 	)dW (_ )dW (- 	
i(ny2+ur3 

H10  = 	
) 

	

10 om 	4 inn 	2 no 	
2)e 

(63) 

Equating equation 63 to zero and solving for y 
2 
 yields after 

some algebra (see appendix 2) 

sinsin'( 
=4 
	3  (_ ( 2cos 4  + co 2sin4cosy3) . 
	(64) 

Therefore, assuming approximately cylindrical symmetry in the 

director frame, the dmr spectrum for a given domain, tilt angle, 

and sample rotation may be obtained from equation 52 and the 

condition given by equation 64. The value Q 2 (c 0 ,c2 1 ) may be 

obtained by normalizing to the dmr spectrum at zero rotation. 

2.5 Experimental Results and Discussion 

2.5.1 "nom" Liquid Crystals 

The liquid crystals that we chose to study were selected from 

a series called benzylidineanilines (figure 13). These compounds 

are of interest since they are known to possess several mesomorphic 

phases at reasonably low temperatures. The members of the series 

chosen were 

N- (p-pentoxybenzylidine)-p-n-hep tyaniline (507) 

N-(p-heptyloxybenzylidine)-p-n-pentylaniline (705). 

Each compound is known to possess 5 mesoinorphic phases. The 

transition energies, entropies, and temperatures have been reported 

in the literature using differential scanning calorimetry, and 

some of the ranges for the various phases are given in table 1. 

M. 
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XBL 752-5832 

Figure 13. MEBA. An example of a "flom" liquid 

crystal. 



2.5.2 Chemical Synthesis 

Each liquid crystal was deuterated at the methine position. 

The synthesis was accomplished in three steps. We will describe 

the synthesis of monodeuterated 705. The synthesis of 507 is 

analogous. 

Et20 
C 7H15-O O2H + LIA1D4  --- 	-C 	 C7H15--CD20H 

In a 500 ml flask, under nitrogen, 1.17 gm (28 mmoles) of 

lithium aluminum deuteride were added to 100 ml of dry ether. 

4-heptyloxybenzoic acid in 150 ml dry ether was added dropwise 

with stirring. The mixture was refluxed for 2 hours. The reaction 

was quenched with dilute sulphuric acid and worked up in a 

standard manner. The deuterated alcohol was recrystallized in 

aqueous ethanol. The melting point was 45-46
0
C. The literature 

value is 48
0
C (63). 

C7H15-0--CD20H + Pb(OAc) 4  - C7H15-0---CD0 

In a 300 ml flask, 2.80 gm (12.5 mmole) of 4-heptylaxybenzyl-d 2  

alcohol were mixed with 65 ml of pyridine. 5.54 gin (12.5 mmole) 

of lead tetraacetate were added and the mixture was stirred over-

night. Most of the pyridine was removed by rotary evaporation. 

The residue was stirred with 150 ml of ether and filtered, and the 

the mixture was distilled after removal of the ether by a bulb-to-

bulb apparatus at approximately .1 = from 115
0
-120

0
C. The yield 

was 2.01 gin (76%). 



NH2 EtOH 	 D 
c) C7H15-0--- 0 —CDO + 0 	> C7H15-0— 0 —C 

N - 0 -05H11  
C5H11  

1.00 gm (4.5 mmole) of 4-heptyloxybenzaldehyde--d 1  and .74 gin 

(4.5 mmole) of 4-pentylaniline (Kodak) were refluxed in 10 nil 

of absolute ethanol overnight and recrystallized in 95% ethanol. 

The yield was 1.00 gm (60%). Measured transition temperatures 

are compared to literature values in table 1. A mass spectrum 

indicated 98% deuteration. 

Table 2.1 	Mesomorphic Transition Temperatures : 705 

S4-S 3  S 3-S 2  S 2 -S1  S 1-N 	N-I 

Literature 	58.0 64.4 68.3 79.6 	83.2 

Found 	57.2 63.0 67.6 78.9 	82.5 

2.5.3 Experimental Methods 

Approximately .7 gin of the liquid crystal were sealed under 

vacuum in pyrex tubes (00 = 8 inn) after three or four freeze-pump-

thaw cycles. The pyrex tubes were cut to a length of about 

12 mm. 

The nmr probe was of the type shown in figure 14. The probe 

was of a double coil arrangement where the deuterium coil was of 

a solenoldal type and the proton decoupling coil was of the 

Helntholtz type. Tuning was performed with a high power series 

capacitor and matching to 50 ohms was done with low power 

capacitors to ground. 

Sample orientation was controlled by a go.niometer which 

consisted of a vertical shift passing through the base and 
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Figure 14. A schematic of the nmr probe used in the 

study of two nom liquid crystals. Sample rotation was 

effected by turning a goniometer which rotated a worm 

screw through a miter gear set. The screw in turn 

rotated a worm wheel to which was attached the liquid 

crystal sample. 



attached to a worm gear. The worm gear is rotated by two gears 

which turn the gear wheel mounting the sample. Rotation was 

precise to about 10. 

Temperature was controlled to within .1
0
C by a two stage 

heating system. Dry nitrogen was preheated and sent through an 

evacuated stainless steel, transfer line. At the top of the 

transfer tube was a second auxiliary heater. Temperature was 

monitored by a copper-constantan thermocouple mounted near the 

sample, and the entire probe head was enclosed by a glass dewar. 

The thermocouple voltage was amplified and sent to a comparator 

amplifier which output a voltage proportional to the difference 

between the thermocouple voltage and a reference voltage. 

DMR spectra were obtained on a homebuilt spectrometer which 

has been described in detail elsewhere (57,65). The magnet was 

a 24 kGauss superconducting system. The deuterium frequency 

was 16.33 Mhz and the proton frequency was 106 Mhz. The 

procedure for obtaining spectra was as follows. A liquid crystal 

sample was aligned in the magnetic field by being heated to its 

isotropic phase and then being very slowly cooled to the nematic 

phase where it was allowed to equilibrate for about 1 hour. The 

sample was then slowly cooled to the desired temperature, allowed 

to equilibrate for about another hour, and then rotated to the 

desired angle. Free induction decays were obtained using the 

quadrupolar echo pulse sequence described in section 2,3 with 

high power proton decoupling. The decay signals were digitized 

at a rate of 200 khz, and approximately 200 shots were averaged 

together to increase the signal to noise ratio. The 1024 point 
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FID was then Fourier transformed by a PDP 8E minicomputer and 

plotted. 

2.5.4 Phase Transitions 

The separation between quadrupolar satellites was observed 

versus temperature for both 507 and 705. The results are shown in 

figures 15 and 16. In both phase diagrams the transition temperatures 

are lower than measured by thermal microscopy by 1-2
0C. This is not 

surprising since the thermocouple was separated from the sample by 

about 1 cm. We will make a few comments on the five phase transitions 

observd. 

Isotropic-Netnatic (I-N) Transition 

For 507, the I-N transition occurred at about 74.8
0C and for 

705 occurred at about 80.9
0C. The coexistence of two phases at 

the transition, indicated by an isotropic line at zero frequency, 

superimposed on a quadrupolar spectrum, established the transition 

as first order, an observation predicted by various mean field 

theories (66,67). 

Nematic-S 1  (N-S1 ) Transition 

Texture studies (62) have established the S 1  as a smectic A 

phase. The first order phase transition occurred at about 63.6
0
C 

in 507 and 77.5
0
C in 705. 

Sinectic A-S2  Transition 

Texture studies (62) indicate that the S 2  phase is smectic C. 

We observed no discontinuity in the quadrupolar splitting between 

the stnectic A and the smectic C phase. Discontinuities in the 

slope of w versus temperature were observed at 53 °C for 507 and 
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Figure 15. 	The quadrupolar splitting (2tl Q) vs. 

temperature for 507. The discontinuities in 2wQ  at 

about 76°C, 61°C, 51°C, and 37°C are first order phase 

transitions between the various mesomorphic phases. 

The discontinuity in the slope at about 53°C is the 

second order phase transition between the smectic A and 

the smectic-C phases. 
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Figure 16. Same as Figure 15 except for the nom liquid 

crystal 705. 



and 66.7
0c for 705. The lack of discontinuity in the quadrupolar 

splitting indicates either a very small first order transition or 

a second order transition. A second order smectic A - smectic C 

(SA - Sc) phase transition is predicted by a deGenne-Landau 

theory (68) and several mean field theories (68,69,70,71,72). We 

will study the nature of this phase transition in some detail in a 

later section. 

Smectic C-S 3  

This large first order transition occurred at 51
0
C for 507 

and 63
0
C for 705. In a later section we will show that the 5 3  

phase is an untilted smectic phase, establishing it as smectic BA. 

The order of the transition is predicted by a mean field theory (70). 

Smectic BA_S4 

In a later section we will show that the S 4  phase is a tilted 

smectic phase, which we identify as smectic Bc  At the time that 

this work was done, a study of the smectic BA_BC  transition had not 

been reported in the literature. A texture study (62) did not 

establish the phase as tilted, but an x-ray diffraction study later 

appeared that supported our finding that S 4  is a Bc  phase (74 

From figures 18 and 19, we observe that the BA_BC  transition is first 

order and appears at 32 0
C for 507 and at about 56 0

C for 705. The 

first order character of this transition is also supported by 

differential scanning calorimetry studies (62,74) and magnetic 

anisotropy studies (75). 

The above observation is interesting for the following reasons. 
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The nature of the molecular interactions that stabilize the various 

mesomorphic phases has been of great interest to theoreticians and 

experimentalists. It is known that the high temperature uniaxial 

phases (nematic and smectic A) are stabilized by van der Waals 

interactions, but the nature of the interactions in the tilted, 

biaxial phases is less clear. 

McMillian (69) has proposed a mean field theory for the smectic A 

to smectic C transition that assumes that molecules are free to 

rotate about their long axes in the smectic A phase. However, once 

smectic A order is established, there occurs a rotational freeze-out. 

The theory then states that once rotational motion begins to freeze 

Out, the molecules will tilt relative to the smectic planes in order 

to minimize the energy of interaction of the "outboard" electric 

dipole moments (see figure 17). The model was specifically applied 

to TBBA, which has two antiparallel dipoles associated with the 

azoxy moieties. Later, the theory was extended to include the 

smectic B phases (70). 

The latter theory yields three order parameters: 

a translational order parameter 

a tilt order parameter 

a cross term y,  which correlates the two types of order. 

The various smectic phases are described as follows: 

smectic A c==O 

smectic BA  y0, ciO 

sinectic B C ct00, 	0, y0 

smectic C cL=y=0. 	0 . 
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Figure 17. Detail of McMillian's model for smectic C 

phase formation in TBBA. After the establishment of 

stnectic A order, molecules tilt in the layer in order 

to minimize the energy of interaction between the 

outboard electric dipolar moments. This model assumes 

a rotational "freeze-out" in the smectic C phase. 
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The orders of the various phase transitions are unambiguously 

defined as 

SA_SC second order 

SC_SBA first order 

S-S3c first order 

SBA_SBC second order 

Experimental studies of the smectic Bc  phase in TBBA have not 

agreed as to the validity of McMillian's theory. Interpretations 

of x-ray diffraction data tend to support the! idea of rotational 

freeze-out in the smectic Bc  (32), while nmr data (42) and quasi-

elastic neutron scattering studies (76,77) have indicated that 

molecular rotation is not "frozen Out". It should be noted that 

TBBA has an SASC  transition which appears to be second order and 

an SC_SBC transition which is first order, facts which agree with 

McMilhian's theory. TBBA does not possess a smectic BA phase. 

Our studies indicate that McNillian's theory is inadequate 

in that it incorrectly assigns to the SBA_SBc transition, second 

order character. Our data clearly indicate that the transition 

is first order. There have appeared in the literature mean field 

theories that do not postulate a rotational freeze-out in the 

smectic C, and in particular, a theory due to Carib (73) develops 

a smectic C potential based upon the interaction of the axial com-

ponents of the outboard dipoles. Therefore the molecules are free 

to rotate about their long axes in the smectic C phase. Carib 

concludes that the SA_SC  transition may be first or second order 

depending upon the parameters of the theory. It would be interesting 

to see this theory extended to include translational ordering, but 
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this has not appeared in the literature to out knowledge. 

2.5.5 DMR Spectra of Rotated Smectic Samples 

Smectic A 

DMR spectra were obtained of the aligned smectic A phases of 

the 507 and 705 for sample rotations varying between 0 and 900. 

Figure 18 shows a typical series of spectra taken of 507 at 55.2
0
C 

for rotations between 00 and 900.  (Half of the spectrum is shown). 

In figure 19 is shown a plot of the quadrupolar splitting (VQ) vs. 

rotation angle. The solid line is 3cos 2 0-1, the functional dependence 

predicted by the model. The qualitative features of the spectra are 

easily explained by the model. As the sample is rotated from 00, 

the lines broaden due to imperefct alignment of the molecular long 

axes. At small rotation angles (<240)  the lines are asymmetric 

since 3cos 2 6-1 is quite nonlinear for those angles. For angles 

between 300  and 80
0
, the lines are broad and symmetric since 

3cos 2 O-1 is almost linear and of maximum slope. At 54 0 
 the quad-

rupolar spliting is zero since the molecules are rotating rapidly 

at the "magic angle". From 800  to  900  the lines become narrower 

but more asymmetric. At 90 0
, the quadrupolar splitting is 4 of its 

original value. 

Smectic C 

DNR spectra were also obtained of the aligned smectic C phases 

of 507 and 705 for sample rotations varying between 00  and  900. 

Figures 21, 22, and 23 show smectic C spectra for small sample 

rotations at 52.8
0
C, 52.2

0
C, and 51.7

0
C. The behavior of smectic C 

behavior differs markedly from smectic A behavior shown in figure 20. 
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Figure 18. Behavior of the smectic A phase of 507 with 

sample rotation. Each spectrum was taken for a 

different sample rotation. The higher frequency half 

(>w0 ) of the spectrum is shown. Note the asymmetry of 

the lineshape for small sample rotation. At about 540 

the quadrupolar splitting has vanished and at 90° the 

splitting is one half ot is unrotated value. 
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Figure 19. A plot of the quadrupolar splitting vs. 

sample rotation for 507. The experimental data are in 

excellent agreement with the expected functional 

dependence on 3cos 2 B -1 where 0 is the sample rotation. 



We will now attempt to explain the qualitative features of these 

smectic C spectra based on the model. 

From figures 21, 22 and 23 it is seen that at small sample 

rotations the lines become highly asymmetric with an "edge" at 

the initial VQ  and a "tail" at lower values of v 
Q
,As the sample 

is rotated through larger angles, the signal intensity at the 

initial VQ  decreases to zero. It is also notcied that at lower 

temperatures, the signal persists at the initial VQ  through larger 

rotation angles. Figure 24 shows a rotation series for angles 

0 to 90 taken at 53
0
C. It is noted that at 90

0 
 the line is boradened 

and virtually no signal is at one half the initial VQ • 

The smectic C model described in 2.4.2 explains the qualitative 

features of these spectra. If the rotation angle (4)  is less than 

twice the smectic tilt angle 	then in some domain or domains 

(sepcified by y 
3 
 ) the molecules will be able to assume a position 

on the cone (specified by 'y2)  that will allow them to be parallel 

to the magnetic field. The spins of those molecules will resonate 

at the initial v . But molecules in other domains will assume a 

variety of orientations and so a polycrystalline pattern will result. 

Once the sample rotation exceeds twice the tilt angle, the signal 

at the initial VQ  will decrease to zero. Therefore, the persistence 

of signal intensity at the initial VQ  for larger sample rotations 

at lower temperatures implies a temperature-dependent tilt angle, 

which increases as the temperature is lowered. We also note that 

for a given domain, when the angle between the axis of the cone and 

the magnetic field approaches 900,  the molecules jump from y to 
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Smectic A 

T=57°C 

0° 
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Figure 20. DMR spectra of 507 in its smectic A phase 

at 57°C for various small rotation angles. Note the 

slight asymmetry in lineshape due to the 3cos 2 8-1 

dependence. 
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Smectic C 

T= 52.8°C 

0° 

-S 

a, 
-D 
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Figure 21. DMR spectra of 507 in its smectic C phase 

at 52.8°C for small rotation angles. Note the 

persistence of intensity at the initial w due to the 

reorientation of molecules in some domains such that 

their long axes are parallel to the magnetic field. 
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Smectic C 

T = 52.2°C 

-D 

C 

C 
0 

0 

0 

0 °  

6° 

12° 

18° 

24° 

30° 
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Figure 22. Same as Figure 21, only taken at 52.2°C. 

Note the persistence of intensity at the initial'w at 

larger rotation angles. 
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Smectic C 
T = 51.7°C 
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Figure 23. Same as Figures 21 and 22, only taken at 

51.7°C. Intensity persists at the initial w for 

sample rotations of up to 18° indicating that molecules 

in some domains can realign with their long axes 

parallel to the magnetic field. The trend in Figures 

21-23 may be attributed to an increase in tilt angle as 

the temperature is lowered. 

W. 



Therefore at large rotation angles, the lines are broad and at 

a sample rotation of 900,  no signal is expected at one half the 

initial 

In figure 25 is shown a series of theoretical spectra generated 

by the program SMEC10 (see appendix 2.3) which uses the theory 

given .in section 2.4.2 for smectic C phases. Specifically, the 

program uses equation 52 to calculate VQ  for a domain, given a tilt 

angle ( 2 )and rotation angle (4).  Four hundred domain angles 

were used and the molecular orientation angle (y 2 ) was calcu-

lated for each domain using equation 64. Figure 25 is in good 

agreement with the experimental data of figure 24. 

In figures 26 and 27 we plot VQ  at the half height of the high 

frequency edge of the polycrystalline pattern as a function of 

rotation angle for various temperatures for 507 and 705. Figure 

28 is a theoretical plot assuming different tilt angles.The tilt 

angle is clearly temperature dependent in both compounds with a 

maximum at about 9-.10. This result contradicts the conclusions 

of an x-ray study of 705 by de Jeu and de Poorter in which it is 

stated that the tilt angle in the sniectic C phase of 705 is 18 0  

and independent of temperature (27). 

c) Smectic B Phases 

DMR spectra were obtained of aligned sample of 507 and 705 

in the two smectic phases below the smectic C phase. Spectra of 

rotated samples of the S 3  phase lying within the range 32
0C-51

0
C 

for 507, and 56
0
C to 630C for 705 showed the same qualitative 

features as rotated smectic A samples. The unrotated spectra of 
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Figure 24. A complete rotation of 507 in its smectic C 

phase for rotation angles up to 900. 
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Smectic C Simulation 
Tilt Angle = 70 
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Figure25. A series of spectra calculated with the 

program Smec 10 assuming a multidomain structure, 

molecular reorientation, and a tilt angle of 7°. 

Agreement with the experimental data in Figure 24 is 

quite good. 
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Figure 26. A plot of the frequency of the outer edge 

of the high frequency quadrupolar satellite at half 

maximum vs. rotation angle for 507. Data for several 

temperatures within the smectic C phase are shown. 
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Figure 27. Same as Figure 26, only for the nom liquid 

crystal 705. 
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Figure 28. Computer generated plot produced by the 

program SMEC 10 showing the frequency of the outer edge 

of the high frequency quadrupolar satellite at half 

maximum vs. rotation angle for various tilt angles. 

The data in Figures 26 and 27 indicate a temperature 

dependent tilt angle reaching a maximum of 9° at the 

smectic CBA  phase transition. 
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of 507 and 705 showed greater broadening in the S 3  phase than 

in the smectic A, indicating less uniform alignemnt in the 

former than in the latter phase. However, spectra of rotated S 

samples are broadened asymmetrically at small angles and almost 

symmetrically at angles approaching 54
0 . At 540 , the spectrum 

is a single broadened line centered at resonance, and at 900  the 

satellites are narrowed and the splitting is 4 the unrotated value. 
Figure 29 shows a plot of v Q  vs. rotation angle plotted against 

the function 4(3cose_1) for S 3 . vQ  is measured from resonance 

to the peak of the satellite and S is the rotation angle. These 

observations indicate that S 3  is an untilted uniaxial phase in 

which the molecules are either rotating rapidly around their long 

axes, or the orientational distribution around the molecular long 

axes is three-fold or higher. 

Figure 30 shows a series of spectra of aligned samples of 507 

in the S4  phases for various rotation angles between 00  and  900. 

For small rotation angles, the spectra display features typical 

of the spectra of a tilted smectic phase. For small rotation 

angles ( 18
0) the satellites broaden asymmetrically with an edge 

persisting at the initial vQ . At large rotation angles the 

satellites are asymmetrically broadened although agreement with 

theory is less perfect. The line at 900  is broadened with intensity 

persisting at one half the initial VQ • No simple model based on 

realignment into absolute or local minima has succeeded in simulating 

the 900  spectrum. Although realignment into local minima (see 

appendix 2.2) can explain the persistence of intensity at one half 
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Figure 29. A plot of w vs. rotation angle for 507 in 

its smectic BA phase at 46°C. The data follows the 

expected dependence on the rotation angle, 3cos28-1. 
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Figure 30. DMR spectra of 507 in its smectic Bc  phase 

for various rotation angles. 



the initial vQ9  the satellites should be slightly broader than 

for the case of realignment to an absolute minimum since the 

distribution of alignment angles y 2  is larger in the former case 

than in the latter case. However, the 
900 

 satellite appears 

narrower than expected. 

Except for the 90
0  spectrum, in which the satellites are 

narrower than expected, the spectra of rotated S 4  samples indicate 

that the phase is a tilted smectic, and are in fact similar to the 

spectra obtained by Luz (42) for the smectic Bc  phase of.TBBA. 

W. 



Appendix 2.1 Ordering in the Smectic C Phase 

In this appendix we will derive the number of unique order para-

meters required by the symmetry of the smectic C phase. The 

assumptions that we will use are: 

Molecules are of very low symmetry and so no reduction in 

the number of order parameters is possible via molecular 

symmetry arguments. 

To a good approximation the ordering distribution is 

symmetric about the molecular frame. 

Molecules are "invertible" within the smectic layer. 

The degree of uniaxial ordering is high. That is, angular 

excursions from the director are small. 

We define order parameter as a motionally averaged element of 

a Wigner rotation matrix: 

<D 2 () = fdc2P(c)D 2 (c2) 
ma 	 ma 

= fdc 	 D(c2) 	 (1) 
ky. k9 

Such a transformation is required since the molecular frame is 

not fixed relative to the director frame. 

Linear combinations of these complex order parameters form 

purely real order parameters that express some geometric mode 

of ordering. A simple example is 

= 4.(3cos2  	 (2) 
00 

I 	 is the angle between the molecular z axis and the z axis of the 
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director frame. It measures the degree to which the molecular 

z axis aligns parallel to the director. We note that the function 

is maximum if = 0. 

In general the number of order parameters <D(c)> depends upon 
mn 

the symmetry of the molecule and the symmetry of the phase. For 

example, if the molecular z axis were an axis of three fold symmetry 

or higher, only order parameters of the form <D 2 (Q)> would be 
On 

nonzero. On the other hand, if the phase were uniaxial, that is, 

if the director frame were to have cylindrical symmetry, then only 

order parameters of the form D2 
mO

(c)  would be nonzero. Therefore, 

to describe a molecule of any symmetry in a uniaxial phase, one 

requires five order parameters. If no symmetry were to exist in the 

phase, then the number of order parameters would be 25. 

Assumption (i) states that we will not, in general, be able to 

reduce the number of order parameters based on the presence of 

molecular planes of symmetry, n-fold axes, inversion centers etc. 

Assumption (ii) states that the distribution of molecular 

orientations to the director frame is symmetric, that 

P(-c, - ,y) = P(ct,,y) 	. 	 (3) 

Let us consider first the cc rotation: 

P(-c,O,O) = P(a,O,O) 	. 	 (4) 

Substituting equation 1 into equation 3 we get 

E c 2 D 2 (a,O,O) = EC D (-a,O,O) 	. 	 (5) 
ma ma ma 	 ma ma 



We substitute the identity 

= 	2)* (ct,O,O) = (_)mnD( 2 ) (a,O,O) 	(6) 
inn 	 inn 	 -rn-n 

in equation 5 to get 

	

E C 2 D 2 (a,o,o = 	(_) m_nC( 2 )D( 2 ) (,O,O) 
mn inn inn 	 inn -rn-n 

	

= 	 . 	(7) 

Equating coefficients on the left and right hand sides of 

equation 7 we get 

	

= (-)'C 	 (8) 
inn 	 -rn-n 

The second condition is that 

P(O,,O) = P(O,-,O) 
	

(9) 

We substitute equation 1 into equation 9 to get 

= E C D 2 (O,-,O) 	 (lOa) 
inn 	11ff1 	 11ff1 Thfl 

or 

E 	 = E 	 (lOb) 
11111 	 _ 	

LLr mn 

If we substitute the identity 

= ()nd(2 )() 	 (11) 

into equation 10 we get 

EC 	 d() = E(_)in 	d() 	 (12) 

If we now equate the left and right hand sides of equation 12 

the result is: 
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= ()mnC(2) 	. 	 (13) 
mn 	 nul 

Equation 13 is valid only if rn-n is zero or an even integer. 

Assumption (iii) implies that 

	

P(ct,,0) = P(-ct,13+7,0) 	. 	 (14) 

If we again substitute equation 1 into equation 14 we get 

= E 
mn nui mn 	 mn mn up 

	

(2) iam  (2) 	-iyn 
= E Ced(frff)  e 	. 	(15) 

	

un 	 flk 

We now substitute the identity 

	

d( + ) = (-)md_( ) 	 (16)
mn  n3n 

into equation 15 to obtain 

= 
tnn 

= ( )mC(2)D(2) 	
(17) 

-mn inn 

which implies the final condition 

()mC( 2 ) 
nul 	-inn 

(18) 

Equations 8, 13, and 18 indicate that there are four unique 

order parameters: 

(c2)> 
00 

<D(Q)> = <D 1 (Q)> = —<D(c2)> = —<D 2 (c2)> 

= 

<D(2)> = <D' 2 (c)> = <D 2 2 (c)> = 



In the limit that the ordering is very high, <D(Q)> 
20 

will be small. The meaning of our approximation in section 2.4.2 

is also clear. By retaining only the term Q2)(Q0,ç1),  we are 

discarding the biaxial order parameters 	 and 

<D(Q1)> 
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Appendix 2.2 	Calculation of the Magnetic Energy 

In this appendix we will derive an expression for the magnetic 

energy 

E = -HXH 

in terms of the parameters of the model; the tilt angle 	the 

position of the molecules of a domain on the cone 	the domain 

and the rotation angle ( 4 ). 

x is the magnetic susceptibility tensor of a given domain. When 

the sample is rotated, the magnetic field exerts a torque on the 

molecules of a given domain, and these molecules then reorient in 

order to minimize the magnetic energy, keeping the tilt angle and 

relative orientations constant. By minimizing equation 1, we obtain 

an expression for y 2' 
 in terms of 2' 2' and 

We begin by expressing equation 1 in spherical tensor form, 

in the director frame: 

-E = 
ZM 	 2mQ-m 	

(2) 

Expanding equation 2 we obtain 

= (H2 ) 00x00  + (H2 ) 20x20  + (H2 ) 21x21  + (112 ) 2_1x21  

+ (H2 ) 22x2_2  + (H2)2 2x22 	. 	 (3) 

Equation 3 could be simplified by symmetry arguments. For example, 

we can write the transformation of x from the molecular frame into 

the director frame: 



<D00  

<D 2  (c2)> = TX2_1 	- x_ ) 1 	11 

= x_2  (x 	+ x2_2 ) <D()> . 	 (4) 

Now if the principal axis system of X  coincides with the 

molecular frame, then 

• 	 (5) 

Our assumption, though, will again be to approximate the 

symmetry of the director frame as cylindrical. Therefore equation 

3 becomes: 

-E - (H2 )00x00 + (H2)20x20 	. 	 (6) 

Equation 6 may be rewritten as 

-Ex00 IHI 2  + X20 /' (3(H10)2 - HI 2 ) 	 (7) 

where we have used the expression 

T m(A1A ) = E C(2. 1 2,2i,m1 ,m-m )T 	(A )T m 2 	m' 	 1 2,1m1 1 	2 

(8) 

to write (H2 ) 20  in terms of products of first rank tensors. 

Now H10  is a component of the first rank magnetic field tensor 

in the director frame. We can write the relation between H 10  in 

the director frame and the magnetic field tensor in the lab frame 
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as 
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H 	= E HbD(l)(_Q  )D(-c23)D(-c22 ) 	 (9) 
10 mn 10 Om 	4 mn 

where 	= (y2,_290); 	3 = (-y 3 ,_ 2 ,O); and 	= (0_ 4 0). 

Equation 9 can be rewritten as 

H 	= 	 )d(- )d(- 	
i(my312) 

10 	ian 10 Om 	4 ian 	2 nO 	
2)e 	 . (10) 

To minimize E with respect to y 
2 
 we must calculate 	, and 

set it to zero. The dependence of E on y is through H 10  in the 

director frame. Therefore we differentiate both sides of equation 

7 to obtain 

aE  
- 	

- 2x20H10 H10 = 0 	 (ha) 

or simply 

(lib) 

From equation 10, 

= E (in)H d lab (1)(_ 	
e3'2 10 Om 	4 nui 

(12) 

We now expand the right hand side of equation 12 and set it to 

zero: 

d(-4)d 	 + 

d(- )dW(_ )d(-2 	
2 )e 

00 	4 01 	2 10 

d(- 4)d'(- )dW() e 23  
01 	11 	2 10 



11* 

(- )d 1  (-)d(-2)e 	23 
0-1 4 -1-1 

2 
  -10 

d(l) (- )d(- )d 	 2 
00 	4 

01210 (- 2 )e 	- 

-i(y2-13 ) 
d01 (- 4 )d11 (- 2 )d 10 (- 2 )e 	 = 0 	 (13) 

We now substitute the definitions 

d1() = d9 1 () = (1+cos) 	 (14a) 

d() = d() = 1(1-cos) 	 (14b) 

dW() = dW(M) = _dW() = -d() = sine 	(14c) 01 	10 	-10 	0-1 

d(l) (a) = cos 	 (14d) 00 

into equation 13 and after 'some algebra we obtain 

siny2 (sin62cos 4  + cosy 3cos 2sin 4 ) + cosy2siny 3sin 4  = 0 

(15) 

Solving for y we obtain 

-siny3sin 4  
= tan sin

2 cos 4  + cos3cos2sin4 	 (16) 

In general, there are two solutions: y 
2  and 	. For a given 

set of parameters ( 2 ,y3 , 4 ), the minimum energy E is given by the 

maximum H10 . Thus it is necessary to calculate a value for 

assuming a reorientation angle 
Y2  and a second value H10 (y2-I-ir), 

assuming a reorientation angle 



In the preceding discussion, we have assumed that after a 

rotation, the sample will always reorient into an absolute minimum, 

given by one of the solutions of equation 15. Another possibility 

is that whenever the sample is rotated through an angle a4+ 2 > 

reorientation will occur into a local minimum, which is designated 

by the sign of the initial torque. This, of course, assumes that 

no reorientation occurs during the rotation, which is a good 

assumption for a very viscous sample. Now the expression for the 

magnetic torque is, as given before 

E=-2H 3H 	 (16) 

where H is in the director frame. Our expressions for H and 

in the director frame are 

H 	
2 

cos 4-cos 4 sin 2 (1+cosy2 ) -sin64sin 2cosy3 ( 1+cosy2 ) 

+ sin 4sin 2 siny 3siny2 	 (17) 

and so 

cos 4sin2 2siny2  + sin 4sin 2 cos132cosy3sin'(2  

+ sin 4sin 2siny 3cosy2  

Now we define our initial position on the cone as y 2°  = Tr 

Therefore, we obtain for H and - 

H°  =cos 4 	 (18) 

2H°  = -sin 4sin 2siny3 	 (19) 

'T'2 
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and the initial torque is given by 

o 	sin 4cos 4sin 2 sin'y 3 	 (20) 

If we define the tilt angle to be within the range - Tf  <2< 
Tr  

then sin 2  is always positive. In addition, if the rotation angle 

Tr 
angle is less than , then sin 4cos 4  is always positive. In that 

case, the sign of the initial torque is determined by the domain 

position y3.  Therefore, suppose that the y',  corresponding to the 

absolute minimum, is obtained by solving equation 15. The 

corresponding to the local minimum, y , is determined by the sign 

	

conditions, when y is defined in the range - < 	< 
Tr 

	

>0 	
m' 	+ ii 

y<0 	 0 	
m' 
	

m 

3E 	 MI 
	

+ ir 

We assume also that the initial y 
2 
 is IT, i.e. y = 71. 
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Appendix 2.3 	Spectral Simulation Programs 
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E'Fl. : 11FC'J364y131I 	IE:c:l'o.. FFc 7,1 ZE:1 

C: 
	

PROGRAM SMEC:10 	JIJLY :::o. 1977 	H..T.EDZES 
C 
	

THIS FR'CIGRAM CALCULATES A STIC:K SPECTRUM FOR 
C . 
	

QL(AE'RUPOLAR SPL I TT I NG:3 OF DEUTERILIM IN ROTATED 
L 
	

SMECTIC PHASES. - - 
I HE VLt-<LE LI L!IJA[IRLIPIJLAF: I NTERACT I ON CONSTANTS ARE 

C 
	

USEE': ORDER F'ARAMETERS ARE NOT EXPLIC:ITELY IJSED. 
THE AVERAGED QUADRUPOLAR SPLITTING IS NORMALIZED 

I-. 
	

TO 1. 
C 
	

STICK SFEC:TRA ARE C:ALC:IJLATEE, FUR THE FOLLOWING CASES 
1. NO ROTATION IJF THE DIRECTOR ALLOWED 

C 
	

2. ROTATION OF DIRECTOR FREE ON C:ONE; 
ABSOLUTE MINIMUM MAI:4NETIC: ENERGY IS REACHED 

:3. 	SAME. BUT POSSIBLE ROTATION TO LOC:AL 
M IN I MUM IS ALLOWED. 

C: 
	

::ALC:uLATEI, DATA ARE DISPLAYED VIA THE FRIX4RAM SPEC 
AND ARE STI:IRED IN SI::F:ATI::H FILE CEl 1. 

rIIMEN;IrIN 00(3.3). NSTIC:K (0:255), NNSTICK (512) 
DIMENSION RAL (3,3) .RRH(:3. :3),RPH(:3,3),RTH(3, 3) 

DATA FILE FOR DATA DISPOSITION MUST BE OPENED. 
C:ALL OPEN (1, "DPOF: RESERVED: SCRATC:H" , 3. I ERR) 
IF (IERR. EQ. 1) GOTO 10 
TYPE "ERROR CODE OPEN = ". IERR 
GOTO 990 

ASK FUR INPUT DATA 
10 	ACI::EPT "TILT ANGLE THETA 	",THl 

ACC:EFT NUMBER OF DOMAIN ANGLES ALPHA PER QUADRANT = . NAL 
AI::I::EPT " RI:ITAT ION ANGLE RHO BETWEEN 0-90 = ",RHI 
ACCEPT "AVERAGED QUArIRUPOL AR ASYMMETRY FAC:TCtR = 
ACCEPT "MAX IMUM SPI_ITTINt:i IN STIC:K SPEC:TRIJM NSP SMALLER 256 = 
ACC:EFT "TYPE I IF NO ROTATII:IN ON THE CONE IS ALLOWED 

F 2 IF ABSOLUTE MINIMUM IN ENERGY IS REAC:HED. :3  IF RELATIVE 
F M I N I MUM I S REACHED" . NOF'T 

TYF'E "BEG IN OF CALl:: I LILA I I fIN" 
C 	 C:ALCULATE Fl, THETA, AND STEPS ['RH FOR RHO AND DAL FUR ALPHA 

L 

P1=4. 0ATAN( 1.0) 
DAL=- FI / (NAL+NAL) 
RH=2. C PIoRH1/3l.,O. 0 
TH=2.0PITH1 I3'0. C) 
TYPE "TH. DAL, DRH C:ALCIJLATEDN 
FILL AVERAGED QIJADRLIF'ULAR TENSCIR; NORMALIZED TO 
QQ(3.3=1.O 
00. (2.2 )=-0. 5-QA 
00(1,1 )=-.5+QA 
IQ (1.2=0.0 
00(1,3)=0.0 
00(2.3 )=0.0 
00 (::, 2 ) =0. 0 
':.!Q(2, 1 )=0.0 
00(3, 1 )=0.0 
FILL NONC:HANGING ELEMENTS OF RAL AND RPH 
RAL(3, 3)=1 .0 
RAL(1.3)=o.o 
RAL(2,3)=0.Q 
RAL(3, 2)=c).Q 
RAL(3, 1 )=0.0 
RFH(3.3)=1.Q 
RPH (1 , 3) =0.0 



C 	 CALCULATE SIN AtMl cOS (THETA). AND ROTATION MATRIX RTH 
CH=COS(TH) 
STHL:; IN (TH) 

I )=CTH 
PTh3,3)=CTH 
'RTH2,2)=1 .0 
tH•(1.2 =O. 0 

iTU2.1)=O.0 
'fWH(2, .3)=0. C) 

BTH (1,3 )=-STH 
RTH,i)STH 
CRHC0r3 (RH) 
Z-.RH;IN (RH) 
RRH(:1. 1 )=CRH 
RRH (2,2)1O 
R R H (3.. 3 
RRH( 1.2 )=O.O 
RRH .2 1) =C.. 0 
-RRH(2,3)=O.O 
.RRH(3..2)O. () 
.RPH(1. :3 )=-ERH 
RRH(3, I )SRH 
TYPE'C:RH., SRH. RRH C:ALC:lJL4TEt 

C: 	 ZERO NSTIC}< 
tiCt 300 10,255 
;tSTICK (I )=0 

:3.:)...) 	:ONTINLIE 
C: 	 CALCULATE PRODUCTS INVOLVING RHO AND THETA 

szc=sTH:THt::RH 
SCS=STH-C:THSRH 
SSST:HSRH 
TYPE "E:EGIN LOOP 3X' 

LOOP 500 TO C:ALCUL.TE FOR r'IFFERE:NT DOMAIN ANGLES Al-F ,1441,  

TX 500 NA=i.NAL 
A=(NA-'). 5)D•AL 
CAL=CQ'3(AL) 
SAL=31N (AL) 
$CSC=SC::EC:AL 

TYPE" 600 N 	' 
C 	 I:ALC:ULATE SPLITTING FOR FOUR QUADRANTS IN ALPHA 
C: 

	

	CAt'DRANT N DETERMINES SIGN DF SIN (AL)AND CCtS(ALPH.A), NSA &I NC 
DO &:o N=1,4 
GOTO (501,502.503,504)N 

O1 	NSA=1 
I .'t_., •i -- 

GOTU 5 10 
502 	NSA= 1 

NLA- 1 
E3OTO 516 

NCA=- I 
GOTO 51.C) 

504 	N$A-i 
t1CA - 1 

510 	JM=23+NCA•SC:SC 



550 

5 , 1 
C 
C: 

551 

59() 

:300 

C 

850 

900 
990 

PHM=ATAN (-533/SUM) 
C:F'M=COS (PHM) 
SPM=3IN (PHM) 
H1C:RH- (1. O+CPM )SOM+SFt13SSNSA 
H2=C:RH- (1 . O-CFM ) SClM-SPM:E;33NSA 
F MA=FHM 
IF (A133(Hi).GT.AE-:3(H2)) OUTO 550 
PMA=PHM+P I 
I::CINTINUE 
F'MO=F' I 
S'rURQ=NSA-PHM 
FML=PHM 
IF (STORQ.LT.0.0) COTO 561 
PML=F'HM4-P I 
C:ONT INIJE 
WE NOW HAVE C:ALC:ULATED FUR ALPHA THE RELEVANT VALUES PHI 
THAT GIVE MINIMLIM ENERGY 
PAL (1, 1 )=C:ALNC:A 
RAL(2,2)=RAL(1. 1) 
RAL (1,2 )=3ALNSA 
RAL(2, 1 )=-RAL(1.2) 
GOTO (581, 552, 5:E3) . NOPT 
CALL SPLIT(OQ.PMO.RPH.RTH,RAL,RRH,NSTI::K.NSP) 
UCT'J 590 
C:ALL SPLIT(OQ,PMA,RPH,RTH,RAL,F:RH,NSTIC:K,NSP) 
CiCITU 590 
C:AL.... SF'LIT(QQ,PML,RPH,RTH,RAL,RRH,NSTICK,NSP) 
CCINT I NUE 
C:UNTINUE 
f:CINT I NUE 

C:ALC:ULATE THE PROPER ELEMENTS OF NST ICI< 
FOR DISPLAY WITH SPEC PRCII:4RAM 

DO 550 N=0,255 
NNST I OK (N+N+ 1 )=NST IC:K( N) 
CUNT I NUE 
C:ALL WRI3LK(1,0,,NNSTICK,4, IERR) 
IF (I ERR. E0. 1) OCITO 590 
TYPE"ERROR CODE WRELK = ",IERR 
OCt10 990 
C:ONT I NLIE 
WRITE (10.900) (I, NSTIC:K(I ), 1=0,135) 
A::c:EFT "TYPE ANY INTEGER TO CONTINUE", WX 
WRITE (10,900) (I, NSTIC:K(I ), 1139,255) 
FORMAT (6(14, 11 - 11 ,14,3X)) 
END 
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tIEd  1 : t. CuE;.I\p'E1J 	 FF 	 1 / 1 

I.JERi:iLcT INE RAN2F (RI . R(D. F:R) 
t'IMENE;I0N RI (3.3), RU (3,:::) F.R 3, 3) 

C. 	 THI31U2FC_1T1NE f:_C:L!LATE:IN A CLUMSY WAY THE MATRIX TRANSFORt1, 
FC'F RF = RO(-1 )FIFiJ 

C 	THE E1..EMENTE. ARE C:ALC:ULATED WI TH 
C, 	RR(I,J) 	Ij11(<).SJM<L) (RO-1(I.K) 	RI(K,L) oRCI(L.J) 

FCcK.i 	RI(K.L) 	F0(L..J) 
I0 40 1=1.3 

DC! 30 J= 1 3 
EL=0. 0 
tJ 	 3 
DO 10 L=1,3 
EL=EL±RC'( I K)RI (I:,L ) -- RC1(J. L) 

10 	.C:iiNr i NIJE 
20 	c:uN 1 INLIE 

F:F-: I • U ) =EL 
C:CIN'TtNUE 

40 	i::::it1 INUE 
RETURN 
END 



71:E.i 	 :113 

5I..ER:JTINE ;P1..IT (OPHi .RFI-41 . RTHE. PALF, RRHO, NSTIC:K. NE;T) 
IE"1t1JN 

E'1MENiON N3TICK (Q 255) 
D:EME:vIcN R'M1  
TA I 	Lt:FLtT I NE CAL.CU:LATES A ST I OK SPECTRUM FOR ROTATED SMECT tO 

FHA$ES. 
C: 	Q IS THE 1ATRI X CONTAINING THE AVERAGED QUAL'RLIPCILAR INTERAI::T ION 
C 	TEISR ARTE1AN C:laRmNATES) IN THE L. C. DIRECTtJR FRAME. 

