
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Efficient Query Processing Techniques for Data Exploration in Heterogeneous and
Distributed Systems

Permalink
https://escholarship.org/uc/item/2hv919jg

Author
Sevim, Akil

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2hv919jg
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Efficient Query Processing Techniques for Data Exploration in Heterogeneous and
Distributed Systems

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Akil Sevim

September 2023

Dissertation Committee:

Dr. Ahmed Eldawy, Chairperson
Dr. Vagelis Hristidis
Dr. Amr Magdy
Dr. Vassilis Tsotras

Copyright by
Akil Sevim

2023

The Dissertation of Akil Sevim is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I deeply appreciate the support and guidance from Dr. Ahmed Eldawy during my thesis

work. His exceptional teaching and emphasis on progress over mere results have greatly

enriched my academic journey. I’m fortunate to have learned and grown under his guidance.

Additionally, I’m deeply grateful to my committee members, Dr. Vassilis Tsotras, Dr.

Vagelis Hristidis, and Dr. Amr Magdy, for their valuable insights and feedback, which

significantly improved my work

I also want to express my sincere gratitude to Dr. Michael Carey. It has been

a privilege to work alongside him, and his feedback and comments on my work have been

truly enlightening. I also owe a great deal to the members of the Big Data Lab. To my

fellow lab mates who have graduated, Dr. Tin Vu, Dr. Saheli Ghosh, and Dr. Samriddhi

Singla, your warm welcome and continuous support from the beginning were instrumental.

To the current members of the lab, Xin Zhang, Zhuocheng Shang, Majid Saeedan, and

Tomal Majumder, I extend my gratitude for the countless enlightening discussions and

collaborative efforts.

The text of this dissertation, in part, is a reprint of the material as it appears in

22nd IEEE International Conference on Mobile Data Management, 2021. The co-author

Dr.Ahmed Eldawy listed in that publication directed and supervised the research which

forms the basis for this dissertation.

iv

To my parents, brother and family for all the support.

v

ABSTRACT OF THE DISSERTATION

Efficient Query Processing Techniques for Data Exploration in Heterogeneous and
Distributed Systems

by

Akil Sevim

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2023

Dr. Ahmed Eldawy, Chairperson

The rise in the variety and amount of big data has sparked interest in data-driven appli-

cations. As a result, there is a growing demand for effective ways to explore, transform,

and understand data across various platforms, including distributed systems. Getting in-

sights from data involves cleaning, changing, showing, and combining data, which requires

scalable systems for quick knowledge extraction. This thesis introduces new techniques for

processing queries in big data management systems.

Data exploration involves trial and error, often yielding empty query results. To

tackle this, HQ-Filter is introduced—an agile hierarchy-aware data structure. HQ-Filter

exploits data hierarchy to build a configurable, probabilistic filter, efficiently eliminating

empty-result queries on the client side. Applied to UCR-Star and Cloudberry systems for

spatiotemporal-textual data, HQ-Filter significantly boosts server capacity (up to 66%),

accelerates response times (up to 15x), and reduces server workload (up to 90%).

Moreover, for today’s data scientists, combining diverse big datasets via distributed

systems using join queries with complex conditions is essential. However, the availability of

vi

methods that can generate an optimized query plan for such queries in Database Manage-

ment Systems (DBMSs) is limited due to the implementation and integration complexities.

To overcome this issue, we introduce the Flexible User-defined Distributed Joins (FUDJ)

framework, which seeks to enhance the availability of optimized join algorithms within

DBMSs.

FUDJ enables partition-based distributed join algorithms without deep DBMS

or distributed programming knowledge. Through a novel extensibility architecture, FUDJ

enhances availability and diversity of optimized join algorithms, amplifying options for data

scientists and database researchers.

FUDJ facilitates query processing by embedding it in any query optimizer. Using

”CREATE JOIN,” FUDJ deploys join libraries, detects flexible distributed join queries,

constructs optimized plans, and offers execution options. Implemented in Apache Aster-

ixDB, FUDJ delivers substantial efficiency gains (20x less work) and speedups (up to 1200x)

compared to built-in and on-top approaches.

vii

Contents

List of Figures x

List of Tables xii

1 Introduction 1

2 HQ-Filter: Hierarchy-Aware Filter for Empty-Resulting Queries in Inter-
active Exploration 4
2.1 Introduction . 4
2.2 Problem definition . 11

2.2.1 Baseline 1: Exact Approach . 13
2.2.2 Baseline 2: Probabilistic Approach 14

2.3 Hierarchy-Aware Filter For Empty-Resulting Queries (HQ-Filter) 15
2.3.1 Performance Metric . 17
2.3.2 HQ-Filter Construction . 20
2.3.3 HQ-Filter for tile-based Map Visualization 21
2.3.4 HQ-Filter for Spatiotemporal-Textual Data Visualization 24
2.3.5 Optimizations for Counting . 28