RPH. . RIHE (THA) RALP (HA) AND RRHO ARE THE MATRICES WHICH DESCR BE 
C: 	THE TRANSFORMATION OF ClINTO THE LAB FRAME. 
0 	RHG! IS THE ROTATION 4)NGLE 
C: 	ALFH CHARACTERUES THE DOMAIN 
C: 	T:HETRA IS THE TILT ANGL.E 
C 	PHI •CcIVE3 THE 	 OF THE LOCAL DIRECTORS ON THE CONE 
C: 	tJ$fIC:K 13 AN ARRAY WHICH COMPRISES THE CALCULATED STIC:K PEC1T1!jM 
C: 	NST 13 THE ELEMENT O.F NSTZCK FOR WHIC:H THE SPLITTING 
C 	1:5 MA:IMUrn NST CAN BE IJ%Ett TO NORMAL I ZE THE C:ALCULATED SFEC:ThLi 
C 	WiTH RE%FEI::T TO THE O.S€RVED SPEC:TRA. 
C: 	TRANSF :13 THE 3UERO1JT INE TO C:ALC:IJLATE MATRI X TRANSFORMAT IONS 

CFHOO'S (PHI 
;FH='E;IPHU 

F.PHIU.. fl=C:FH 
RPKII 2,2C:FH 
RFHI •C1.23=SPH 
RPH.I (2. 1 )-.PH 
C:ALj_ TFPNSF(O,RTHE,RM1) 
CALLR4NSF (RMI RFH1 ,RM2) 
Ct. irFN3F(RM2,RTHE.,:Rt1,1) 
CALL TRANSF <RM1 RALP..RM2) 
c:;u. TRANSF(RM2RRHO.,RMi) 
t;XM-:S(F'M1 (:3,3 ).N5T) 
TYPE RM1(3.3), t'JSX 
NSTEfK (S)v% ) =NST I OK (N3X) +1 
RETURN 
E1' 



1 	 rYI3LJ 	1E.irc 1 - FiR 7r3 1 ,3 1 

:6it'MEN.'C'N NH t'256 NHH (i2UHt' ( 125) 
CALL OPEN I. "EIFOF: F:EER'EE,5;CRATC:H" 3, IERR) 
TYPE 'RRcR CODE OPEN = 	.IERR 

ico 	.:riE ( 	"PROGRAM E:MECT01. J1JNE  25, 1977. 
TYRE "CALCULATES THE DEEC:E OF THE MAGNETIC ENERGY 
TPE 'AMt THE MAGNETIC TiUUE ON THE ANGLE OF ROTATION. U  
'T(PE 'EAL DISPLAY IS NAGNETIC ENERG\'." 
PF'E "IMAGINARY DISPLAYIS GNETIC TORQUE." 
A1)CEPT "GIVE THE TILT A4)E THETA ",THI 
AczEPT ''O'1VE THE ROTATION ANGLE RHO ".RHl 
ACCEPT "GIVE THE EUJMAIN ^WiLE ALPHA 	, ALl 
WRITE •10 "125 VALUES OF ThE CONE ANGLE PHI APE CALCULATED. 
NF'H= 125 
F[=4.03ATAN( 1.0) 

2 - F'I*TH1/360 
R2.03'PiRH1 /360 
CTWCOWTH) 
TH=SIN(TH) 
R(OS '(RH) 

SRH=S I N (RH) 
L=2.0-PIAL1 1360 

C;AL=Cj5 x, At..) 
SAL NL) 
L'O 700 NF= 1, NPH 
'PH (NP-i )2.0PI/NPH 
•C:PH=C:fl'.; (PH) 

IN (PH) 
HA=STH '(CTHC:ALSRH+5THCH) 
HESTHSAL-E;RH 
HO=:.RH- 11. 0•+0f'H ) HA+SFHH 
:NHH (NP ) HC)oHOi 1 C)000 
Hk=SPHHA+C:PHHB 
NHL1 (_'NP ) =H(:)-H 1 1 0000 
NA4(:NP+NF-1 ) (6. HH0-3 0) 10000 
NAH(NF'+N )= (9. 0:HC:Hl )*1O000 
corr i NUE 
WRITE '(10,300'), ThI RH1 .ALI 

300 	FORMAT (" MAGNETIC ENERGY AND TC'RI:LIE C:ALCULATED F0'R", I, 
F ' THETA ="F5.1," RHO 	 ALPHA '=",F..) 

WRITE (10,400). NHH. NHD 
400 	FORMAT (" MAGNETIC: ENERGY  

F Il  'MAGNETIC TOROUE  
CALL WR3LK( 1 0, NAH, 2, IEPP 
IF IEPR.EQ. I ) GOTCI 900 
TYPE "ERROR COBE WRLK ", IERR 

900 	CALL RESET 
END 



Appendix 2.4: 

In this appendix we present the commutators and rotations of 

use in section 2.3. 

Commutators 

[I 	., I 	] =iI p,i 	p,j 	p,k 

1 	 1 

1p,1' 'q,2 - - 2 1r,2 

I 
[ 1p 2. Iq i] = - 2 'r,2 

[Ip 2 1q2] - 	
1 

[I P.11 I 
	- I 	] 	= 0 q,3 	r,3 

Rotations 

-iOI . 	jel 

e 	P9, I . 
p,J  e 
	= I p,J 
	p,k 
.cosO + I 	sinO 

-jUl 	
I 	e 	

= i e 	qi iQI 

	

qi cos
0/2 + I 	sin0 /2 

r,1 

-iSP 	jUl 
e 	

'q,2 
e 	 = I 2 	 r,2cos0/2 - I sin 0/2 

q, 

e 	 e 	= 
-jUl 	jUl 

I 	cos 0 /2 - I 	sin0/2 
q, 1 r,2 

-jUl 	jUl 
e 	

1q,2 
e 	 = I 2cos 0 /2 - I sin0 /2 r,l 

where p, q, r = x, y, z or cyclic permutation 

and i, j, k = 1, 2, 3 or cyclic permutation 
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Chapter 3: A MULTIPLE QUANTUM PROTON NMR STUDY OF AN 

ALKANE ORIENTED IN A NEMATIC LIQUID CRYSTAL 

3.1 Introduction 

In this chapter we will use the method of multiple quantum 

nmr (mqnmr) spectroscopy to study a nonrigid chain molecule oriented 

in a nematic liquid crystal solvent. In section 3.2 some general 

aspects of multiple quantum nmr will be discussed. We will first 

review the conventional pulsed nmr experiment in order to understand 

why only single quantum transitions are allowed. We will then discuss 

pulse sequences that will enable us to observe the multiple quantum 

transitions that are normally forbidden in conventional nmr. It 

will be useful to think of the mqntnr experiment as being composed 

of four parts: 

the preparation period in which multiple quantum coherent 

states are produced; 

the evolution period during which the multiple quantum 

coherences evolve under some internal Hamiltonian 

the mixing period in which multiple quantum coherences are 

converted back to observable single quantum coherences; 

the detection period during which the resulting single 

quantum coherent states are observed as they evolve under 

some internal Hainiltonian 

As an example, we will calculate the multiple quantum proton 

spectrum of a methyl group in which the protons are coupled to 

each other through the direct dipole-dipole interaction. 
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Finally, we will consider the utility of mqnmr in the study 

of oriented systems and specifically of molecules dissolved in 

liquid crystal solvents. We will discuss the spectral simplification 

expected for coupled spin 1  systems without symmetry, and the 

multiple quantum orders that will yield sufficient information to 

allow us to calculate the independent coupling constants charac-

terizing the system. 

In section 3.3 we will first discuss the symmetry operations 

that exist on the nmr time scale for an alkyl chain undergoing 

rapid gauche-trans interconversions. As a specific example we will 

consider n-hexane-1,1,1,6,6,6-d 6  (n-hexane-d 6 ). Having found the 

symmetry group, the energy level diagram of the nuclear spin system 

will be obtained, and from the energy level diagram, we will predict 

the number of transitions that will be observed in each multiple 

quantum spectral order. Then we will develop a theory of the 

orientational dependence of dipolar couplings in a nonrigid chain, 

using a rotational isomeric model to describe chain interconversions 

on the nmr time scale. We will consider several models in which 

the configurational states are populated to varying extents, and we 

will describe the general form of the order tensor required for 

each conforinational symmetry. 

In section 3.4 we will review the results of a mqnmr study 

of n-hexane-d6 , oriented in a neniatic liquid crystal solvent. In 

particular, we will concern ourselves with the analyses of the 

6 and 7 quantum spectral orders, since those orders yield sufficient 

information to allow a determination of the ten independent proton- 
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proton coupling constants of the system. Using the rotational 

isomeric approach mentioned above, a set of average coupling con-

stants will be calculated for each conformational model, and will 

be used to generate theoretical 6 and 7 quantum spectra.. The 

theoretical spectra for each model will be compared to the experi-

mental data. Finally, iterative imprOvements of the theoretical 

spectra will be discussed. 

Before proceeding, a few comments on notation are in order. 

In describing time domain nmr experiments, we will find it 

convenient to expand the density matrix in some type of operator 

basis 

p(t) = 	a.1 (t)O.1  + 1 1  
(1) 

In section 2.3 such a "fictitious spin " basis was introduced 

which has the advantage of dividing the 9-dimensional spin space 

into three 3-dimensional subspaces. The three operators spanning 

each subspace (I. : p = x,y,z; i = 1,2,3) are related by the 

commutation rules: 

[I  p,i , 
 p,j 
I 	

p,k 
p = x,y,z 	i,j,k = 1,2,3 	 (2) 

or a cyclic permutation. 

There is an additional condition that 

I 
x,3 	y,3 	z,3 

+1 	+1 	=0 	 (3) 

which is necessary since the entire spin space must be spanned 

by the identity operator and eight other linearly independent 

operators. This is an especially convenient basis for describing 
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transitions in systems of interacting and noninteracting spin 1 

nuclei, since evolution of p operators can be confined to p space. 

Another "fictitious spin i-" operator basis has been introduced 

(78,79) which is convenient for describing single and multiple-

quantum transitions. Three operators are associated with a 

transition r - s and are defined as follows; 

<),I' (rs)> = (6 6 	i 

	

+ 6 6 ) 	 (4a) 
1 x 	j 	2 ir js 	s jr 

<.JI (rs)> = (-6 i  6 	i ± 6 6 ) 	 (4b) 
1 y 	j 	2 	r js 	s jr 

<.p (rs)I> = 1(6 6. r '- 6 is js 

	

6 ) 	 (4c) 
1 z 	 2 irj  

The three operators are related by the familiar couimutation rules 

(rs) (rs) = (rs) (5) 
a 

where (a,,y) is a cyclic permutation of (x,y,z). Also, given 

three states r, s, and t, the z components of the 3 operator sets 

are related by 

1(rs) + I st + I rt =0 
	 (6) z 	z 	z 

Like the earlier "fictitious spin i-" basis, this basis has the 

advantage that evolution of rs operators occurs entirely within 

an rs subspace. 

In the treatment of multiple quantum nmr that follows, we 

will be primarily concerned with the general symmetry properties 

of multiple quantum coherent states as they evolve under a 

secular internal Hamiltonian, rather than explicitly calculating 
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the set {a.(t)}. Therefore, an expansion of the density matrix 

of a system of N spins - in terms of a spherical tensor operator 

basis will suffice: 

	

N 	L 

	

(t) = E 	E A (t) A 
L=-N M=-L LM 	LM 

(7) 

This is an especially convenient basis since, as will be presently 

shown, for a given tensor operatorA, M corresponds to the change 

in the magnetic quantum number. Therefore AL±l is a one quantum 

operator, A 2  is a two quantum operator, etc. Also, the operators 

I. and I are related to the complex angular momentum operators 

in the following ways: 

I0 	z 
=1 	 (8a) 

I±  =1 ±iI 
	, 	 (8b) 

x 	y 

and the complex angular momentum operators have the following 

commutation rules with spherical tensors: 

[i A 	= M 	 (9a)
LM  

[1± A] + ( L±M±l)(L±M) A±l 	 (9b) 

3.2 Basic Principles of Multiple Quantum NMR 

3.2.1 Single Quantum NMR 

In section 1.3.3 we studied the linear response of a spin 

system to a pulsed r.f. field and found that the components of 

the resulting transverse magnetization are given by the expressions: 



1 

	

(-i(w +Aw)- 	)t 	(i(w -Aw) - — )t 

	

<I> 	 nm 	T (e 	 -e 	
nm 	T 	 2 

x 	mn 	 xnm 

 

(-i(w +Aw)- 
1

)t 	(-i(w -Aw)- 	)t 
<I > 	 am E(e 	 2 + e. 	 T2 	

(I ) 	2 

	

y 	ma 	 yam 

 

We note that the x component of the magnetization is proportional 

to 1<njI x1m>2 and the y component is proportional to l<nlIlm>l2. 

and 
1y  are related to components of the first rank spherical 

tensor by the expressions: 

1 

	

I+=- —(I +11) 	 (12) 
V'2 	X 

I- = + I (I - ii ) 	 (12b) 

I=1 
0 	z 

In addition, matrix elements of 10  and 1± are governed by the 

expressions 

<jm'lI0 Imj> = mSm,m' 

 

 

1 
<jm'II±Imj> = [(j±m±1)(j±in)] h'26m?,  m±1 	 (12e) 

Therefore, the operators 1± can only connect spin states that 

differ in their magnetic quantum numbers by one, as shown in 

figure 31. A more general statement is the Wigner-Eckart theorem 

which has the form: 

<j'm'IAJjm> = C(jLj'; mMm')<jtIIAIlj> . 	 (13) 
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2 

1k'- 	 -j 

A*4 

S 

S 

N 
2 2  

N 1  
2 

N 
2 

XBL. 770-10022 

Figure 31. Generalized energy level diagram of a 

system of N coupled spin ½ nuclei. The single quantum 

nmr experiment only produces coherent states between 

energy levels differing in magnetic quantum number by 

±1. Such allowed transitions are indicated by the 

arrows in the diagram. 
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<JIIALII]> is a reduced matrix element of the set of tensor 

operators ALM' and for the Clebsch-Gordon coefficient C(jLj'mMm') 

to be nonzero, angular momentum must be conserved: 

(jLj') and m' = M+m 	. 	 (14) 

Therefore, if M= ±1 we get the condition 

in' = m±l 
	

(15) 

and we see that any operator of the form AL±1  can only connect 

states differing in magnetic quantum number by ±1. Evidently, 

if we expand the density matrix of a system of N spins in a 

spherical tensor operator basis, the conventional nmr experiment 

will only yield coherent states that correspond to operators of 

the formAL±l.  Let us examine the reasons for this in detail. 

Suppose a spin system at equilibrium is exposed to an r.f. 

field for a time t , and that the r.f. field is of sufficient 
p 

intensity that 

w 
rf 	m 

>> IIC. 
t 

 Ii 	. 	 (16) 

Then as we have mentioned, the rotating frame Hamiltonian during 

the pulse is, assuming the field is linearly polarized along the 

y axis, 

1C---w 
rf y 

I 	. 	 (17) 

A single quantum coherent state must be produced due to the 

commutation relations between I x , I y , and I z . That is, the 

density matrix after the pulse is 
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-1w tI 	iw tI 
rf p 	i e rf 	• 	 (18) p(t) 	e 

To evaluate equation 18 we differentiate twice with respect to 

t: 
p 

p( 	
-i.U) tI 	 iU) tI 

t) = -w1ie 	rf p y 	e rf 
z,i y 

w1e-1w tI 	iw tI 
rf y 	rf y 

I e 	 (19) 

and 

	

-iw tI 	 iw t I 
= 	e 	rf p y [I ,i e rf p y 

xy 

-iw tI 	(L) t 
- 	 2 	rfpx 	rfp 

I 
 x 	 (20) --w1  e 	 I e 

z 

Therefore 

p "(t ) - w p(t ) = 	. 	 (21) 5(t) = -w 2p(t ) or 	
- 	 2 	

0 
 

rf p p 	rf p 

Solving the differential equation we get 

p(t 
p = 	rf p 	rf p ) 	Acosw t ~ sinw t 	 (22) 

and from the boundary conditions 

p(0)=I andp'(0)=wI 
z 	 lx 

(23) 

we get that 

p(t 
p = z 	l p 	x 	i p ) 	 I cosw t + I sinw t 	 (24) 
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Therefore, if the field is intense enough to enable the Hamiltonian 

during the pulse to be represented in a form linear in spin 

operators, the irradiation will produce a simple rotation in spin 

space due to the commutation relations between I , I , and I 
x y 	z 

This fact can also be appreciated in the spherical tensor basis 

since 

[lo ,  I±i] 	= ±1± 	. 	 (25) 

Of course, subsequent evolution under the internal Hamiltonian 

of the system will only produce operators that are single quantum 

since, as we found in section 1.3.5, the internal Hamiltonian 

must be secular. To find the form of coherent states produced 

by evolution under a secular Hatniltonian we write I x 
 in terms of 

spherical tensors: 

= -(I + I_) 	 (26) 

and the internal Hamiltonian has the form 

;;c. 	=AA 	. 	 (27) 
mt 	20 

To find the effect of evolution under JC. 	we must evaluate 
mt 

terms like 

-iXA20 t 	i)A20 t 
e 	I±e 	. 	 (28) 

To do this we expand the exponential terms in equation 28 to 

obtain 
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-iXA20t 	iXA 
e 	I±le 20 	 I+At IA 	- 20  

(t)2[[1± A20] ,A20] 	(29) 

From Rachah'sdéfinitionof spherical tensor operators wehave 

that 

1 
LM1 = ±[4(L±M)(L±M±1)] /2 
	 (30) 

and therefore 

[I±A20] cx A2±1 	 (31) 

Now A2±1  is obviously a single quantum operator. In addition, 

higher order terms will also be single quantum since they will 

always involve commutors of A.L±l  and A20  

In summary, if the density matrix for a system N spins is 

expanded in a spherical tensor basis 

	

N 	L 
P(t) = E 	E 	a(t)ALM 	 (32) 

L=-N M=-L 

the result of the conventional pulsed nmr experiment is that 

a(t) = 0 unless 

M = ±1 for L±l 	 (33a) 

M = O,±l for L = 1 	 (33b) 

Therefore, only single quantum coherent states can exist. In 

the next section we will discuss a type of nmr experiment in 	
F11 

which multiple quantum coherent states can be produced. 



3.2.2 Multiple Quantum Experiments: General Scheme 

Multiple quantum nmr is an example of 2-dimensional 

spectroscopy. For that reason, we will describe the general 

scheme of the experiment using a convention introduced by Ernst 

and coworkers for 2-dimensional nmr experiments (80,81). 

As shown in figure 32, the multiple quantum nmr experiment 

may be divided into four parts: preparation, evolution, mixing 

and detection. 

Preparation Period 

During this period of length T•, multiple quantum coherent 

states are produced as a result of the action of the operator 

U on the density matrix p 0 . 

p(T) = Up0U 	 (34) 

Now U has the form 

T 

U=e 
	

(35) 

where JC
MQ  is a Hamiltonian with nonzero multiple quantum matrix 

elements. Furthermore, it can be shown (12) that for U to 

efficiently produce multiple quantum coherence 3CMQ  must satisfy 

the condition 

II JCi II 	1 MQ (36) 

Evolution Period 

During this period, the multiple quantum coherent states evolve 

under some internal Hamiltonian K for a time t 1 . Thus, the form 
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U 	
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<l y>  
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Figure 32. Multiple quantum nmr is an example of a two 

dimensional spectroscopy. The multiple quantum 

experiment may be thought of as being composed of four 

parts: 

A preparation time of length t during which 

multiple quantum coherent states are produced 

by the action of a propagator U; 

An evolution time of length t 1  during which 

the multiple quantum coherent states evolve 

under a Hamiltonian 

A mixing time of length T during which 

multiple 	quantum coherent 	states 	are 

converted or mixed back to observable single 

quantum states by the action of a propagator 

V; and 

A detection period, during which the single 

quantum singles are detected as they evolve 

under a Hamiltonian H2. 



of the density matrix is 

-jC1t1  
p(T+t 1 ) = e 	U p0  U e 	 (37) 

Mixing Period 

Multiple quantum coherent states are not directly detectable 

since, in general, the trace of the product of a multiple quantum 

operator and I or 
1y 
 is zero. In nmr, detectable signal corres-

ponds to coherent states that transform as components of first 

rank tensors. That is, transverse magnetization corresponds to 

coherent state operators I 
x 	y 
and I that are components of a 

vector operator I= (Ii, I),3 I) . But multiple quantum 

coherence, as we have shown, corresponds to operators that are 

components of second rank tensors or higher. Therefore, we require 

that the multiple quantum coherence be converted, at least in part, 

back to detectable coherent states. This occurs during the mixing 

period r' by the action of the operator V on the density matrix 

-ilC t 	 i1C 
p(T+t 1 ') = V e 	1 1 U p0 U  e il v 	. 	( 38) 

ITt will be shown presently that V has the form 

V = e MQ 	 (39) 

where CNQ  is a Hamiltonian with nonzero multiple quantum matrix 

elements. 

Detection Period 

Through the action of V on the density matrix p(T+t 1), at 

least some of the operators corresponding to multiple quantum 
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coherent states are converted to single quantum operators. The 

evolution of these operators under the Hamiltonian JC is observed 

during the detection period. The density matrix has the form 

	

4Ct 	 iCt 
P(T+t 1 +t 2 ) = e 2 2 V e 	U p0 U+  e 1 1 v 

e iC2t2 

 

In general, the Hamiltonians R and JC2  need not be the same and 

they need not commute. 

If we assume that the initial density matrix 
p0  is propor-

tional to I, the expression for the x-component of the magnetization 

is 

S(t1 ,t 2 ) 	Tr(p(T+t 1+T'+t 2 )I) = 

Tr(e 2 t  2 Ve 
-i1C 

1 1 U1 	e 
t 	+ iJC1t1 V + e iC2t2 

U  
z 	 x 

-i3C1t1 	iC1 t1  + QC2t 2 	-iJC2 t2  
Tr(e 	UI 	e 	Ve 	I e 	V) z 	 x 

 

In this thesis, we will only concern ourselves with evolution 

under JC1 , and, as will be shown presently, only the signal at t 2  = 0 

will be observed (with T' = T) as a function of t 1 . Equation 41 

may be rewritten: 

S (t ) 	
-iC t 

Tr(e 	1 1 U I U + i;;C1 t1  
e 	V I V) 	(42a) x 1 	 z 	 x 
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and similarly 

-jC t 
S (t 1 ) 	

U Tr(e 	UI + e 	V + IV) 
y 	 z 	 y 

(42b) 

Subsequent Fourier transformation of S(t 1) + iS(t1 ) yields 

the multiple quantum spectrum F(w 1) + iF(w2 ): 

-iLL) t 

x l 	y l F x l 	y l 
(w ) + iF (w ) = fdt 

1  e 
	(S (t ) + is (t )) . (42c) 

3.2.3 Multiple Quantum Pulse Sequences 

In the last section it was shown that in order to produce 

multiple quantum coherent states it is necessary to produce a 

non-secular HamiltonianCM  . Now it has been shown that in 

systems of noninteracting spin 1 nuclei, a weak pulse 

(w1  << W Q) applied near resonance will produce double quantum 

coherence (56,57,58). The pulse scheme of such an experiment is 

shown in figure 33. But as we found at the conclusion of section 

2.3, double quantum coherences can also be produced in such a 

system by two high power 900  pulses that are 1800  out of phase. 

We will pursue pulse sequences with the latter type of preparation. 

In figure 34 is shown some basic multiple quantum pulse 

sequences that have been applied to systems of spin 4 nuclei in 
anisotropic phases, where internuclear couplings are of the'.direct 

dipole-dipole type (58,83), and to systems of spin 4 nuclei in 

isotropic phases, where internuclear couplings are of the indirect 

scalar type (80). We will concern ourselves with systems of the 

former kind. 



p2 
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Figure 33. Multiple quantum nmr spectroscopy. A pulse 

sequence in which a weak pulse, applied on resonance, 

is used to prepare multiple quantum coherent states. 



MULTIPLE QUANTUM PULSE SEQUENCES 

F; P2 P3  P4  

fir 
[ 11 T'{ 

(.) 

	

O x  901 	 90x 

(b) 

	

90 90 	 90 

	

9018090 	 90 180 

(d) 

	

90 90 	180 	90 

	

9018090 	180 	90 180 

Lit-JO 	_ 

XBL 788-10105 

(Figure 34) 
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Figure 34. Multiple Quantum Pulse Sequences: 

(a)Calculations are simplified if a fourth 

"fictitious" pulse P 4  is added, making the 

"observable" Transverse magnetization 

would be produced by the addition of a fifth 

pulse contiguous to P 4 . 

If the first two pulses are 180 degrees out 

of phase and the irradiation is on resonance 

(w = 0), only even quantum orders (m = 2k, 

k = 0, 1, 2 . . .) are prepared. 

If the first two pulses are 90 degrees out of 

phases and the irradiation is on resonance, 

only odd quantum orders (m = 2k+1, K = 0, 1, 

2 . . .) are prepared. 

If the irradiation is of f resonance, even or 

odd quantum selection may be effected by the 

inclusion of 180 degree pulses in the 

preparation and mixing times. 

The inclusion of a 180° (spin echo) pulse in 

the middle of the evolution time removes the 

effect of magnet inhomogeneity. 

An even/odd selection experiment with a spin 

echo pulse in the evolution time. 



(i) Three-Pulse Experiment 

The 3-pulse experiment is the basic multiple quantum pulse 

135 

sequence. P 1  is assumed to 

The pulse power W f  is set 

phase and tp 2  = tp 1 . P3  is 

the calculation, we place a 

be of x-phase an 

3uch that w tp 
rf 1 

identical to P 1 . 

fictitious pulse 

of duration tp 1 . 

It = 	P 2  is of -x 2 9

In order to simplify 

at time T '  = T after 

P 3 . This pulse is P4  and is assumed to be identical to P 2 . In 

the absence of irradiation, the Hamiltonian is: 

	

H =  - AwI 	+ E D .(31 1 .-I.•I.) 	 (43) 
zz 	 i zi 	i<j 	Zi ZJ 1 J 

and we assume that Wrf >> 11M. Therefore, the density matrix at 

the end of the preparation period is 

.71 	. 	 .71 	.71 	. 	.71 i—I -iJC t  -i—I 	i—I 	iC 	-i—I 
2 x 	zz 	2 x 	2 x 	zz 	2 x 

	

p(T)=e 	e 	e 	Oe 	e 	e 

-i 	- 	 iXD T 

	

= e 	Yy  (I 
Z 	 X 
costwT - I sin&JT) e Yy 

T 	 ikD T 

	

= e 	' 	( IcosLT - Isiniuyr) e 	 (44) 

where we have used the fact that 

	

[&I ., 	E D. .(31 1 . - I.1.)] = 0 	 (45) 
i Zi 	13 	Zi ZJ 	1 3 

and the definition 

= Z (31.1 . - I.I.) 	. 	 (46) 
yy 	i<j 	1J 	1 3 



Equation 46 may be rewritten interins of spherical tensor 

operators 

J(D=  ED..(A20 (ij) + () 	(A2 (ij) + A22 (ij)), (47) 

	

and we see that 	contains zero quantum operators A 20 (ij) and 

double quantum operators A22 (ij). 

To evaluate equation 42 we first use the identities I = 10 

1 and I = —(I + I ). Therefore we must evaluate 
x 2+ 	- 

• 	' 	
e yy 

COSWT 	 (48a) 

and 

• 	I e 	SiflLWT 	 (48b) 

If ID ..'Tj <l we can evaluate 48a by expanding the exponentials 

as we did in the last section. We obtain 

_iXD T 	iKD T  

e 	10 e 	

= :0: i 

	D..T([ 102 A20 (ij)] + 

(-)2([ 10 ,A22 (ij)] 41 10 ,A2 2 (ij)] )) + 

higher order terms. 	 (49) 

From equation 9a we see that the first order terms will yield 

2-quantum operators since 

[10 ,A20 (ij)] = 0 	 (50a) 

[ I0 ,A22 (ij)] = 2A22 (ij) 	 (50b) 
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Second order terms will have the forms 

T 2D.D' [A(ij), A(Zm)J 	 (51a) 
13 im 2±2 
	20 

 

T 2D!.D' [A(ij), A(m)] 	 (51b) 
ij im 

22 	2±2 
 

T 2DD' [A22 (ij), A 2 (m)} 	 (51c) 
ij lm 

After summing over i, j, 9, and m such that i < j and 2 < in, we 

find that terms like 

[A22 (ij), A20 (im)] 	 (52a) 

form 2-quantum operators and terms like 

[A,
±2

(il), A 2 (im)] 	 (52b) 

form zero-quantum operators. Terms like 51b are zero. 

Higher-order terms produce higher quantum operators. For 

example, third order terms will appear of the form 

T 3D!.D! D! [[A22 	20  (ij), A(im)J , A22  (i)] 	 (53) 13 im i.Q 

and will yield operators like 

A44 (ij ,lm) 
	

(54) 

which are 4-quantum operators. 

Equations 51 and 53 point out an important fact in multiple 

quantum nmr. We note that first order terms, which yield two 

quantum operators, are proportional to TD!., second order terms 

are proportional to T2DjD'm  and in general the n 
th 
 order term 

is proportional to the product of n TD!.'S. Therefore, unless 
ij 
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iD!. approaches one for all i and j, the higher quantum operators 

will not be produced to any great extent. If some coupling 

constants are very small, long preparation times will be required 

to produce high quantum coherent states. 

We notice that 48a only gives even quantum operators. Odd 

quantum operators are obtained from 48b, which is proportional 

to sinAwr, so if the experiment is done on resonance, only 

even quantum operators are prepared. In addition, it can be 

easily shown (58) that if the phase of P 2  is 900  relative to 

and the experiment is done on resonance, only odd quantum 

operators are prepared. 

From our work above it is evident that at t = T, the density 

matrix has the form (84) 

p(T) = E a ((L;T) ALM(a) 
LNa LM 

= Ep (T) 
MM 

(55) 

where p (T) = Ea (ct; -t) A(c) and a completes the definition 
M 	aLL 

of the operator basis. 

We now consider evolution of the multiple quantum coherent 

states under the Hamiltonian 

= -Awl + E D .(31 1 . - I.1.) 	. 	 (56) 
1 	z 	 zi zj 	1 j 
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-iC1 t1 	iW1t1  

	

p( -r+t 1 ) = Z e 	PM(T) e 
M 

-ifrC t 	iAwt I 	-iAwt I 	iX t 
zzl 	lz 	e 	

lz 	zzl 

	

= e 	 e 
M 	 H 

(57) 

From the definition of PM(t)  it is easily shown that 

iAwt 
l 	 l 
I 	-iAt I 	 -iMAwt 1  

	

z 	 z 

	

e 	PM(T) e 	= PM(T) e 	 . 	(58) 

	

Now C 
zz 	 20 

has the form AA since it is a secular Hamiltonian. 

Therefore an H-quantum operator can only be transformed into a 

linear combination of M-quantum operators as a result of evolution 

under C . zz This means that the time evolution of H-quantum 

coherent states under X 
zz 
 is modulated by the off-resonant term, and 

the modulation frequency is MAw. In the frequency domain, this 

means that the M-quantum spectrum is offset from resonance by 

MAW. We see that by performing the multiple quantum experiment 

off resonance, the various multiple quantum transitions may be 

separated by order. 

It remains to convert multiple quantum coherences back to 

observable coherences. Since we have added a fictitious pulse 
-iH T 

F4 , the transformation by V = e yy 
 will convert some multiple 

quantum coherences back to I . Observable states I and I can 

be obtained by a 90
0 
 pulse P5  contiguous to P4 . The density 

	

matrix at t 2 	0 is 

-iJC 

	

p(T+t 1 ') = V e 	U I
z 
 U + 
	+ 
e 	V 	 (59) 

Of course, not all of the multiple quantum coherent states will 

be converted to I since evolution has occurred under JC 
1 
 and 

z  



so P(T) 0  p(T+t 1 ). We also note that for the three pulse 

sequence V has the form, assuming T '  = T 

-jJC T 

V = e 	
MQ 	, 	 (60) 

and therefore V is not the adjoint of U. To find the effect of 

this we write the expression for the signal at t 2  = 0: 

S(t1 ;T,T') = Tr(p(T+t 
1  + 
	

z 
r')I ) 

- ic1  t 1  
=Tr(Ve 	UIU+ellV+I) z 	 z 

= Tr(e 	
11 

 UI 	e 	V 

	

z 	 z 
+ 	+ I V) 	(61) U  

where we have used the fact that the trace is invariant to cyclic 

permutations. Now if we expand the trace in an eigenbasis of 

S (t1 ;T,T') = E e -iw t (U mnl 	I U + ) 	(V+I V)
mnnM 

(62) 

If U = V we would obtain 

-iLi) 	t 
+) 

* ni1 	I U+) 

	

S(T1 ;T,1') = 	e 	(U 	(UI U 
inn 

-iw t 

	

= 	e 	inn (IU I  Ul2) 	 (63) 
inn 	 z 	mn 

But when U i V, as in the case in the 3-pulse experiment, phase 

terms will occur in S(t 1 ;T,T'). This means that the multiple 

quantum coherent states are Out of phase, a condition which does 

not occur in single quantum nmr (see equations 10 and 11). 
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(ii) Four-Pulse Experiments: Echoes in t 1  

The 3-pulse sequence is of limited utility for the 

following reason. Let us consider evolution of the density matrix 

P(T) = pM  (T) 
	

(64) 

under the Hamiltonian 

= -Lw(r)I + 
	. 	 (65) 

1 	 z 	zz 

The first term implies that the offset is specially dependent, a 

situation that would occur in an inhomogeneous magnetic field. 

As before, we can consider evolution under the first term separately 

from evolution under the second tern since Aw(r)I z 	zz 
and C commute. 

Evolution under the first term is identical to equation 55: 

iAw(r)t 
l z 	 l z 
I 	-iLw(r)t I 	 -iNiw(r)t 1  

e 	 e 	 = PM(T) e 

(66) 

Equation 66 implies that the inhomogeneous broadening is propor- 

tional to M, the order of the multiple quantum coherence. Therefore 

the inhomogeneous broadening in the N-quantum spectrum is M times 

the inhomogeneous broadening in the single quantum spectrum, a 

fact which would limit resolution and signal-to-noise in the high 

quantum orders. 

A solution to the problem is to apply a 1800  pulse in the 

center of the evolution time (see figure 35). This is the Hahn 

spin echo technique (85). The expression for the density matrix 
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(ir\ 	(PO 	 iT 

2 
IT  

2 	1 	2 

	

Increment 	t by At 

Then offset Aw = n 
At 

XBL 796-10254 

	

Figure 35. 	Time proportional phase incrementation 

(TPPI). Multiple quantum orders may be separated by 

off resonant irradiation unless a 1800  pulse is 

included in the middle of the evolution time. But the 

multiple quantum orders may still be separated by an 

incrementation of the phases of the first two pulses 

(P 1  and P 2  ) relative to the third and fourth pulses. 

When the evolution time is incremented at Et1 , the 

phase is incremented by A0. The effective offset is

AO then, for the n th  multiple quantum order nw = At 1 
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p (T+t 	h h 1 	 M 
1) = e/'2 

un 	-iX 	 X t 
x 	1 

s- 
 l/2 P(T) e 

iJC 
1 
t 
 1 

—u n x 
	1 1/2 e 	e e 	e i 

(67) 

where JC1  is given by equation 65. We now use the facts that JC 
zz 

and I z 	 zz 
commute, that 3C is invariant to a 1800  pulse, and the 

identity 

un 
I x 

i&ij(r)I 
 z t

1 , 2  -un I x 
	

-i&(r)I 
z e 	e 	 e 	=e 	 (68) 

to obtain the expression 

-iC1 t112  -iw(r)It112 	
zz 1/2 

uxD t 
PM(T+tl) = e 	e 	 e 	 PM(T) 

itw(r)I t 	iC 
zl/2 	1 

t 
 1/2 

e 	 e 

	

zzl p 
	

zzl = e 	 (i) e 	 (69) 

where p(T) is specified by 

	

if N is even 	 (70a) 

	

- PM(T), if N is odd. 	 (70b) 

Equation 69 means that the effect of magnetic field inhomogeneity 

has been removed during t 1  and only evolution under 	remains. 

However, we also notice that the echo removes the modulation term 
-iMLwt1  

e 	which allowed us to separate the different multiple quantum 

orders. Therefore, all multiple quantum transitions for all N 

will occur within ±Aw max 
	 max 
of resonance, where 2Aw 	is the bandwidth 

of the widest multiple quantum order. This may result in an 

intractable spectrum if the number of spins N is large. 



We will discuss two solutions to the problem, phase Fourier 

transformation (PFT) and time proportional phase incrementation 

(TPPI). 

PFT amounts to the selective detection of multiple quantum 

orders, and has been used in both isotropic systems (86) and 

anisotropic systems (58). Suppose we perform the 4-pulse multiple 

quantum experiment, and the resulting multiple quantum signal is 

-iC T -iCt 	 iXt 	1C T 

S (t ;T,T') = 	Tr(e 	e 	1 1 p (i) x e 1 1 e 	I ) 
371 	M 	 M 	 z 

	

= E S (t ;T,T') 	. 	 ( 71) 
M H 1 

Now the experiment is repeated, but the phases of the first two 

pulses are shifted by t relative to the phase of the third and 

fourth pulses. By a phase shift is meant a rotation about the 

z axis. Therefore the density matrix at the end of the preparation 

time is 

zz ZZ +171121 	iC T 	i71,2I 

o 
e171/2 	

iX T -i71 12 I 
p(T,Q)=e 	e 	e 	 e 	e 

 

where 

-iI 	i 
z 

I e I=e 
x 

 

Using the fact that I commutes with 	and the definition of p 0  

we can rewrite equation 72 as 

p(T,) = e 	z EPM(T) e 	
Z 
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= EPM(T) e 	. 	 (74) 
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Our expressions for S y (t ;T,T ' , lp) would now be 
l 

_icD T' -iC1t 1 	iJC1t1 	
J(D 

T' 

S (t ;T,T',) = E e
-iM 	zz 

Tr(e 	e 	QM(T) e 	e 	I ) z Y 1 	 M 

-itbM 
= 	e 	SM(tl;T,T) 	. 	 (75) 
M 

Suppose the system has N nuclei with spin I, so M varies from 

-N to N. Let the experiment be repeated 2N times and let the phase 

of the first two pulses be shifted each time by 27T /IM
, 
 I where M 

lies between -N and N inclusively. Summing the resulting signals 

we obtain a Fourier expansion in phase 

N 2N-1 -iM 2irn 
S(t 1 ;T,T') = 	E 	E 	e 	4) SM(tl;T,T') 	. 	(76) 

M=-N n0 

The only orders toadd constructively are those for which IMI = 

2kIM'I and k = 0, 1, 

The disadvantage of this type of detection is that the selec-

tivity is limited in the sense that several orders will still be 

superimposed within the region ±Aw. For example, if the phase 

increment is 1  , the multiple quantum coherences of order 0, 4, 8 

etc. would add constructively. But as we will find in section 

3.4, the zero quantum spectrum may be very complicated especially 

if N is large and the symmetry of the spin system is low, so an 

intractable spectrum may still result. The zero quantum coherent 

states may be eliminated by using the expansion 

N 2N-1 	. 2 7in 
S(t1 ;T,T') = 	E 	E 

(_)fl e_1M 	
SM(tl;T,T) 	. 	(77) 

M=-N n=O 
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Tr 
Suppose we again increment the phase by 	, but use the expansion 

given by equation 77. Then the coherences of order 2, 6, 10 etc. 

will add constructively. In any case, if the multiple quantum 

spectra are simple enough, the limited selectivity provided by 

PFT suffices. However, if the number of spins is large ( N 1 8) 

even the lower order multiple quantum spectra may be complicated 

enough so that PFT is not useful. 

Time proportional phase incrementation (TPPI) has been applied 

primarily in anisotropic systems of spin 4 and 1 nuclei (84, 87). 
TPPI enables complete separation of multiple quantum orders independent 

of evolution during t1 , by shifting the phases of the first 2 pulses 

relative to the third and fourth by an amount proportional to t 1  

(see figure 37). Equation 75 may be rewritten as 

-i(t1 )M 
e 	5M(tl,T,T') 	. 	 (78) Sy(t1;TT') = M 

Now if the timing increment in t 1  is At1 , and the phase increment 

is A, the effective modulation frequency is given by 

or 

Aw= Alp 
At 

= t1Aw (79) 

Substituting 79 into 78 we get 

-iNLwt 1  
= 	e 	5M(tl;T,T) , 	 (80) 
M 

and the order dependent modulation has been restored. 



In figures 36, 37a and 37b are shown multiple quantum nmr 

spectra of benzene dissolved in a nematic liquid crystal solvent. 

Figure 36 shows the multiple quantum spectrum of benzene obtained 

from a 3 pulse experiment. In figures 37a and 37b the four pulse 

sequence was used and separation of the multiple quantum orders 

was accomplished by using the TPPI technique. In figure 37a the 

resolution is limited by truncation of the multiple quantum free 

induction decay. In figure 37b the multiple quantum signal was 

allowed to decay for several time constants, and subsequent Fourier 

transformation yielded a high resolution spectrum. Below the 

experimental spectrum in 37b is a stick spectrum generated by 

the program MQITER (88). The single quantum and multiple quantum 

nmr spectra of benzene have been extensively discussed in the 

literature (58, 83, 84, 89, 90, 91, 92), and so we will make only 

a few brief comments. As a consequence of the D6h  symmetry of 

benzene, all single and multiple quantum transitions may be cal-

culated from a single independent dipole-dipole coupling constant 

and three scalar coupling constants. 

From the single quantum spectrum these were determined to be: 

2D12  = 3 /3 D 	 = 8D14  = -867.5 h 	 (81a)
13  

= 8.0 hz 	 (81b) 

= 2.0 hz 	 (81c) 

= 0.5 hz 	 . 	 (81d) 

The multiple quantum spectra shown in figures 36, 37a, and 

37b were the result of the coaadition of multiple quantum power 

spectra. Each power spectrum was obtained for a different value 
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Oriented Benzene 
nO 	 n-Quantum NMR Spectra 

n=6 

I 	 I 	 I 	 I 

0 	AW 	2w 	3w 	4w 	5w 

Frequency (w = 5.967 kHz) 

XBL 781-6770 A 

Figure 36. The multiple quantum spectrum of oriented 

benzene obtained by the three pulse sequence (see 

figure 34(b)). The irradiation was applied 5.967 khz 

off resonance and so all orders are observed. 
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Oriented Benzene 

n—Quantum Echo Spectra 

n=O 	n=I 	n=2 	n=3 	n=4 	n=5 	n=6 
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Frequency 
XBL 7910-12275 

Figure 37 (a). 	The multiple quantum spectrum of 

oriented benzene obtained by the TPPI pulse sequence 

(see figure 35). The phases of P 1  and P 2  were 

incremented by 29.5° each time t 1  was incremented by 

= 10 usec. Note the increased resolution relative 

to figure 36. The transformed FID was truncated thus 

limiting resolution. 
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Figure 37 (b). 	The multiple quantum spectrum of 

oriented benzene obtained by the TPPI pulse sequence. 

The multiple quantum FID was allowed to decay for at 

least 	one time 	constant. Below is shown the 

theoretical spectrum. 
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of the preparation time T. Preparation times varied from 8 to 

15 insec. The coaddition of several power spectra with different 

values of preparation time T, is usually necessary in multiple 

quantum spectroscopy since multiple quantum transition intensities 

are a function of T. Therefore, for a given value of T, not all 

transitions may be observed. Power spectra are added since, as 

was shown by equation 62, multiple quantum transitions are out 

+ 
of phase unless U = V. 

3.2.4 Example: Calculation of the multiple Quantum Spectrum 

of an Oriented Methyl Group 

In sections 3.2.2 and 3.2.3 we discussed general aspects of 

the basic multiple quantum nmr experiment. A specific example will 

now be considered, that is, we will calculate the multiple quantum 

nmr spectrum of an oriented methyl group. 

For the purposes of calculating the frequencies and intensities 

of multiple quantum transitions, it suffices to consider the symmetry 

group of an isolated, oriented methyl group as C3 . Accordingly the 

E repre5entations have two states each and the A representation has 

four states (see table 3.1). In an oriented phase the protons are 

coupled through the direct dipole-dipole interaction, and the 

appropriate energy level diagram is given in figure 38. We see 

that we may treat the methyl group as 3 "pseudo-particles". Each 

of the "E" particles behaves as an isolated spin I nucleus since 

the E transitions are independent of the dipole-dipole coupling, 

and so may only contribute to the central line of the single quantum 
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spectrum. The etAtt particle behaves as an isolated spin 	particle 

with a "quadrupole", and we observe 3 single, 2 double, and a 

triple quantum transition within the A manifold (see figure 39) 

Table 3.1 Symmetry-Adapted Basis Functions for an Oriented 

Methyl Group 

A represe ritation 

A( 3 /2) = Iccct> 

A(1 /2) 
= 	

(IcLc> + 	+ Icta>) 

A(-1 /2) 
= 	

(I> + 	+ l>) 
A(- 3/2) = lB> 

Ea representation 

Ea(1/2) = 
	( act> + cIctcL> + * I )  

Ea(-1/2) = 
	

( I> + 	+ 

Eb representatiom 

Eb(1/2) = // 
( Ic> + 
	 + ccc>) 

Eb(-1 /2) = 1 /V (Ic> + 
	 + cic>) 

We will consider the 3-pulse sequence described in section 

3.2.3 (see figure 34). In order to calculate the y component of 

the signal S (t 1 ;T,T'), we add a fictitious pulse P4  at t = 0 

that is identical to P 2 . Again, addition of the fictitious pulse 

P4  means that we are really calaculating <1(t)> . However, 

addition of a contiguous 900 pulse 1800  out of phase with P 4  

would transform I to I . If we wish to include the x component 
z 	y 
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Figure 	39. The 	multiple quantum spectrum 	of 

acetonitrile oriented 	in 	a nematic liquid 	crystal 

obtained by the TPPI pulse sequence. 
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of the signal S (t i ; T,T') an analogous calculation is required 

in which P4  is 900  out of phase with P 3 . We will only consider 

the y component. 

We begin by calculating the density matrix at t 2  = 0. We 

obtain, assuming T = 

.71 	 .11 	.- 	.Tr 	 .71 

-1XT 	 2 	-1JCT 	2x 

	

p(T+t 1+T) = e 
2x 

 e 	e 
2x 

 e 	
1 e 
	

x e 
	e 	I X 

.71 	 .T 	. 	.ir 	 .11 
- i—I 	. 	i—I iXt -i—I 	. 	i—I 
2x 1XT 2x 	1 	2x 1XT 2x 

e 	e 	e 	e 	e 	e 	e 	 (82) 

where the Hamiltonian C is 

JC = 	+ -0I 2  - 12 ) 	 (83) 

Equation 82 may be rewritten as 

-IX T -jXt -iX T 	iX T iXt 
1 
 iX T 

p(T+t 1+T) =e 	e 	e 	yy Iz e 
yy 
 e 	e yy 
	

(84) 

where 

71 	 .71 
-iX T 	-i—I -IX T i—I 
e yy 	2x 	zz 	2x 

=e 	e 	e 	 (85) 

and we have used the fact that I and 31 - 12 commute. 

We are interested in calculating the quantity 

	

<1(t)> = Tr(p(t)I) . 	 (86) 

Substituting equation 84 into 86 we obtain 

	

-IX -r -IX t 	-IX -r 	IX T iJC t 
<1(t)> = Tr(e 	

yy  e 	
ZZ 1 e 	yy Iz e 

yy  e zz 1 x 

jX -r 
e yy 

z 

	

-IX t -IX - 	IX T IX t IX T 	-IX -r 
e 

z 

	

zzl 	yy 	yy 
e 	e 	I z e = Tr(e 	e 	I 	

zz 1 	yy 	yy 

(87) 



where we have used the fact that the trace is invariant to cyclic 

permutations. 

Now we expand the trace in an eigenbasis of X zz to obtain 

-iX t 	-i3C -r 	IX T iX 
zzl 	 T 	yy 	zzl 

x <I (t)> = E <ale 	e 	£ e 	e 
z 	a 	 z 

iX T 	-iX T 

<e YY I e 	yy I ct 

	

-iw t 	-iX T 	iJC T
yy 	 > c 	a 

	

l 	e 	I e yy = 	e 	< 
Z 

iX T 	iX T 

<f3e 	I e YY I a> 	. 	 (88) 

In order to evaluate equation 88 we must obtain matrix elements 
-IX T 	IX T 	 iX T 

of e 	yy  I e yy 
	. We first rewrite e 	as 

Z 

. 
-iC T 	

-1T 
i—I 	.. 	

e 
i 

Tt  
—I 

	

e 	e 	e yy 	2x -1JCT 	2x =  

.Tt . 	 .Tr 	Tt 	 Tt 

	

-i—I 	i 	+i1 - i —I +&i)I +i 1 
2x 	DID 	2x 	2x 	z 	2x 

=e 	e 	e 	e 	e 	e 

T iLwI 
=e 	e 
	 (89) 

There fore 

	

-jX -r 	IX T 	 T iAwI T 	 io T -iAwI T 

e 	I e 	=e 	e 	I 	xe 	e 
z 	 z 

T 	
iJCD T 

= e 	' 	( IcosAwT + I sinAwt) x e yy 

156 

(90) 



157 

and we must now calculate matrix elements of 

-LT 	iT 

e 	I 
z  e 
	 (91a) 

and 

T iO T 
e 	YY 

I x 
e 	 . 	 (91b) 

To:evaluate 91a and 91b we use the fact that 

jfD 

e 	= cosd'r - -Msind'T 	(see appendix 3.1) (92) 

to obtain 

c(d'i)+ 	(d'i) 	0 	 s(d' -t) 	 0 

= 	0 	c(d' -r)- s(d'T) 	0 

• 	(d'T) 	 0 	c(d'T)-(d'T) 	0 

00 	c(d'T)+-s(d'T) 
- 

--s(d T) 	 2 

(93) 

where 

	

-1 	0 	-/3 	0 

	

0 	1 	0 	-v' 
M= 	 (94) 

	

-/- 	0 	1 	0 

	

0 	-: 	0 	-1 

and c(x) = cosx, 5(x) = sinx, 2d = 3d
-- 

We can use the matrix elements of e YY  given in equation 93 

together with the definitions of I and I 
z 	x 
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[3 	0 	0 	O 	 1 0 	v'i 	0 	0 

= 

	

0 	o 	 0 	2 

	

0 	1 	
I ' 	 = 2 	

0 	2 	0 	
(95) 

	

0 	0 	-1 	01 	
x 

	

0 	0 	3J 	 L 	v 	0 
To evaluate the matrix elements of 91. The results are given in 

table 3.2. 

To calculate the multiple quantum spectrum, equation 88 is 

Fourier transformed with respect to 

-iwt 
<I (w )> = 1r 	 i 1 	z fat e 	1 

	

z 1 	2 	
<1 (t,)> 

-iC T 	iX T 

	

= 	S(w-w )<cxte 	" I e YY 

	

1 c 	 z 

iX T 	-jJC T 

<Ie 	Iz e 
	H> 	(96) 

The eigenfrequencies are obtained by taking differences of matrix 

elements of the evolution Hamiltonian defined by equation 83: 

U)12  = -AU) + 

	

Single Quantum 	 (97a) 

= -Aw 

U) 34  = -Aw - d 

= -2Aw + 

	

Double Quantum 	 (97b) 
= -2Aw - 

WI4  = -3Aw 	 Triple Quantum 	 (97c) 
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where the prime on the coupling constant has been dropped. In 

summary, the multiple quantum spectrum can be calculated using equa-

tion 96, obtaining intensities from matrix 95, and frequencies from 

equation 97. For example, the triple quantum line is at w = 

and has the intensity -sin 4 (dT)sin 2 (AwT). 

It is also easily shown that the contribution to the single 

quantum transition at 	= -& from the E transitions is -sin2AwT. 
23 	-jC T 	iX T 

The matrix elements of e 	I e 	, given in equation 91 

explicitly demonstrate some features of multiple quantum nmr that 

we discussed in the preceding section. The single quantum and 

triple quantum transition intensities are proportional to sin 2&Yr, 

while the double quantum transition intensities are proportional 

to cos 2AwT. So if the experiment is performed on resonance, only 

the double quantum transitions will be observed. We also note that 

while the single quantum transition intensities are proportional to 

cos 2 dT , the double quantum intensities are proportional to sin 2dT 

and the triple quantum intensity is proportional to sin 4dT. There-

fore, unless dT approaches 	, the double and triple quantum 
Tr 

transition intensities will be low. 

3.2.5 Multiple Quantum NMR as a Method for Studying Molecules 

in Liquid Crystalline Mesophases 

Thus far, we have considered in some detail, the basic multiple 

quantum experiment, through which we can observe transitions that are 

forbidden in conventional nmr. We will now discuss how this technique 

may be of use in the study of liquid crystals and nonrigid molecules 

dissolved in liquid crystal solvents. 
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As we have seen, transition frequencies in nmr are given by 

matrix elements of nuclear spin interaction Hatniltonians (see 

Section 1.3.4). As we have also seen, such Hamiltonians are scalar 

products of tensors that involve spin operators (A) interaction 

parameters (T). 

JC = E E()
m 
 A 	T 	 . 	 (98) 

It was also mentioned in the last chapter, that the principal axis 

system (pas) of the tensor T, is related in some straightforward 

way to the molecular geometry. For example, the dipolar tensor 

is uniaxial in its principal axis system and the unique axis is 

parallel to the internuclear vector. However, the spin operators 

are quantized along the magnetic field direction, and similarly, 

the z axis of the tensor T in equation 94 must be parallel to the 

magnetic field direction. If we then use the fact that interaction 

Hamiltonians are truncated, so that only the component A 20  that 

commutes with the Zeeman Hamjltonian contributes to the static 

Hamiltonian, equation 98 may be rewritten as 

= A20  E TPaS 	(2) 
q 2q 	q 

(99) 

where 

=Z TPaSD(2)(Q) 
2q qO 	

' 	 (100) 

and we have neglected the isotropic component of the Hamiltonian. 

Equations 99 and 100 assume that the principal axis system 

is fixed with respect to the laboratory frame. If, as occurs in 
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liquid crystalline systems, the molecule moves in some anisotropic 

fashion, and if the rate of motion is fast on the nmr time scale, 

then the transformation from the pas to the laboratory frame may 

be motionally averaged (93). It is convenient to first transform 

from the pas to a fixed molecular coordinate system, and then carry 

out the motionally averaged transformation into the laboratory frame: 

Tlab =Z Tas D 2 (Q ) < D 2 (Q )> 	. 	 (101) 
20 	pq 2q 	qp 	0 	p0 	1 

Equation 101 assumes that the molecule is rigid and therefore any 

motion is "whole-molecular". However, if the molecule is not 

rigid, but interconverts rapidly between n geometric configurations, 

equation 101 must be rewritten as 

	

= EP ( E (TPa5)nD(Z)(Qn)<D()()>) 	 (102) 
20 	n n pq  q 	pq 0 p0 

where P is the probability of the n 
th 
 configuration occurring. 

In equation 97 we have neglected vibrational and tortional effects. 

Given a knowledge of the tensors (Tr5)1,  the unknowns of the problem 

are the products 

Q 	= F n,p 	n p0  
(103) 

of which there are, in general, 5n. Thus, in order to determine 

the problems, Sn independent tensors T must be measured. 

As was mentioned in the last chapter, deuterium magnetic reso-

nance has been a particularly popular method for studying liquid 

crystalline systems. What is required, then, is that 5n unique 

electric field gradient tensors exist in the molecule of interest. 
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Since the quadrupolar interaction is a "single particle" interaction, 

that is, the Hamiltonian only involves parameters of a single nucleus, 

there must exist 5n non-identical nuclei in the molecule. We will 

define the term 'non-identical nucleus" presently. But if the 

number of configurations n is large, the problem may be underdetermined. 

For example, suppose we wish to study an alkyl chain molecule with 

three internal bonds such as n-hexane. As we will learn in the next 

section, even if we only consider the all-trans and the single-gauche 

configurations there will be 10 products of the form given in equation 

103. However, perdeuterated n-hexane has only 3 unique types of 

nuclei and therefore only 3 quadrupole splittings can be observed. 

So in many interesting molecular systems there is an insufficient 

number of quadrupolar splittings to determine the problem. 

A solution to this difficulty is to observe the dipolar spectrum 

of the protonated molecule (93). Given N nonidentical spin -nuclie, 

the number of dipole-dipole couplings is N!/((N-2)2!), and this is 

always larger than N for N > 3. Of course, the number of independent 

couplings decreases if there is molecular symmetry, but in general 

the number of couplings will exceed the number of nuclear types. For 

example, the number of independent dipole-dipole couplings in n-hexane 

is 16, a sufficient number to determine the problem if we consider 

only the all-trans and single-gauche configurations. In fact, if we 

were only to consider couplings between methylene protons we would 

still have a sufficient number of couplings (10) to determine the 

problem. 

The main difficulty with observing proton dipolar spectra is 
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Figure 40. Proton nmr spectra of various molecules 

oriented in liquid crystal solvents. 



165 

that they tend to become very complex as the number of spins 

increases, as is shown for several molecules in figure 40. We note 

that even in a very symmetric molecule like cyclooctane, the number 

of transitions is so large that there is no resolution at all in 

the proton dipolar spectrum, and of course, the number of transitions 

increases for lower molecular symmetries. 

A solution to the problem is to simplify the dipolar spectrum 

by selective isotopic labelling. One approach is to selectively 

deuterate the molecule, and observe the fine structure on the quadru-

polar satellites due to dipole-dipole couplings between deuterium 

nuclei (with proton decoupling). This technique was used by Hsi and 

Luz (47) in a study of the alkoxy chain of an no.m liquid crystal. 

Another approach, used by H8hener et. al. (95) is to observe the 

natural abundance carbon-13 spectrum of selectively labelled liquid 

crystals. Natural abundance 13 C spectra of selectively deuterated 

MBBA and nitrogen-15 labelled 50.7 yielded carbon-deuterium and 

carbon-nitrogen couplings respectively. In addition, the 

local field spectrum of fully protonated MBBA yielded carbon- 

proton couplings free of complications due to proton-proton couplings. 

At this point we wish to suggest an additional technique, 

multiple quantum nmr. The advantage of multiple quantum nmr lies 

in its ability to simplify dipolar spectra without loss of information 

and without the necessity of synthesizing series of selectively 

labelled compounds. The simplification occurs since the number of 

transitions in the high multiple quantum orders is far less than the 

nunber of single quantum transitions. From figure 41, it is evident 
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Figure 41. Generalized enery level diagram of a system 

of N coupled spin ½ nuclei. Arrows indicate various 

multiple quantum transitiOns. 



that while there are many transitions for which im= 1, there is 

only 1 transition for Am = N, where N is the number of spin 

nuclei, the number of M-quantum transitions is, assuming no symmetry, 

N N-M 
()2 	. Therefore we expect 1 "N" quantum transition, 2N"N-1" 

transitions, 2N(N1)"N2" transitions etc. Since the number of 

single quantum transitions is N2N1,  we realize that the higher 

multiple quantum orders are far simpler than the single quantum 

spectrum. We also realize that since there are N(N-2)!2) couplings, 

we will require at least N-2 quantum spectrum for the analysis. 

In closing we wish to mention that multiple quantum nmr has 

already been used in several instances to study systems of strongly-

coupled protons in liquid crystalline phases. In a study which is 

a classic example of the spectral simplification possible through 

multiple quantum nmr (88, 96), the average conformation of the 

biphenyl moiety of a cyanobiphenyl liquid crystal was studied. Also, 

multiple quantum nmr has been used to study the relaxation of an 

oriented methyl group (97), and the correlation bewteen two oriented 

methyl groups (98). 

3.3 Nonrigid Chain Molecules in Uniaxial Phases 

3.3.1 The NMR Symmetry Group of a Polymethylene (PM) Chain 

In this section we will derive the symmetry group of a 

polymethylene chain. We wish to do this because once the symmetry 

group of the molecule is identified and the appropriate character 

table is available, the energy level diagram of the spin system can 

be determined. Once the energy level diagram Ia available, we can 

- 	 calculate the number of transitions in each multiple quantum order. 
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We will derive the symmetry group of a chain composed of four 

methylene groups. The three internal bonds of such a chain are 

assumed to be undergoing rapid gauche-trans interconversions. By 

"rapid" is meant that the interconversion rates greatly exceed the 

proton dipole-dipole couplings in frequency units. Now for PM 

chains the gauche-trans interconversion rates are expected to exceed 

lO sec 1  in liquid crystalline systems, whereas proton dipolar 

couplings are not expected to exceed lO sec 1 , so the term rapid 

is appropriate. Furthermore we assume that the probability of a 

trans to gauche 	interconversion occurring equals the probability 

of a gauche 	to trans-interconversion.AlSo we assume that the ends 

of the chain are indistinguishable, so we are interested in the 

proton nmr spectrum of say, deuterium-decoupled n-hexane-1,1,1,6,6,6-d 60  

or 1,4-dibromobutane. 

To obtain the symmetry group of a nonrigid chain, we use the 

approach of Longuet-Higgins (99). By this method, the symmetry 

group is composed of all feasible permutations and permutation-

inversions of identical nuclei. A feasible operation is defined 

as an operation that does not involve passage over an infinite 

energy barrier, and identical nuclei are defined as nuclei whose 

exchange leaves the nmr Hamiltonians invariant, where the nmr 

Hamiltonian is 

= - Etw.I 	+ E J. 	+ E D. .(31 i 
	- 11J) 	(104) 

1z 	i<j 1J 	j<j 13 	z z 

If we use the numbering scheme shown in figure 42, given our 

assumptions on the nature of the chain motion, the symmetry group 
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is of order 4 with the operations: 

01 (12)(34)(56)(78) 	E a (105a) 

02 (18)(27)(36)(45) 	i (105b) 

03  (17)(28) (35) (46) 	E C2  (105c) 

04  E (105d) 

The symmetry group is therefore isomorphous to C2h  and has the 

character table: 

E 	C2 a 
h 

Ag 	1 	1 	1 	1 

Au 1  

Bg  

Bu 1 -1 1 -1 (106) 

We now need to calculate the character table for the group 

using a set of reducible representations. Each reducible represen-

tation corresponds to a matrix representation of the operations of 

the group, in which the basis set of each representation is composed 

of the direct product functions of a given Zeeman manifold. The 

character table is: 

E C2 h 

F(m4) 1 1 1 1 

F(m3) 8 0 0 0 

F(m=2) 28 4 4 4 

r(m=1) 56 0 0 0 

I'(mO) 70 0 0 0 	 (107) 
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The energy level diagram may now be obtained if we decompose 

the reducible representations of 107 into irreducible representations. 

The number of times that a given irreducible representation occurs 

within a reducible representation is given by the equation; 

-1 
a. J = h 	J Nx(C)X(C) 
	

(108) 

a. is the number of times that the j 
th  irreducible representation 

occurs within a reducible representation. The summation is over 

classes and Nk is the number of operations within the kth  class. 

ForC 2n,,  k 
h4andN =lforallk. 

Using equation 108 we obtain the decompositions: 

F(m4) = Ag (109a) 

F(m3) = 2Ag + 2Au + 2Bg + 23u (109b) 

F(m2) = lOAg + 6Au + 6Bg + 6Bu (109c) 

F(m1) = 14Ag + 14Au + 14Bg + 14Bu (109d) 

F(m0) = 22Ag + 16Au + 16Bg + 16Bu (109e) 

From equations 109 the energy level diagram may be easily 

deduced and is shown in figure 43. The number of lines in each 

multiple quantum order is as follows: 

llineat8& 

7 4 lines 

6 28 lines and a central line at 6Aw 

5 140 lines 

4 448 lines and a central line at 4&u 

3 1092 lines 

2 1988 lines and a central line at 2Aw 

1 2860 lines 

0 2098 lines . 	 (110) 
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Figure 43. The energy level diagram of a 4 methylene 

chain assuming equal population of the gauche (+) and 

gauche (-) states and rapid interconversion between 

configurations relative to the nmr time scale. 



If the chemical shift difference of the protons on different 

methylene groups is negligible compared to the dipolar couplings, 

we expect the lines to occur in pairs about MAw in each order. 

Thus, there are two pairs in the seven quantum, 14 pairs in the 

six quantum with a central line at 6Aw etc. In general the number 

of lines in the seven quantum spectrum equals the number of "types" 

of nuclei that is, the number of nuclei connected by symmetry. This 

feature may be understood, in the case of n-hexane-1,1,1,6,6,6-d 6  

as follows. Since the m = ±4 eigenfunctions are of Ag symmetry, 

7-quantum transitions may only occur from Ag states in the m = ±3 

manifolds. Let us consider the transitions from the m = -3 to the 

m = 4 manifolds. We know that for a given Zeeman manifold, the Ag 

basis functions can be projected out of the direct product basis 

by application of projection operators of the form 

Ag = 

	

hR 
	 (111) 

where Z  Ag is the dimension of the irreducible reoresentation Ag 

and equals 1, h is the order of the group and for C2h  equals 4, 

is the character and equals 1 for all R, and P is a symmetry 

operator of the group. Equation 111 may be rewritten as 

Agl( 	
+P +P. +P ) 	. 	 (112) 

	

E 	a 	1 	C2 

Now there are eight direct product functions for the m = -3 mani-

fold since the number of functions is the number of ways to permute 

a label among eight spins: 
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NiID7.7.7.Z.. 
	

W.Y.I1.7.J7. 

.7.r.1..I.1. 

Also given the definitions of the group of 	(see equation 100), 

the single "ci." label may only be permuted within the group of nuclei 

1, 2, 7, and 8, or within the group 3, 4, 5, and 6. Thus from the 

form of the projection operator, we expect the number of Ag functions 

to equal the number of groups of nuclei connected by symmetry opera-

tions of the group C2h.  That number is two and the Ag functions 

are 

+ la> + lc6> + 1 ct>) 

+ lct> + lct 	+ 1c) 

So we expect two transitions from the m = -3 manifold to the m = 4 

manifold. The other line in each pair comes from m = -4 to m = 3 

transitions. 

3.3.2 The Orientational Dependence of the Dipolar Couplings 

for a Nonrigid Chain Molecule in a Uniaxial Phase 

In this section we will derive an expression for the orienta-

tional dependence of the dipolar coupling constant in a nonrigid 

molecule in a uniaxial phase. 

We have already found that the components of a second rank 

tensor in the director frame may be related to the components of 

a second rank tensor in the principal axis system (pas) by the 



transformatiom 

dir - 	TPa5D(2)( )<D 2 ()> 	 (113) T2k 	pq 2p pq o qk 1  

where 2 = (% 	' y) is the set of Euler angles relating the 

pas to the molecular-fixed frame and the second transformation is 

motionally averaged due to molecular reorientation. Equation 114 

is valid fora rigid molecule. 

The question arises, what effect does internal molecular 

motion have on equation 113? Let us first establish what we mean 

by "internal molecular motion". We will attempt to rewrite equation 

113 to include large amplitude motions in which the molecule inter-

converts between discrete geometric configurations at a rate that 

is rapid on the nmr time scale. Thus we neglect vibrational and 

tortional motions, and we find, with reference to chain molecules, 

that our assumptions are equivalent to the rotational isomeric 

state approximation described by Flory (100). We rewrite equation 

113 as 

= E P E Tpas, 	 . 	(114) 2k 	n fl pq  2p 	pq 	o 	qk 	1 

The summation over n is a summation over configurations, and P 

is the probability of the n 
th 
 configuration occurring. TaS,n 

is the p component of the tensor in the pas, and the value of the 

component may vary with the configuration. We will abbreviate our 

notation to read 

= T' 	 (115) 
2p 
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n 	n n n ( ) = (a , 	, y ) is the set of Euler angles relating the pas to 
0 	 0 0 0 

the molecular-fixed frame for the n 
th

configuration. We also note 

that the motionally averaged transformation is dependent on the 

configuration. Using the definition of D '9 (Q) introduced in 
pq 

Chapter 2 and the identity given by equation 115, equation 114 may 

be rewritten as: 

dir 
T2k = 	F E Tnl  D2(") 	(Qn)()k-q 	 (116) 

fl pq  2p pq 	o 	-qk 

where C 2 (Q) is an element of the complex ordering matrix for 

the nth  configuration. 

Equation 116 is valid for any molecular symmetry, any phase 

symmetry, and assumes correlation between molecular reorientation 

and internal molecular motion. We wish to consider only the case 

of uniaxial phases such as nernatic or smectic A phases, and so we 

only consider the component T dir 20  

Tdir = E 	
(2)(Qn)(2)(Qn)_ 	

. 	(117) 20 	n pq  2p pq 	o -qo 

Since q varies from 2 to -2 integrally, there are 5 order parameters 

per configuration. Furthermore, if the liquid crystal is well 

aligned, the director is parallel to the magnetic field and we 

get 

lab 
= T20 	. 	 (118) 

Now we rewrite equation 117 for the case of direct dipole-dipole 

couplings. The dipolar tensor is uniaxial in its pas, as was 

mentioned in Chapter 1, and so the only nonzero component is T0 
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which is defined as: 

T 0 (ij) = 	(r 	)3 	 (119) 
2rr 

where r.. 
lJn 

 is the distance between the nuclei i and j in the nth 

configuration. Equation 117 may be rewritten as: 

dir.. - 	hy2  ) 3 T20  (ij) - - 	(r 	p 
n ijn 	n q  oq 	o -qo 

(120) 

andQ 	n (0, 	
' 

Now T20 
dir 

 (ij) is a real function and the terms on the right hand 

side of equation 120 are products of complex functions. We will now 

convert to a real ordering matrix. We use the definitions of 

D 2 () and C(2)(c2n)  to obtain oq o 	-qo 1 

dir.. - 	h'(2 	
(r.. 

)3 
 P(d()<d()> T20  

+ d() ±2i e 	<e 	1 	()> 

n 

- d 2 ()
IYO  

e 	<e 	1  d±10()> ) . (121) 
0±1 0 

Using the definitions of d() given in appendix 1.3 we obtain 
mn 

T(ij) = - %; 

+ 	(sin 0cos2y0<sin 1cos2ct1 > 

2n 	n 	2n 	n 
+ sin 0sin2y0<sin 1sin2a1> 

+ sin 

+ sina 
n 
 Cosa  n  siny  n  <sina  n  Cosa  n  sina

n
>. 	(122) 
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Using Saupe's notation for ordering parameters (67): 

s 	= 1 .,zcos 2 i> 	 (123a) 
zz 	2 

s -  s 	= -< sin2 cos2ct> 	 (123b) 
xx 	yy 2 

s 	= 2-<sin 2 Ssin2ct> 	 (123c) 
xy 2 

s, = -< sincos8cosc> 	 (123d) 

S 	= 
yz 	2 

---<sinScos3sinct> 	, 	 (123e) 

equation 122 may be rewritten as: 

T(ij) = -E(r..)3 Pn(Szz(fl)(3COS2n_1) + (S(n)-S(n)sin 2Scos 
20 	 72 

+  S 	 n 
xy (n)sin 2 	'' n sin2 	+ S 

xz  
(n)sinB 

 n 
 cosS

a 
 cos'(

a  + 

+ S (n)sinB cos3 sin'( ) 
yz 	a 	n 	n 

(124) 

Equation 124 is in the notation most often seen in the literature. 

We have dropped the 0 subscript on the Euler angles and so 

= (0, 	
, cL). The S(n) matrix is a real, symmetric matrix, and 

since S = 0 in an isotropic phase, the matrix is traceless 

Tr(S(n)) = S(n) + S(n) + S(n) 
	

(125) 

Now admittedly, equation 124 is rather ominous. It states that, 

given a knowledge of the molecular geometry of each configuration, 

the unknowns of the problem are the products PS' 1 . Since each 

ordering matrix has five independent components we expect 5 x n 
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n—hexane: Configurations 

ttt 

XZ---  y 
ttg± 
	

tg + - t 

9—  
g —  tg 
	 g — tg 

  

++ 
ggt g — g — g- 

  

/ 

X8L 823-8620 

Figure 44. The allowed configurations of n-hexane. 

All configurations that involve adjacent gauche 

rotations of opposite sign are excluded. 



unknowns, as was mentioned in section 3.2.5. Now it is obvious 

that for a system like n-hexane, the number of unknowns (there 

will be 45) will vastly exceed the number of independent proton- 

proton couplings (there are 10 if the methyl groups are deuterated). 

Thus equation 124 must be simplified if we are to proceed. 

One approach is to consider only the most probable configura-

tions, that is, the all-trans and the single gauche configurations. 

This is a reasonable first order approximation since many of the 

multiple gauche configurations occur with very low probability 

even in isotropic systems (100). In fact, all configurations 

involving opposite gauche rotations on adjacent bonds (g+g_) 

areforbidden due to steric repulsion. Therefore we only consider 

+ 	+ 	 + 
the configurations: ttt, gtt, ttg, and tgt. 

Now since the 4-methylene chain (n-hexane-1,l,1,6,6,6-d 6 ) is 

symmetrically substituted, the configurations ttg
± 
 and g± tt have 

identical ordering matrices and equal configurational probabilities. 

Thus equation 124 involves only 3 independent order matrices and 

we have at most 15 unknowns. This still exceeds the number of 

independent couplings, but the number of unknowns may still be 

reduced by configurational symmetry. 
+ 	+ 

From figure 44b, we see that the ttg (=g tt) configuration 

has no symmetry and we expect all five components of the ordering 

tensor to be nonzero. 