2.4 Experiments . 31
2.4.1 Setup . 31
2.4.2 Accuracy of the Performance Metric (P) 33
2.4.3 Effect of User Types . 35
2.4.4 Response Time Improvements . 37
2.4.5 Improvement on server capacity . 41
2.4.6 HQ-Filter Creation . 41

2.5 Related Work . 45
2.5.1 Presentation Layer . 45
2.5.2 Application Layer . 46
2.5.3 Database layer . 47

2.6 Conclusions . 48

viii

3 FUDJ: Flexible User-defined Distributed Joins 49
3.1 Introduction . 49

3.1.1 Motivation . 51
3.1.2 A New Approach . 54

3.2 Background . 57
3.3 Related Work . 60
3.4 Common Challenges in Distributed Join Processing 62

3.4.1 Partitioning . 63
3.4.2 Joining . 65

3.5 Programming Model . 68
3.5.1 SUMMARIZE . 69
3.5.2 PARTITION . 70
3.5.3 COMBINE . 71

3.6 Example Implementations . 72
3.6.1 Spatial FUDJ . 72
3.6.2 Text Similarity FUDJ . 73
3.6.3 Overlapping Intervals FUDJ . 75

3.7 FUDJ Infrastructure . 78
3.7.1 Internal and External Actors . 78
3.7.2 Query Optimizer Integration . 80
3.7.3 Creating Joins . 83
3.7.4 Realization of the Infrastructure . 84

3.8 Experiments . 86
3.8.1 Productivity . 89
3.8.2 Performance . 90
3.8.3 Scalibility . 92
3.8.4 Characteristics of the FUDJ Algorithms 94
3.8.5 Duplicate Handling Methods . 96
3.8.6 Advanced Optimization Evaluations 97

3.9 Conclusions and Future Work . 99
3.9.1 Future Work . 99

4 Conclusions 101

Bibliography 103

ix

List of Figures

2.1 HQ-Filter in an interactive data exploration system 6
2.2 USGS Earthquake Map . 8
2.3 Cloudberry Twitter Map for Keyword “mask” with a large number of empty

results . 8
2.4 Three levels of tiled map visualization shows empty and non-empty tiles . . 16
2.5 Tiled Map Datasets . 29
2.6 Classification of keywords according to popularity in space and time 29
2.7 Spatial and temporal distributions of keywords 29
2.8 Actual number of filtered requests for various size HQ-Filters along with their

computed P metrics . 34
2.9 User Types vs Filters . 35
2.10 Filtered requests for various user combinations for all keyword categories . . 36
2.11 The effect of filtering empty requests on the client response time and server

workload . 38
2.12 Average speedups for three different client locations 39
2.13 Server performance with the usage of HQ Filter (512KB), Bloom Filter

(1MB), and NO Filter (without any filtering) 40
2.14 Non-empty tiles counting times for levels 10 to 19 43
2.15 Tiled map with Incremental (I), Approximate (A), and Exact (E) counting

methods . 44
2.16 For spatiotemporal-textual data application in AsterixDB 44

3.1 Productivity and Performance Evaluations of Existing Optimized Join Im-
plementation Methods . 55

3.2 Summarize and Partition Phases . 63
3.3 Partitioning Categories . 64
3.4 Partition Matching Strategies . 66
3.5 Partitioning Categories . 68
3.6 Flexible User-defined Distributed Join Data Flow Diagram 69
3.7 A Proxy Built-in Function in FUDJ Framework 79
3.8 Flexible User-defined Distributed Join Logical Plan 82
3.9 Single-Join Algorithms - Bucket Matching Phase 83

x

3.10 Lines of Code (LOC) Comparison of Join Implementations Using FUDJ and
Built-in Approaches . 89

3.11 FUDJ, Built-in and On-top Query Execution Times of Spatial, Interval, and
Text-similarity Join Examples For Various Dataset Sizes with 12 cores. . . . 92

3.12 FUDJ Query Execution Times vs Dataset Size 93
3.13 FUDJ Query Execution Times vs Dataset Size 93
3.14 The Effect of Number of Buckets . 94
3.15 The Effect of Similarity Threshold . 95
3.16 Text-similarity FUDJ Duplicate Handling: Duplicate Avoidance vs Elimination 96
3.17 Spatial FUDJ Duplicate Handling: Default Method vs Reference Tile . . . 97
3.18 FUDJ Spatial Join vs Optimized Spatial Join 98

xi

List of Tables

2.1 HQ-Filter Evaluation Datasets . 32

3.1 Datasets for FUDJ Experiments . 87

xii

Chapter 1

Introduction

In today’s data-driven landscape, the need for efficient data analysis and explo-

ration is more critical than ever. This demand is fueled by the exponential growth of data

sources, ranging from social networks to IoT devices, and the rise of data-driven applications.