Figure 44a shows the ttt configuration of n-hexane. We 

assign the coordinate system as follows: the z axis is parallel 

to the vector connecting alternate carbon nuclei, the x axis 
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bisects the H-C-H angle, and the y axis completes a right-

handed coordinate system. We see that there are four symmetry 

operations: E, C 
2 
 ,a XZ  and i. The inversion center is located 

at the midpoint of the central carbon-carbon bond. We designate 

P() as the probability that an excursion of Q = (ce, , y) occurs 

from the coordinate axes and we get 

C 	-> P(-a, ir-) = P(ct,) 	 (126a) 

-> P(-a) = P(ct) 	 (126b) 

P(rr+a, ir+) = P(ct,) 	. 	 (126c) 

Equations 126 imply that only S(ttc) and S(ttt) - S(ttt) 

are nonzero. 

+ 
Figure 44c shows the tg t configuration. The z-axis is 

assumed to be parallel to the central carbon-carbon (C-C) bond, 

and the y-axis bisects the angle between the second and fourth 

C-C bonds. The x-axis completes a right-handed coordinate system. 

There are two symmetry operations, E and C and we find that 

CY -> P(-ct,ir-) = 
	 (127) 

which implies that only S(tgt) S(tgt) - Sy(tg±t), and 

S(tg t) are nonzero. 

In summary, we have reduced the problem to 10 unknowns which 

involve the ordering parameters: 
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S(ttt) =S1 	=> S1  and S1  - S1 	 (128a) 
zz 	xx 	yy 

S(tg + 
	2 
t) = S 	=> S

2 	
S 	- S 2 
	2 

and S 	 (128b) 
zz' 

2  
xx 	yy' 	xz 

S(g + tt) = S(ttg ) =>S 3  = S 3  , S3  - S3  , S 3 , S 3 , and S 3  (128c) 
zz xx 	yy 	 yz 

and the configurational probabilities: 

P 
ttt = P 1 	

(129a) 

P ± = P2 	 (129b) 
tg t 

PP ± 	=P 
ttg 	g tt 	3 	

(129c) 

The ten unknowns of the problem can be obtained through the 

simulation of the 6 quantum spectrum. A set of 10 coupling constants 

is calculated from a set of PS(n)'s, and is used to generate a 

theoretical 6-quantum spectrum. If necessary, the fit may be 

improved by an iterative calculation in wliich the coupling constants 

are treated as parameters. 

Another simplification of equation 124 may be obtained by 

assuming that for each configuration, molecular reorientation can 

be described by the single order parameter S(n). S(n) mea-

sures the tendency of the z-axis of the molecular-fixed coordinate 

system of the n 
tF1  configuration to align parallel to the z-axis 

of the director coordinate system. Now we can assume that S(n) 

is the only nonzero order parameter if the molecular z-axis is 

an axis of three-fold symmetry or higher. But the approximation 

might be made that if S(n) is much larger than the other order 

parameters, the products P(S(n) - S(n), Pn(Sxz(fl) etc. may 
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be neglected. Measurements of S 
xx  (n) - S yy 

 (n) and S 
xz  (n) for 

chain molecules in liquid crystalline phases have appeared in the 

literature (101) and indicate that S  
K 	

yy (n) and S 
xz 

 (n) 

are better than an order of magnitude smaller than S 
zz 
 (n). Those 

measurements, however, were obtained for alkyl chain protons (or 

deuterons) on the mesogens themselves - (PAA, pentylcyanobiphenyl)-

and n-hexane cannot be expected to order in exactly the same manner 

as the chain moiety of a liquid crystal mesogen. In particular, 

we expect that the approximation is most questionable for the 

very nonlinear configurations such as tg ± g or g ± ± g g which tend 

to have the least anisotropic shapes. Such configurations, however, 

may occur with a very low probability in liquid crystalline systems, 

so the approximation may be useful. 

We also note that the S(ns are given to be different 

for each configuration. Now it is often assumed in the literature 

that the S(n)'s for all configurations are equal. While such 

an assumption allows calculation of the relative configurational 

probabilities, it is only strictly valid for configurations related 

by symmetry even if the rate of internal motion is far greater 

than the rate of molecular reorientation (102). 

In summary, the second model includes seven unknowns which 

are the Products PS(n) for the configurations ttt, ttg±(=g±tt), 

tgt, g tg , g tg , tg g (=g g t), and .g g g . The configurations 
±; 	+-+ 	-•++ 

tg g , g_g+g_ and g+g_g_ are neglected since they result in 

severe steric hindrances. 

A third model would involve only the "linear" configurations 

with such configurations as g g t and ggg being neglected. Such 
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a model would require five unknowns. 

Another model which has appeared in the liquid crystal 

literature (47) and the lipid literature (103) includes only 

the all-trans configuration and "kink" configurations ( ... tg±tg±t) 

Kink configurations are expected to be abundant in long alkyl 

chains in ordered phases since they perturb least the linear 

structure of the chain. While such a model may be appropriate for 

systems of long chains, the model is less applicable to a 5 bond 

chain, where the single gauche configurations are no less "linear" 
+ + 

than the g tg configurations. 

3.4 Experimental Results and Discussion 

3.4.1 Chemical Synthesis of n-hexane-1,1,1,6,6,6-d 6  

ET 0 
(i) CD3 I + Li 	2 >CD3LI + Lii 

In a 200 ml, three-neck flask, equipped with a condensor, 

dropping funnel, and magnetic stir bar, 1.4 gm of lithium wire 

cut into 50 pieces were added to 30 ml of dry ether under an 

argon atmosphere (104). 10gm (69 nmoles) of Methyl-d 3  iodide 

(Aldrich Chemical, >99%, Gold Label) in 30 ml of dry ether were 

added dropwise to the stirred and gently-heated solution (reflux 

maintained) over a period of 1.5 hours. The reflux was continued 

only shortly after the addition. The flask was then immersed in 

a 40 
0
C oil bath and most of the ether was removed by an argon 

stream. Then the flask was cooled with an ice bath and tetra-

hydrofuran (THF) was added slowly and the solution was allowed 

to warm to room temperature. The solution appeared homogeneous 

with the exception of the unreacted lithium. 



THF 
(ii) CD 3Li + Cul 	> (CD3 ) 2 CuLi + Lii 

The methyllithium-d 3  solution was transferred by syringe to 

a dropping funnel and was added dropwise to a suspension of 4.75 

gin (25 mmoles) of cuprous iodide (under argon) in 50 ml of TI-IF 

in a 200 ml flask (105). The temperature of the reaction mixture 

was maintained at slightly below 0
0
C. 

(iii) (CD 3 ) 2 CuLi + Br(CH2 ) 4Br 	> CD3 (CH2 ) 4CO 3  

At the conclusion of the addition, 3.2 gin (1.8 ml, 15 mmole) 

of 1,4-dibromobutane were added dropwise, while maintaining a tempe- 

0 
rature of 0 - 0 10 C. The solution was subsequently allowed to 

warm to room temperature and was stirred overnight. 40 ml of 

decane and 5 ml of water were added and the solution was filtered. 

Then the solution was washed with 300 ml of a dilute solution of 

sodium thiosulphate, and then washed four more times with water to 

remove most of the THF and ether. The decane solution was dried 

with calcium sulphate, decanted, and distilled with a small frac- 

tionary column. The distillate was first washed with cold sulfuric 

acid and then water. The n-hexane-1,1,1,6,6,6,-d 6  was dried by 

vacuum distillation from 4A molecular sieve. Gas chromatography 

(6' x 1/8" .1% SP-1000 on 80/100 mesh Carbopack C) at 90 0  - 22 0  

indicated greater than 99% deuteracion. Mass spectrometry indicated 

99.2% isotopic purity. The yield was .54 gm (39%). 

A high resolution ninr spectrum of n-hexane-1,1,1,6,6,6-d 6  in 

CDC13 (VH = 180 Mhz, deuterium decoupling, TNS) is shown in figure 

45. The single peak (4 hz full width at half maximum) downfield 

WIM 
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Figure 45. 	The proton nrnr spectrum of isotropic 

n-hexane-d6  with deuterium dicoupling. The one at 0.0 

ppm is TMS. 



from TMS is from the methylene protons and indicates a negligible 

isotropic chemical shift difference between the methylene groups. 

3.4.2 Experimental Methods 

About .00055 gm of n-hexane-1,1,1,6,6,6d 6  (from now on we 

will use n-hexane-d6 ) were dissolved in .3 gm of p-octylphenyl 

2-chloro-4 (p-heptylbenzoyloxy) benzoate (Eastman 15320), a liquid 

crystal with a wide nematic range (40
0C-76

0C). The solution was 

sealed in a 6 x 10 xmn pyrex tubed under vacuun after several freeze-

pump-thaw-cycles. 

All single quantum and multiple quantum nmr spectra were 

obtained on a home-built spectrometer operating at a proton reso-

nance frequency of 185 Mhz. The spectrometer has been described in 

detail elsewhere (56, 88). 

The nmr coil was of the solenoidal type, and was doubly tuned 

at the proton, and deuterium (28.4 Mhz) resonance frequencies using 

a variation of the circuit suggested by Waugh et.al . (106) (see 

figure 46). The nmr probe is identical to the probe described by 

Sterna (65). The proton ninety degree pulse time was 3 isec, 

corresponding to a pulse power (in frequency units) of 83 khz. 

Allspectra were obtained with deuterium decoupling. In order 

to completely decouple deuterium from protons in an anisotropic 

phase it is necessary that the deuterium decoupling power (in 

frequency units), exceeds the decoupling splitting 
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w rf >> 2w Q 
	

(130) 
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Figure 46. The doubly tuned coil design used to obtain 

deuterium decoupled proton multiple quantum spectra of 

oriented n-hexane-d6. 
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Figure 47 shows a deuterium nmr spectrum of n-hexane-d 6  oriented 

in E-15230. We observe that the quadrupolar splitting is about 

3.350 khz, and so the decoupling power requirement is very moderate. 

It was found that complete decoupling was possible with less than 

10 watts of decoupling power. Decoupling power was applied con-

tinuously for periods of up to .1 seconds without detectable sample 

heating. 

All nmr spectra were obtained at a temperature of 33.0
0
C, 

where the solution was observed to be nematic. Temperature control 

was to within ±.l ° C and was accomplished by streaming heated, dry 

nitrogen over the sample. The gas was transferred into the probe-

head through a stainless steel triple-walled tube in which the 

space between the outer two walls was evacuated. The nitrogen gas 

was heated by a tungsten wire coil positioned at the mouth of the 

transfer line about 1 cm from the sample and the temperature was 

monitored by a copper-constantan thermocouple positioned about 1.5 

cm from the sample. The probe head was enclosed by a double-walled 

Pyrex dewar. 

3.4.3 Single Quantum Spectrum 

The single quantum proton free induction decay of n-hexane-d 6  

oriented in E-15320 was obtained at 33
0C using a standard Hahn 

spin echo pulse sequence to eliminate the effects of static field 

inhomogeneity. Deuterium decoupling was accomplished by continuous 

irradiation. 4096 points were obtained at a timing increment of 

50 usec, and stored in the memory of a Nova 820 minicomputer. 

Subsequent Fourier transformation (4096 points) yielded a very 
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Figure 47. The proton decoupled deuterium nmr spectrum 

of oriented n-hexane-d6  using a Hahn spin echo pulse 

sequence. The fine structure on the deuterium 

quadrupolar satellites is due to intramethyl dipolar 

couplings. 
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Figure 48. The proton single quantum nmr spectrum of 

n-hexane-d 6  obtained using a Hahn spin echo pulse 

I . 	 sequence with deuterium decoupling. 
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complex spectrum (the power spectrum is shown in figure 48). 

Linewidths (full width at half maximum) were about 10 - 15 hz. 

No attempt was made to analyze the spectrum. 

3.4.4 Multiple Quantum Spectra 

Multiple quantum free induction decays of n-hexane-d 6  oriented 

in E-15320 were obtained at 33
0
C using the 4-pulse sequence described 

in section 3.2.4. TPPI was used to separate the different multiple 

quantum orders, with appropriate phase shifts being generated by 

a Daico 100D0898 digitally-controlled analog phase shifter (see 

section 4.7). All multiple quantum decays were obtained with deu-

terium decoupling during the preparation, evolution, and mixing 

periods. 

Each multiple quantum experiment involved the accumulation 

of 4096 points at a timing increment of 10 Tisec per point. The 

multiple quantum signal was observed to decay for only about one 

time constant, so signal truncation probably limits the resolution. 

Fifteen multiple quantum experiments were performed for preparation 

times ranging between 2 insec and 15 msec. The fifteen decays 

were Fourier transformed (8192 points) and the power spectra were 

added together, with appropriate scaling. 

Figure 49 shows the 5 and 6 quantum regions and figure 50 

shows the 6, 7, and 8 quantum regions. Linewidths are observed 

to be about 20 hz. The frequencies of the lines in the 6 and 7 

quantum regions, measured relative to the center of each order, 

appear in table 33. As expected, the 7 quantum spectrum consists 

of two pairs of lines, and the central line is an artifact caused 
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Figure 49. 

(a) The multiple quantum proton nmr spectrum of 

oriented n-hexarie-d 6  obtained using a TPPI 

pulse sequence with deuteriurn decoupling. 
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Figure 49. 

(b) Expansion of the five and six quantum 

regions. 
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Figure 50. The six and seven quantum order of the 

proton multiple quantum spectrum of n-hexane-d 6 . 
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by modulation of the pulse amplitude by the Daico phase shifter. 

* 
Table 3.3: Experimental Six and Seven Quantum Transition Frequncies 

Am=6 

±2298 hz 	 ± 1044 hz 

±2046 	 ± 252 

±1698 

±1554 

±1254 

±1146 

±1026 

± 846 

± 798 

± 714 

± 414 

± 354 

* 
Frequencies are measured relative to the center of the multiple 

quantum orders (6kw and Thw). 

The 6 quantum spectrum consists of 12 pairs and a central peak. 

Although 14 pairs of lines are expected, we will show in the next 

section that 2 pairs are expected to occur very close to the central 

lines and so are unresolved in the power spectrum. 
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3.4.5 Calculations and Discussion 

In this section we present a preliminary analysis of the 

data presented in section 3.4.4. In particular we will calculate 

proton-proton coupling constants for n-hexane-d6  using the expression 

dir hy2  ..) - 	
E(r.. 

)3  P S (n)(3cos 2  -1) 	(131) D(ij) = T20  (ij - - 	2 	ijn 	n zz 	 n 

which is a simplification of equation 125. We will also assume 

that S(n) does not vary much with the configuration, so equation 

131 is simplified to 

2 
D(ij) 	- 	-S 	

i (r 	) 	P (3cos 2  -1) 	. 	 (132) 
4rr 
2 zz 	jn 	n 	a 

Sets of average proton-proton dipole-coupling constants will 

be calculated for each of the motional models described in section 

3.3.2. From the spectrum of isotropic n-hexane-d 6  we find that the 

scalar coupling between the protons of different methylene groups 

is negligible as is the isotropic chemical shift difference. Though 

the difference in anisotropic chemical shifts is also expected to be 

small, no data is available in the literature for n-hexane. Admitting 

ignorance, we will therefore neglect the anisotropic shift difference 

and assume that the internal Hamiltonian is 

:Jc= 	E 	D..(31.1 . - I.•I.) 
i<j 13 	z1zJ 	1 3 

(133) 

where D.. is given by equation 132. Assuming that the internal 
1 3 

Hamiltonian is given by equation 133, the set of D 1 t s calculated 

for each motional model will be used to calculate theoretical six 

and seven quantum spectra. 



In order to calculate the geometric parameters (r..) 3 (3cos 2 -1), 

the coordinates of each proton nucleus were calculated for each 

configuration assuming that the carbon-carbon bond distance is 

1.54A, the carbon-carbon bond distance is 1.11A, all bond angles 

are 109.450, and rotational isomers are related by 1200 rotations 

about the carbon-carbon bonds. A complete listing of the proton 

nuclear coordinates for all configurations not involving adjacent 

gauche rotations of opposite sign (g±g±t 	g±gfg±, gg±g+) is given 

in appendix 3.2. 

Using the nuclear coordinates listed in appendix 3.2 the 

internuclear distance r 
ij. . n was calculated for each nuclear pair 

in each configuration. Similarly the angle a n  between the inter-
nuclear vector and the molecular z axis was calculated for each 

nuclear pair in each configuration using the identity 

tan 	(x2+y 2 ) 1/2 
n 

z 
n (134) 

Finally, the coupling constant of nuclei i and j for the 

th 
n conf i guration was calculated by the program CPARAN using the 

expression 

hy 	
ijn

2 D (ij (r 	) 3 (3cos 2 
 n

-1) 	 (135) ) = -  

For two protons, = -240.14 	. A complete listing of the - 
42 	

A3 

coupling constants (in units of kilohertz is given in appendix 3.3) 

It remains to calculate a set of average coupling constants 

for each model using equation 132. This requires that each conf i- 

gurational coupling constant, given by equation 135, be weighted 	 - 

by an amount P, the configurational probability. We define the 
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configurational probability as the statistical weight of the 

configurations incidence divided by the sum of the statistical 

weights of all feasible configurations. The statistical weight 

of the nth configuration for an rn-bond alkyl chain, assuming 

interdependent rotational potentials u 

m1 

= 	u . 	 (136) 

± 

	

 
where i labels the bond, ci. = t,g , 	t,g 

±
and we excluded any 

configuration that involves adjacent gauche rotations of opposite 

sign. 

The term u 
ai is defined as 

u. 
1 	 cI3 

exp(-E /RT). 
1 	. 	 ( 137) 

Thus the sum over statistical weights is the partition function 

z=Ec 	, 	 (138) n fl 

and the configurational probability is given by 

P 
m-1 

II 
fl 	 ai 	 (139) 

i=2 

To proceed we muct calculate sets of P 
fl  's for each model. 

As a first approximation we assume a simple weighting of the 

configurational probability according to the number of bonds existing 

in gauche isomeric states, and we assume that for a given bond the 

probability of a trans state occurring is twice that of a gauche 

state. Furthernxre, a probability of zero is assigned to any 

configuration in which adjacent bonds exist in gauche states of 

opposite rotation (e.g. tgg). Given these assumptions, configu- 
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rational probabilities for each of the models discussed in 

section 3.3.2 were calculated and are listed in table 3.4. 

Table 3.4: Calculated Configurational Probabilities for the 

Notional Models of n-hexane-d6  

±± 
Model P 	P + 	P 	(=z + tt) P + 	' + ±(g g t) P + ± P ± ± ± ttt 	tgt 	ttg 	 gtg+ tgg 	 g+g g g g 

1 .25 .125 .125 0 0 0 0 

2 .16 .08 .08 .04 .04 .04 .02 

3 .2 .1 .1 .05 0 .05 0 

We also note that the symmetry of a three bond chain requires 

that the following identities exist 

= D78  (140a) 

D13  = D24  = D57  = D68  (140b) 

D14  = D23  D58  = D67  (140c) 

D15  = D26  = D37  = D48  (140d) 

D16  = D25  = D38  = D47  (140e) 

D17  = D98  (140f) 

D18  = D27  (140g) 

D34  = D56  (140h) 

D35  = D46  (140i) 

D36  = D45  (140j) 

and so there exist 10 independent coupling constants. 

Using the probabilities given in table 3.4, the configurational 
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coupling constants given in appendix 3.3, and the identities 140a-j, 

sets of average coupling constants may be calculated for each of 

the three models discussed in section 3.3.2 using equation 132. 

The results are tabulated in table 3.5. Using these average coupling 

constants, 6 and 7 quantum spectra were calculated using the program 

WINP76, which is described in detail in reference 82. Theoretical 

spectra generated by WIMP76 are shown in figures 52a - e. Calculated 

frequencies are listed in table 3.6. Figure 52a shows the 6 and 7 

quantum spectra assuming the existence only the "all trans" rota-

tional isomer. Clearly the fit must be improved by the addition 

of other rotational isomers. 

Figures 51b-d show theoretical 6 and 7 quantum spectra for 

the cases in which additional rotational isomers are included. 

Figure 51b shows the case of inclusion of the "single gauche" 

isomers, g±tt(=ttg±) and tg±t. Figure 51c shows the case in 

which all feasible configurations are included and figure 51d shows 

the case in which only the "linear" configurations are included. 

In the latter case such configurations as g±g±t and g±g±g± have 

been omitted. It is clear that figure 51d shows the closest corre-

spondence to the experimental data. 

The question remains, can the fit toexperimental data be 

improved for any of the three models by an adjustment of the 

quantities SP? One way to do this is to adjust the average 

coupling constants D(ij)  iteratively using a "least squares" 

algorithn with the object of minimizing the difference between the 

theoretical and experimental line positions ( 	). An improved 

set of D 's could then be obtained and refined values of S (n)P 
ij 	 zz 	n 



n = 6 
ZOL 823-8605 

Figure 51. Spectral simulations of the six and seven 

quantum orders of n-hexane-d 6 . It is assumed that 

P (trans)/P (gauche) = 2. 

(a) All trans (ttt) only. 
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n:6 
	 n7 

XBL 823-8608 

Figure 51. 

(b) All trans (ttt) and single gauche (g±tt  and 
+ 

tgt) only. 
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XBL 823-8607 

Figure 51. 
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+ 	+ 	+ ; 	+ + 	+ + 	+ + + 
(c) ttt, gtt, tgt, gtg ,. gtg, gg , t ggg. 



Model 3: All Linear Configurations 

I kHz 
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fl =6 	 n = 7 
XBL 823-8606 

Figure 51. 
+ 	+ 	± 	+ + 

(d) ttt, gtt, tgt, g tg , gtg. 
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Table 3.5: Calculated Averaged Dipolar Coupling Constants 

for the Notional Models of n-hexane-d 6  

D (ij ) 
Model 1 Model 2 Model 3 

12 1642.20 847.10 1434.47 

13 113.77 37.20 4.43 

14 69.81 40.30 -23.20 

15 -1018.56 -764.90 -915.11 

16 561.49 -621.60 -639.74 

17 -301.54 -363.70 -420.00 

18 -160.26 -384.00 -152.75 

23 69.81 40.30 -23.20 

24 113.77 37/20 4.43 

25 -561.49 -621.60 -639.74 

26 -1018.56 -764.90 -915.11 

27 -160.26 -384.00 -152.75 

28 -301.54 -363.70 -420.00 

34 2080.48 2252.00 2161.37 

35 67.70 5.60 89.97 

36 14.75 -30.60 29.79 

37 -1018.56 -764.90 -915.11 

38 -561.49 -621.60 -639.74 

45 14.75 -30.60 29.79 

46 67.70 5.60 89.97 

47 -561.49 -621.60 -639.74 

48 -1018.56 -764.90 -915.11 

56 2080.48 2252.00 2161.37 

57 113.77 37.20 4.43 

58 69.81 40.30 -23.20 

67 69.81 40.30 -23.20 

68 113.77 37.20 4.43 

78 1642.20 ' 	847.10 1434.47 

* 
In units of hertz. 
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Table 3.6: Calculated Six and Seven Quantum Transition Frequencies 

Of the Motional Models of n-hexane-d 6  

Am = 6 

Model 1 Model 2 Model 3 

±2257 ±2223 ±2219 

±2006 ±2136 ±2050 

±1922 ±1724 ±1770 

±1369 ±1435 ±1504 

±1253 ±1435 ±1323 

±1015 ±1378 ±1178 

±997 ±1268 ±1051 

±655 ±720 ±958 

±477 ±712 ±881 

±417 ±609 ±622 

±314 ±589 ±471 

±257 ±227 ±414 

±137 ±191 ±218 

- - 55 

Am = 7 

	

±1063 	 ±1080 	 ±1053 

	

±40 	 ±644 	 ±270 

* 
In units of hertz, measured from the center of the multiple 

quantum order. 
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could be calculated by the solution of a set of simultaneous 

equations of the form of equation 130. 

Iterative improvements of the spectral simulations shown in 

figures 51b-d were attempted using the program MQITER. MQITER 

has been thoroughly described in reference 88 so we only comment 

that the parameters used were the 10 independent coupling constants 

and these parameters were adjusted via a least squares algorithm to 

minimize the differences between the experimental and calculated 

six and seven quantum transition frequencies. Twenty-six five 

quantum transitions were also included in the calculation. Of the 

three models considered in this study only the model involving 

"linear" configurations (figure Sld) converged after a small impro-

vement in rms error (48 to 45 hz). The other models (figures b and 

c) diverged after a single iteration. However, the rms improvement 

in the third model was mainly in the five quantum spectrum, while 

the "refined" fit is actually poorer in the six and seven quantum 

spectra (see table 3.7).. This clearly indicates that the iteration 

is converging to a local minimum, a situation that often occurs in 

least-squares algorithms (104). 

WIMP76 also generates transitions intensities for individual 

preparation times and for "ultimate" ensemble averages. The spectrum 

resulting from the coaddition of several multiple quantum power 

spectra (corresponding to different preparation times) is called 

an ensemble average. If a very large number of power spectra are 

added, convergence to an ultimate ensemble average is expected (82). 

Figure 52 compares the experimental ensemble average of the six and 
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Table 3.7: Calculated Six and Seven Quantum Transition Frequencies 

* 
for Model 3: NQITER 

±2213 

±20 75 

±1819 

±1511 

±1335 

±1180 

±1061 

±981 

±873 

±590 

±487 

±434 

±94 

±59 

m = 7 

±1084 

±250 

* 
in units of hertz 
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seven quantum spectra with the calculated ultimate ensemble 

average. There is no agreement, indicating that the experimental 

average has not converged to the "ultimate value". 

3.4.6 Conclusions 

In this chapter multiple quantum nmr spectroscopy has been 

applied to the study of the configurational statistics of an 

alkyl chain molecule, n-hexane-d 6 , dissolved in a nematic liquid 

crystal. Specifically, high resolution multiple quantum spectra 

have been obtained by using a 180 0 
 pulse in the middle of the 

evolution time (t 1 ) to refocus magnetic field inhomogeneity together 

with TPPI to separate the various multiple quantum orders. Theoretical 

six and seven quantum spectra have, been calculated assuming various 

configurational populations and assuming a rotational isomeric model 

of chain motion. It has been found that the closest agreement with 

experiment results assuming the following probabilities 

P 	=.2 
ttt 

P ±=P± 	=P + =.l ttg 	g tt 	tgt 

P± 	= P ± +=.05 gtg 	gtg 

P g g 
± ±

t  =P tg ± g + =P g 
 + + + =0 
g- g--  

A refinement of the above probabilities was attempted using 

the dipolar couplings as parameters and iterating on several five 

quantum lines and all the six and seven quantum lines. The result 
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Figure 52. Comparison of the experimental six and seven 

quantum spectra with the "ultimate ensemble average" 

generated by WINP76. 



was that the five quantum f it improved slightly at the expense 

of the six and seven quantum fits. Therefore the calculation seem 

to have converged to a nonglobal minimum. 
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Appendix 3.1: Matrix Form for_ex(-ik'i) 
yy 

	

We define 	as 
yy 

.Tt 	 .Tr 

' 2 'x ,D 
t 	=e 	it 	e 
yy 	 zz 

	

= d/4(312 	12) 

	

1 	0 	-i/° 	0 

	

o 	1 	0 
=- 	 =-M 

	

8 o 	i 	0 	8 

	

o 	 0 	-1 	 (1) 

Now expand exp(-iT ) in a Taylor series 
yy 

	

exp(iXDT ) = 	
(XD 1)2 	i( 	T) 3  

T 	yY 	+ 	yy + 	 (2) 

	

2! 	 3! 

and use the identities 

(7(D ) 2k = (3d/4)2k 1 = (dt) 2k.  
yy (3a) 

( 	
)2k+1 = 1/2(3d/4) 	

(dt)2k 
2 	

N 	 (3b) 
yy 

to obtain the final result 

2k 	
k (di) 	i /2 N E ( ) (d' )2k+l _ ct 

exp (_(DT) 
= k0 (_)k (2k)! 	 k=0 	(2k+l)! 

= cos(d'i) - /2 M sin(d'T) 	 (4) 
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Appendix 3.2: Nuclear Coordinates for the Methylene Protons of 

n-hexane 

In this appendix, the nuclear coordinates of the methylene 

protons for all allowed configurations of n-hexane. If the molecular 

coordinate system used does not coincide with the all trans coordinate 

system (figure 42), the Cartesian rotation matrix R(cL, , y) relating 

the two coordinate systems will be specified. R(ct, a, 'y') is defined 

as: 

co5cLcOScOSy-SiflcLSinY sincLcOscOSy+cOScLSiffy -sincoSy 

R(ay) = -cosctcossinY-sinccOSY -sincLcOSSifly+coScLcOS'y' 	sinsin( 

L cosasin 	 sinasin 

(1) 

In the tabulation that follows, P. referes to the point 

coordinates of nuclei i. P. 1 = ( x.
1
, y.

1
, z. 

1 
 ). Coordinates are in 

units of Angstroms. 



a. All trans 

P 1  (-1.09, .91, 	-1.89) P 5  (-1.09, .91, 	.63) 

P 2  (-1.09, -.91, 	-1.89) P 6  (-1.09, -.91, 	.63) 

P 3  (1.09, .91, 	-.63) P 7  (1.09 9  .91, 	1.89) 

P 4  (1.09, -.91, 	-.63) P 8  (1.09, -.91, 	1.89) 

b. single gauche 

P 1  (-1.09, .91, 	-1.89) P 5  (-1.09, .91, 	.63) 

P 2  (-1.09, -.91, 	-1.89) P 6  (-1.09, -.91, 	.63) 

P 3  (1.09, .91, 	-.63) P 7  (1.09, -.91, 	1.89) 

P4  (1.09, -.91, 	-.63) P 8  (-.198, 0, 	2.80) 

t t g+ 

P 1  (-1.09, .91, 	-1.89) P 5  (-1.09, .91, 	.63) 

P 2  (-1.09, -.91, 	-1.89) P 6  (-1.09, -.91, 	.63) 

P 3  (1.09, .91, 	-.63) P 7  (1.09, -.91, 	1.89) 

P 4  (1.09, -.91, 	-.63) P 8  (-.198, 0, 	2.80) 

P 1  (-1.09, -.91, 	-1.89) P 5  (-1.09, .91, 	.63) 

P 2  (.198, 0, 	-2.8) P 6  (-1.09, -.91, 	.63) 

P 3  (1.09, .91, 	-.63) P 7  (1.09, .91, 	1.89) 

P4  (1.09, -.91, 	-.63) P 8  (1.09, -.91, 	1.89) 

g t t 

P 1  (.198, 0, 	-2.8) P5  (-1.09, .91, 	.63) 

P 2  (-1.09, .91, 	-1.89) P 6  (-1.09, -.91, 	.63) 

P 3  (1.09, .91, 	-.63) P 7  (1.09, .91, 	1.89) 

P4  (1.09, -.91, 	-.63) P 8  (1.09, .91, 	1.89) 
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+ 
tg t 

The molecular coordinate system of this configuration is 

related to that of ttt by the Euler angles Q = (180, 35.25, 60) 

	

fT.409 	-.866 	-.2891 
R (180,35.25,60) = 	.707 	-.500 	.500 

	

L-.577 	0 	.817 

P1  (.204, -2.17, -.915) 

P2 	(1.78, -1.26, -.915) 

P 3  (-1.05, 0, -1.14) 

P4  (524, .91, -1.14) 

P5 	(1.05, 0, 1.14) 

P6  (-.524, .91, 1.14) 

P 7  (-.204, -2.17, .915) 

P8  (-1.78, -1.26, .915) 

t gt 

The molecular coordinate system is related to that of ttt 

by the transformation: 

	

r .409 	-.866 	.2891 

	

.707 	.5 	.5 

0 	.8l7 

c. Double Gauche 

-  g tg +  

p 1  (.198, 0, -2.80) 

E'2 	(-1.09, .91, -1.89) 

P 3  (1.09, .91, -.63) 

P4  (1.09, -.91, -.63) 

P5  (-1.09, .91, 	.63) 

P 6  (-1.09, -.91, 	.63) 

P 7  (1.09, -.91, 	1.89) 

P8  (-.198, 0, 	2.80) 



t g g + 
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P1  (-1.09, .91, 	-1.89) 

p2  (-1.09, -.91, 	-1.89) 

P 3  (1.09, .91, 	-.63) 

p4  (1.09, -.91, 	-.63) 

t g g - 

P 1  (-1.09, .91, -1.89) 

2 (-1.09, -.91, -1.89) 

P 3  (1.09, .91, -.63) 

P4  (1.09, -.91, -.63) 

g+t g  

P 1  (-1.09, -.91, -1.89) 

P2  (.198, 0, -2.80) 

P 3  (1.09, .91, -.63) 

P4  (1.09, -.91, -.63)  

	

P 5 	(.2, 0, 1.54) 

	

P 6 	(-1.09, .91, .63) 

P 7  (-1.98, -1.26, -.28) 

P8  (-1.98, -1.26, 1.54) 

	

P5 	(-1.09, -.91, .63) 

	

6 	(.2, 0, 1.54) 

P 7  (-1.98, 1.26, 1.54) 

P8  (-1.98, 1.26, -.28) 

	

P5 	(-1.09, .91, .63) 

P6  (-1.09, -.91, .63) 

P 7  (-.198, 0, 2.80) 

	

P 8 	(1.09, .91, 1.89) 

g tg 

P1  (-1.09, -.91, -1.09) 

P2  (.198, 0, -2.8) 

P 3 	(1.09, .91, -.63) 

P4  (1.09, -.91, -.63) 

g tg 

P1  (.198, 0, -2.8) 

'2 	
(-1.09, .91, -1.89) 

P 3  (1.09, .91, -.63) 

P4  (1.09, -.91, -.63)  

P5 	(-1.09, .91, .63) 

P6  (-1.09, -.91, .63) 

P 7 	(1.09, -.91 9  1.89) 

(-.198, 0, 2.80) 

p5 	(-1.09, .91, .63) 

P6  (-1.09, -.91, .63) 

P 7 	(-.198, 0, 2.8) 

P8  (1.09, .91, 1.89) 



++ 
ggt 

p1  (1.98, 1.26, -1.54) 

P2 	(1.98, 1.26, .28) 

P 3  (1.09, -.91, -.63) 

P4 	(-.2, 0, -1.54) 

t 

P 1 	(1.98, -1.26, .28) 

P 2 	(1.98, -1.26, -1.54) 

P 3  (-.2, 0, -1.54) 

P4 	(1.09, .91, -.63)  

P5 	(-1.09, .91, .63) 

P6 	(-1.09, -.91, .63) 

P 7 	(1.09, .91, 1.89) 

P8  (1.09, -.91, 1.89) 

P5 	(-1.09, .91, .63) 

P6 	(-1.09, -.91, .63) 

P7 	(1.09, .91, 1.89) 

P8  (1.09, -.91, 1.89) 
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d. Triple Gauche 

g g g 

THe molecular coordinate system of the g + + + g configuration 

is related to the ttt coordinate system by the Euler angles 

= (-60, 90, 0). 

r° 	0 

R(-60,90,0) = 	.866 	.5 	0 

Ls 	-.866 
P1  (1.89, 	-1.40, 	.243) 

P2  (2.80, 	.171, 	.099) 

P 3  (.63, 	1.40, 	-2.43) 

P4  (.63, 	.489, 	1.33) 

P5 	(-1.54, .173, .1) 

I'6 	(-.63, -.489, -1.33) 

P 7 	(.28, -2.34, .1) 

(1.54, -2.34, .1) 
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ggg 

The molecular coordinate system of the g+g+g+  configuration 

is related to the ttt coordinate system by the Euler angles Q = 

(60, 90, 180). 

ro 	0 
R (60,90,180) = 	.866 	-.5 	O 

L .866 	al 
P 1 	(2.80, .171, .099) 

P 2  (1.89, -1.40, .243) 

P3 	(.63, .489, 1.33) 

P4 	(.63, 1.40, -.243) 

P5  (-.63, -.489, -1.33) 

P6 	(-1.54, .173, .1) 

P 7 	(-1.54, -2.34, .1) 

P8 	(.28, -2.34, .1) 



Appendix 3.3: Dipolar Couplings for n-hexane-d 6  

In this appendix is tabulated the dipolar couplings between 

the methylene protons for all allowed configurations of n-hexane. 

Dipolar couplings were calculated using the equation 

D 	= - 	(r 	
)-3  (3cos2 

ij 	
- 1) 

(ii) 	4 2 	n 

where r.. is the distance between i and j in the nth  configuration, 
ijn 

and 	is the angle between the z axis of the principal axis system 

and the z axis of the molecular axis system in the n th configuration. 

The internuclear distance r. . and 	were calculated from the lJn 	n 

coordinates given in appendix 3.2. All couplings are in units of 

kilohertz. The symbol "ij)" before each coupling signifies the 

nuclei involved, numbered according to the convention given in 

figure 42. 

a. All trans 
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(1) 

19.9169 

1.8711 

2.0282 

-15.0059 

-3.8839 

-1.8082 

-1.0425  

2.0282 

1.8711 

-3 . 9939 

-is . 009 

-1.0425 

-1.8082 

34) 19.9169  

1.8711 

2.0282 

-15.0059 

-3. 8839 

2.0282 

1.8711 

-3. 8839  

-15.0059 

19.9169 

1.8711 

2.0282 

2.0282 

1.8711 

78) 19.9169 
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b. 	Single Gauche 

ttg 

12) 19.9169 23) 2.0282 34) 19.9169 45) 2.0282 67) 	-9.2732 

13) 1.8711 24) 1.8711 35) 1.8711 46) 1.8711 68) 	2.0282 

14) 2.0282 25) -3.8839 36) 2.0282 47) -3/2950 78) 	4.9854 

15) -5.0059 26)-15.0059 37) -3.2950 48) -3.8839 

16) -3.8839 27) -1.8762 38)-15.0059 56) 19.9169 

17) -1.8762 28) -1.0425 57) -9.2732 

18) -1.8082 58) 1.8711 

+ 
ttg 

12) 19.9169 23) 2.0282 34) 19.9169 45) 2.0282 67) 	1.8711 

13) 1.8711 24) 1.8711 35) 1.8711 46) 1.8711 68) 	-9.2732 

14) 2.0282 25) -9.8839 36) 2.0282 47)-15.0059 78) 	4.9854 

15)-15.0059 26)-15.0059 37) -3.8839 48) -3.2950 

16) -3.8839 27) -1.8082 38) -3.2950 56) 19.9169 

17) -1.0425 28) -1.8762 57) 2.0282 

18) -1.8702 58) -9.2732 

+ 
g tt 

12) 4.9854 23) -9.273.2 34) 19.9169 45) 2.0282 67) 	2.0282 

13) 2.0282 24) -9.2732 35) 1.8711 46) 1.8711 68) 	1.8711 

14) 1.8711 25) -3.2950 36) 2.0282 47) -3.8839 69) 	19.9169 

15) -3.8839 26) -3.2950 37)-15.0059 48)-15.0059 

16)-15.0059 27) -1.8762 38) -3.8839 56) 19.9169 

17) -1.0425 28) -1.8762 57) 1.8711 

18) -1.8082 58) 2.0282 



2.0282 67) 2.2082 

1.8711 68) 1.8711 

-3.8839 78) 19.9169 

-15.0059 

19.9169 

1.8711 

2.0282 

1.8711 

2.0282 

-15.0059 

-3. 8839 

-1. 8082 

-1. 0425 

19.9169 

1.8711 

2.0282 

-15.0059 

-3.8839 

 

 

 

 

 

 

 

4.9854 23) 

-9.2732 24) 

-9.2732 25) 

-3.2950 26) 

-3.2950 27) 

-1.8762 28) 

-1.8762 

+ 
tg t 

19.9215 23) 

7.3549 24) 

3.9488 25) 

-1.2549 26) 

.2464 27) 

17)-33.8463 28) 

18) -1.2382 
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3.9441 

7.3463 

-7.4939 

.2465 

-1. 2 382 

.6982 

 

 

 

 

 

19.9785 45) 

-2.5119 46) 

-11.1853 47) 

-1.2549 48) 

-7.4939 56) 

 

 

-11.1853 67) 3.9488 

-11.2218 68) 7.3463 

.2464 78) 19.9215 

.2465 

19.9785 

7.3549 

3.9441 

t gt 

19.9215 23) 	3.9488 34) 19.9785 45) -11.1853 67) 3.9441 

7.3463 24) 	7.3549 35) -11.2218 46) -2.5119 68) 7.3549 

3.9441 25) 	.2464 36) -11.1853 47) -7.4939 75) 19.9215 

.2465 26) -1.2549 37) 	.2465 48) -1.2549 

-7.4939 27) -1.2382 38) 	.2464 56) 19.9785 

.6982 28) -33.8463 	 57) 	7.3463 

-1.2382 	 58) 	3.9488 
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c. Double Gauche 

+ + 
gtg 

4.9854 23) -9.2732 34) 19.9169 45) 	2.0282 67) 	1.8711 

2.0282 24) -9.2732 35) 	1.8711 46) 	1.8711 68) -9.2732 

1.8711 25) -3.2950 36) 	2.0282 47) -15.0059 78) 	4.9854 

-3.8839 26) -3.2950 37) -3.8839 48) -3.2950 

16)-15.0059 27) -1.8702 38) -3.2950 56) 19.9169 

-1.8082 28) -1.3471 	 57) 	2.0282 

-1.8762 	 58) -9.2732 

g tg 

4.9854 23) 	1.8711 34) 19.9169 45) 	2.0282 67) -9.2732 

-9.2732 24) 	2.0282 35) 	1.8711 46) 	1.8711 68) 	2.0282 

-9.2732 25) -15.0059 36) 	2.0282 47) -3.2950 78) 	4.9854 

-3.2950 26) -3.8839 37) -3.2950 48) -3.8839 

-3.2950 27) -1.8762 38) -15.0059 56) 19.9169 

-1.3471 28) -1.8082 	 57) -9.2732 

-1.8762 	 58) 	1.8711 

- + 
g tg 

4.9854 

-9.2732 

-9.2732 

-3.2950 

-3.2950 

-1.8962 

-1.3471 

1.8711 

2.0282 

-15.0059 

-3.8839 

-1.0425 

-1.8762 

 

 

 

 

 

19.9169 45) 

1.8711 46) 

2.0282 47) 

-3.8839 48) 

-3.2950 56) 

 

 

	

2.0282 67) 	1.8711 

1.8711 68) -9.2732 

	

-15.0059 78) 	4.9854 

-3. 2950 

19.9169 

2.0282 

-9. 2 732 
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+ - 
g tg 

4.9854 23) 

2.0282 24) 

1.8711 25) 

-3.8839 26) 

16)-15.0059 27) 

-1.8762 28) 

-1.0425 

-9.2732 

-9.2732 

-3.2950 

-3.2950 

-1.3471 

-1. 8762 

 

 

 

 

 

19.9169 45) 

1.8711 46) 

2.0282 47) 

-3.2950 48) 

-15.0059 56) 

 

 

2.0282 67) -9.2732 

1.8711 68) 	2.0282 

-3.2950 78) 21.9854 

-3. 8839 

19.9169 

-9.2732 

1.8711 

++ 
tg g 

19.9169 23) 	2.0282 34) 19.9169 45) 	-9.2905 67) 	4.5809 

1.8711 24) 	1.8711 35) -9.2905 46) 	2.0282 68) 	4.509 

2.0282 25) -3.2912 36) 	1.8711 47) 	3.8413 78) -39.8337 

-3.2912 26) -3.8839 37) 	2.1731 48) 	.0203 

16)-15.0059 27) -22.2626 38) 	.3674 56) 	4.9969 

.2041 28) -4.7433 	 57) 	-.1181 

-1.7475 	 58) 	7.5214 

tg g 

19.9169 

1.8711 

2.0282 

-3.8839 

-3.2912 

-4.7430 

-22 . 2626 

 

 

 

 

 

 

2.0282 

1.8711 

-15.005 9 

-3. 2912 

-1.7475 

.2401 

 

 

 

 

 

19.9169 

2.0282 

-9. 2905 

.0203 

3.8413 

1.8711 67) 	7.5214 

-9.2905 68) -1.1181 

.3674 78) -39.8337 

2.1731 

4.9869 

4.5809 

4.5809 
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++ 
ggt 

12)-39.8337 

4.5809 

7.5214 

.0208 

.3674 

-4.7433 

-1.7475  

4.5809 

-.1181 

3.8413 

2.1731 

-22.2626 

.2041  

4.9969 45) 

2.0282 46) 

1.8711 47) 

-3.8839 48) 

-15.0059 56) 

 

 

	

-9.2905 67) 	2.0282 

	

-9.2905 68) 	1.8711 

-3.2912 78) 19.9169 

-3.2912 

19.9169 

1.8711 

2.0282 

ggt 

12)-39.8337 23) 	7.5214 34) 	4.9969 45) 	1.8711 67) 2.0282 

-.1181 24) 	4.5804 35) -9.2905 46) 	2.0282 68) 1.8711 

4.5809 25) 	.3674 36) -9.2905 47) -15.0059 78) 19.9169 

2.1731 26) 	.0203 37) -3.2912 48) -3.8839 

3.8413 27) -1.7475 38) -3.2912 56) 19.9169 

.2041 28) -4.7433 	 57) 	1.8711 

18)-22.2626 	 58) 	2.0282 
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d. 	Triple Gauche 

ggg 

12) 19.5037 23) 7.1111 35) 7.1155 48) 1.5239 

13) 3.7037 24) 2.1231 36) 3.3165 56) -16.9917 

14) 3.3165 25) 1.4688 37) 2.1818 57) 4.0194 

15) 2.2202 26) 1.2730 38) 1.4437 58) 7.5658 

16) .9252 27) 2.6669 45) 2.1306 67) .1983 

17) 18.0452 28) .9525 46) -4.8558 68) .1983 

18) 2.6498 34)-24.9182 47) 2.1230 78) 19.9169 

ggg 

19.5037 23) 	3.3165 

2.1231 24) 	3.7037 

7.1111 25) 	.9252 

1.2730 26) 	2.2202 

1.4688 27) 	2.6498 

.9525 28) 18.0452 

2.6669 34) -24.9182 

 

 

 

 

 

 

 

-4.8558 

2.1306 

1.5239 

2.1230 

3.3165 

7.1155 

1.4437 

2.1818 

-16.9917 

.1983 

.1983 

7.5658 

4.0194 

78) 19.9169 
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TOF 
	

228 
DI'E:C:ONNECT LINE PRINTER 
RruI(:): 1:F FE½N1 - FF. 7 / :31 / 1 

C 	 FROI:RAM C:F'ARAM 
o 	THIS PROGRAM C:ALCIJLATES C:OIJFLING PARAMETERS FOR A 
C: 	 MOLECULE WITH ANY C:ONFIC4UATION. INPUT PARAMETERS 
C 	 ARE COORDINATES OF NUCLEI IN ANGSTROMS. MAXIMUM OF 
C. 	 EIGHT NUCLEI. 

41 
421  

4 :: 

44 

45 
46 

50 

52 

60 

DIMENSION C:OOR'D(3,8) 

I NFLIT LOOP 
WRITE(10. 11) 
FORMAT (1 X, 'ENTER NUME:ER OF NUC:LE I: ', 
READ (11) NNUC 
DCI 20 I=1.NNUC: 
L.JRITE(10.13) I 
FORMAT (1 X,' I NFLIT X . Y, Z COURT' I NATES OF NUCLEUS 
ACC:EPT C:OURD (1, I). Ci:IORD (2, I). C:OCRD (:3, I) 
CONT INI.JE 

LOOP TO CALCULATE R ( I . J). THETA, AND PHI 
DO 30 I=1.NNLIC 
IF (I.EQ.NNUC:) GO TO 70 
NEXT=I+1 
DCI 40 •J=NEXT. NNLIC 
IF (C:CIORD(1, I ).EQ.COC'RD(l.J)) GO TO 41 
X2=(C:UORD(1 . J)—C:OORD(1, I.) )°2 
00 TO 42 
X2=0. 0 
IF (CUCIFTI(2. I ).EQ.CCIORD(2.J) GO TO 43 
Y2=(COC'RD(2,.J)—CUURD(2, I ))2 
GIJ TO 44 
Y2=0.O 
IF (COURT' (3. I ) .EQ.CCIUF:D (3,j) GO TO 45 
Z2=(COORD(3,.J)—C:OURD(3, I) )-2 
00 TO 46 
Z2=0. 0 
DIST=SQRT (X2+Y2+Z2) 
IF (Z2..NE.0.0) 040 TO 50 
THETA=90. 00 
GO TO 55 
ARG1=X2+Y2 
IF (ARO1.NE.0.0) GO TO 52 
THETA - 0. 00 
ci':' TO 55 
ARG2=SQRT (ARO1) 
ARO3='E;QRT (Z2) 
THETA=ATAN (ARG2/ARGS) 
THETA=(THETA180.00)/:3. 14159 
I F (V 2. EQ. 0. 0) 040 TO 60 
I F CX 2. EQ. 0. 0) 00' TO 62 
ARGI=SQRT (Y2) 
ARG2=SQRT (X2) 
AR'C43=ARG1 /ARG2 
PHI=ATAN (ARC'3) 
PHI (FHI--130.00 )/3. 14159 
040 TO 65 
F'HI=O. 00 

C 

11 

13 

20 

C 



Cia TO 65 	 229 
62 	PH I 90. 00 
C' 	OUTPUT FI..J), THETA. PHI 
135 	WF:ITE(10. 6'.) I, J. DIST. THETA, PHI 

F':'RMATUx.'F',12,',',12,'='.F7.4.lx.'THETA=',F7.4,lx.'PHI='.F7.4) 
f:ONT I NUE 

30 	CCINTINIJE 
70 	E;TOF 

E ND 
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Chapter 4: A HIGH FIELD NMR SPECTROMETER 

4.1 Introduction 

The nmr spectrometer that will be described in this chapter 

is the fourth spectrometer to be built in the laboratory of A. 

Pines. It has therefore been designated "delta". 

This chapter is divided into nine sections and one appendix. 

Sections two through five document the analog electronics of the delta. 

In section 2 is described the manner in which low power r.f. pulses 

are generated at the various nuclear resonance frequencies. In 

section 3 are described the high power r.f. amplifiers which are 

used to produce r.f. pulses at power levels in excess of 300 watts 

at the proton Larmor frequency and 2 kilowatts at the deuterium 

Larmor frequency. Finally the broadband r.f. receiver is described 

in section 4, and the phase sensitive detector is described in 

section 5. 

Sections 6, 7 and 8 document what may be called the digital 

electronics of the delta. Section 6 covers the acquisition system. 

Section 7 deals with the phase-shifter controller and in section 8 

the pulse programmer is described. 

Section 9 describes the general features of a program that 

is used by a Z-80 microprocessor to drive the pulse programmer. 

The program is especially suited for executing multiple quantum 

pulse sequences and other types of two dimensional experiments. 

The source version of the program is listed in the appendix to 

this chapter. 
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Before proceeding, brief mention should be made of the 

superconducting magnet. The magnet consists of a main solenoid 

of niobium-titanium alloy (Bruker BZH-01840070) housed in an Oxford 

dewar system. Three superconducting x, y, and z shim coils are 

also present. The persistent current of the main superconducting 

solenoid is about 34 amps corresponding to a field of approximately 

84 kiloGauss at the shim center. The proton Larmor frequency is 

360 Mhz and the deuterium Larmor frequency is 55 Mhz. 

The superconducting solenoid is contained within a liquid 

helium dewar which has a capacity of about 25 liters. The helium 

dewar is in turn surrounded by a radiation shield and a liquid 

nitrogen dewar, which has a capacity of about 30 liters. The 

liquid nitrogen dewar requires refilling about once every four to 

five days and the liquid helium dewar requires refilling about 

once every 60 days. 

4.2 Frequency and Phase Generation 

In this section we describe the manner in which the various 

nuclear magnetic resonance frequencies are generated. As we 

found in chapters two and three, time domain nmr experiments often 

require that pulses within a sequence be phase shifted relative to 

one another. Therefore, the nmr spectrometer must be capable of 

producing pulses at the same nuclear frequency but with varying 

phases. In this section we also describe the manner in which phase 

shifts are generated. 

Since the phase shift of an r.f. wave in a coaxial transmission 

cable is proportional to its frequency, phase generation networks 
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rarely operate at high frequencies. Therefore, in most ninr spect-

rometers, phase generation is usually done at some low intermediate 

frequency (IF) and the nmr frequency is generated by mixing the phase-

shifted IF with a second frequency, called the local oscillator (LO) 

frequency. In the delta spectrometer, the IF is 30 Mhz. Accordingly 

the proton LO is about 390 Mhz and the deuterium LO is about 85 Mhz. 

The delta spectrometer is capable of producing pulsed irradiations 

at two different r.f. frequencies simultaneously. This is a requirement 

for any double resonance experiment. The frequency and phase generation 

networks are therefore dual channel. One channel is designed to 

produce pulsed irradiations at the proton resonance frequency (360 Mhz), 

while the second channel can easily be adapted to produce irradiations 

at virtually any frequency up to 350 Mhz. Since the second channel 

is often operated at the deuterium frequency (55 Mhz) we will describe 

it in that configuration. A schematic of the frequency generation 

network is shown in figure 53. The quadrature phase generation network 

is shown in figure 55. 

4.2.1 LO Generation (figure 53) 

The proton LO frequency of 390 Mhz is generated as follows. A 

signal at 130 Mhz at a level of .5 Vpp (volts peak-to-peak) is produced 

by a PTS-160 frequency synthesizer (.1 hz resolution) equipped with 

an internal reference crystal. The third harmonic is generated by 

a step diode (HP 5082-0112, see figure 54). The funda- 

mental and higher frequency responses are removed by an LC circuit 

tuned to 390 Mc (figure 55). The 390 Mhz LO signal is then amplified 



233 

£5Cj-3 

Z$C•1 - 	M-IO-IS 	 *M-S31J0 

   '- 	5iZTcI,'E5 
p 

10MHZ VI 

	
ro 4ps' 

E IOAZCJT 

AF4 	O 

a, 44u-so-I 

zsc-Z- , 

ZSC-ZS 

N 70 

TO 

Figure53. Delta Spectrometer: Frequency Multiplier. 



234 

to about 2.0 Vpp by two Merrimac GAM-10-150 10 dB amplifiers, and 

split by a Minicircuits ZSG-2-1 hybrid power divider (the two outputs 

are in phase). After passing through a Texscan 390 Mhz bandpass 

filter (20 Mhz pass band) one output channel goes to the r.f. receiver 

(see section 4.4) if the observed nucleus is proton and the other 

channel goes to the r.f. generation (section 4.2.4). Each output 

should be approximately 1.2 Vpp. 

The deuterium LO frequency of 85 Mhz is produced by a second 

PTS-160 frequency synthesizer. This second synthesizer (.1 hz 

resolution) has no internal frequency reference and so must be 

"locked" to the first PTS-160. The 85 Mhz signal, at a level of .5-.6 

Vpp, is split by a Minicircuits ZSC-2-1 hybrid power divider. Each 

output channel is amplified by a Merrimac GAN-10-150 to a level of 

approximately 1.2 Vpp, and one channel goes to the r.f. generation 

(section 4.2.4) while the other channel goes to the r.f. detector if 

the observed nucleus is deuterium. If the observed nucleus is not 

deuterium, the output is terminated. 

The PTS-160 is capable of producing frequencies of up to 160 Mhz, 

and so any LO frequency not exceeding 160 Mhz may be synthesized 

directly. If a nuclear frequency exceeds 190 Mhz, the appropriate 

LO frequency may be obtained by using an r.f. frequency doubler. 

4.2.2 IF Generation (figure 53) 

As mentioned above, the intermediate frequency (IF) used in the 

delta spectrometer is 30 Mhz. A reference frequency of 10 Mhz at a 

level of about 1 Vpp is available at the rear of the proton PTS-160. 

The 10 Mhz reference is only available if the synthesizer has an 
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internal reference or if it is locked to an external reference. The 

10 Mhz reference is split by a Minicircuits ZSC-2-1 hybrid power 

divider (figure 54) and each output is amplified to approximately 

2 Vpp by a Merrimac GAN-10-150. One output is again split by a hybrid 

power divider, and the two outputs are used to lock the second PTS-160 

and to provide a reference frequency for the pulse programmer (see 

section 4.8). The other 10 Mhz channel, at a level of about 2 Vpp, 

is connected to crossed diodes (lN914) to ground. The 10 Mhz funda-

mental and the higher harmonics are separated from the third harmonic 

by a homebuilt 30 Mhz bandpass filter. The 30 Mhz IF is amplified to 

about 1.5 Vpp by a Merrimac GAN-10-150 and split by a Minicircuits 

ZSG-4-3 4-way hybrid power divider. Three of the outputs, each at 

about .5-. 6 Vpp are connected to the quadrature phase generation 

network ( see section 4.2.3) and the fourth output is passed through 

a Merrimac PS-3-30 continuously variable phase adjuster, which can 

produce phase delays of up to 1800 . The output of the PS-3-30 is 

connected to the phase sensitive detector (section 4.5). 

4.2.3 Quadrature Phase Generation (figure 55) 

A basic feature of any nmr spectrometer is the ability to produce 

pulsed irradiations with different phases, and a common requirement 

is that the phases be in quadrature. The delta spectrometer has 

quadrature phase generation networks in both r.f. channels. In 

addition there is an auxiliary IF channel which may be set to a 

different amplitude relative to either of the quadrature networks. This 

is a useful feature if one wishes to do double quantum experiments. 

The auxiliary IF channels may also be used as the reference phase 
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channel in TPPI experiments if the output of the proton quadrature 

network is connected to the digitally-controlled analog phase shifter 

described in section 4.7.3. 

The quadrature generation networks of the proton and deuterium 

channels are identical since the IF's are both30 Mhz. The 30 Mhz 

signal (.5-.6 Vpp) from the IF generation is amplified to about 1.4 

Vpp by a GAII-10-150 (figure 56), and enters the quadrature generation 

network which is composed of a set of three 2-way hybrid power dividers 

mounted on a PC board. The first divider is a Minicircuits PSCQ-2-50 

whose outputs are about 90
0 
 out of phase (x and y). The x and y 

signals are each divided by a Minicircuits PSCJ-2-1, whose outputs 

are 1800  out of phase. Thus 4 phases in quadrature ( x, y, -x, and -y) 

are produced. The phases may be fine-adjusted by varying lengths of 

coaxial cable between the outputs of the quadrature network and the 

inputs of the r.f. switch. 

The four quadrature phase channels are connected to the inputs 

of a DAICO 100C1284 single-pole-four throw (SP4T) balanced diode 

switch. Each switch is digitally controlled ( 1 = closed, 	= open) 

and completely TTL-compatible. An open switch attenuates the input 

by better than 60dB at 30 Mhz and the switching time, defined as the 

time from 0 to one half the envelop maximum is about 100 nsec. The 

diodes in the switches produce antisymmetric transients whose 

intensities are a function of the d.c. power level (B
+ 
 ). These 

transients are at low frequencies (<2 Mhz) and may be removed by 

bandpass filtering. 

The amplitude of the auxillary IF channel (figure 55) is adjusted 

238 
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by a Merrimac AR-5 continuously variable, mechanically-controlled 

attenuator. Maximum attenuation is -20dB (1/10 in voltage). R.F. 

switching is performed by a Daico 100C1281 single-pole-single-throw 

(SPST) balanced diode switch. 

If the auxiliary channel is to be used as a proton IF channel, 

the outputs of the Daico 100C1281 and the proton Daico 100C1284 

should be combined using a ZSC-2-1. The output of the ZSC-2-1 is 

passed through a 30 Mhz bandpass filter (3 Mhz pass band) in order 

to remove the switching transients. The output level of the filter 

should be about .2 Vpp. 

4.2.4 R.F. Generation (figure 56) 

It remains to combine the pulsed IF signal at 30 Mhz with the 

LO frequency to produce the nuclear resonance frequency. This is 

done in the r.f. generation section. The r.f. generation schemes 

are identical for proton and deuterium, so we will only discuss the 

proton frequency generation. 

The pulsed IF signal at a level of about .2 Vpp is mixed with 

the continuous proton LO signal which is at a level of about 1.2 Vpp. 

The mixer is a Minicircuits ZAD-l-1 standard level double balanced 

mixer. Care should be taken to maintain the relative levels of the 

LO and the IF signals at the mixer inputs since they have been 

adjusted to minimize spurious responses (106). The output of the 

mixer should be predominantly two sidebands at 360 Mhz and 420 Mhz. 

If the mixer has been properly balanced each sideband should not be 

much less than .1 Vpp. After amplification by a GAN-10-150 the 
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420 Mhz sideband is removed by filtering (Texscan 360 Mhz bandpass). 

The 360 Mhz signal is then gated by a second Daico 100C1281 SPST r.f. 

switch, amplified by a Merrimac GAN-20-150 (gain - 20 dB), and 

filtered again to remove the switching transients. The signal at 

the output of the second 360 Mhz filter should be about 3 Vpp. 

4.3 R.F. Power Amplifiers 

4.3.1 360 Mhz Power Amplifiers 

The low power proton pulse ('\20 mw at 360 Mhz) is amplified 

in two stages. The first stage is a 30 watt solid state power 

amplifier with a 50 Mhz bandwidth (350-400 Mhz). The second stage 

is a high power solid state amplifier capable of generating a pulsed 

output of 350 watts at 360 Mhz. The amplifier is based on three 

MRF-327's in a parallel configuration (see figure 58) in which the 

collectors are coupled together by X A lines. To initialize 

operation after powering up, a momentary switch is engaged that closes 

a relay which applies power to the collectors of the three MRP-327's. 

If any one of the MRF-327's should short out, causing the collector 

voltage to drop, the output of the 7410 (three way NANDgate) will go 

high, opening the relay and shutting down the amplifier. The 

lines which couple the collectors together prevent damage to the other 

two MRF-327's if one MRF-327 should short Out. 

While the amplifier should operate into a 50 ohm load, it is 

capable of withstanding extreme "mismatches" and will not be damaged 

even if it is disconnected from the load while pulsing (the practice 

is not recommended, though). 
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4.3.2 Other High Power Amplifiers 

The deueterium channel uses an AR-200L high power, broadband 

r.f. transmitter. The AR200-L is capable of delivering 500 watts 

into a 50 ohm load in pulsed mode for frequencies up to 200 Mhz. 

The input voltage to the AR-200L should not exceed 3 Vpp. If higher 

power is desired the AR-200L may be used to drive a Drake L-7 amplifier 

which has been altered to operate between 45 and 55 Mhz. Given an 

input of about 200 watts, the Drake L-7 will deliver 2000 watts into 

a 50 ohm load in pulsed mode. 

4.4 R.F. Receiver (figure 59) 

In chapter 1 it was pointed out that the linear absorption spectrum 

is obtained by Fourier transforming the nuclear free induction decay. 

However, the FID corresponds to a signal in a frame which rotates 

around the laboratory z-axis (specified by the magnetic field direction) 

at the Larmor frequency or within a few 1000 hertz of the Larinor if 

the r.f. field is off resonance. Electronically this means that the 

Larmor frequency is a carrier which is removed in the r.f. receiver, 

and the resultant audio frequency signal corresponds to the rotating 

frame FID. The nmr carrier is of the superheterodyning type since 

it removes the carrier in two stages, and is in most respects similar 

to a conventional radio receiver. 

4.4.1 Preamplifier 

The first stage of the r.f. receiver is the preamplifier. Since 

the FID at the input is at very low power levels (less than -80 dB), 

the thermal noise introduced by the preamplifier must be minimal. 
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The delta spectrometer utilizes a two stage preamplifier. The first 

stage is an Avantek UTO 511 with a gain of 15 dB and has sufficient 

bandwidth to cover all frequencies of interest (-- 400 Mhz). 

The noise figure is 2.5 dB. The second stage is an Avantek UTO.512 with 

20 dB of gain and a noise figure of about 4 dB. The preamplifier can 

recover from saturation in about 15 psec. 

After the preamplifier the signal is filtered. The filter 

should have a center frequency at the nuclear resonance frequency 

(proton = 360 Mhz, deuterium = 55 Mhz etc.) and as low an insertion 

loss as possible (<3 dB). On the delta, the receiver filters are 

attached externally to the receiver chassis to enable easy conversion 

between nuclear frequencies. After filtering the signal is again 

amplified by a Merrimac GAN-10-150. 

The first heterodyning consists of taking the difference frequency 

between the Larmor frequency and the local oscillator (see section 

4.2.1). This is accomplished by mixing the local oscillator with 

the nuclear FID using a Minicircuits ZAD-l-H high level double-

balanced mixer. High level mixers should always be used in nmr 

receivers to avoid large conversion loss changes due to input signal 

level fluctuations. The output of the ZAD-l-H consists of two side 

bands corresponding to the sum and difference frequencies. In the 

case of protons the Larmor frequency is 360 Mhz and the LO is 390 Mhz, 

so the sidebands are at 30 Mhz and 750 Mhz. 

A .6 x 	Vpp signal at 360 Mhz at the input of the preamplifier 

should result in a signal level of .8 x 102 Vpp for the 30 Mhz 

sideband at the output of the ZAD-l-H. 



4.4.2 IF Amplifiers 

The IF amplifiers serve to increase the power level of the 

30 Mhz sideband. The upper sideband is suppressed since several 

of the IF amplifiers are tuned. 

There are three IF amplifiers. (see figure 59). The first 

amplifier is an RHG ICFV 3010 which is tuned to 30 Mhz with a 

bandwidth of 5 Mhz. The gain of the amplifier is 25 dB which is 

variable over a range of 20 dB. The gain is voltage-controlled and 

is adjusted by a front panel potentiometer. 

The second amplifier is an Ri-IG ICFN 3010 with a fixed gain of 

25 dB. This amplifier is also tuned to 30 Mhz and has a 5 Mhz 

bandwidth. For an input level of .8 x 10 2  Vpp to the ICFV 3010, 

the output of the ICFN 3010 should be about 2.5 Vpp with the ICFV 

3010 at full gain. 

The third amplifier is a Merrimac GAM-20-150 which has 20 dB 

of gain. 

4.5 Phase Sensitive Detector (figure 60) 

4.5.1 Dual Channel Detector 

The phase sensitive detector operates as follows. The IF 

signal from the receiver is split by a Merrimac PD 2-50 hybrid power 

divider. Similarly, the IF reference signal from the frequency 

generation (see section 4.2.2) system is split by a Minicircuits 

QH-2-30 hybrid .power divider, the outputs of which are 90
0 
 out of 

phase. The second heterodyning is now accomplished by mixing the 

IF signals using two Minicircuits ZAD-I-H high level double-balanced 
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mixers. The outputs of the mixers are given by the equations 

S1 = (Acos(WIF+X)t) (Bcos(w IFt+)) 

AB 

	

(cos(( 2w IF+ JOt+) + cos(C+) 	 (1) 

S, = (Acos(w IF ()t) (Bsin(w IFt+) 

AB 

	

= - (s 1n(( 2w IF+ C)t+) + sinçW+p) 	 (2) 

The phase term may be varied by changing the phase of the 

reference IF which is done in the IF generation (see section 4.2.2) 

4.5.2 Audio gain and D.C. level adjust 

The outputs of the phase sensitive detector are gated by 

analog r.f. switches (figure 61) which are controlled by the pulse 

progranuner. The switches are closed only during detection and are 

otherwise open in order to prevent ringing of the audio filters by 

pulse leak-through. Open switches attenuate input by -63 dB. 

After the "blanking" switches is the first audio gain stage. 

This consists of an LM-318 operational amplifier with a potentiometer 

in the feedback ioop adjusted to provide a gain of 14 dB. After the 

114-318 is an LM-310 voltage follower. 

The d.c. voltage level in each channel is adjusted by two front 

panel potentiometers which change the d.c. levels at the summing 

points of the LN-318's. The d.c. levels may be swept about ±.5 at 

the output of the LM-310. 
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4.5.3 Audio Filters 

The audio filters are Rockland 452 dual channel Butterworth 

filters. The filter mode is low pass and the unit has 20 dB of gain. 

4.6 Data Acquisition (figure 62) 

The purpose of the data acquisition system is to accurately 

digitize the analog signals at the output of the audio filters. When 

digitized data is available in the memory of the data acquisition 

system, an "interrupt" is generated which signals the Nova 820 computer 

that data is available at the data channel inputs. The Nova 820 

will then initialize the data channel transfer. 

4.6.1 Sample-and--Hold Amplifier 

In order for the analog-to-digital converters (ADC) to accurately. 

convert analog signals to sequences of binary words, the voltages 

at the inputs of the ADC's must be very stable for the duration of 

the conversion. This is accomplished by the sample-and-hold 

amplifiers. After the audio filters each analog data channel goes 

to a Datel SO4-2 sample-and-hold amplifier. The SHN-2 is composed 

of an operational amplifier with a 200 pf capacitor to ground at the 

input. The input is gated by an electronic switch. When the central 

voltage to the switch driver is logically low, the switch closes 

and capacitor is charged to its peak value. When the control voltage 

to the switch driver is logically high the switch opens and the input 

voltage is "held". The mode control is TTL compatible. The inputs 

to SHN-2's should not exceed ±10 volts. 
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4.6.2 Analog-to-Digital Converters 

The voltages at the outputs of the sample-and-hold amplifiers 

are converted to 10 bit digital words by the analog-to-digital 

converters (what else?). ADC's operate in the following manner. 

The capacitor that was charged by the sampled voltage pulse, is 

discharged by a constant current. The end of the discharge is detected 

by a voltage comparator in the ADC, and the discharge time is measured 

by a counter and a clock oscillator. The delta acquisition system 

utilizes 2 Datel ADC-EH10B analog-to-digital converters. Initially, 

the end-of-conversion flag (EOC) is low on each ADC, causing the SHN-2's 

to go into "sample" mode. When the ADC's receive a start-convert 

pulse, which is provided by the pulse programmer, the EOC flags go 

high causing the SHN-2's to go into "hold" mode (see figure 62). At 

the end of the conversion, which requires 2 isec, the EOC flags go 

low causing the SHM-2's to return to sample mode. The 10 bit outputs 

of the ADC's are valid as soon as the EOC status goes low, 

The ADC's are operated in bipolar mode, meaning that they will 

accept analog voltages within the range ±5 V. The start convert flag 

is TTL compatible. 

4.6.3 Fifo Buffer Memory and Data Channel Interface 

At the end of a conversion, two 10 bit words are available, 

one at the output of each ADC. The problem is how to get both 

words which are in parallel at the ADC output, arranged in serial 

for the data channel transfer into the Nova 820 memory. This is 

accomplished in the following way (see figure 62). The EOC status 



flags are connected to the inputs of a 7402 NOR gate. When the 

EOC's go high, the output of the 7402 goes low. The rising edge 

of the 7402 output pulse clocks a set of three 8551 tn-state latches 

which latch one of the 10 bit words. The outputs of the latches 

are connected to the input registers of three 9403 (4 x 16 bit) 

first-in-first-out (FIFO) memories. The rising edge of the same 

pulse performs two other functions. Firstly, it triggers a 100 nsec 

9602 monostable which, after propagating down a NAND date delay, 

triggers the parallel load (PL) function of the three parallel 9403's, 

causing the latched data word to be transferred to the memory stacks. 

Secondly, another 100 nsec monostable is triggered. The rising edge 

of the positive (Q) output triggers the high impedance state in the 

first set of 8551's and the rising edge of the negative (Q) output, 

occurring 100 nsec later, triggers a second set of parallel 8551's 

which latch the second 10 bit word. The rising edge of the same Q 

output triggers yet another 100 nsec 9602 monostable which in turn 

triggers the PL function of the 9403 FIFO memories, causing the 

second 10 bit data word to be transferred to the memory stacks. It 

should be mentioned that the 10 bits corresponding to the output 

of the ADC, are arranged as the 10 most significant bits of a 12 

bit word. The least significant two bits are grounded at the 8551 

inputs. 

What has been accomplished is that the two 10 bit data words 

appearing in parallel at the outputs of the ADC's have been trans-

ferred serially to the stack of a memory buffer composed of three 

parallel 9403 FIFO's. The first word to enter the FIFO stack is 
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immediately transferred to the output register of the FIFO, which 

causes the output register empty (ORE) status flag to go high. A 

high condition at the ORE status ports of the 9403 memory buffer 

causes a data channel enable request (RQENB) to occur on the Nova 

820 data acquisition interface. For details on the data channel 

timing logic, the reader is referred to the Data General Corporation 

documentation (107). We will only briefly outline the interaction 

between the interface and the buffer memory. 

The advantage of a data channel transfer over a program transfer 

is that the former transfer is only initiated by the CPU. When the 

Nova 820 is ready to accept data through the data channel, the 

"busy-done" flag on the interface is initialized to busy. In 

addition, two sets of 74177 synchronous counters are loaded with 

the number of words to be transferred and the initial memory address. 

The interface then generates a "shift-out" pulse which causes the 

data on the output registers of the buffer memory to be latched into 

the input data register on the interface. The pulse also transfers 

the next word from the buffer memory stack into the output registers 

and updates the memory address and the word count. The interface 

will continue to furnish "shift out" pulses until the word count 

reaches zero, at which time the "busy-done" flag will be reset to 

"done" and the transfer is concluded. Allof this occurs without the 

necessity of a program-controlled transfer through the accumulator, 

a process that would take much longer. The data acquisition system 

can digitize accurately in dual channel mode at a maximum rate of 

333 kHz. 
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4.7 A Digitally Controlled Analog Phase Shifter 

In chapter 3 we found that multiple quantum pulse sequences 

often require phase shifts of other than 90
0 

1800 or 270
0
, and 

so some other method than the quadrature phase generation network 

described in section 4.2.3 is required. Digitally controlled narrow 

band analog phase shifters capable of generating phase shifts in 

units of 
2ir/256 are commercially available. One example is the 

Daico 100D0898 which produces a phase shift between the input and 

output ports specified by an eight bit control word, at rates of 

up to 500 khz. The delta spectrometer may be arranged for a TPPI 

experiment by placing the phase shifter between one of the outputs 

of the IF generation (section 4.2.2) and an input to one of the 

quadrature phase generation networks (section 4.2.3). The auxiliary 

phase IF channel may be used as the fixed phase channel. 

Figure 63 shows a digital circuit designed to deliver a sequence 

of control words to the phase shifter. By changing the select bits 

on the 74153 multiplexers (A4, AS) a phase shift is specified by a 

control word from a front panel toggle wheel switch or from the 

outputs of two 7483 binary adders (A2 and A3). The 7483 sum together 

control words from two independent circuits. 

TPPI requires a simple incrementation of the p1 ase and so a 

"wrap-around" adding circuit suffices. A unit phase increment is 

set from a front panel toggle wheel switch. The unit phase increment 

is added to the previous sum by two 7483's (C4 and C5). The 74175 

latches (B5, B6, C2 and C3) are clocked by pulsing the "INC" line, 

and are cleared by pulsing the "RESET" line. Both the INC and 
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RESET lines are under pulse programmer control. 

More intricate sequences of control words may be obtained 

from the random access memory (RAN). Up to 1024 control words may 

be loaded into 8 parallel 2102-1 x 1024 bit RAN memories (F1-G2). The 

memory address is specified by the 3 74161 asynchronous counters 

(El-E3) which may be updated by pulsing either the DOB line or the 

RAC line. The RAC line is under pulse programmer control, and the 

DOB line is under minicomputer control. The counters may be initialized 

either by pulsing the CLR line which is under minicomputer control, 

or the INIT line which is under pulse programmer control. The 

operation of the RAM memory is as follows. An eight bit control word 

is specified by the outputs of the eight line receivers (Cl-D2) is 

loaded into the RAN memory by pulsing DOA. By pulsing DOB the RAN 

address counter (RAC) is advanced and the process is repeated. Since 

the RAM memory is write-enabled whenever DOA is high, the memory 

may be output simply by pusling RAC. Thememory address counter may 

be reset by pulsing INIT. 

By using the RAN memory in combination with the "wrap-around 1 ' 

adder, all of the complex phase shifts required by multiple quantum 

selective excitation pulse sequences may be performed. 

4.8 Pulse Programmer 

4.8.1 Introductory Remarks 

The pulse programmer is the device that produces the complicated 

sequences of logic pulses that operate the various r.f. switches in 

the spectrometer and trigger the data acquisition system. It is 



eventually the pulse programmer that defines the complexity of 

the experiments that may be attempted on a spectrometer, and there-

fore it is desirable that it be as versatile as possible. 

The design of the pulse programmer to be described is due to 

Dr. David Ruben, and the basic idea is as follows. The heart of 

the programmer is a Zilog Z-80 microprocessor. The microprocessor 

receives a series of commands that describe in terms of some type of 

programmed code, a pulse sequence. This sequence of commands will 

be called the pulse program. Now the microprocessor stores the 

pulse program in its memory, determines the structure of the pulse 

sequence by decoding the program, and outputs the appropriate pattern 

of logic pulses to its bus. The idea is very simple in principle 

but the difficulty is that the microprocessor cannot possibly output 

logic pulses at the rates required in nmr experiments. In fact, 

execution times for even the simplest instructions, for example a 

transfer between the primary accumulator and one of the secondary 

accumulators, may require 10 clock cycles, so it is clear that the 

microprocessor cannot directly control the spectrometer. 

A solution to the problem is to interface the Z-80 to a buffer 

memory. The Z-80 will load the memory with a set of control words 

that specify which r.f. switches will be opened and for how long, 

and the memory contents will then be output to appropriate TTL 

control logic. For example, that part of the control word that 

specifies the r.f. switch to be opened (we will call it the gate 

word) will be latched, and the part of the control word that specifies 
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the length of time that the switch will remain opened (we will call 

it the timing word) will be loaded into a set of synchronous counters. 

The counters are, in turn, clocked by a crystal oscillator, and 

when the count is concluded, the next control word is output from 

the memory buffer. 

We see that now the microprocessor need only output control 

words at a rate fast enough to keep the buffer memory from "emptying". 

The question remains, can the memory buffer perform writes rapidly 

enough? The answer is that static RAM memory can perform writes at 

rates sufficient for nmr applications. 

4.8.2 General Structure 

We will now describe in a general way, the structure of the 

pulse programmer. The pulse programmer is divided into two sections. 

The first section consists of the Z-80 CPU board,the 10 (input-output) 

controller board, and a 16K RAM memory board. It is not our 

intention to describe the architecture of the CPU, but we will mention 

some of its salient features so that its interaction with the buffer 

memory can be easily understood. The reader is referred to volume 

2 of the 3 volume series by Osborne and Associates for details on 

the Z-80 archtitecture (108). 