As a result, the traditional approach to joining datasets in Database Management Systems

(DBMS) is facing new challenges. Historically, DBMS treated ”join” as a straightforward

operation on structured data with simple equality conditions. However, the landscape has

evolved, and data scientists now require the ability to combine large, diverse datasets from

various sources, often involving complex conditions and less structured data.

This evolution has given rise to various types of join operations, especially in

distributed systems, where data integration is a complex task. Existing methods for imple-

menting new join operators can be categorized into three approaches: standalone, within

distributed systems like Spark and Hadoop, and as built-in operators within DBMS. While

each approach has its merits, they also come with limitations, such as inflexibility, non-

1

adaptability, and performance concerns. Furthermore, integrating new join algorithms into

DBMSs remains a challenge, leaving complex join queries to be handled by on-top solutions

with User-defined Functions (UDFs) and Nested Loop Join (NLJ) operators, which can lead

to slower query execution times.

On the other front, the surge in big data and data-driven applications has trans-

formed the landscape of data exploration and business intelligence. Systems like Tableau,

Qlik, and OmniSci have achieved significant success, generating substantial revenue in the

realm of big data and business analytics. However, this growth has brought new challenges,

particularly in the realm of data exploration systems.

Data exploration systems differ significantly from traditional DBMS workloads, as

users often engage in trial-and-error processes, generating a substantial number of queries.

Unfortunately, many of these queries result in empty outcomes, for three key reasons: the

trial-and-error nature of data exploration, the proliferation of queries stemming from single

user actions, and the background query generation for caching and recommendation pur-

poses. These systems also require low response times to maintain user engagement, adding

another layer of complexity.

To address these challenges, our work introduces HQ-Filter, which leverages the

inherent hierarchy of data to efficiently filter out empty-resulting queries in visual data ex-

ploration systems. HQ-Filter’s innovative approach employs an approximate data structure

based on Bloom Filters, storing non-empty queries up to a certain level in the data hier-

archy. This enables the system to quickly detect and discard empty queries, significantly

reducing the query workload on the server. By providing a constant-time mechanism for

2

detecting empty-result queries and effectively utilizing client-side resources, HQ-Filter en-

hances the performance of data exploration systems, ultimately facilitating more efficient

and engaging data analysis.

In addition to HQ-Filter, we present the Flexible User-defined Distributed Joins

(FUDJ) approach, which aims to revolutionize the landscape of join algorithms within

DBMS. As data scientists grapple with the complexities of integrating and optimizing join

operations for diverse datasets, FUDJ offers a user-friendly solution. It empowers users

with varying levels of expertise to efficiently leverage join algorithms, significantly reducing

the code and knowledge required for implementation. FUDJ’s integration with query op-

timization engines, support for native data types, and performance comparable to built-in

implementations unlock new possibilities for efficient join operations. Ultimately, FUDJ fa-

cilitates more comprehensive data analysis, uncovering hidden insights, and driving accurate

decision-making in diverse industries and applications.

In the subsequent chapters of this thesis, we delve into the details of both HQ-Filter

and FUDJ, exploring their implementation, benefits, and experimental results. Through

these innovations, we aim to revolutionize the landscape of data analysis, making it more

accessible, efficient, and responsive to the evolving needs of data scientists and businesses

alike.

3

Chapter 2

HQ-Filter: Hierarchy-Aware Filter

for Empty-Resulting Queries in

Interactive Exploration

2.1 Introduction

The increasing availability of big data triggers a growth in the interest in data-

driven applications. Many business intelligence (BI) and data exploration systems have

been successfully deployed on a large scale such as Tableau, Qlik, and OmniSci. This

growth resulted in a 274.3 billion dollar revenue for big data and business analytics which

is more than a double increase since 2015 [44].

With the emerging adoption of data-driven applications and big data systems,

the query workload significantly shifted from traditional DBMS workloads. In traditional

4

DBMS, the queries are usually well-crafted by users according to the schema and the DBMS

can optimize these queries to return the result. On the other hand, in data exploration

systems, users spend most of their time exploring, visualizing, and cleaning the data through

a series of interactive queries [45]. A large number of these queries return an empty result

[25,30,37,51]. There are three reasons that cause this problem. First, data exploration is a

trial and error process and users do not know the data distribution beforehand. Second, a

single user action on the front end can result in tens, and sometimes hundreds, of queries on

the database to appropriately update the visualization on the front end. Third, some of these

systems generate many queries in the background to precache the result or to provide query

recommendation [7, 102]. In addition to the difference in query workload, data exploration

systems also have different expectations of the response time. To keep the user active and

engaged, the system must provide a response time of around 500 milliseconds [58]. With the

large number of queries and the fixed overhead of each query, e.g., parsing and optimization,

a traditional DBMS will fall short of supporting this response time. In this study, we argue

that the best way to overcome this challenge is by reducing the number of queries sent to

the database server.

The state of the art visual data exploration systems [21,36,75,88] support interac-

tivity even for very large datasets by applying several optimizations. Moreover, many sys-

tems proposed [22,29,41,57,76] to handle special needs of trajectory, mobile network,mobile

sensor, and GPS data. However, none of these systems provide a solution to avoid the empty

resulting queries generated by their front-end applications.

5

Frontend

H
Q

-F
ilt

er

Backend

M
id

dl
ew

ar
e

D
at

ab
as

ex
x

n
Requests

Less
Requests

In
te

ra
ct

iv
e

V
is

ua
liz

at
io

ns

1
Interaction

Filters empty-resulting
requests at client-site

x

Figure 2.1: HQ-Filter in an interactive data exploration system

On the other hand, the empty-answer problem is a well studied problem which

is defined as being a result of very restrictive query constraints [33]. There are techniques

[25,64,66–68,91,92,96] for various domains focus on query relaxation to overcome the empty-

answer problem. In query relaxation, the process starts with an initial empty-answer query,

and the system either modifies the given query to avoid the empty result, recommends

alternative queries, or give feedback to users what constraints causes the problem. Unlike

these techniques our solution provides early pruning the empty resulting queries without

sending even a single query to the backend and supports constant time detection for the

multiple queries generated by the frontend, and consequently boosting the performance of

all query relaxation techniques by providing an instant empty answer query to work on.

Besides query relaxation, [63] proposes a technique to store and reuse the lowest-

level query parts that cause empty answers and reuse them to efficiently detect future queries

that will return empty answers. Although this work complies with the notion of the iterative

queries that refine the previous results of data exploration, its success is highly dependent

6

on the previous user data and its accordance with the future ones. While this property

is an advantage for traditional DBMS, for data exploration it is not since the users start

without knowing what they are looking for. In our experiments, we compare this method to

ours to reveal this difference. Moreover, while the time required for an empty answer check

grows linearly for this approach (recall that its detection rate is proportional to the number

of query parts in the storage), our method is designed to answer in constant time for any

front-end generated query. Last but not least, unlike the related methods we mention here,

our work can be considered as an edge computing approach as we reduce the workload on

the server side by benefiting the resources of the client side.

The query workload on the server can be significantly reduced if the client can

early prune empty-resulting queries without affecting the correctness of the displayed re-

sults. However, the challenge is to build a compact representation that can be quickly

transferred to the client to allow the detection of empty resulting queries. For instance, a

straightforward approach could identify every possible non-empty query that can be gener-

ated by the frontend, and send them to the frontend after compressing it. However, for the

eBird dataset visualized in a tiled map, this filter would require 42MB of space even if we

could compress it up to theoretical limits.

Motivating example 1 is an Earthquake map hosted by the US Geological

Survey (USGS) [90] shown in Figure 2.2; in normal operation, most of the map tiles are

empty due to the scarcity of earthquakes. However, after two major earthquakes happened

in California on the 4th and 5th of July 2019, the system crashed due to the overload. If the

system could early prune the empty tiles, the server could have survived the extra load.

7

Figure 2.2: USGS Earthquake Map

Figure 2.3: Cloudberry Twitter Map for Keyword “mask” with a large number of empty

results

8

Motivating example 2 is the Twitter Map demo powered by Cloudberry [88];

users start the exploration by providing a keyword to be searched in tweets. Depending on

the zoom level, Cloudberry queries the number of tweets matching the given keyword in

each state, county, or city to draw the choropleth map. As shown in Figure 2.3, Cloudberry

needs to query 1,800 counties simultaneously for the given region even though a significant

amount of these queries will return 0 (white-colored counties). Please note that, in addition

to the geographical representation, Cloudberry visualize a timeline for each day. Since

“mask” is a recently popular keyword, most of the counties have 0 tweets in the previous

time periods.

In both examples, the query workload on the server can be significantly reduced if

the client can early prune empty-resulting queries without affecting the correctness of the

displayed results. The challenge is that it is generally impractical to enumerate all empty

or non-empty queries.

This study proposes HQ-Filter, a hierarchy-aware filter, which can reduce the

number of queries sent from the client to the server in data exploration systems. The key

idea in HQ-Filter is to utilize the data hierarchy to construct an approximate data structure

that can filter out empty-resulting queries. Figure 2.1 shows how we utilize HQ-Filter to

reduce the workload at the backend. The filter is shipped and processed at the client

side which utilizes the extra power available on client machines to offload the server-side

processing. In that way, the user experience can be improved and the system would handle

more concurrent users without negatively affecting the data exploration tasks.