The heart of the CPU board is the Z-80 microprocessor. The 

Z-80 is an enhancement of the Intel 8080. It is a "single chip" 

40 pin microprocessor, which utilizes a single system clock signal 

and requires only a single power supply of ±5 V. The data word 

length is eight bits and there are 16 memory address bits. The CPU 



also contains a 2702 (8 x 1024) EPROM which is used to store 

the operating system "HDT", and 1K (8 x 1024) of static RAN memory. 

An additional 16K of static RAN memory is located on a separate 

board which consists of a matrix of 32 2114L's. 

The CPU, 10 controller, and 16K RAN memory are designed 

to utilize the Chem ji80 bus which is standard in the U.C. Berkeley 

Department of Chemistry. The bus signals of interest to us are: 

DBO - DB7: these 8 bits compose the basic data word. 

A0 - A15: these bits specify the memory location or 10 

device with which the CPU will interact. 

WRITE: when the CPU executes a write-to-memory, this 

bus line will be pulled low and the memory address will 

be specified by AO - A15. The data word stored at the 

specified memory address will appear on the bus lines 

DO - DB7. 

IN: when the CPU executes a read from an 10 port, this 

bus line goes low. The 10 port number appears on A0 - A15 

and the input from the port will appear on DBO - DB7. 

RESET: when this line is pulled low, the Z-80 program 

pointer will be relocated to the first page (1 page = 

256 words) of memory. 

The second section of the pulse prograimner consists of the 

buffer memory and the TTL control logic which the Z-80 uses to 

control the r.f. switches and the data acquisition system. A 

control word is composed of a 16 bit gate word and a 16 bit time 

word. Therefore, in order for the Z-80 to output a single control 
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word, four writes to memory must be executed. The pulse programmer 

buffer memory is composed of two parts, a FIFO memory and a RAN 

memory. The FIFO memory consist 5 of 8 parallel 9403's, which can 

hold up to 16 control words, and the RAN memory consists of 8 

parallel 2101-i's which can hold up to 256 control words. 

The 9403 FIFO memory can be clocked out at a maximum rate of 

12 Mhz, which is certainly fast enough for nmr applications. The 

FIFO memory can be used to output any pulse sequence that does not 

require long (>16) trains of short pulse (<200 usec) separated by 

short delays (<200 usec). This limitation is due to the fact that 

the microprocessor cannot load the FIFO any faster than once every 

200 usec, and so if more than 16 pulses and delays of durations less 

than 200 usec are required, the FIFO will be unloaded faster than 

the Z-80 can load it, and timing errors will result. 

The 2101 RAN memory is normally used to output trains of 

short pulses and delays. The Z-80 simply preioads the RAN with the 

appropriate control words, and the RAN memory contents is output by 

an address counter during the experiment. The 2101 memory can 

perform writes at a maximum rate of 2 Mhz. 

4.8.3 Pulse Programmer Operation: Buffer Memory Input 

Before the Z-80 can execute a write to the FIFO memory the 

input registers of the 8 parallel fifos nust be clear. Therefore, 

before attempting a data transfer to the FIFO, the Z-80 examines the 

status of the input register ports (IRF) (see figure 64). The IRF 

ports of four of the 8 9403's are AND'ed together and input to an 
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8T95 Tristate buffer. When the Z-80 wishes to check the IRF 

status ports, the IN bus line is pulled low and the A7 address 

line goes high, causing the 8T95 to switch out of its high impedence 

state. As a result the IRF status is transferred to DB7. If the 

input registers are empty, IRF is high, causing DB7 to go high, and 

the Z-80 will then proceed with a transfer. If DB7 is low, indicating 

that the input registers are full, the Z-80 will not proceed with 

the transfer but will continue to examine the IRF status until the 

input registers are cleared. 

In order to transfer a single 32 bit control word, the Z-80 

must execute a write to each of the 4 FIFO pairs. The beginning 

memory address of the FIFO memory in hexideciinal is FF80. The 

eight most significant bits are decoded. The two least significant 

address bits AO and Al specify which FIFO pair will receive input. 

Therefore, when the Z-80 executes a write to the FIFO, the WRITE 

bus line goes low and bits A5 through A15 go high causing the output 

of a 7430 to go low which enables a 74139 binary decoder. The 74139 

inputs are the FIFO pair code specified by AO and Al. The decoder 

output, NOR'ed with WRITE, causes the parallel load port (PL) on the 

appropriate FIFO pair to go high, which loads the 8 bit word specified 

by DBO-DB7 into the input register, causing IRF to go low. Since 

IRF is connected to the stack transfer control (TTS), as soon as 

data appears in the input register, it is transferred to the stack. 

If the stack is not occupied, the data will appear at the output 

register, causing the output register-status port (ORE) to go high. 

Data transfer to the RAM memory is done in a similar manner 

(see figure 65). The beginning address of the RAM memory is F000. 
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Memory address bits AO and Al specify which RAN pair will receive 

data and address bits A2 to A9 specify the memory location. When 

the CPU executes a write to the RAN memory the WRITE line goes 

low causing the write enable (WE) lines to go low on all the RAM's. 

But data transfer will only occur to that RAM pair whose chip enable 

(CE1) lines are pulled low as a result of the decoding of A0 and 

Al. When the RAN memory is not being addressed by the Z-80, WE is 

high and all CE1 lines are low, which causes all RAM's to be output 

enabled. 

4.8.4 Pulse Programmer Operation: Buffer Memory Output 

We will now discuss the manner in which the buffer memory 

outputs control words. It has already been mentioned that the 

control word is 32 bits in length, consisting of a 16 bit gate 

word and a 16 bit time word. The 2 most significant bits of the 

time word are used to enable the next memory device to be the output 

source. The 2 bit code "source" code is: 

00 = FIFO 

01 = RAN 1 

02 = RAN 2 

03 = RAN 3 

Initially, the FIFO is enabled. 

Suppose the Z-80 writes a 32 bit control word to the FIFO 

memory (see figure 64). If the stack is empty the data "fall through" 

to the output register, causing the output register status port (ORE) 

to go high, which in turn causes the OR (output register) line to go. 
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low. This signals the timing logic (see figure 66) that data is 

available in the buffer memory output register and the timing logic 

responds by pulling the LOAD line low for one clock cycle (100 nsec), 

which causes the gate control word to be transferred to the outputs 

of a set of latches (see figure 67), the timing word (14 bits) to 

be loaded into a set of synchronous binary counters, and the 2 bit 

source code to be latched. The timing word is the two's complement 

of the length of the logic pulse, and since the pulse programmer 

uses a 10 Mhz clock, the maximum pulse length per control word is 

1638.3 lisec. 

When the count has been concluded the timers generate a 

"carry Out "  pulse which again causes the LOAD line to go low for 

one clock cycle. If the FIFO is enabled by a source code of 0, 

the "transfer out parallel" line (TOP) will be pulled low causing 

the next control word in the stack to be transferred to the output 

register and the process repeats itself. If the RAM is enabled 

by a source, code of 1, 2, or 3, the LOAD pulse will cause the control 

word on the outputs of the RAM to be processed and the RAN address 

counter will be advanced. In addition a monostable will be triggered 

that causes the OR line to go high for 500 nsec. 

An error condition, indicated by the front panel "ERROR" diode, 

occurs if the LOAD line goes low while the OR line is high. This 

will occur if an attempt is made to obtain a control word from the 

FIFO when the output register is empty of if an attempt is made to 

clock out the RAN at a rate in excess of 2 Mhz. An error condition 

results in the clearing of the gate word latches. 
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4.8.5 Front Panel Controls 

In this section, we describe the front panel controls of the 

pulse programmer: 

Reset: When this button is pushed, the program memory pointer 

of the Z-80 is initialized to the first memory page 

causing program execution to halt. The output ports 

of the pulse programmer are disabled (see figure 67). 

In addition, the master reset (MR) port on the 9403's 

goes low, initializing all FIFO memory functions, the 

source word latch is cleared, and the gate word latches 

are cleared as are the counters. 

Enable! 

Disable: When the disable button is pushed, the output ports are 

disabled but pulse program execution is not interrupted. 

The disable button may be used as a "panic button" if, 

for instance, a programming error causes an output port 

to "hang" in a high state. The output ports are reopened 

by pushing the enable button. 

Start! 

Stop: 	These buttons are not active on the Delta pulse 

programmer. They are intended to be used to interrupt 

pulse program execution without executing a reset. 
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4.9 Pulse Programmer: Software 

4.9.1 General Program Structure 

We will now discuss the general structure of the program that 

is used to operate the pulse programmer. 

The program may be imagined as consisting of two principal 

sections. The first section includes those subroutines that allow 

the operator to input and edit pulse programs, input pulse program 

parameters such gate codes and delay times, and execute pulse programs. 

The commands that the operator used to accomplish such tasks are 

called console commands. When the operator wishes toexecute a task, 

he/she enters the appropriate command on the console, and a subroutine 

called the command processor obtains the command string, interprets 

the string, and transfers control to the appropriate subroutine 

which then executes the task. When the task execution is completed, 

program control is returned to the command processor subroutine. 

The second section is composed of those subroutines that drive 

the pulse programmer. Pulse sequences to be output to the spectrometer 

r.f. switches and data acquisition system are specified by entering 

pulse programs into the memory of the microprocessor. Pulse programs 

are composed of sequences of commands and parameters that specify 

such tasks as outputting control words to the pulse program buffer 

memories (FIFO memory or RAN memory), executing software loops, and 

setting or changing pulse program parameters such as delay times and 

pulse lengths. 

Before describing each section of the program, some general 

features of the program should be mentioned. 
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The source version of the program, listed in appendix 1, is 

stored in the five RDOS files called UPCODE1.SR, UPCODE2.SR etc. 

The source files are backed up on floppy disk. In order to obtain 

an executable version of the program, the five source files are 

appended together into a single file that must be called PROG.SR . 

This source file is assembled by the program UPASM which resides 

in the directory UP on the removable disks of the Nova 2 and both 

Nova 820's. UPASM also exists on floppy disk and may be executed 

on the MP-200. A typical assembly requires about 20 minutes. Two 

files are output by UPASM. PROG.LS  is a memory map of the program 

and PROG.AB is the executable binary version. 

The program is loaded into the Z-80 memory by the program 

UPLOAD which also resides in the directory UP. But before UPLOAD 

can be executed, two things must be done. First, the binary version 

PROG.AB must be reorganized into a format that can be stored in the 

Z-80 memory. This is accomplished by executing the program ABIM 

which resides in UP. The output file is PROG.IM. Second PROG.IM 

must be renamed UP.IM, which is the file whose contents UPLOAD sends 

to the Z-80 memory. 

The entry point of the program is on page 
1610( 1016) of the 

Z-80 memory. In order to execute the program, input b.c to the 

console. The entire program occupies about 5.5 K of memory. The 

first 16 pages (1016 to 2016) are the system routines. The next 

page is the register page which is used to store the various pulse 

program parameters. Since gate words and time words are 16 bits 

(= 2 bytes = 1 word) long, the page is divided into 128 evenly- 
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numbered registers. A valid register name is any even hexidecimal 

number and including 00 and FE. Following the register page is 

the line table page. The line table indicates which line numbers 

are in use by storing a FF at any unused number. Following the 

line table page are four pages that are used to store the pulse 

program. 

4.9.2 Console Commands 

causes execution of the program. The program first 

initializes various system buffers and outputs a starting message: 

UPCODE VERSION X.Y. 

X is the version number and is characterized by the command set. 

Y is the number of pulse programline permitted. Currently X = 3 

and T = 255. 

Program control is then dispatched to the command processor 

subroutine (CNDPRS) which outputs a symbol CMD> to the terminal. 

The appearance of CflD> means that CMDPRS is waiting for a command 

line to be input. The command line format is: 

CON OP1 0P2 

where COM is the command and OP1 and OP2 are operands used in 

executing the command task. 

Once the command line has been received, CMDPRS calls the 

subroutine SCON which searches the command text table for a match 

with COM. If no match is found an error message is output by 

SCOM and control is returned to CNDPRS. If a match is found 

control is dispatched to the appropriate "handler" subroutine 

by a jump table. 
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Version 3 has eight console commands: 

CL 

This command clears the pulse program by setting all line 

number flags to FF. 

ECVAL 

If VAL is zero, the echo flag (ECHO) is cleared which 

blocks echoing of input. If the echo is off, all command 

lines must begin with control-B and must be terminated by 

control-E. The echo should always be turned off if the 

program is to interact with SPEC. If VAL is nonzero, the 

echo flag is set to 1 and input is echoed. 

VA REG 

REG is a valid register name. This command is used to 

obtain the contents of the register specified by REG. Three 

numbers are output. The first number is the contents of 

the register in hexadecimal. The second number is the 

positive decimal version and the third number is the 

negative decimal version. The number may be interpreted 

as a positive or negative decimal number depending upon its 

application. If the contents of the register is to be used 

as a timing word, then the negative decimal version is of 

interest. If the contents of the register is to be used 

as a program counter, the positive decimal version is of 

interest. 

LO REG VAL 

Execution of LO causes a register, designated by REG, to 

be set to the value specified by VAL. VAL must be a hexi- 
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number. For example 

LO EØ FOFO 

causes the register E0 to be set to the value F0F0 16 . 

DF REG VAL 

Execution of DF causes a register, designated by REG, to 

be set to a value specified by VAL. VAL must be a positive 

or negative decimal number. REG must be a valid register 

name in hexidecimal. For example 

DF EO 100 

causes EO to be set to 10010 = 6416. 

LI LNI LN2 

Execution of LI causes the current pulse program to be 

listed. The first line to be listed is specified LN1. The 

last line to be listed is LN2. LN1 and LN2 must be valid 

hexidecimal line numbers. For example: 

Li 00 10 

cause all program lines between and including 00 and 1016 

to be listed. 

ED 

Execution of ED causes entry into the pulse program editor 

indicated by the appearance of ED> on the terminal screen. 

ED> indicates that the editor is waiting for input. Pulse 

program command lines have the format 

LN COM OP1 0P2 

where LN is a valid line number, COM is a pulse program 
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command (see section 4.9.3), and OP1 and 0P2 are 

operands used by the command subroutine. A valid line 

number is any hexidecitnal number between 00 and FE. 

When a command line is input, the editor checks to see 

if the line number is valid. If the line number is valid 

the editor checks to see if the line number is not in use. 

If it is not in use, it sets the flag to LN. 

Next the editor calls SCOM which searches the pulse 

program text table for a match with COM. If no match is 

found an error message is output and control is returned to 

the editor. If a match is found the command number, specified 

by the command's position in the text table, is stored in 

the public pulse program. The operand numbers OP1 and 0P2 

are also stored in the pulse program area. 

A pulse program line may be removed by typing LN4. For 

example 

104 

will cause the line 10 to be deleted. 

The editor may be exited by typing Q4'. 

8) GOLN 

GO initiates pulse program execution at the line number 

specified by LN. If LN is unused an error will be returned. 

GO calls the subroutine PP which examines the line table for 

line numbers in use. When a line number is encountered 

that is in use, PP obtains the command number and the 

operands OP1 and 0P2 from the pulse program area and 



dispatches control to the appropriate subroutine with a 

jump table. When the command has been executed, control 

is returned to PP. PP will continue to search the line 

table until line FF is encountered, indicating the end 

of the table, or a halt command is encountered in the 

pulse program. In either case control is returned to the 

command processor. 

4.9.3 Pulse Program Commands 

Version 3 has 22 pulse program commands. What follows is a 

description of each command. 

1) CO REG1 REG2 

This instruction causes the contents of register 1 (C(REG1) 

to be compared to the contents of register 2 (C(REG2). 

The comparison code COMP is set as follows: 

If C(REG1).EQ.C(REG2), COMP = 01 

If C(REG1).LT.C(REG2), COMP = 02 

If C(REG1).GT.C(REG2), COMP = 04 

2) BR LN CODE 

This instruction causes a branch to be performed to the 

line number specified by LN if (CODE.AND.COMP).NE.0. Suppose 

the contents of REG1 and REG2 were compared and CONP was 

set accordingly. Then the branch condition code may be 

defined as follows: 
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CODE = 0, a branch to LN never occurs 

CODE =  a branch to LN occurs if C(REG1).EG.C(REG2) 

CODE =  a branch to LN occurs if C(REG1).LT.C(REG2) 

CODE =  a branch to LN occurs if C(REG1).LE.C(REG2) 

CODE =  a branch to LN occurs if C(REG1).GT.C(REG2) 

CODE =  a branch to LN occurs if C(REG1).GE.C(REG2) 

CODE  a branch to LN occurs if C(REG1).NE.C(REO2) 

CODE =  a branch always occurs to LN 

DE REG1 REG2 

The contents of register 1 is decremented by the contents 

of register 2. The result is left in register 1. 

HA 

When the subroutine PP encounters this command, pulse 

program execution ceases and program control is returned to 

the command processor. A HA command must be used to separate 

the portion of the pulse program that loads the FIFO memory 

from the portion of the pulse program that loads the RAM 

memory. 

HN REG1 

This instruction causes a delay in units of .1 nsec to be 

output to the FIFO memory. 

C(REG1) is the length of the delay in units of .1 nsec and 

may not exceed 16383. C(REG2) is the gate word (see section 

4.9.4). 
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IN REG1 REG2 

This instruction causes the contents of register 1 to be 

incremented by the contents of register 2. The result is 

left in register 1. 

01(02,03) REG1 REG2 

This instruction causes a delay to be output to the RAN 1 (2,3) 

memory. Currently, only RAN 1 exists in the pulse programmer. 

C(REG1) is the two's complement of the delay in units of .lusec. 

C(REG2) is the gate word. 

OD REG1 REG2 

This instruction causes a delay to be output to the FIFO 

memory. The length of the delay is defined by C(FE)*C(REG1). 

C(REG1) is the unit time delay in units of .1 usec. C(REG1) 

may not exceed 8192 10 .C(FE) is a multiplier. For example, 

if C(REG1) = 5000 	and C(FE) = 10109 a delay of 5msec is
10 

output to the FIFO. 

If a single OD command occurs within a pulse program, 

C(REG1) may be any time less than 819.2 usec. If, however, 

two OD commands occur within a pulse program C(REG1) should 

not be less than about 150 usec, otherwise timing errors 

may occur. 

C(REG2) is the gate word. 

OF REG1 REG2 

This instruction causes a delay to be output to the FIFO. 

C(REG1) is the two's complement of the delay in units of 

.1 usec C(REG2) is the gate word. 



PA NIS 

This instruction causes the "next instruction source" code 

SOURCE to be set to NIS. The two most significant bits of 

all timing words output to the pulse program memory following 

execution of a PA command are defined by SOURCE. The source 

code is 

OO=FIFO 	02=RA142 

01=RAM1 	03=RAM3 

Ri (R2,R3) 

This instruction causes initialization of the RAN 1 (R2,R3) 

address counter to F000 10  (F40016
9 
F80016 ). 

RE 

This instruction only works on a pulse programmer with a 

functioning start/stop button. When this command is 

encountered, program execution ceases and control is 

despatched to the command processor if the stop button 

has been pushed. Control will remain with the command 

processor until the start button is pushed, and the program 

execution will continue at the line following the RE 

command. 

SB REG1 REG2 

When an SB command is encountered, C(REG1) is decremented 

by one and the result is left in REG1. If the result is 

nonzero, a program branch occurs to the line number specified 

by C(REG2). 

ME 
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SC REG1 REG2 

This instruction causes a delay to be output to the FIFO 

in units of seconds. c(REG1) is the delay in units of 

seconds and may not exceed 255 10 .C(REG2) is the gate word. 

MS REG1 REG2 

This instruction causes a delay to be output to the FIFO 

in units of milliseconds. C(REG1) is the delay in units 

of milliseconds. C(REG2) is the gate word. 

US REG1 REG2 

This instruction causes a delay to be output to the FIFO 

in units of microseconds. C(REG1) is the delay in units 

of usec and may not exceed 8192. C(REG2) is the gate word. 

SE REG1 •REG2 

When this instruction is encountered, the contents of 

register 1 is set to the •contents of register 2. 

TI REG1 REG2 

This instruction causes a train of delays to be output to 

RAN 1. C(REG1) is the number of delays in the train and 

may not exceed 255 10
. C(REG2) is the gate word. The two's 

complement of the delay in units of .1 usec must be stored 

in register D2. 

4.9.4 Construction of Gate Words 

From figure 67 it may be seen that there are twenty output 

ports available at the rear panel of the pulse programmer. Control 

of the voltage level at each port is effected by delivering an 

appropriate 16 bit hexidecimal-coded gate word to the buffer memory. 
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The four bits composing the most significant nibble control 

the "triggering pulse'! ports. A high bit within the most significant 

nibble will cause one of the trigger ports to go high for one clock 

cycle (100 nsec). TP1 corresponds to the most significant bit (2), 

TP2 to the next lower bit (2 
2

)  and so on. If one wished to open 

TP1 and TP4 simultaneously, the value of the nibble would be 9. 

The next nibble controls the auxiliary ports. A high bit within 

this nibble will cause the voltage at the appropriate port to go 

high for a time specified by the time word. If one wishes to open 

auiiliary port 2 (AUX 2) and AUX3, the value of the nibble word would 

be 6. 

The next nibble controls the A gates which in turn control 

the r.f. switches of the deuterium channel of the spectrometer. The 

quadrature phase channels are controlled by the decoding of the two 

least significant bits of the nibble by a 74LS139. The code is 

AX=OO 	A-X=lO 

AY=Øl 	A-yll 

The two most significant bits correspond to the AOR2 and AOR2 gates. 

The complements of the OR bits are logically NOR'ed with the 

complements of the A bits so to open one of the A gates, one of the 

/ OR gates must be opened. To cause the A-X gate to open the valves 

of the nibble would be A. 

The next nibble controls the states of the B gates which in 

turn control the r.f. switches of the proton channel. Control of 

the B gates is identical to control of the A gates. Thus to open 

the BY gate the value of the nibble is 9. 
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A gate word is constructed by a concantenation of the four 

nibbles. Therefore to open the gates TP1, TP2, AUX2, AUX3, A-X, 

and BY the gate word is C6A9. 
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Appendix 4.1 	Source Listing of Microprocessor Code 
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RI.JF: FF.tJGi.. E;F 	7::1 Z :E:1 	 285 

1 (:)()c) 
F I FST EQU 
/ 
JMAI N 

/ENTRY POINT FOR UP OPERATING SYSTEM 
/ 
MAIN C:ALL INIT /INITIALIZE SYSTEM PARAMETERS 

C:ALL CRLF /OUTPUT C:R AND LF 
C:ALL SMSG /OUTF'UT START MESSAGE 
.JMP CMDPRS /GET COMMAND 

/ 
11 N I V 
J]NITIALIZE; SYSTEM PARAMETERc 
INIT 

XF:A A /ZERCI A 
STA F:C:YCLE uNIT REC:Yi::LE STATUS TO OFF 
Sm SOURCE uNIT INSTRLICTION FIELD TO FIFCt 

C:CMP uNIT COMP TO NEVER 
STA OCHAR uNIT OUTPUT CHARACTER INDEX 
STA ICHAR uNIT INPUT CHARAC:TER INDEX 
MVI A.01 JOET ONE INTO A 
STA ECHO /TURN ON ECHO 
MVI L.00 /C4ET C) INTO L 
MVI H,SRAM1 /SRAM1 INTO H,L 
SHLD RACI uNIT RAC:1 
MVI H,SRAM2 /SRAM2 INTO H,L 
SHLD RAC2 uNIT RAC2 
MVI H.SRAM3 /SRAM:3 INTO H,L 
SHLD RACS uNIT RACS 
RET /RETURN 

/ 
/ 
/ROUTINE TO OUTPUT START MESSAGE 

LXI H, 1$ /POINT TO START MESSAGE 
CALL PSTR /C4ET STRING INTO CILITPIJT E:LIFFER 
C:ALL PLINE /OUTPUT MESSAGE 
RET /RETURN 

/ M:;G 
1$ TXT /LIPC:CIDE VERSION 3.2/ 

DE: 0 

IF SI 
/ 
/ROUTINE 10 GET C:HAR STRING INTO OUTPUT BUFFER 
/H. L CONTAINS POINTER TO STRING. STRING TERMINATED BY NULL BYTE 
/ALL REGISTERS EXCEPT A PRESERVED 
/ 
P5Th PUSH H /SAVE H, L 
1$ MOV A.M /GET NEXT CHAR 

ORA A JC:HECK FOR NULL.. BYTE 
.JZ 2$ /YES. 	DONE. 
CALL. FCHAR /OIJTFLIT C:HAR 
INX H /UPDATE STRING POINTER 
.JMP 1$ /EACK FOR MORE 

2% POP H /CIET H.L AGAIN 
RET /RETLIRN 

/ 



/ FC:HAR 
	

286 
/ 

/RcIJTINE: ri:' El_IT NEXT C:HAR INTO OUTELIT E:UFFER 
/BUFFER IS NOE-:UF BYTES IN SI ZE 
/ALL. REGISTERS FRESERVELi 

PC:HAR F'IJSH 13 
PIJSH D 
PUSH H 
MCIV B. A 
MVI E.NCU3UF 
LDA CICHAR 
f:Mp E 
.JNC 1$ 
NOV L.A 
MV I H, 00 
INR A 
STA OCHAR 
LXI D.CIE:IJF 
LiAC' 
MCIV M.E: 

1$ MCIV A.B 
F'OF' H 
POP El 
POF B 
RET 

/ 

/ P LINE 
/ 

/SAVE B.0 
/SAVE EI,E 
/SAVE H,L 
/SAVE CHAR 
!GET BUFFER SIZE 
IUET ,::HAR INDEX 
/ f:HECK FOR LT MAX 
/NO. DONE. 
/MOVE C:HAR INDEX INTO H,L 

!LIPEIATE C:HAR INDEX 
/SAVE C:HAR INDEX 
/ POINT TO OUTPUT E:LIFFER 
/ PCI! NT TO NEXT CHAR 
/SAVE NEXT C:HAR 
/GET I::HAR AGAIN 
/GET H,L AGAIN 
/OET EI.E ACAIN 
!OET B.0 AGAIN 
/ RE TIJRN 

/Ri:IIJTINE T;:I CIIJTPIJT LINE WITH CR 
/LENOTH OF LINE IS OCHAR 
/AL REGISTERS EXCEPT A RESTOREID 

PLI.NE 	C:ALL 	PLINEI. 
CALL 	CRLF 
RET 

/ 

/F'LINEl 
JF OUT INE TO OLITELIT LINE 
/lENI:TH IiF LINE IS OC:HAR 
FL INE1 PUSH 

PUSH 
MVI 
CALL 
L [I  A 
ORA 

I 7 

MCIV 
LXI 
MCIV 
I::ALL. 
INX 
DC:R 
JNZ 
MVI 
CALL 
XRA 
5TA 
PI:IF .  
F OP 

/CIUTPLIT LINE 
/OUTPUT CR AND LF 
/ RETURN 

CHARAI:: TERS 
/SAVE 13,C: 
/SAVE H.L 
/I:ET C:NT RL- 13 
/ ,:iLITpLIT CNTRLB 

LINE LENGTH 
/C:HECK FOR ZERO 
/YES 
uNIT LOOP C:ULINTER 
JPOINT TO OUTPUT BLIFFER 
/OET NEXT CHAR 
/I:ILrr FLIT NEXT C:HAR 
/IJPDATE C:HAR BUFFER 
I UPDATE LOOP C:OUNTER 
/BAC:K FOR Mi:tRE 
/GET CNTRL-E 
/CIUTPUT C:NTRL-E 
/ZERIJ A 
uNIT LINE LENciTH 
/GET H,L AGAIN 
/OET B,C: AGAIN 

13 
H 
A.02 
OUTPUT 
CICHAR 
A 

B. A 
H. OE:IJF 
A 

U UT P I_IT 
H 
13 
1$ 
. 	-- , 0._I 

I_IT P I_IT 
A 
CICHAR 
H 
C- 



RET /RETIJRN 	 287 

/ 

I OUTPUT 
JE:ASIC C:ONSOLE OUTPUT ROUTINE 
OUTPUT STA f:HAR /SAVE C:HARACTER 
1$ IN TTS /CiET RMTTO 

ANI RMTTCI /CHECK FOR COMF'LETI'JN 
JZ 1$ /NO 
1_DA CHAR /OET CHARACTER AGA IN 
OUT TTIJ /OUTPUT CHAR 
RET /RETUR'N 

/ 
IC: RLE 
I011 CR, LF TO CONSOLE 
/ 

CRLF 
MVI A?OD /GET C:R 
f:Al_L OUTPUT /OUTPUT CR 
MVI A,OA /GET LF 
CALL OUTPUT /OUTPUT LF 
RET /RETURN 

/ C:MDPRS 
JC:OMMAND F'Ro ,::EssI:IR 
I 
CMDFR3 
JOEl COMMAND 

C:ALL DSPTCH /DISPATC:H CONTROL 
CPI OFF /C:HEC:K FOR DISPATC:H TO PP 
JZ PP /DISPATC:H C:C;NTRUL TO PP 
CALL PRMPT / OUTPUT CNTRL -F 
LDA EC:HO /CHECK ECHO STATUS 
ANA A /C:HEC:K FOR ECHO OFF 
.JZ 2$ /ECHU OFF. SKIP CMDFRS PRUMFT. 
LXI H,3$ /POINT TO PROMPT 
I::AL.L PSTR /OIJTPUT STRING 
CALL PLINE1 /OIJTPUT C:MDPRS  PROMPT 

2$ C:ALL GLINE /GET INF'UT 
C:ALL OCHAR /GET FIRST CHAR 
ANA A /CHECK FOR NULL 
JZ 1$ /TRY AGAIN 
LXI D.TOPSO JOEl START OF OPCCIDE STRING TABLE 
LXI H. IBUF /POINT TO INPUT BUFFER 
CAL.L 3COM /SEARCH FOR MATCH 
C:F'I OFF /CHECK FOR ERROR 
JZ 1$ /YES. TRY AGAIN 
J MP TJMPO /C:AI_L HA NDLER 

3; TXT /C:tlD:> 	/ 
tiE- C.) 

/ 
Is :oM 
IROUTINE TO SEARCH OPCOL'E TABLE FOR MATCH WITH STRING 
/H.L CONTAINS POSITION POINTER 
/0, E CONTAINS TABLE POINTER. NULL TERMINATES TABLE 
/INDEX uF MATCH RETURNED IN A. -1 RETURNED IF NO MATCH 
SC:,:irl PUSH B /SAVE B,C 

PLtE;H D /.:AVE 	U, E 
PLISH H /SAVE H,L 
MVI 0.00 uNIT TABLE INDEX 



Nm 1$ PIJ'3H H /SAVE STRING POINTER 
MVI B. 02 /SAVE LOOP C:ONTER 

2$ LIJAX El /OET NEXT C:HAR OF ENTRY 
C:MP M /CC'MPARE WITH NEXT C:HAR OF STRING 
JNZ 3$ !NOT EQUAL 
1NX El /UPEIATE TABLE POINTER 
INX H /UF'E'ATE STRING POINTER 
EICR B /UPDATE LOOP COUNTER 
•JNZ 2$ /TRY AGAIN 
PCIF H / GET SIR I NO PCI I NT ER 
NOV A,C /OET TAE-:LE INDEX 
•JMP 4$ /DONE 

:33 INX D /UPE'ATE TABLE POINTER 
EtC:R B /LIPDATE LOOP COUNTER 
•JNZ :33 /E:AC:K FOR MORE 
INR C: /UF'DATE TAE:LE INDEX 
PUP H !GET STRING POINTER AGAIN 
t...DAX El /GET FIRST CHAR 
IJRA A /C:HEC:K FÜR ZERO 
•JNZ 1$ /NO. TRY FOR MATC:H AGAIN 
LXI H.5$ /POINT TO MSG 
i::ALL F'STR /GET STRING 
CALL PLINE /OUTPUT MESSAGE 
MVI A.OFF /SIONAL ERROR 

4$ POP H /GET H,L 
POP D /GET D,E 
F'C'F' B / GET B, C: 
RET /RETURN 

/1136 
TXT 	/ (SC:OM ) INVALID COMMAND! 

0 
/ 
IF' RMF' T 
,OIJTF:. UTS PROMPT TO C:ONSOLE 
/ 

FFMF'T 
IN 
	

1 	 /CHECK FOR RMTTO 
AN I 
	

01 	 /WAIT FOR C:CIMPLET ION 
I-' 

h. 
	 1$ 	 /NO 

MV I 
	

A.06 	 /YES. GET CNTRL—F 
OUT 
	

TTQ 	 /':'uTF'UT C:NTR'L—F 
RET 
	

/RETURN 
/ 
JOl_INE 
/ 

/INF'LITS LINE. MAX LENGTH OF LINE IS NIBUF BYTES 
/ALL REGISTERS EXCEPT A PRESERVED 
GL INE F'LISH B /SAVE B, C: 

PUSH H /SAVE H,L 
1$ LEIA ECHO /GET ECHO STATUS 

ANA A /C:HEC:K ECHO STATUS 
JNZ 3$ /EC:HCI ON 

2$ C:ALL INF'UT /OET INPUT 
CF'I 02 /CHEC:K FÜR CNTRL—B 
JNZ 2$ /NO, 	TRY AGAIN 

3$ LXI H. IBUF /POINT TO INPUT BUFFER 
MVI E:.0O !INIT INPUT LINE LENGTH 

4$ CALL INPUT /GET INF'UT 
c:pI /CHEC:K FOR LF 
.JNZ 5$ /NCI 



EC:HO 
A 
1 0$ 
4$ 
7F 

136 
4$ 
05 
7$ 
EC:HCI 
A 
1 0$ 
4$ 
M. A 
H 
B 
A. 13 
NIBUF 
4$ 
INF'LIT 
7F 
1$ 

9$ 

E C: H C' 

10$ 
6$ 
OA 
6$ 
EC:HO 
A 
8$ 
A. 13 
A 
NIC.HAR 
A 
M. A 
IC:HAR 
H 
13 

:' LDA 
ANA 
JNZ 
U Z 

5$ 	1.F1 
UN Z 
C: ALL 
•JMP 
CPI 
JNZ 
L.E1A 
ANA 
,jz 
IMP 

7$ MCIV 
I N X 
INR 
MCIV 
C:FI 
JO 

6$ 	I::ALL 
C:F'I 
,j z 
CPI 
•JNZ 
LDA 
ANA 
U Z 
.JMP 

9$ CPI 
UN Z 
L EIA 
ANA 
U Z 

10$ MCIV 
I NR 
ST A 
XRA 
MOV 
STA  

POP 
POP 
RET 

/ 

/GET EC:HCI STATUS A':A IN 
/C:HECK EC:HCI STATUS AGAIN 
/EC:HC, ON. [tONE 
/TRY AGAIN 
/C:HECI< FOR RUBC'UT 
/ NC; 
/OUrPIJT 139 
!TRY AGAIN 
/C:HEC:K FOR I::NTRL-E 
/ NC' 
/GET E1:HC; STATUS AGAIN 
/CHEI::K ECHO STATUS AGAIN 
/ECHCI OFF. DONE. 
/ECHCI ON. DISREGARD. 
/SAVE C:HAR 
/UPEIATE BLIF POINTER 
/LIPtIATE LINE LENGTH 
/MOVE TO A 
/t::HEC:K FOR .LT. MAX 
/E:AC:K FOR MORE 
/GET NEXT ,::HAR 
/CHEC:K FOR RIJE:C;UT 
/TRY AC'AIN 
/C:HECK FÜR C:NTRL-E 
/ NO 
/I3EET EC:HO STATUS AGAIN 
/CHEI::f( ECHO STATUS 
/EC:HCI OFF. DONE. 
/EC:HCI CIN. DISREGARD. 
/CHECK FOR LF 
/TRY AGAIN 
/GET EC:HCI STATUS 
/C:HEC:F( ECHC' STATUS 
/EC:HCI OFF. TRY AGAIN. 
/GET LINE LENGTH 
/IJP[IATE LINE LENGTH 
/SAVE LINE LENGTH 
/C:LEAR A 
/NULL LAST BYTE 
/INIT C:HAR INDEX 
I':ET H.L AGAIN 
/GET 13,0 AGAIN 
/ RETURN 

!F':'uT I N E 

I 
I '1 t• A 

MVI 
C:ALL 
MV I 
f:ALL 
MVI 
C: ALL 
DC: X 
[tC:R 

1$ RET 
/ 
I I NFtIT 

i:ii_u IF'LIT BAC:K 
A. B 
A 
1$ 
A f. 