9

In HQ-Filter, we utilize the natural hierarchy in the data to reduce the memory

footprint of the filter so that it can be transferred over the network and kept in the client’s

main memory. In specific, we build an approximate data structure based on Bloom Filters

[54] that stores non-empty queries up to a certain level in the data hierarchy and we use it to

filter out as many empty queries as possible. The challenges in this approach are 1) ensuring

the correct behavior of the application, i.e., we should not skip a non-empty query; and

2) selecting the optimal level in the data hierarchy to maximize the system performance.

We apply HQ-Filter in two real applications, UCR-Star [36] and Cloudberry [88].

In UCR-Star, the queries consist of map tile requests organized in a pyramid hierarchy of

20 zoom levels. In Cloudberry, the queries ask for the number of tweets in a specific region,

state, county, or city, on a specific day. The data has two hierarchies, a geographical hierar-

chy, and a time-based hierarchy. HQ-Filter can find the optimal level for each hierarchy to

build the most efficient filter. We run an extensive experimental evaluation that shows the

efficiency of the HQ-Filter in improving the system performance with a negligible overhead

on the client.

The contributions of this study are summarized as follows:

• Formally define the problem of empty-resulting query filtering for hierarchical data.

• Propose HQ-Filter that can solve the hierarchical empty-resulting query filtering.

• An algorithm that can find the optimal hierarchy level to construct the HQ-Filter.

• Apply HQ-Filter in two real-world applications, UCR-Star and Cloudberry.

• Run an extensive experimental evaluation of HQ-Filter on real data.

10

The rest of this chapter is organized as follows. Section 2.2 defines the problem.

Section 2.3 describes the construction of the proposed HQ-Filter. Section 2.4 provides an

experimental evaluation of the system. Section 2.5 gives an overview of the related work.

Finally, Section 2.3.2 concludes this chapter.

2.2 Problem definition

We first define the terms that we use in this study by considering an interactive

data exploration system that uses the client-server architecture model.

Definition 1 (Resource) A piece of information that can be provided by the server. It can

be a tile in a tiled map visualization or a set of tweets along with various attributes as a

JSON document for spatiotemporal-textual data visualization.

Definition 2 (Resource ID) A unique reference is represented as a tuple that identifies a

particular resource. A resource identifier for a tile in tiled map visualization can be in the

form of (zoom level,row,column), or for a spatiotemporal-textual data visualization system

on Tweets can be (geo id, keyword, start time, end time)

Definition 3 (Request) A request is a message sent from the client that contains a resource

ID.

Definition 4 (Response) A message sent from the server to the client that contains the

resource identified in a request.

11

Definition 5 (Empty Resource) A default resource that the server returns if the resource

identifier does not match any resources. It can be an empty image tile for tiled map visual-

izations or an empty tweet set for a spatiotemporal-textual data visualization system.

Definition 6 (Empty-Resource Identifier) If a request with a resource identifier returns an

empty resource, it is called an empty-resource identifier.

Problem Definition Consider a server that has a collection of resources R and a

client sends a set of requests Q for resources by resource identifiers. Our goal is to filter the

empty-resource identifiers at the client side and satisfy them without sending the requests

to the server to reduce the number of requests. This can improve the response time and

reduce the network traffic at both the client and server.

We further quantify how lowering the number of requests sent to a server results

in a better response time in the experiments section. To give a better explanation of the

problem, we give the following examples.

Example 1 - Tiled map visualization : Consider UCR-Star [36] as a data

exploration system in which users are visualizing the Parks dataset that consists of the

polygons for each park in the world. The collection of the resources R consists of more

than 419 (maximum zoom level is 19) map tiles at the server. Any tile request, specified

by a zoom level, row, and column number, is a query sent from the client to the server. If

the resulting tile of a query q is an empty tile, i.e., none of the parks intersects the tile, we

define q as an empty resulting query. Hence, the problem is how a client determines that a

tile is empty without contacting the server.

12

Example 2 - Spatiotemporal-Textual data visaulization: Consider the

Twitter Map powered by Cloudberry [88] as an interactive data exploration system in

which users enter a keyword and the system visualizes a choropleth map with the number

of tweets in each state, county, or city, depending on the zoom level. The system also visual-

izes a timeline histogram with the number of tweets per day. For this specific example, our

collection of resources R consists of the total number of tweets for each keyword k grouped

by each level of details and for each day. The resource ID is the combination of a keyword

k, a level-of-detail ID l, e.g., city ID, or county ID, and a date d. A resource is empty if the

count is zero. Therefore, the problem is determining if the result of the query q = (k, l, d),

will be zero or not before sending q to the server.

2.2.1 Baseline 1: Exact Approach

A possible solution to this problem is to ship the list of all non-empty resource

IDs to the client to filter requests. However, this approach is not practical due to the

large number of resources. For example, the eBird dataset hosted at UCR-Star contains

24 million resources which would take about 180 MB of storage and more than a minute to

transfer on a high-speed connection.