OUTF'IJT 
A, 20 
':IUTPUT 
A 
I-i, _.• 

OU TPUT 
H 
B 

SPACE 
/CiET LINE LENGTH INTO A 
/CHEC:K FOR ZERCI 
IEXIT 
/OET 135 C:HARAC:TER 
/CIUTPUT CHAR 
/GET SP C:HAR 
/OUTPUT SPAC:E 

ET 136 CHAR 
/OUTPUT BAC:K ;PACE 
I UPDATE PCI I NTER 
/IJF'DATE LINE LENLITH 
/ RETURN 



/E:ASIC: CONSOLE INPUT ROUTINE 
	

290 
INPUT LDA ECHII /c'ET ECHO FLAG 

ANA A /CHEC:K FOR ECHO 
•JNZ 2$ /ECHO C:HAR 

1$ IN TTE /GET INF'LIT STATUS 
ANI RMTTI /CHEC:K FÜR INPUT READY 
.JZ 1$ /NO. TRY AGAIN 
IN TTI /':ET 	INPUT 
ANI 7F /MASK TO 7 E:ITS 
.JMP 4$ /EIUNE. 	EXIT 

2% IN TTS /GET INPUT 
ANI RMTTI /CHEC:K FÜR READY STATU3 
JZ 2$ /NO. TRY AGAIN 
IN III /GET INPUT 
ANI 7F /MASF 	TO 7 BITS 
OFI 7F /C:HECV FÜR RUE:OLIT 
.JZ 4$ /EXIT 
OF' I OD / C:HE':K FOR CR 
.JNZ :$ /NO 
C:ALL CRLF /OUTPUT CRLF 
JMF 4$ ./EXIT 
C:ALL OUTPUT /ECHO CHAR 

4$ RET /RETLIRN 
/ 
/ Gi::HAR 
/FCIUT 1NE TO GET NEXT CHAR FROM INPUT BUFFER 
/BUFFER IS NIOHAR BYTES IN LENGTH 
/ALL REGISTERS EXC:EPT A PRESERVEr' 
OC:HAR PUSH D /SAVE El.E 

PUSH H /SAVE H.L 
litA NIC:HAR /GET NUMBER OF ::HAR IN 
MCIV E.A /SAVE IN E 
LDA ICHAR /C1IEI::K CHAR 	INLIEX 
CMF' E /C:HEC:K FOR 	LT. 	MAX 
'JO 1$ /YES 
XRA A /C:LEAR A 
.JMP 2$ /DONE 

1% MCIV L.A /MOVE CHAR INDEX TO A 
MVI H.00 / 
I N R' A /UPDATE CHAR INDEX 
STA II::HAR /SAVE CHAR INDEX 
LXI El. IE:IJF /F'OINT TO INF'LIT BUFFER 
DAD E' / Fi:i I NT TO NEXT CHAR 
MOV A.M JOEl NEXT CHAR 
POP H /OET H. L AGi\IN 
POF' LI. / GET El, E AI3A I N 

2$ RET /RETURN 

ST AT IJS 

INPUT BUFFER 

/ 
JHJ 
JR'oLrlINE TO C:CINVERT HEX STRING TO 16 BIT WORD 
/RESIJLT STOREE' IN B,C 
JERRCIR •'::UEIE RETURNEEI IN A 
HSW 	F'USH 	El 	 / SAVE El, E 

PUSH 	H 	 /SAVE H, L 
/ I N I T 

XRA 	A 	 / , :LEAR A 
MCIV 	E. A 	 / E WILL HOLD LS N I BBI.E 
MOV 	D,E 	 / 
MCIV 	C.EI 	 I 
MCIV 	E:,C: 	 lB WILL HOLD MS NIE:E-LE 



291 /OET NEXT C:HAR 
CALl.... GC:HAR /OET C:HAR 
C:PI , /C:HEC:K FOR SP 
JZ 4$ /YES. DONE 
CIRA A /C:HECK FOR NULL 
.JZ 4$ /YEE;. 	DONE 

/C:CINVERT 
CPI '(V /C:HECK FOR .GE. 	'(V 

5$ /NO. ERROR 
C:FI '9'+1 /C:HEI::K FOR 	.LE. 	'9' 
•JNC: 2$ NO 
sul - 0 /CONVERT TO NIBBLE 
.JMP 3$ / 

2$ CPI 'A' /C:HEC:K FOR 	.13E. 	'A' 
,JC: 5$ /NC'. 	ERROR 
c:PI F' +1 /C:HECK FOR 	LE. 	'F' 
.JNC 5$ /NO. ERROR 
SIJI 'A' /CONVERT TO NIBBLE 
AE'I OA /ADCI 	10 

/SAVE NIBBLE 
3$ nov B. C: /SH I FT 

MOV C.tI / 
NOV D,.E / 
MCIV E. A /SAVE LS NIBBLE 
.JMP 1$ /BACK FOR MCIRE 

/ASSEMBLE WORD 
4$ MCIV A.B JOEl MORE SIGNIFICANT NIBBLE 

RLC /SHIFT 
RLC 
RLC: 
RLC 
UF<A C: JADEI LSB 
MCIV B.A /SAVE HIGH ORDER RESIJLT 
MOV A.D /GET MORE SIONIFIC:ANT NIBBLE 
RLC 
RLC: 
RLC: 
PLC: 
CiRA E JADE' LESS SIGNIFIC:ANT NIBBLE 
MOV C,A /SAVE LOW ORDER RE:JLT 

INO ERROR 
XRA A /SII3NAL NO ERRCIR 
JMP 6$ /DONE 

/ ERROR 
5$ LXI H,7$ /PCIINT TO MEAGE 

C:ALL PSTR / OUTPUT STR I NO 
CALL PLINE /'JUTPUT ERROR 
MVI A.CIFF /SET A TO ERROR 

/RETLIRN 
H JOEl H,L RESIJL.T 

POP El /OET ELE RESIJLT 
RET /RETURN 

/ MSIi 
7$ TXT /HSW ) 	ILLEGAL C:HAR/ 

0 
/ 

CIRO 140x0 
/ 

JRI::ur INE TO EDIT PULSE PROGRAM 



/ 

ED 
1 j; 
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2$ 

3$ 

6$ 

CALL.. PRMF'T / OUTPUT CNTRL-F 
LDA EC:HO /OET ECHO STATLIS 
ANA A /CHECK FOR EC:HO OFF 
.JZ 2$ /ECHCI OFF. SKIP EDITOR PROMPT 
LX I H. 1 c:s / P01 NT TO ED I T OF: PROMPT 
CALL PSTR /OUTPLIT STRING 
CALL PLINEI. /CIUTF'LIT LINE 
CALL GLINE /GET NEXT LINE 
CALL GCHAF: .'OET FIRST CHARACTER 
CPI 51 /C:HEC:K FOR Q CHAR 	(QUITE) 
JZ 9$ /YES. EXIT EDITOR 
ANA A /CHEC:K FOR NULL C:H,'jR 
.JZ 1$ /TF:Y AGAIN 
XRA A /C:LEAR A 
STA ICHAR uNIT C:HAR POINTER 
C:ALL HSW /C:ONVEF:T LINE NUMBER 
C:F'I OFF /CHECI< FOR ERROR 	' 
.JZ 1$ /TRY AGAIN 
MCIV A,B /OET B INTO A 
ORA A /CHEC:K FOR OVERFLOW 
LIZ 3$ /C:ONTINUE 
LXI H.11$ /POINT TO ERROR MSG 
.JMP 3$ /C'UTFUT ERROR 
MCIV A. C /OET LINE NUMBER INTO A 
STA LN /STORE AT LN 
MVI A.02 /OET 02 INTO A 
STA ICHAR /SAVE AT ICHAF: 
C:ALL OCHAR /OET NEXT C:HARAI::TER 
C:PI /cHEC:K FOR SPACE 
LIZ /YES. 	cI:NTINLIE. 
ANA A /c:HEcK FOR NULL 
LIZ 4$ /YES. DELETE LINE 
LXI H..12$ /PCIINT TO ERROR MS0 
.JMP 3$ /OIJTF'UT ERROR 
C:ALL IDEL /DELETE LINE 
LIMP 1$ /BACK FOR MORE 
LXI D.TCIPSI1 /GET START OF OPCODE STRING TABLE 
LXI H. IBLIF /PCIINT TO 	INPLIT BUFFER 
INX H /F'OINT TO OPCODE STRING 
INX H 
INX •H 
CALL. Si::tJM /SEARC:H FOR MATCH 
C:PI OFF /C:HEC:K FOR ERROR 
•JZ 1$ /TRY AGAIN 
STA OFC:ODE /SAVE AT OPCOOE 
MVI A.05 /GET 05. INTO A 
Sm IC:HAR /SAVE AT ICHAR 
CALL OCHAR /GET NEXT CHARACTER 
C:PI /CHEC:K FOR SPACE 
LIZ 6$ /CONTINUE 
LXI H. 12$ /PCIINT TO ERROR MSG 
LIMP 3$ /OUTPUT ERROR 
C:ALL CIPEVAL /EVALUATE FIRST IJPERAND 
CPI OFF /CHECK FOR ERRCIR 
.JZ 1$ /TRV AGAIN 
MOV A. C: /GET OPERAND 
STA CIPI. /SAVE AT C'Pl 
MVI A.':):: /CET 08 INTO A 

4$ 

5$ 



STA ICHAR 
C:ALL I:41::HAR 
CF'I 
JZ 7$ 
LXI H,12$ 
JMP :3% 

7 CALL CIPEVAL 
C:PI OFF 
,jz is 
NOV A,C 
STA CIP2 
C:ALL lADE' 
JMF 1$ 

8% C:ALL PSTR 
CALL PLINE 
.JMF 1$ 

9$ •JMP C:MDPRS 
/ MSC 
10% TXT lEE'> 	/ 

tIE 0 
11$ TXT l(ED 

0 
12$ TXT /(ED 

£113 (. 

) INVALID LINE NIJNI3ER/ 

INPUT F':'RMAT ERROR! 

/SAVE AT IC:HAR 
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/GET NEXT C:HARAC:TER 
/C:HEC:K FOR SPACE 
/CIJNT INUE 
/F'CIINT TO ERROR MSG 
/ OUTPUT ERROR 
/EVALUATE SECOND OPERAND 
/CHECK FOR ERRCIR 
/TRY AGAIN 
/GET SECOND OPERAND 
/SAVE AT 0P2 
lADE' INSTRUCTION TO PP AREA 
/I3ACK FOR MORE 
/OUTPUT STR ING 
/OUTPUT LINE 
/TRY AGAIN 
/EXIT EDITOR 

JF<OUT INE TO C:ONVERT WORE' TO DECIMAL. SIR INO 
/ALL RE':4ISTERS EXCEPT A PRESERVED 
JDS 	PUSH 	B 	 /SAVE E:.0 

PUSH 	U 	 /SAVE D. E 
F'IJSH 	H 	 /SAVE H.L 
LXI 	H. 2710 	 /OET 10000 INTO H.L 
MV I 	D. 04 	 / IN IT PLACE I::UUNTER 

/MAIN LOOP 
uNIT LCIOP C:OLINTER 
/OET LS BYTE INTO A 
/SUE:TRACT LS BYTE 
/OET RESIJLT INTO C: 
IGET MS BYTE INTCI A 
/SUBTRAC:T MS BYTE 
/IJET RESULT INTO 13 
/RESIJLT .LT. 0 
/LIPEIATE LCICIF C:OIJNTER 
/BAC:K FI:IF< MCIRE 
/IJPDATE PLAC:E C: ,:IIJNTER 
/I:ET LCICIP C:CIUNTER INTO A 
/C:CINVERT TO C:HAR 
/CIUTPUT C:HAR 

1% 	MVI E.00) 
MCIV A.0 
31..IE: L 
MCIV C:.A 
MI'V A.E: 
81313 H 
MCIV E.A 
JC 3$ 
INR E 
•JMP 2$ 
DCR U 
MCIV A,E 
AOl 30 
C:ALL PCHAR 

/RESTOF.E 	E:,C: TO LAST RESULT 
MCIV A.C: 
ADD L 
NOV C.A 
MI:Iv A,B 
EiDC H 
MCIV E.A 

/ DE TERM I NE C:LIR'RENT DEC I MAL 
MCIV A,D 
C:PI 03 
JNZ 4$ 
LXI H. 03E5 
JMP 1$ 

/GET LS BYTE INTO 	A.  
/AUD LS BYTE 
/GET RESULT INTO C: 
/l:ET MS BYTE INTI:I 	A 
/AEID MS BYTE 
/GET RESULT INTO B 

P LA C:  E 
/GET PLAC:E COUNTER INTO A 
/C:HEC:K FOR 1000 PLACE 
/TRY AGAIN 
/IJET 1000 INTO H,L 
/E:AC:K FOR MORE 



294 4$ PI 02 /C:HECK FOR 100 PLACE 
.JNZ 5$ /TRY AGAIN 
LXI H, 0064 /OET 100 INTO H,L 
.JMF 1$ ITRY AGAIN 

5$ C:PI 01 ,'::HECV FOR 10 PLACE 
JNZ 6$ 1'TRY AGAIN 
LXI H,000A /OET 10 INTO H,L 
JMP 1$ /BACI< FOR MORE 

6$ MOV A,C: /OET NUMBER INTO A 
ADI 30 /CONVERT TO C:HAR 

POHAR /OLITPUT CHAR 
POF H /GET H.L. AGAIN 
POP ti /OET D.E AGAIN 
PUP B /GET B.0 AGAIN 
RET /RETURN 

/ 
IDF FEG VAL 
./F'::urINE 	TO LOAD A REGISTER WITH A VALUE 
/REG IS THE NAME OF THE REGISTER 
/VAL. 	IS THE VALIJE TO BE LOADED 	(DEC:IMAL) 
/ 
[IF MVI A.02 /GET 02 INTO A 

STA IC:HAR uNIT CHAR INDEX 
CALL '3CHAR /GET CHAR 

• CP I ' 	/ /CHEC:K FOR SP 
JZ 1$ /YES 
LXI H.9$ /POINT TO MS6 
JMP 7$ /OUTPUT ERROR AND EXIT 

1$ CALL HSW I'EVALUATE REG OPERAND 
i::F'I OFF /CHEC:K FOR ERROR 
.12 5$ /ERRC'R. 	EXIT 
MCIV A.B /C:HECK FOR OVERFLOW 
ORA B 
JZ 2$ /NIJ OVERFLOW 
LXI H. 10$ /POINT TO MSC4 
.JMP 7$ /OIJTPUT ERROR AND EXIT 

2$ Nov A. C: /GET LOW ORDER OPERAND INTO 
PAR J:HEC:K FOR VALID REGISTER 
JNC: 3$ /VES 
LXI H,10$ /POINT TO MSC4 
.JMP 7$ /OUTPIJT ERROR AND EX IT 

3% LXI H,REGS JOEl START OF REG AREA INTO 
DAD B /PI:'INT TO PEG 
MVI A,05 /GET S INTO A 
STA IC:HAR uNIT CHAR INDEX 

ICHAR /GET i::HAR 
CPI ,'C:FIEC:K 	FOR 	SR 
jz 4$ /YES 
LXI H.9S /POINT TO MSG 
JMF' 7$ /UUTPUT ERRCIR AND EXIT 

4$ MVI AVO6 /GET6 INTO A 
STA ICHAR uNIT CHAR INDEX 
CALL C4f:HAR /OET CHAR 
C:PI 2D /CHECK FÜR 
MVI A,CIFF uNIT TO NEGATIVE 
STA SIGN /SAVE SIGN FLAG 
MVI A.07 • 	 /GET 7 INTO A 
STA I1:HAR uNIT CHAR INDEX 
.JZ 5$ /NEGATIVE 
MVI 

A 

H, L 



295 SIGN 15AVE SIGN FLAG 
MVI A.06 /OET 6 INTO A 
STA IC:HAR uNIT CHAR INDEX 

5$ CALL DSW /EVALUATE 
cpi OFF /C:HEC 	FOR ERROR 
•JZ 5$ /EXIT 
LDA SII:N /GET SIGN FLAG 
ANA A /C:HECK FOR POSITIVE 
•JZ 64 /FC'SITIVE 
CALL Ti::cMp /NEGATIVE 

6$ MCIV M,C: /LOAD LOW ORDER REGISTER 
INX H /UPDATE POINTER 
MOV M.B /LOAtI HIGH ORDER REGISTER 
.JMF 5$ /EXIT 

7$ C:ALL PSTR /C'UTFtIT STRING 
C:ALL PLINE /OUTPUT LINE 

5$ JMP C:MDPF:S /EXIT TO C:MDFR"E; 
/ MSi 
9% TXT /(t'F ) 	INPUT FC'F:MAT ERROR! 

[lB 0 
TXT /(DF ) INVALID REGISTER! 

0 
/ 

IROUTINE ICI CONVERT DECIMAL STRING TO 14EIT WOr.D 
/RE'3ULT RETURNEE' IN B.0 
/ERF:IJR RETURNEE' IN A 
DSW 	FIlcH 	H 	 !SAVE H. L 
uNIT 

XRA A /CLEAR A 
IVICIV C. A / I N I T 	B. C: 
MCIV 

/':ET NEXT f:HAR 
1$ C:ALL CC:HAR /':ET C:HAR 

CIRA A /C:HECK FOR NLILL BYTE 
.JZ 2$ /YE. DONE. 
C:PI ' /CHEC:K FOR SF' 
JZ 2$ /YES. DONE. 
I::F'I 'C)' /C:HEC:K FOR . GE. '0' 
JC: 3$ /NO. ERROR. 
f:pI '9'+j /CHEC:K FOR . LE. 7' 
JNC: 3$ INC', 	ERROR. 
51.11 '0' /CI:INVERT TO NIBBLE 
CALL MF'YlO /MF'Y f:IjR'RENT RESLILT BY 10 
rl"IDD C / AL' U LS BY TE 
MGV C:, A / I:iET RESULT I NTO C 
MVI A,00 /CLEAR A 
ADO B lADE' MS E:YTE 
MOV B. A /GET RESIJLT INTO B 
.JMP 1$ /BACK FOR MORE 

2$ .JMP 4$ /DC'NE 
:3% LXI H,5$ /FCi1NT TO 

CALL PSTR /IJUTPIJT STRING 
C:ALL F'L. I NE / OUTPUT LINE 
MVI A, OFF /OET ERRCIR FLAG 

4$ POP H /GET H,L E:AC:K 
RET /RETURN 

/M'E:G 
TXT /WSW ) ILLEGAL CHAR! 
DB 0 



/ 
IC: L.. 
JRCLIT INE TO CLEAR PULSE PROGRAM 

MVI 
MVI 
LXI 

1$ 	MCIV 
I NX 
DC:R 
JNZ 
MCIV 
ST A 
JMF 

/ 

E-. OFF 
A 

 

OFF  
H. TLINE 
M. A 
H 
B 

M.A 
PGMST 
C:MDPRS 
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AREA 
/INIT LOOP C:cILINTER 
JGET EMPTY FLAG. 
/PCIINT TO BEG INNING OF LINE TABLE 
I C:LEAR LOC:AT ION 
/UFDATE TABLE F'OINTER 
/IJPEIATE Ll:IOF' C:OLINTER 

AC:K FOR MORE 
/C:LEAR LAST LOC:ATII:IN 
/SIIJNAL EMPTY PROGRAM AREA 
/ RET URN 

/IEIEL 
JF:I:IU1INE TO DELETE INSTRUI:T ION FROM PULSE PROGRAM 
/ INSTRUC:TII:IN LINE NUMBER IS IN LN. 
/ 

F'IJSH 	p 	 /SAVE E:.C: 
PUSH El /SAVE El, E 
PUSH H /SAVE H.L 
LDA LN /GET LINE NLIME:ER INTO A 
MCIV L,A /GET LINE NUMBER INTI:i H,L 
MVI H.QO 
LXI EI,TLINE !GET START OF LINE TABLE 
EtA 0 El / F0 I NT T C' L I NE NUMB ER 
MVI A.OFF !GET EMPTY FLAG 
MCIV M.A /SIONAL EMPTY 
POP H /GET H.L AGAIN 
POP 0 /OET E.E AGAIN 
FOP B /GET B.0 AGAIN 
RET /RETURN 

/ I ADD 
i':iuT INE TO ABEl INSTRUCT ION TO PULSE PROGRAM 

IADLI 	PUSH B /SAVE B.0 
PUSH El / S AVE D. E 
PUSH H / SAVE H, L 
XRA A /CLEAR A 
STA PGiMST. /SIGNAL PROGRAM AREA NOT 
LEIA LN /GET LINE NUMBER 
MCIV L,A /SAVE IN H,L 
MVI H.00 
LXI D.TLTNE !GET START OF LINE TABLE 
DAD El /POINT TO LINE NUMBER 
MIJV M. A /SET INSTR INDEX 
::ALL INSERT / INSERT NEW INSTRUC:TE ON 
FI:IF' H .'I:ET H,L AGAIN 
F'I:IP El /GET tI,E AGAIN 
POP B / GET B. C: AGA I N 
RET - /RETURN 

/ 
/ 
/ 
11 NE::RT 
JF:':'JTINE TO INSERT INSTRUCTION INTO PULSE PROGRAM 
/ INSTRIJC:TICIN LINE IS IN LN 
/ 
IN;EIT 	PIJSH 	El 	 /.r;AVE El. E 

PLISH 	H 	 /SAVE H.L 

EMPTY 



LN 
I 	A 
L • ti 

H. 00 
D. TLINE 
El 
L.M 
H.00 
H 
H 
D,FC4M 
El 
0 P C: 0 0 E 
M, A 
H 
M. 00 
0F1 
H 
M.A 
H 
CIP2 
M. A 
H 
It 

LDA 
MCIV 
MVI 

X I 
DAD 
MCI 
MV I 
EIA 0 
DAD 
LXI 
EtA [ 
LEIA 
MCIV 

Kl'J 
A 

MV I 
LDA 
INX 
MCIV 
I NX 
LEIA 
MCIV 
POF 

RET 
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/IET LINE NUMBER OF INSTR 
/SAVE IN H,L 

/GET START CIF LINE TAE:I_E 
/POINT TO INDEX 
/CiET INDEX 

/MPY BY 4 TO GIVE OFFSET 

'GET START OF F'F:CIORAM AREA 
/PCIINT Tl:l INSTRLICT.ION 
/OET UPC:CItJE 
/5AVE IN INST 
/IJF'EIATE INSTR POINTER 
/INSERT NULL BYTE 
/l:ET FIRST CIFERAND 
/UFDATE I NSTR PCI I NIER 
/SAVE IN INST 
/UPE'ATE INSTRLICTION POINTER 
IGET SECCIND OF'ERANEI 
/SAVE IN INST 
'GET H.L AC'AIN 
/GET D,E A':AIN 
/ RETIJRN 

/ 
/ OPEV AL 
j5IjBFCIIJTINE TO EVALUATE OPERAND 
/ 
'JFEVAL C:ALL 
	

HSW 
	

/ EVALUATE CIPERAND 
I::pI 
	

OFF 
	

/C:HECI<. FOR ERRI:IR 
ci I.. 
	 3$ 
	

/EXIT 
LDA 
	

CIPCIJDE 
	

/:ET CIpERATIi:iN I::clIJE 
A 
	

A 
	

/C:HEC:K FOR E:RAN(--:H CIFC:CIDE 
,-Iz 
	

3$ 
	

/EXIT 
CPI 
	

OC 
	

/C:HECK FOR PA OPCODE 
Jz 
	

3$ 
	

/EXIT 
MCIV 
	

A, B 
	

JGET HIGH ORDER REI3ISTER 
URA 
	

A 
	

/C:HEC:K FOR 1_-IVERFLOL4 
JN Z 
	

2$ 
	

/ ERROR 
1$ 
	

MCIV 
	

A, C 
	

/GET LOW ORDER REGISTER 
RAR 
	

/C:HECK FOR VALID REGISTER 
cii:: 
	

2$ 
	

/INVALID REGISTER 
X F:A 
	

A 
	

/CLEAR A 
JMP 
	

3$ 
	

/EX IT 
2% 
	

LXI 
	

H, 4$ 
	

/POINT TO ERROR MSG 
C:ALL 
	

PSTR 
	

/fIij°fptjT STRING 
CALL 
	

FL I NE 
	

/':'uTpuT LI NE 
MVI 
	

A.OFF 
	

/GET ERROR FLAG INTO A 
3$ 
	

RET 
	

/ RETURN 
/ MSO 
4$ 
	

TXT 
	

/(CIF'EVAL) INVALID REGISTER! 
DEW 
	

0 

JEC: FLA': 
JRI:ILIT INE TCI TURN EC:HO ON AND OFF 
/IF FLAG IS NCtNzER':', ECHO IS TURNED ON 
/ IF FLAG IS ZERO, EC:HCI IS TURNED OFF 
/ 
EC 	MVI 	A, 02 	 /GET TWO INTO A 

STA 	IC:HAR 	 /INIT CHARACTER INDEX 



f:ALL OCHAR /GET NEXT CHARACTER 
C:PI ' 	' /CHEC:K FOR SPACE 
JZ 1$ /f:i:INTINUE 
ANA A /C:HEC:K FOR NULL 
JNZ 4$ !OUTPUT ERROR MSG 
XRA A /CLEAR A 
STA ECHO /SET ECHO TO OFF 
JMP 5$ /RETURN 

1$ CALL HSW /EVALUATE FLAG 
OPI OFF !C:HEC:K FOR ERROR 
JZ 5$ /EXIT 
NOV A.B /GET HIGH ORDER FLAG 
CIRA A /CHEC:K FOR ZERO 
JZ 2$ /CONTINIjE 
MVI A01 /GET ONE INTl: A 
STA EcHO !SET ECH':' TO ON 
JMF' 5$ /EXIT 

2$ MCIV AC: /OET LOW ORDER FLAG 
CIRA A /CHEC:I< FOR ZERO 
JZ 3$ /ZERCI 
MVI A.01 /GET ONE INTO A 
STA ECHO /SET ECHO TO CIN 
UMP 5$ /EXIT 

3$ XRA A /CLEAR A 
STA ECHO !SET ECHO TO OFF 
JMP 5$ /EXIT 

4$ LXI H.6$ /POINT TO ERROR MSG 
C:ALL PSTR /UUTPUT STRING 
CALL PLINE /UUTPUT LINE 

5$ .JMP C:MDPRS /RETIJRN 
/ M SO 

TXT /(EC ) INPUT FORMAT ERROR! 
08 U 

/ 
JDE:PTCH 
J51jE:F;:13LITINE TO COMPARE RECYCLE STATUS AND 
/PP START STATUS. CONTROL IS DISPATCHED AS 
/FULLC'WS: 
hF PPSST=O. CONTROL IS SENT TO CMDFRS 
hF FPSST=1 AND RECYCLE=1, CONTROL IS SENT TO PP 
hF PF'SST=1 AND REC:YCLE=O, CONTROL IS SENT TO CMDPRS 
/ 
DSPTCH IN PPS /CHECK START STATUS 

ANI SMPP /CHEC:K FOR START CCINDI TI ON 
JZ 3$ /FF STUFFED. EXIT TO C:MDFRS 

1$ LDA RCYCLE /GET RECYCLE STATUS 
ANA A /CHECK FUR NO RECYC:LE 
•JZ 3$ /NCIT RECYCLING. EXIT TO CMDPRS 

2$ XRA A !CLEAR A 
STA RC:YCLE !TURN OFF RECYCLE 
MVI A,UFF !SIGNAL TO PP 

3$ RET !RETURN 
/ 
IRE 
,C:HEC:KS PP 5 tART STA TUS 
/IF F'PSST=1, C:ONTROL DISPATCHED TO PP 
/ I F PPSST=O, C: U N T R OL DISPATCHED TO CMDPRS 
/ 
RE 	IN 
	

PFS 
	

/GET START STATUS 
ANI 
	

SMPP 
	

/C:HEC:K FUR START 

gm 
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JNZ PP 
MVI A.O1 
SrA RCYCLE 
JMP C:MDPRS 

/DISPATCH TO PP 
/OET ONE INTO A 
/TLIRN ON RECYCLE 
/DISPATCH TO CMDPRS 

OF FULSE PRoi.iRAM 
L N 22' 

TO LIST SECTION 
LOWER LINE NIJME:ER 
UPPER LINE NLIMIE:ER 

MVI 	A,02 
S TA 
CALL 
op i 
J 
LXI 
CALL 
CALL 
.JMP 
CALL 
C:PI 
•-, z 
nov 
MCIV 
MVI 
ST A 
CALL 
C:P I 
JNZ 
C:ALL 
C:PI 
,jz 
MOV 
MOV 
MOV 
Mf:'V 
CIRA 
.JNZ 
MCIV 
URA 
jz 

LXI 
CALL 
C:ALL 
JMP 
McIV 
C:MF 
JO 

LXI 
C: ALL 

ALL 
•JMF' 

•L XI 
EIA El 
Mf:tV 
CPI 

I Z 4. 

P1 I:H 
FIJSH 

/GET TWO INTO A 
uNIT ,::HAR INDEX 
/ GET CHARAC:TER 
/C:HECK FOR EFRl:IR 
/YES 
/PIJINT TO MSG 
/OLJTF'UT STRING 
/OUTPUT LINE 
/EXIT 
/EVALUATE FIRST OPERAND 
/CHECK FOR ERROR 
/EXIT 
/SAVE FIRST OPERAND IN D,E 

/GET 5 INTO A 
/SAVE AT ICHAR 
/GET NEXT C:HAR 
/CHECK FOR SP 
/ YES 
/EVALUATE SECOND OPERAND 
/C:HEC:K FOR ERROR 
/YES EXIT 
/SWAP OPERANDS 

/':ET HIGH OREIER OPERAND 
/C:HECK FOR OVERFLOW 
tERROR 
/GET HIGH CIREIER OPERAND 
/C:HECK FOR OVERFLOW 
/NO 
/FOINT TO M3G 
/OIJTF'UT SIRING 
/IJUTF'IJT LINE 
/ERROR EXIT 
/GET FIRST OPERAND 
/CHECK FOR . LE. SEI::OND OPERAND 
/YES 
/ YES 
/PCIINT TO MSG 
/OLITPUT STRING 
/ OUTPUT LI NE 
/ERROR EXIT 
/GET START OF LINE TABLE 
/P':IINT TO FIRST INSTR INDEX 
/GET NEXT INDEX 
/CHEC:K FOR EMPTY 
/YES 
/SAVE LCIWER LIMIT 
/SAVE UPF'ER LIMIT 

/ 

ILl LNi. 
JROUT I N I 
/LN1 IS 
/LN2 IS 
/ 

Li 

1$ 

2$ 

3$ 

4$ 

ICHAR 
CiCHAR 

1$ 
H, 9$ 

PSTR 
Ft. I NE 
3$ 
HSW 
OFF 
3$ 
E. C 
LI, B 
A. 05 
ICHAR 
GCHAR 

L 1+5 
HSW 
OFF 
3$ 
A, C: 
C, E 
E. A 
A,B 
A 
2$ 
A, El 
A 
3$ 
H, 10$ 
PSTR 
PLINE 
:3, $ 
A, C: 
E 
4$ 
4$ 
H. 11$ 
PSTR 
FLINE 
3$ 
H, TLINE 
B 
A. M 
OFF 
7$ 
B 
U 
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7$ 

5$ 
/ MSO 
9$ 

it) $ 

11$ 

/ 

Jt: HE: 

PIJ5H H /SAVE LINE TAELE POINTER 
MCIV L,A /MOVE INSTR INDEX TO H,L 
MVI H,00 
DALI H /MPY BY 4 TO GIVE OFFSET 
fA r l  -. 
LXI D,FGM /GET BEGINNING OF PROGRAM AREA 
DAD U /POINT TO INSTRUCTION 
C:ALL E:HS /C:ONVERT LINE NUMBER AND OUTPUT 
MVI A,' 	' /OET SF'AC:E C:HARACTER 
CALL FCHAR /OUTPUT 
NOV N /OET OPCODE INDEX 
FUSH H /SAVE IN3TR POINTER 
MCIV L, A /FIOVE OPCOOE INDEX TO H.L 
MVI H,Cx: 
DAD H /MPY BY 2 TCI GIVE OFFSET 
LXI D,TOPS11 /OET START OF OPPCODE STRING TABLE 
DAD U /POINT TO OFC':'tiE STRING 
MVI 02 / INIT LOOP C:CUNTER 
MOV A.M /GET NEXT CHAR OF i: , PC:ODE STRING 
CALL PCHAR /CIUTPUT STRING 
INX H /UPDATE OPCOLIE STRING POINTER 
L0:R B /UPDATE LOOP COUNTER 
JNZ 6$ /BACK FOR MORE 
MVI A.' 	' /GET SPACE CHAR 
CALL PCHAR /CIUTPLIT SPACE 
POP H /GET INSTR POINTER BACK 
INX H /UPDATE INSTR POINTER 
INX H /SKIP NULL BYTE 
MOV A.M /GET OP1 
MCIV C:. A /MC'VE CIPi 	TO B, C 
MVI B4O0 
CALL BHS /C:ONVERT OP1 AND OUTPUT 

MVI A.' 	' /GET SPACE C:HAR 
CALL FCHAR /OIJTPUT SPACE 
INX H /UPDATE INSTR POINTER 
NOV A,M /'3ET UP2 
MCIV C, A /MOVE 0P2 TO B, C 
MVI t-:,00 
L:ALL BHS /CONVERT OF'2 AND 	OUTPUT 
C:ALL F'LINE /OLITPUT LINE 
FOP H /GET H,L AGAIN 
POP U /OET D.E AGAIN 
POP B !GET B,C: AGAIN 
I NX H /IJPDATE TABLE PU I NIER 
INR C /UPDATE LOWER LIMIT 
.JZ 5$ /END OF TABLE. 	['fiNE 
MCIV A.:: /UET LOWER LIMIT 
OMP E /C:HECK FOR . LE. 	UPPER L IN IT 
JC 5$ /YES, BACK FOR MORE 
•JZ 5$ !YE$. BAC:K FOR MORE 
JMP C:MDFRS /RETURN 	TO COMMAND PROC:ESSOR 

TXT / (LI 	). INPUT FORMAT ERROR! 
DB 0 
TXT /(LI 	) INVALID LINE NUMBER! 
[lB 0 
TXT /(LI 	) Low LIMIT .GT. HIGH LIMIT! 
DE 0 



301 1C:ONVERTS BYTE TO HEX 
IC: C:ONTAINS BYTE 
/ALL REGISTERS EXCEFT 
BHS NOV A, C: 

ANI OFf) 
RRC: 
RRC: 
RRC: 
RRC 
CPI OA 
JNC: 1$ 
ADI 
.JMP 2$ 

1$ EUI OA 
ADI 

2$ CALL FC:HAR 
NOV A,C 
ANI OF 
CPI QA 
.JNC 3$ 
AOl '0 
.JMF 4$ 

3$ $IJI OA 
AOl 'A' 

4$ CALL PCHAR 
RET 

STR I NO AND OUTPUTS 

ICHEC:K FOR GE. 10 
/YES 
ICON VERT 
/ 

/SUBTRACT 10 
/CONVERT NIBBLE TO CHAR 
/IJIjTPIJT CHAR 
IOET BYTE AGAIN 
/ MASK LOWER ORDER E: IT 
/ C:HECI< FOR . GE. 10 
IYES 
/CONVERT NIBBLE TO CHAR 

/SUBTRACT 10 
ICONVERT NIBBLE TO CHAR 
/OIJTPUT CHAR 
/RETURN 

A F'F:ESERVED 
/CiET BYTE 
/MASK. HIGH ORDER NIBBLE 
/POSITION NIBBLE TO LS BITS 

I 
IVA kEG 
IRI:IUTINE TO 
/REG IS THE 

VA 	MVI 
STA 
CALL 
C:P I 
j z 
LXI 
I::AL L 
CALL 
UMF 

1$ 
	

CALL 
C.F1 
,-jz 
MOV 
CIRA 
,jz 
LX I 
C:ALL 
C:ALL 
JMP 

2$ MCIV 
RAR 
JNC 
LXI 
C:ALL 
CALL 
JMF 

3$ LXI 
DAD 
MOV 

A,02 /GET 2 INTO A 
ICHAR /INIT C:HAR INDEX 
OCHAR /OET CHAR 

/C:HEI:K FOR SPACE 
1$ IYES 
H, 	$ /FO INT TO MESSAGE 
PSTR /OUTPUT STRING 
PLINE ICIUTPUT LINE 
4$ /EXIT 
H$W /EVALUATE ':'pERAND 
OFF /CHECK FOR ERROR 
4$ /NO 
A,13 /GET MS BYTE INTO A 
A /C:HEC:K 	FOR OVERFLOW 
2$ /NCI 
H,6$ /YES. POINT TO MSG 
PSTR /OUTPUT STRING 
FLINE /OLITPl_ 	LINE 
4$ IEXIT 
A.0 /OET OPERAND INTCI A 

/C:HEC:K IF VALID REGISTER 
3$ /YES 
H.6$ INO. POINT TO MSG 
PSTR /UUTPUT STRING 
FLINE /OUTPUT LINE 
4$ /EXIT 
HPREGS /GET START OF REGISTER AREA 
B /POINT TO REGISTER 
C,M /GET LOW ORDER REGISTER 

OUTPUT C:ONTENTS OF REGISTER 
NAME OF THE REGISTER TO BE OUTPUT 



INX H 
MOV 
C:ALL WHS 
MVI A,20 
CALL PCHAR 
MVI A,213 
C:ALL PCHAR 
C:ALL WE'S 
MVI A, 20 
CALL FCHAR 
MVI A.2D 
CALL FC:HAR 
CALL TCOMP 
CALL WE'S 
CALL PLINE 

4$ JMP CMDFRS 
/ I1SCi 

TXT /(VA 
DE: 0 
TXT /(VA 
DB C) 

/UPDATE RECi POINTER 
/GET HIGH ORDER REG 
/C:ONVERT NUMBER AND OUTPUT 
/GET E;P CHAR INTO A 
/OUTPUT C:HAR 
/OET '+' C:HAR 
/OUTPUT 1:HAR 
/CONVERT TO DECIMAL AND OUTPUT 
!I3ET SP C:HAAR AGAIN 
/UUTPUT C:HAR 
/C4ET 	-, C:HAF: 
/ OUTPUT CHAR 
/ NEGATE 
/OONVERT TO DECIMAL AND OUTPUT 
/OUTPUT LI NE 
/RETLIRN TO C:OMMAND PROCESSOR 

INPUT FORMAT ERROR! 