Alternatively, we can represent the empty and non-empty resources as a bit se-

quence where each resource is represented by a single bit that is set if the resource is

non-empty. Then, we can compress the bit sequence to minimize its size. However, this

would still be too large to be practical.

13

To find the theoretically optimal compression limit for the bit map, we use Shan-

non’s Entropy formula, where pi is the probability that a bit is equal to i, as below.

H(X) = −(p0 log2 p0 + p1 log2 p1)

For the same UCR-Star dataset mentioned above, this would take about 42 MB which is

still impractical.

2.2.2 Baseline 2: Probabilistic Approach

Since the exact approach is not practical, this leaves us with probabilistic ap-

proaches. Being one of the most popular probabilistic data structures, we consider Bloom

Filters (BF) [54] as a baseline solution in this study. A BF represents a set of resource IDs

and supports a membership query that, given a resource ID, can answer either may be in the

set or definitely not in the set, i.e., false positives are possible. The first question we should

ask is whether to insert empty or non-empty resource IDs. If we insert empty resource IDs,

then a false positive would identify a non-empty resource as empty which will result in an

incorrect behavior so we disqualify this option. On the other hand, if we insert non-empty

resource IDs, then a false positive would identify a non-empty resource as empty. This will

result in a request sent from the client to the server for an empty resource and the result

will be empty. Even if it results in an unnecessary query, the system will still behave as

expected so we decide to insert non-empty resources in BF. Additionally, we have to insert

all non-empty resource IDs otherwise a negative result from BF cannot be trusted to be an

empty resource.

14

To evaluate the expected performance of BF, let us provide examples for eBird and

Cemetery with approximately 24 million and 5 million non-empty resources, respectively.

Since a user can go up to level 19, we need to add all of the non-empty resource IDs up

to this level to handle emptiness checks for all possible requests. Also, we assume that our

memory budget is 512KB. Now, we can calculate the optimum number of hash functions k

and the false positive probability p for each dataset which yield k = 1 and p = 0.727 for

Cemetery, and k = 1 and p = 1 for eBird datasets. As a result, we can state that 27.3% of

the requests for empty resources can be filtered potentially (performance of the filter) for

the Cemetery dataset while it is 0 for the eBird dataset with the 512KB filter size. If we

could enlarge the filter size to 3MB, performances of the filter could be 90% for Cemetery

and 39% for the eBird datasets.

2.3 Hierarchy-Aware Filter For Empty-Resulting Queries (HQ-

Filter)

In this section, we introduce the Hierarchy-Aware Filter For Empty-Resulting

Queries (HQ-Filter). The key idea of HQ-Filter is to build an approximate filter that stores

only a subset of the non-empty resource IDs and utilizes the data hierarchy to check for any

resource ID. To further explain the key idea we present a toy example in Figure 2.4 which

consists of 21 tiles organized in three zoom levels with 9 non-empty tiles and 12 empty tiles.

Let us assume that we want to build a filter of 8 bits.

15

Figure 2.4: Three levels of tiled map visualization shows empty and non-empty tiles

First, if we build a Bloom Filter (BF1) with the 9 non-empty tiles, the theoretically

optimal false positive rate for BF1 is p1 = 0.675 which allows it to filter on average 3.9 out

of the 12 empty tiles.

A better solution that utilizes the hierarchy is to build a Bloom Filter (BF2) for

the three non-empty tiles at levels 0 and 1 which results in a false positive rate p2 = 0.278.

If a query asks for one of the tiles in levels 0 and 1, it can be answered directly from BF2.

However, if a query requests a tile in level 2, then we check its parent in level 1. If the parent

tile is empty, we conclude that the tile at level 2 must also be empty for sure and we do not

have to request it from the server. On the other hand, if the parent tile is not empty then

we can only conclude that the tile in level 2 could be non-empty and we have to request it

from the server. This adds another source of approximation, for example, tiles 18 and 19

16

will always be considered non-empty because their parents, tiles 3 and 4, respectively, are

non-empty. On the other hand, tiles 5-12 will be detected as empty with probability 1− p2

since their parents will be queried in BF2. Therefore, the expected number of empty tiles

that can be skipped in this approach is 7.22 as compared to 3.9 for BF1.

While this approach is simple to implement, the main challenge is how to efficiently

determine the level at which BF2 should be constructed to achieve an overall optimal

performance. Furthermore, if the data has multiple hierarchies, then we need to find the

optimal level for each of these hierarchies that together reach the optimal performance,

e.g., space and time hierarchies. In this study, we formally define and solve the problem

of constructing this filter optimally and we call it HQ-Filter thereafter. In the rest of this

section, we first define a new metric that measures the quality of the filter for solving our

problem and show how to find the filter with the highest quality. After that, we represent

two case studies that show how to use HQ-Filter in real applications, namely, UCR-Star

and Cloudberry. Lastly, we provide optimized counting techniques for resource IDs.