INVALID REGISTER! 
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/ 

1W H; 
JC:,:JNVERTS WORD TO HEX 
/B. C CONTA INS WORD 
/ALL. REGISTERS EXCEPT 

UftE: 	N1OV 	A,B 

STRING AND OUTF'LITS 

A PRESERVEE' 

/ SW I TCH B AND C: 
MCIV B,C 
MOV C, A 
CALL E:HS /C:ONVERT AND OUTPUT HIGH ORDER HALF 
MCIV A,B /SWITC:H B AND C AGAIN 
MCIV B. C: 
MOV C,A 
CALL E:HS /C:ONVERT AND OUTPUT LOW ORDER HALF 
RET !RETURN 

/ 
JLO REI3 VAL 
/ROUTINE TO LOAD A REGISTER WITH A VALUE 
/REG IS THE NAME OF THE REGISTER TO BE LOADED 
/VAL IS THE VALUE TO BE LOADED 

LU 	MVI A.02 ,'GET 2 INTO A 
STA IC:HAR !INIT I::HAR INDEX 
f:ALL GOHAR !OET C:HARACTER 
C:PI /CHECK FOR SPACE 
.JZ 1$ /YES 
LXI H. /PCIINT TO MSG 
C:ALL PSTR /OUTPUT STRING 
C:ALL PLINE IOUTPUT 	LINE 
JMP $ /EXIT 

1$ 	CALL HSW !EVALUATE PEG OPERAND 
C:PI OFF /CHECK FOR ERROR 
JZ $ /YES, 	EXIT 
MCIV A. B /GET HIGH UREIER OPERANEI 
C'RA A /CHEC:K FOR OVERFLOW 
JZ 2$ /NO 
LXI H.7$ /FCIINT TO MSG 
C:ALL PSTR !CIUTPUT STRING 
C:ALL PLINE /OUTPUT LINE 

INTO A 



303 .JMP $ /EXIT 
2$ MCIV A,C /GET LOW ORDER CIFERANEI INTO A 

F:AF: /C:HECK IF VALID REGISTER 
,JNC :3$ /YES 
LXI H.7$. /FOINT 11:1 MSG 
C:ALL PSTR /OLITFUT STRING 
CALL PLINE /OUTPLIT LINE 
JMP 5$ /EXIT 

3$ LXI H.FE0S /GET START OF REGISTER AREA 
DAD B /POINT TO REGISTER 
MVI A,05 JOEl 5 INTO A 
STA IC:HAR /SAVE AT ICHAR 
CALL GCHAR /OET CHAR 
CP I /CHECK FOR SPACE 
JZ 4$ !YES 
LXI H.E.$ /POINT TO MSO 
CALL.. PSTR /I:ILITPUT STRING 
CALL PLINE /OLITPIJT LINE 
UMP 5$ /EXIT 

4$ CALL HSW /EVALUATE VLIJE 
OFF /CHECK FOR ERROR 

•JZ 5$ /EXIT 
MOV M. C /LOAD LOW ORDER REGISTER 
INX H !UPDATE REGISTER POINTER 
MOV M,B /LOAD HIGH ORDER REGISTER 

5$ JMP C:MEIPRS /RETURN TO COMMAND PR':ICESSOR 
/MSO 
6$ TXT / (LU 	) INPUT FORMAT ERROR! 

tIE: C) 
7$ TXT /(LO 	) INVALID F:EGISTER/ 

DB 0 
/ 
/00 LN 
/SIARTS PULSE PROGRAM EXEC:UTION AT A SPECIFIED LINE 
/LN IS THE NUMBER OF THE SPEC:IFIED LINE 

GO LXI H,12$ /POINT TO MESSAGE 
IN PPS /GET START STATUS 
ANI SMPP /CHECK FUR START STATUS 
JZ 6$ /CIUTF'UT MESSAGE 
LDA PGMST /GET PROGRAM AREA STATUS 
CF'I OFF /C:HECI< FOR ZERO 
JNZ 1$ /NCI 
LXI H,8$ /PCIINT TO MSG 
JMF 6$ /ERROR EXIT 

1% MVI A,02 /OET 2 INTO A 
SrA II::HAF: uNIT CHAR INDEX 
CALL OCHAR /OET CHAR 
CPI ' 	' /C:HECK FOR SPACE 
iz 2$ /YES 
LXI H,9$ /POINT TO MSG 
.JMP 6$ /ERRCIR EXIT 

2$ C:ALL HSW !EVALUATE LINE NUMBER 
CR1 OFF /C:HEC:K FOR 	ERROR 
JZ 7$ /YES, 	EXIT 
MCIV A, B /C:HECI< FOR OVERFLOW 
CIRA A 
.JZ 3$ /NU 
LXI H.10$ /PUINT TO MSC4 
JMP 6$ /ERRCIR EXIT 
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3$ MCIV L,C: /GET LINE NUME-:ER INTO H.L 

MVI H.O0 
LXI D.TLINE JOEl START OF LINE TABLE 
DAD U /POINT TO INDEX 

4$ MCIV A.M /I3ET LINE INDEX 
C:PI OFF /C:HEC:K FOR EMFTY 
JNZ 5$ /NCI 
LXI H.11$ /POINT TO MSG 
JMF 6$ /ERRCiR EXIT 

5$ STA LC /5AVE INDEX AT I_C 
.JMF' PP /START PULSE PROGRAMMER 
CALL FSTR /OLITPUT STRING 
C:ALL PLINE /OUTPLIT LINE 

7$ .JMF CMDPRS /RETURN 10 C:CIMMANLI PRI:ICESSOR 

3$ TXT / (GO ) PROGRAM AREA EMPTY! 
LIE: 0 

9$ TXT / (GO ) INPUT FORMAT ERROR! 
LIE: Ci 

10$ TXT /(00 ) INVALID LINE NUMBER! 
LIE: 0 

11 $ TXT / (GO ) LINE NUMBER OUT OF PROGRAM BOUNDS! 
EtB C) 

12$ TXT /(00 ) START PULSE PROGRAMMER! 
08 C) 

IRE 
ICIE:IAINS INSTRUCTIONS AND OFERANE'S FROM PROGRAM 
/ CALLS HANDLER 
/ 
PP LEIA LC /GET LOCATION C:OUNTER 

OFF /l::HEC}< FOR LAST INSTRUC:TION 

JZ 3$ !EXIT 
MCIV B.A /INIT LOOP COt_INTER 
MOV L.A /SAVE LOCATION C:OUNTER IN H,L 
MVI H,00 
LXI D.TLINE /':ET START OF LINE TABLE 
DAD U /POINT TO NEXT LINE 

1$ MOV A.M !CHEC:K INDEX FCIR EMF'TY 
I::pI OFF 
JNZ 2$ /NO. 	C:ONTIMJE 
INX H !UPDATE LINE POINTER 
INR B /UPDATE LOIJF' C:I:IIJNTER 
MVI A.OFF /GET OFF INTO A 
CMP E: /CHEC:F::: FOR LAST LINE 
JZ 3$ !EXIT 
•JIIP 1$ /TRY AGAIN 

2$ STA LC: /SAVE LI:ICAT ION COLINTER 
MCIV L.A /SAVE INDEX IN H,L 
MVI H,00 
DAD H /MPY BY 4 TO GIVE OFFSET 
DAD H 
LXI D.FOM JOEl START OF PROGRAM AREA 
DAD U /FOINT TO INSTR ADDRESS 
MCIV A. M / GET OF'CODE 
STA OPCODE /SAVE C'PCODE 
INX H !IJPE'ATE POINTER AND SKIP NULL BYTE 
INX H 
MOV CM /3ET FIRST OPERAND INTO B.0 
MVI 8.00 
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MCIV E. M IOET SECCIND C'PERAND I NTCI 0, E 
MVI [.00 
LDA LC /GET LOCATION C:OUNTER 
INF: A /UFEIATE LI:ICATICIN COUNTER 
STA LC JSAVE LCIC:ATION C:OUNTER 
LEIA CIPC:OE,E /GET OPC:U[IE AGAIN 
JMP TJMP1 1 /CALL HANDLER 

:3$ JMP CMDPRS /RETURN 

/H A 
JHAL1'S FLILSE PRCIc4R'AMMER. RETURNS CONTROL TO C:OMMAND F'ROCESSOR 

HA MVI A.CIFF !CiET NLIMBER CIF INSTRU:TION3 
STA LC /SAVE AT LC 
JMF PP /RETURN 

/ 

/INITIALIZES ADDRESS C:OIJNTER OF RAM 	1. 

Ri MVI H.SRAM1 /GET START ADDRESS INTO H,L 
MV I L . 
SHLD RAC:i /SAVE START ADDRESS 
.JMP PP /RETLIRN 

I. 
1R2 
JNITIALIZES ADDRESS COUNTER OF RAM 2 
/ 

MVI H,SRAM2 JGET START ADDRESS INTO H,L 
MVI L,00 
SHLt' RPC:2 /SAVE START ADDRESS 
JMP PP /RETURN 

/ 
JR:3 
111\4ITIAI_IZES ADDRESS COUNTER OF RAM 3 

F:3 MVI HTSRAM3 /GET START ADDRESS INTO H,L 
MVI L,00 
SHLE' RAC:3 /SAVE START ADDRESS 
JMF F'P /RETURN 

/ 

!SE RE':'l REG2 
IF:EGISTER 	1 IS SET TO THE VALUE STORED AT 
/REGISTER 2 
/ 
SE L X I H.REGS /GET START CIF REGISTER AREA 

['AC' 0 /PCIINT TO REG2 
MOV E. M /GET LOW ':'REIER REG2 
INX H /UPDATE REO2 POINTER 
MCIV ELM /GET HIGH ':'FrER REI:2 
LXI H.REGS /GET START OF REGISTER AREA 
DAD B /POINT TO REG1 
MCIV M, E /SAVE LOW ORDER RESULT 
INX H /IJPEIATE REG1 FCIINTER 
MCIV M. El /SAVE HIGH ORDER RESULT 
.JMF PP /RETURN 

/ 
RN REci RE32 
/CUNTENTS OF REGI. INC:REMENTEEI BY C:ONTENTS OF RE02. 
/RESIJLT LEFT IN 	RE':'l. 



/ 
IN LXI H,F:EGS /cET START OF REGISTER AREA 

DAD D /PUINT TO REG2 
MCIV E,M /GET LOW ORDER RE02 
INX H /UPDATE REG2 POINTER 
Mclv E(,M /c4ET HIGH ORDER REG2 
LXI H,REGS /GET START OF REGISTER AREA 
DALI B /F'OINT TO RE01 
MOV A, N /GET LOW ORDER REO1 
ADD E /ADD LOW ORDER REG2 
NOV N. A /$AVE LOW ORDER RESULT 
INX H /IJPDATE REG1 POINTER 
MOV AM /GET HIGH ORDER REO1 
ALIC LI !ADD HIGH ORDER RE02 
MCIV N. A /SAVE HIGH ORDER RESULT 
JMP PP /RETURN 

/ 
IDE REI:il RE62 
JEIECREMENT C:ONTENTS OF REGISTER 1 BY THE C:ONTENTS 
/CIF REGISTER 2. RESULTS STI:IRED IN REGISTER 1. 
/ 

CE LXI H.REOS /OET START OF REGISTER AREA 
DAD ri /P':tINT TO RE':42 
MCIV EM /GET LOW ORDER REGISTER 2 
INX H /UPDATE REG2 
Mciv D,M /GET HIGH ORDER REG2 
LXI H,REOS /C4ET START OF REG AREA 
LIALI B /PCIINT TO REG1 
MCIV A,M /OET LOW ORDER REO1 
SUB E. /SUBTRAC:T LOW ORDER REG2 
Mclv N, A /SAVE LOW CIRDER RESULT 
INX H /UPDATE RE01 POINTER 
MOV A, N /ciET HIGH ORDER RE01 
SEB El /SUBTRACT HIl:H ORDER RE132 
MCIV N. A /SAVE HIGH ORDER RESIJLT 
JNP PP /RETURN 

/SB RE:il REC42 
IEIEC:REMENT C:ONTENTS OF REGISTER 1. 	IF RESULT IS NONZERO 
/E:RANCH TO SPECIFIED LINE NUMBER. 
/LN IS 	'E;TUr-:EU IN REGISTER 2. 
/ 
SE-: LXI H.REOS /C4ET START OF REI:4ISTER AREA 

DAD El /FCIINT TO REG2 
MCIV E. N / ':ET LINE NIJME;ER 
LXI H.REciS bET START OF REGISTER AREA 
DAD B /Fl:IINT TO REO1 
NOV i:. M /GET LOW ORDER REG1 
INX H /UPE'ATE REl:ISTEF: POINTER 
MCIV B. M /GET HIGH CIRDER REG1 
tic: X B / DECREMENT B, C 
rlI:iv N, B /SAVE HIGH ORDER REO1 
DCX H JUFDATE RE':ISTER POINTER 
MCIV M,C /SAVE LOW ORDER REGI 
MOV A.0 /CHECK FOR ZERO 
CIRA B 
JZ 2$ bYES. DONE 
LXI H? TLINE /GET START OF LINE TABLE 
DAD El /POINT TO INSTR INDEX 
MCIV AM /GET INSTR INDEX 



C:PI OFF /C:HEC:K FOR EMPTY 
.JZ 1% /ERRCIR 
STA LC /SET LOC:ATION C:OUNTER 
.JMP 2$ /DONE 

1% CALL ELINE /OUTPUT LINE NUMBER 
LXI H. 3% /POINT TO MSri 
CALL PSTR /OUTPUI STRING 
CALL PLINE /CIUTPUT LINE 
LIMP HA I HALT PULSE PROGRAMMER 

2$ JMP PP /RETURN 
/ M 30 
3$ TXT / (SB ) UNLINKED BRANCH! 

tIB 0 
/ 

/ 
/CD REGI. REG2 
•'f:ijMpAFE3 C:ONTENTS OF RECiI WITH CONTENTS 
/C'F REG2. SETS COMPARISON C:OEIE. 
/ 
CO 	LXI 	H,REGS 	 /'3ET START OF REGISTER AREA 
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DAD D 
MDV E.M 
INX H 
MDV ElM 
LXI H.REO'E: 
DAD B 
MCIV A,M 
SUB E 
MDV C,A 
INX H 
MCIV A,M 
SE:E El 
h.411 
IiI_I, 

?. 	A s-i  

ORA C: 
.JNZ 1$ 
MVI A.o1 
STA C:CIMP 
•JMP 3$ 

1$ 	MCIV A.B 
ORA A 
UP 2$ 
MVI A,02 
STA COMP 
.JMF' 3$ 

2$ 	 MVI A.04 
STA C:OMF' 

A 
f-i 

LIZ 2$ 
LXI H.TLINE 
DAD B 
MDV AM 
C:PI OFF 
LIZ 1$ 

/FOINT TO RE02 
/PUINT• TO LOW ORDER REG2 
/LIPDATE REG2 POINTER 
/OET HIGH ORDER REG2 
/GET START OF REGISTER AREA 
IPOINT TO RE01 
/GET LOW ORDER REG1 
/SUE:TRACT LOW ORDER REG2 
ISAVE LOW ORDER RESULT 
/UPDATE RE01 PCIINTER 
bET HIGH ORDER REG1 
/SUBTRACT HIGH ORDER REG2 
/3AVE HIGH ORDER RESULT 
Ii::HEC:K FOR ZERO 
/ NCIM 
/c(REI:1) EQ. C:(REGZ) 
ISAVE CODE 
/ DONE 
/CHECK FOR NEGATIVE RESULT 

/ NC' 
IC(RE01) .LT. l::(F<Ec,2) 
/SAVE CODE 
/EICINE 
IC: (REG 1) .07. C: (REG2) 
/SAVE CODE 
/ RETURN 

IF 

/cET COMPARISON C:CiDE 
I. AND. C:f, EIE 
/NCI BRANC:H. DONE 
/OET START OF LINE TABLE 
IPCIINT TO INSTR INDEX 
IGET INDEX 
/C:HEI:K FOR EMPTY 
/ ERROR 

3$ 	 JMP 	PP 
/ 
/E:R LN I::cJjI 
J:Z,p\J 	TI:l SPEI::IFIEEI LINE NIJMI3ER 
/o::c , EIE.ANE,.cI:IMP 	NE. 0 
/ 
I3R 	LEIA 	C:I:IMP 
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STA LC: /$ET LI:ICATICIN C:OLINTER 
•JMP 2$ /DCINE 

1$ CALL ELINE /OIJTPUT LINE NLIMEER 
LXI H.:3$ /F1DINT TO MESSAGE 
CALL PSTR / CILITPLIT STR I NC 
CALL PLINE /C'UTPUT LINE 
•JMF' HA /HALT PLILSE F'F<OGRAMMER 

2$ JMP PP /RETURN 
/MSG 
3; TXT / (BR 	) UNLINKED BRANC:H/ 

DB 0 
/ 
!F'A NIS 
/PULE;E PROGRAM SOURCE SET TO NIS 
/0O=FIFCI, 01=RAM 1, 02=RAM 2. 03=RAM 3 
/ 
PA MIJV A. C: /GET NEXT INSTR'UC:T ION SOURCE 

RRC /C'ET SOLIRC:E BITS INTO MSB POSITIC'NS 
RRC: 
ANI OCO /MASK OUT OTHER BITS 
STA SOURCE /SAVE SOURCE BITS 
LIMP PP /RETURN 

/ 
/OF REG 1 RE32 
/OLITFLIT TIME, GATE TO FIFU 
/2-COMPLEMENT OF TIME IS STORED AT RE01 
/FULSE MASK IS STORED AT REC$2 
/ 
OF 

/OET REG C:CINTENTS INTO E,C: AND D,E 
/CHEC:K FOR ZERO 

/EXIT 
/OET FIFO ADDRESS INTO H,L 

/CHECK PP STATUS 
/C:HECK FOR READY 
/NCIT REALlY 
/OUTPUT C:ONTROL WORD TO FIFO 

2$ 	•JMP 	PP 	 /RETURN 
/ 
10 1 REG 1 REG2 
/OUTPUT TIME I:4ArE TO RAM1 
/2-COMPLEMENT OF TIME STC'RED AT REO1 
/FULSE MASK STORED AT REI3Z 
/ 
01 	CALL. FETC:H /GET REG CONTENTS INTI:l t-:,C: D,E 

LHLD RAC:1 /CiET RAM ADDRESS 
MVI A..0F4 /GET HI':4H ORtIER MEMORY LIMIT 
C:MF' H /CHECI( FOR OVERFLOW 
JZ 1$ /YES 
C:ALL WPP /WRITE TO RAM1 
LHLr' RAC1 /GET RAM ADDRESS AGAIN 
INX H /UPEIATE RAM ADDRESS 
INX H 
INX H 
INX H 
SHLD RAC:1 /STORE RAM ADDRESS 
.JMP 2$ /DONE 

1$ 	C:ALL ELINE /OUTPLIT LINE NUMBER 

C:ALL FETC:H 
MCIV A.B 
ORA C 
JZ 2$ 
MYI L.30 
MVI H2OFF 

1$ 	IN PPS 
ANI RMPP 
,Jz 1$. 
CALL WPP 
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LXI 	H,3$ 
CALL 	F'STR 
C:ALL 	FLINE 
UMP 	HA 

2$ 	•JMP 	PP 
/ M3G 

TXT 	/(01 
DB 	0  

/POINT TO MSG 
/OUTFUT STRINC4 
/OUTFUT LINE 
IHALT PULSE PROGRAM 
/ RETURN 

RAM ADDRESS OVERFLOW! 

/ 
102 REG1 REO2 
JOUTEUT TIME,GATE TO RAM 2 
/2-CC'MPLEMENT OF TIME STORED AT 
/GATE MASK STORED AT REC42 
/ 
02 	CALL 	FETC:H E,C AND DE 

LHLD RAC2 
MVI A.OFS 
CMP H 
.jz is 
CALL WPP 
LHLD RAC2 
INX H 
INX H 
INX H 
INX H 
SHLD RAC:2 
JMP 2$ 

1$ C:ALL ELINE 
LXI H,3$ 
C:ALL PSTR 
C:ALL FLINE 
JMP HA 

2$ UMP PP 
/ M SO 
31 TXT /(02 

DB 0 

RE 01 

JOET PEG C:CINTENTS INTO 
/GET RAM ADDRESS 
/OET HIGH ORDER MEMORY 
/CHECK FOR CIVERFLI:IW 
/YES 
/WRITE TO RAM 2 
/GET RAM ADDRESS AGAIN 
/UPDATE RAM ADDRESS 

LIMIT 

/STORE RAM ADDRESS 
/DCINE 
/ OUTPUT LI NE NUMEER 
/F'CIINT TO MSG 
/OUTPLIT STR I Ni 
/CIUTPUT LINE 
/HALT FLILSE PROGRAMMER 
/RETURN 

PAM ADDRESS OVERFLOW! 

/ 
/0:3 REG1 RE02 
/OUTEUT TIME.OATE TO RAM 3 
/2-COMPLEMENT OF TIME IS STORED 
JPULSE MASK IS STORED AT R'E02 
/ 
03 	CALL 	FETCH 

LHLD RAC:3 
MVI A,OFI:: 
C:MF H 
jz is 
C:ALL WPP 
LHLEI RAC3 
INX H 
INX H 
INX H 
INX H 
SHLD RAC3 
JMP 2$ 

1$ 	C:ALL ELINE 
LXI H.3$ 
CALL. FSTF: 
CALL PLINE 
JMF HA 

AT REGI 

/GET REG C:ONTENTS INTO B,C AND E',E 
/OET RAM ADDRESS 
/GET HIGH CIRDEF: MEMORY 
/CHEC:K FOR OVERFLOW 
/ YES 
/WRITE TO RAM 3 
/GET RAM ADDRESS AGAIN 
/UPtIATE RAM ADDRESS 

/STORE RAM ADDRESS 
/t'ONE 
/OUTFLIT LINE NIJMEER 
/PUINT TO MSG 
/ OUTPUT STRING 
/OUTPUT LINE 
/HALT PULSE FROGRAMMER 
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2$ 	JMP 	PP 
/M:E;G 

TXT 	1(03 
DEl 	C)  

/ RETLIRN 

RAM ADDRESS OVERFLOW! 

/ 
1W F'F 
JJI:z:ITE5 TIME:, 
/H. L CONTAINS 
/E:. C: CONTAINS 
/D. E I::ONTA INS 
/ 

GATE SETTINGS TO PP MEMORY 
PP ADDRESS 
2—COMPLEMENT OF TIME 
PULSE MASK 

MI:IV N1,C /WRITE LOW ORDER TIME 
INX H /IjFEIATE PP ADDRESS 
MOV A.B /I:,ET HIGH ORDER TIME 
ANI 3F /MASK OUT SCILIRCE BITS 
MCIV B,A /TEMP SAVE 
LDA SCIURCE /GET SI:IURCE CODE 
CIRA El /ADD IN HIGH ORDER TIME 
MCIV M,A /WRITE HIGH I:IRDER TIME 
INX H /UPEIATE PP ADDRESS 
MCIV M.E /WRITE LOW ORDER GATE 
INX H /UPDATE PP ADDRESS 
MCIV M.D /WRITE HIGH ORDER I3ATE 
RET /RETIJRN 

I, 
/ 

REC1 REG2 
JCIIJIPUTS A TIME IN UNITS CIF 1. MSEC TO THE FIFO 
/REG1 CONTAINS THE TIME IN UNITS OF 1 MSEC 
/F<E02 CONTAINS THE PULSE MASK 

MS 	1:ALL 	FETCH 	 /GET REQ C:ONTENTS INTO B.0 AND D.E 
C: 

El 
3$ 
B 

ODS 
C, OFO 
H, OFF 
L. 30 
F'PS 
RMPP 
2$ 
WPP 
B 

A. C 
B 
1$ 

•JMP 	PP 

'El F:E':IS1ERS FROM 
I::oE)E RETURNED IN 

ri
II r•. r..

L'.. , r 
DAD El 
MCIV E,M 
INX H 
MOV D.M 

/t:,ET NI_IME:ER OF 1 MSEC: UNITS 
/C:HEC:K FOR ZERO 
/YES. EXIT 
/TEMF' STORAGE 
/I:IET 1 MSEC 

/GET FIFO ADDRESS 

/GET FF STATUS 
/C:HEC:K FOR READY 
/TRY A':AIN 
/OUTPUT TIME.GATE TO FIFO 
/GET C:OUNTER AGAIN 
/UPDATE C:CII_INTER AGiA I N 
/CiET REQ C INTO A 
/i::HEC:K FOR ZERO 
/E:AC:I( FOR MCIRE 
/ RETURN 

I ND I CES I N B, C: AND El, E 
A 

/GET START OF REGISTER AREA 
/PUINT TO REG2 
/GET LOW ORDER REG2 
/IjPEIATE REG2 
/GET HIGH ORDER REG2 

1$ 

2% 

S 
/ 
/F El 

/ EF:RI:IF: 

FE iC:H 

MCIV 
OR A 
,J z 
FIJSH 
MVI 
MVI 
MV I 
MVI 
IN 
AN I 

17 

I::AI_L 
F I: F 
Dc:: X 
MCIV 
OF:A 
JNZ 



LXI 	H.RE&E; 	 /OET START OF REGISTER AREA AGAIN 	
311 

DAD 	B 	 /POINT TO REO1 
MCIV 	C:,M 	 /UET LOW ORDER REO1 
INX 	H 	 /IJF'EIATE REG1 
MCiV 	B.M 	 /GET HIGH ORDER REG1 
RET 	 /F:ETIJRN 

I 

F:EGi. REG2 
JC'UTPUT A TIME IN UNITS OF 1 SECOND TO THE FIFO 
/REG1 CONTAINS TIME IN SECONDS. 2 	SEc:UNDS MAXIMUM. 
/REG2 C:ONTAINS PULSE MASK 

SI:: C:ALL FETCH /GET TIME,GATE MASKS 
MOV A. C /CHEC:K FOR ZERO 
CIRA B 
•JZ /YES. DONE 
MCIV A. B /CHEC:K FOR OVERFLOW 
URA S 
JZ 1 /NU 
C:ALL ELINE /UUTPLIT LINE NUME:ER 
LX I H. 4 / PC' IN T TO MSG 
C:ALL FSTR /OLITPLIT STRING 
CALL FLINE /OUTPUT LINE 
JMP HA /HALT PULSE PROGRAMMER 

1$ MCIV A. C /GET NUMBER OF SECONDS 
2$ STA NSEC: /SAVE NUMBER OF SEC:CtNDS 

LXI B. 0:3E5 bET 	1000 INTO B. C: 
3$ PUSH B /SAVE E:.C: 

MVI B4OEI:3 I':4ET 	1 MSEC 
MVI C:.CFO 
MVI H,.OFF /GET FIFO ADDF:ESS 
MVI L, 5() 

4 IN PPS /GET PP STATLIS 
ANI RMPP /C:HEC:K FOR READY 
JZ 4$ /TRY AGAIN 
C:ALL WPP /CIUTPUT TO FIFO 
FC'P B / GET B, C AGA IN 
DC:X B /UFDATE COUNTER 
MCIV A 	C: / GE T C I NTO A 
CIRA B / ,::HEC:F( 	FOR 	ZERCI 
•JNZ 3$ /BAC:K FÜR MORE 
LDA NSEC: /OET NUMBER OF SECONDS 
EII::R A /UFDATE NUMt-ER OF SEC:UNDS 
•JNZ 2S E:Ai::K FOR MCIRE 
JMF FF /RETURN 

/MSO 
6$ TXT / 'SC: ) TIME 	.:iT. 	255 SEC:ONDS/ 

rIB 
/ 

11 1 FE: 1 REG2 
!I:IIJTF:UT SAMPLING TRAIN TO RAM 1 
/REG1 CONTAINS NUMBER OF SAMPLING PIJLSES 
/REG2 I::ONTAINS FULSE MASK 
/REG E12 C:ONTAINS SAMPLING PERIOD 
/ 

TI 	C:ALL 	FETCH 	 /GET REGISTER C:ONTENTS 
MCiV 	A. B 	 /CHEC:K FOR cvERFL':'w 
CIRA 	E. 

1$ 	 /NCI 
C:ALL 	ELINE 	 /CIUTF'UT LINE NUME:ER 



LXI H.6$ /POINT TO MSG 
J MP 4$ /OLITPUT ERF:OF:  

1% NOV A. C /GET NUMBER OF PULSES 
ANA A /C:HEC:K FOR ZERO 

5$ /EXIT 
STA NSAMPL /SAVE COUNT 
LXI H.FE.i3S /i3ET START OF REGISTER AREA 
LX I B. CIOD2 !OET D2 INTO B, C 
DAD B / PU I NT TO D2 
NOV C. M /GET LOW ORDER SAMPLING TIME 
INX H /UPDATE REGISTER POINTER 
NOV B. N /OET HIGH ORDER SAMPLING TIME 
MOV A.C: /C:HECK FOR ZERO 
ORA B 

5$ /EXIT 
2$ LHLD RAC1 /OET RAM ADDRESS COUNTER 

MVI A. 0F4 /OET HIGH ORDER MEMORY LIMIT 
C:MP H /CHEC:K FOR OVERFLOW 
JZ 3$ /YES. ERROR 
I::ALL WPP /WRITE TO RAM 1 
LHLD RAC1 /GET RAM ADDRESS AGAIN 
INX H /UPDATE RAM ADtIRESS 
INX H 
INX H 
INX H 
SHLD RAC1 /STORE NEW RAM ADDRESS 
LEIA NSAMFL /OET NUMBER OF SAMPLE PULSES 
DCR A /UPDATE 
STA NSAMF'L /SAVE COUNT 
JNZ 2$ /BAC:K FÜR MORE 
JMP 5$ /C'ONE 

3$ CALL ELINE /OUTPUT LINE NUMBER 
LXI H.7$ !POINT TO MSO 

4$ C:ALL PSTR JOUTPUT STRING 
CALL F'LINE /OUTPUT LINE 
JMP HA /HALT PULSE PROGRAMMER 

5$ .JMP PP /RETLIRN 
/ M SO 

TXT /(Ti ) NIJMt-:ER OF SAMPLE PULSES .GT. 255/ 
0 

7$ TXT / (Ti ) RAM ADDRESS OVERFLOW! 
DE< 0 

/ 
/CiEt RE':ii. REG2 
/CIUTPLIT DELAY TO THE FIFO. LENGTH OF DELAY 
/ IS C (FE ):C (REC41 ) 	IN UNITS OF 100 NSEC. 
/REOI. C:ONTAINS UNIT TIME WHIC:H MAY NOT EXCEED 819.2 USEC. 
/FE CONTAINS THE NUMBER OF LINITS TO BE OUTPUT. 
/REO2 C:ONTAINS THE PULSE MASK. 

OD CALL FETC:H /GET TIME,GATE MASKS 
NOV L,E /GET PULSE MASK INTO H,L 
NOV H,D 
SHL.E' MASK /SAVE MASK 
MCIV A, B /CHECK FOR ZERO 
CIRA C 
JZ 6$ /EXIT 

MVI A.0C) /C:HEC:K FOR .LT. 	8192 
SLIB C: /SUE:TRACT LS BYTE 
MVI A,20 /GET 20 INTO A 
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4 

2$ 

4$ 

B 
•JNC 	1$ 
LXI 	H,7$ 
CALL 	ELINE 
C:ALL 	F'STR 
C:ALL 	PLINE 
JMF' 	HA 
MCIV 	L. 
MUV 	H,E: 
E;HLri 	TIME 
LXI 	H,REGS 
LXI 	D.00FE 
DAt' 	0 
MCIV 	E.M 
INX 	H 
MOV 	0,11 
MCIV 	A.tI 
ORA 	E 
Jz 	6$ 
MOV 	L.E 
MCIV 	H,D 
SHLD 	COUNT 
LXI 	H, 0000 
DAD 	B 
MCtV 	E,L 
MOV 	tt.H 
LHLD 	C:CIIJNT 
EIC:X 	H 
MCIV 	A.L 
- r. A 

SHLD 	COUNT 
II:v 	L,E 
MCIV 	H.D 
.JZ 	4$ 
MVI 	A,OFF 
SI_It: 	L 
IIVI 	A.1F 
SBB 	H 
JNC: 	3$ 
MCIV 	C.L 
MCIV 
C:ALL 	TCCtMP 
LHLD 	MASI< 
MCIV 	E.L 
MCIV 	D,H 
MVI 	L P 30 
MVI 	H.OFF 
Tp..I 
	 PPS 

ANI 	F:MPP 
jz 
CALL 	WFP 
LHLD 	TIME 
MCIV 	C:.L 
MCIV 	B.,H 
LHLD 	C:OUNT 
MCIV 	E,L 

D.H 
MCIV 	A.D 
ORA 	E 
.JZ 	6$ 

/SIJBTRACT MS BYTE 
/NI:INzEF(cI. 
/PC'INT TO MSG 
/CIUTPUT LINE NUMBER 
/ OUTPUT STRING 
/CIUTPUT LINE 
/HALT PULSE PRC'GRAMMER 
/GET UNIT TIME INTO H,L 

/SAVE UNIT TIME 
/GET START IIF PEG AREA INTO H 7 L 
/GET FE INTCI DE 
/PU1NT TO REGISTER FE 
/GET LOW ORDER BYTE 
/UPDATE PCIINTER 
/GET HIGH ORDER BYTE 
/C:HEC:K FOR ZERO 

/EXIT 
/OET C:UUNT INTO H, L 

/SAVE COUNT 
/INIT H,L 
/INC:REMENT BY UNIT TIME 
/GET TIME INTCI CI,E 

/GET CCIIJNT INTO H,L 
/UPDATE CCILINT 
/C:HEI::I< FOR ZERCI 

/SAVE C:OUNT 
/I:ET TIME BACK INTO H,L 

/ EICINE 
/1:HECK FCIR .LT. 3191 
/SUBTRACT LS BYTE 
/OET iF INTO A 
/SIJE:TRAC:T MS BYTE 
JEAC:K FOR MORE 
/OET TIME INTO B,C 

/NEGATE TIME 
/GET PULSE MASK INTO H.L 
/GET MASK INTO C', E 

/GET FIFO ADDRESS INTO H,L 

/GET PP STATUS 
/C:HECK FOR PP READY 
/TRY AGAIN 
/OUTPUT TO PP 
/GET UNIT TIME BAC:K INTO H,L 
/GET UNIT TIME INTO B.0 

/GET COUNT INTO H,L AGAIN 
/GET COUNT INTO D,E 

/CHEC:K FCIR ZERCI 

/EXIT 
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JMP 2$ /E-AC:K FOR MORE 

6$ JMF' PP /EXIT 
/ MSG 
7$ TXT I(OD 	) 	IJNIT TIME .GT. 	819.2 USEC:! 

DE- 0 
/EL.INE 
JROUTINE TO OUTPUT LINE NUMBER OF 
/PULSE PROGRAM ERROR. 
/ 
ELINE: LEIA LC .'GET LOCATION COUNTER 

Eu::R A /POINT TO LINE NUMBER 
MOV C,A /GET LINE NUMBER INTO C: 
CALL BHS /C:UNVERT AND OUTPUT TO BUFFER 
MVI A. 20 /GET SP C:HAR INTO A 
CALL PCHAR /OUTPUT SP CHAR TO BUFFER 
CALL F'LINEI. /CLITPUT LINE 
RET /RETLIRN 

/ US 
/ROUTINE TO OUTPUT DELAY IN UNITS OF USEC: TO FIFrJ 
/REG1 C:ONTAINS TIME IN UNITS OF IJ:3EC. 	1000 USEC MAX. 
/REG2 CONTAINS PULSE MASK 
/ 
US C:ALL FETC:H /GET REG CONTENTS INTO B, C: AND D.E 

MOV A. C /CHEC:K FOR ZERO 
ORA B 
•JZ 4$ /EXIT 

1$ MVI A, OES /C:HECK FOR . LT. 	1000 
SIJB C: 
MVI A.03 

B 
.JNC 2$ /.LT. 	1000 
CALL ELINE /C'UTPUT LINE NUMBER 
LXI H,5$ /PCIINT 113 MSG 
CALL PSTR /OLITPUT STRING 
C:ALL. Ft I. NE / OUTPUT LI NE 
JMP HA /HALT PULSE PROGRAMMER 

2$ C:ALL MPY1Q /MPY BY 10 
CALL TCOMP /C:CINVERT TO TWO-C'JMF'LEMENT 
MVI L,80 /GET FIFO ADDRSS INTO H,L 
MVI H,C)FF 

3$ IN PPS /CiET PP STATUS 
ANI RMPF /CHECK FOR PP READY 
JZ 3$ /TRY AGAIN 
CALL WPP /OUTPUT TO FIFO 

4% •JMF PP /RETURN 
/ MSC' 
5$ TXT / (US 	) TIME .GT. 	1000 USEC:/ 

DB 0 
/ 
JHN 
/R'::IUT INE TO OUTPUT TIME IN UNITS OF 100 NSEC: TO FIFO 
/REO1 CONTAINS TIME IN UNITS OF 100 NSEC: 
/RE132 CONTAINS PLILSE MASK 
HN CALL FETCH /CET REG CONTENTS INTO B.C: AND D,E 

MCIV A, C /C:HECK FOR ZERO 
C'F:A B 
JZ PP /EXIT 
f:ALL TCOMP /CONVERT TIME TO TWC-C:OMPLEMENT 
MVI L,80 /OET FIFC' ADDRESS INTO H,L 
MVI HOFF 



1$ IN 	PPS /GET PP STATUS 	 315 
ANI 	RMPF' /c:HECK FOR PP READY 
JZ 	1$ /TRY AGAIN 
C:ALL 	WPP /QUTPUT TO FIFO 
UMP 	PP /EXIT 

/ TC:CIMP 
/PERFORMS TWO-COMPLEMENT OF DATA IN B,C: 
/RES1JLT RETURNED IN B,C 
TCOMF XRA 	A /CLEAR A 

C /'E:UBTRAC:T LOW ORDER BYTE 
MCIV 	C:. A /SAVE LOW ORDER RESULT 
MVI 	A,00 /C:LEAR A AGAIN 

B /SUBTRAC:T HIGH ORDER E:YTE 
NOV 	B, A /SAVE HIGH ORDER RESULT 
RET /RETLIRN 

/ 
/ M F' V 10 
/NULT IPLIES C:ONTENTS OF B. C:  BY 10 
/RESULT RETURNED IN B, C - 
MFY10 F'USH 	H /SAVE H, L 

NOV 	L.C: /OET MULTIPLICAND INTO H,L 
MCIV 	H,B 
DAD 	H /MULTIPLY BY 10 
DAD 	H 
DAD 	H 
DAD 
Lt 

NOV 	,L / GET RESULT INTO B, C 
NOV 	E:.H 
POP 	H /GET H,L AGAIN 
RET /RETURN 

/ 

JSYST EM TABLES 
/ 

TCIPSO TXT 	/CL/ 
TXT 	/ED! 
TXT 	ILl! 
TXT 	/EC:/ 
TXT 	/VA/ 
TXT 
TXT 	/00/ 
TXT 	/DF/ 
DL: 

T.JMF'O C:PI 	00 
JZ 	CL 
OPI 	01 
.JZ 	ED 
CF'I 	02 

I-, 	LI 
03 

JZ 	EC 
CPI 	04 

I 	 'I 

C:pI 	05 
JZ 	LU 
C:PI 	0. 
JZ 	GO 
CPI 	07 
JZ 	ElF 
JMP 	C:MDPRS 



/ 
TC'F61 1 	TXT 

TXT /OF/ 
TXT /01/ 
TXT /02/ 
TXT /03/ 
TXT /R1/ 
TXT /R2/ 
TXT /R3/ 
TXT uN! 
TXT IDE! 
TXT /SE/ 
TXT 
TXT /PA/ 
TXT 
TXT /SC/ 
TXT /HA/ 
TXT /HN/ 
TXT 
TXT /Tl/ 
TXT /00/ 
TXT IRE! 
TXT /LIS/ 

0 
TJMPI. 1 	C:PI 00 

JZ ER 
C:PI 01 
JZ UF 
CFI 02 
jz 01 
f:pI 03 
JZ 02 
CPI 04 
JZ 03 
C:PI 05 
JZ Ri 
CPI 06 

r\. 
c:pI 07 
JZ R3 

OS 
JZ IN 
CPI 09 
JZ tIE 
C:PI OA 

SE 
CpI OB 
JZ Co 
cPI oc 
JZ PA 
C:PI 00 
.JZ MS 
CPI 

SC 
CPI OF 
JZ HA 
CPI 10 
JZ HN 
C:PI 11 
I? 

 SO 
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C:PI 12 
JZ Ti 
cpI 13 
JZ OD 
C:PI 14 
JZ RE 
CPI 15 

LI..' 

JMP CMCIPRS 
/ 
/Y;TEM DEVICE REGISTERS 
/ 

PFS EQU 50 
RMPP EQU SC) 
SMFP EQU 40 
TTC( EQL) 00 
TT I EQU 00 
ITS EQU 01 
RMTTI. EQU 02 
RMTTU EUL.I 01 
SRAM1 EQU OFO 
SRAM2 EQU 0F4 
SRAM3 EQU OFS 
/ 

THE FOLLOWING MIJST BE IN RAM 
/ 
/SYSTEM PARAMETERS AND BUFFERS 
/ 
CHAR C'S 1 
SIGN C'S 1 
NIC:HAR DS 1 
ICHAR C'S 1 
NIBUF EQIJ 50 
IBIIF DS NIBUF 
OC:HAR t)S 1 
NCJBUF EQU 50 
OBIJF C'S NOBUF 
/ 
COMF' C'S 1 
RC:YCLE L'S 1 
ECHO C'S 1. 
SCil.JRCE L'S 1 
LN C!S 1 
OPC:ODE 03 1 
OPI. OS 1 
0P2 C'S 1 
OFF EQU OFF 
LC 03 1 
PGMST C'S 1 
NSEC OS I 
NSAMPL L'S 1 
MASK C'S 2 
C':IIjNT OS 2 
TIME 03 2 
RAC:1 OS 2 

- 	RAC:2 03 2 
RAC3 C'S 2 
NIMAX EQLI OFF 
REGS 03 100 
TLINE C'S 100 
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