2.3.1 Performance Metric

In this part, we make a formal definition to quantify the performance of a con-

structed filter. Our key idea is to utilize the inherent hierarchy in the data. For example, in

tile-based map visualization, all tiles are organized in a hierarchical quad-tree-like pyramid

structure with one root tile at the top, and each tile has four children as shown in Figure 2.4.

In spatiotemporal-textual data visualization, there are two hierarchies that can be defined,

a geospatial administrative hierarchy, i.e., country, state, city, and ZIP code; and date-time

hierarchy, i.e., year, month, and day. In both cases, we can organize the resources, i.e., tiles

17

or tweet counts, into a hierarchical structure. The key observation is that if a resource is

empty, then all the resources below it in the hierarchy must also be empty. Below, we make

some definitions that we use in this chapter.

Definition 7 (Resource Hierarchy) A resource hierarchy is a logical organization of all

resources in a tree structure with one root resource at the top. The terms parent, child,

ascendant, and descendant are defined based on that logical tree structure. Note that the

data covered by any child resource is a subset of the data covered by its parent.

Definition 8 (Resource Level) Each resource r has a non-negative integer level l(r). By

definition, the root resource always has a level of zero. The level of any non-root resource r

is defined as l(r) = l(p) + 1, where l(p) is the level of its parent resource.

Definition 9 (Resource Cardinality g(r)) The cardinality of a resource r is the number of

descendant resources under r. Formally, g(r) = |{r2 : r2 is a descendant of r}|.

Definition 10 (Bounded Resource Cardinality g(r, lmax)) The bounded cardinality of a re-

source r is the number of descendant resources under r that have a level of at most lmax.

Formally,

g(r, lmax) = |{r2 : r2 is a descendant of r ∧ l(r2) ≤ lmax}|

From the above definitions, we can observe the following. If a resource is empty,

then all its descendants are also empty. This means that if we have a filter that correctly

detects a resource as empty with probability 1− p, then we can use it to detect that all its

descendants are also empty with the same probability. Next, we define the performance of a

18

filter P as the expected number of resources that it can correctly detect as empty resources.

The higher this value, the more requests it can filter at the client side. This metric is

formally defined below.

P (lf) = (1− pf)×

 lf∑
l=0

|El|+
∑
r∈Elf

g(r, lmax)

 (2.1)

Where,

• P is the performance of the filter measured as the expected number of empty resources

that the filter can detect,

• pf is the false positive probability of the HQ-Filter f ,

• l represents a level in the hierarchy such that l ∈ 0, 1, 2, . . . , lmax,

• lf is the level of the HQ-Filter f ,

• El is the set of the empty resource identifiers (E-RIDs) at level l

• lmax is the maximum level of resources that the client can request,

• g(r, lmax) is the total number of descendants of a resource ID r up to level lmax

To compute pf , we note that we internally build a BF for non-empty tiles in level

0 ≤ l ≤ lf . Hence, we insert n =
∑

0≤l≤lf
|Nl| resource IDs into a filter with m bits. pf can

then be calculated according to Equation ??.

The first summation in the equation above accounts for the empty resources that

are inserted in the HQ-Filter. The second summation accounts for the empty resources that

are descendants of an empty resource inserted in the HQ-Filter.

19

Definition 11 (HQ-Filter Construction Problem) Given the set of empty resource identi-

fiers El for each level l and a space constraint m, find the level lf of the HQ-Filter that

maximizes the performance P as defined in Equation 2.1 and construct that filter.

2.3.2 HQ-Filter Construction

To construct an HQ-Filter for a dataset D, we propose an algorithm that consists

of three steps, counting, optimization, and construction, described briefly below.

Step 1 - Counting: In this step, given a dataset D and a maximum depth

lmax, we count the number of non-empty resources for all levels 0 ≤ l ≤ lmax, i.e., ⟨|N0|,

|N1|, . . . , |Nlmax |⟩. lmax is the maximum depth of a resource that the user can query. For

example, for tile-based visualization, most web maps support 20 zoom levels. There are

three important points that we highlight in this step. First, while Equation 2.1 uses the

number of empty resources per level |El|, we compute the non-empty resources since they

are easier to compute as they are much fewer. Second, we use a distributed process to count

all the non-empty resources with one pass over the data as detailed shortly. Third, for some

cases, it could be impractical to count NE for all the levels due to the excessive number

of non-empty resources at the deep level. In this case, we propose an optimized counting

technique that counts only the levels that are needed for the next step. We show how to

implement this step efficiently on both Spark and AsterixDB.

Step 2 - Optimization: This step takes as input the non-empty resource counts

|N∗|, the maximum level that the user can request lmax, and the size of the filter in bits m,

and computes the optimal level at which the HQ-Filter should be constructed (lf).

20

Given that the total number of levels is usually small, e.g., tens of levels, we

perform this step by applying Equation 2.1 for each level and choosing the best. The main

challenge is to efficiently compute the bounded cardinality of each record, g(r, lmax), as

described in Definition 10.

Step 3 - HQ-Filter Construction: This final step takes as input the level to

construct the HQ-Filter (lf) and constructs the filter. It finds all the non-empty resource

IDs at level lf and inserts all of them into HQ-Filter. We show how to perform this step in

a distributed environment on both Spark and AsterixDB.

To wrap up, the three steps to construct the HQ-Filter are summarized here. 1) For

each record in the input, find the matching RIDs in each level and count them by level.

2) Given a memory budget m, the count of non-empty RIDs per level, and the maximum

request level lmax, find the optimum level lf which maximizes the performance P . 3) Given

the optimum level lf , construct the HQ-Filter by inserting all non-empty resource IDs in

levels [0, lf].

2.3.3 HQ-Filter for tile-based Map Visualization

In this section, we give the concrete algorithm that constructs HQ-Filter for the

case of tiled map visualization in UCR-Star [36]. To make a concrete algorithm, we have

to do four steps. First, we define the resource ID and the hierarchy of the data. Second,

we show how to efficiently count the number of non-empty resources per level. Third, we

define the bounded resource cardinality g(r, lmax) to use in the optimization phase. Finally,

we show how to construct the filter once the level lf is found.

21

Tile Hierarchy: In the tiled map visualization, the resources comprise tiles or-

ganized in a quad-tree-like pyramid structure. Each tile is identified by the triple (l, x, y),

where 0 ≤ l ≤ lmax is the zoom level, and 0 ≤ x, y < 2l is the tile ID in that level. The root

tile is (0, 0, 0). For a non-root tile (l, x, y), the parent is the tile (l − 1, ⌈x/2⌉, ⌈y/2⌉. Each

tile (l, x, y) has four children with IDs (l+ 1, 2x+ i, 2y+ j) where i ∈ {0, 1} and j ∈ {0, 1}.

Step 1 - Counting: To count the number of non-empty resources per level |Nl|,

we run a distributed Spark job on the input data. First, we use the mapPartition Spark

transformation to run a local step on each 128 megabyte partition that builds a set of

non-empty resource IDs per level Nl, where 0 ≤ lmax. In this step, each input record is

first mapped to a tile at the deepest level lmax which is a constant-time operation. That

tile is added to the set of tile IDs Nlmax . Then, we recursively find the parent tile and

repeat until the root tile is reached. All these tile IDs Nl are stored as hash sets to ensure a

constant-time process per insertion. The output of this step is a set of pairs ⟨l, Nl⟩ for each

level. These pairs are aggregated using the reduceByKey Spark transformation to produce

one set of tile IDs per level. Finally, we produce the final result as the size of each final

hash set. This algorithm is highly-parallel since each step runs in parallel. However, it

has a bottleneck in merging the deepest level lmax which contains the largest number of

non-empty tiles. We show in Section 2.3.5 how to further improve this algorithm.

Step 2 - Optimization: To find the optimum level lf to construct the filter, the

next step is to compute the performance P for each level in the multi-level visualization

pyramid. To do that, we first define the bounded resource cardinality function g for this

use case.

22

Due to the uniformity of the tile structure, where each tile has exactly four children,

computing the bounded resource cardinality can be computed efficiently as follows.

g(r, lmax) =

lmax∑
l=lr+1

(4(lmax−l)+1)

=
4× (4lmax−lr − 1)

3
(2.2)

As a result, when we apply the g(·, ·) for multi-level visualization to Equation 2.1, we can

simplify the equation as follows.

P (lf) = (1− pf)×

 lf∑
l=0

|El|+ |Elf |
4× (4lmax−lf − 1)

3

 (2.3)

Equation 2.3 is much more efficient than Equation 2.1 because it does not have to

iterate over each empty tile at level lf . This is only possible because all tiles at level lf have

the same exact bounded cardinality which means we can just multiple that cardinality by

the number of empty resources |Elf |.

Now, we can compute P for all levels in the multi-level visualization pyramid to

find the optimum level that maximizes P . For each level lf , we calculate n =
∑

0≤l≤lf
|Nl|

which allows us to compute pf given the memory budget m. To calculate |El|, we observe

that the total number of tiles in level l is 4l. It directly follows that |El| = 4l − |Nl|. After

we have the above terms ready, we can easily use them in Equation 2.3 and find Pl for each

level l to pick the optimum level lf which maximizes P .

Step 3 - HQ-Filter Construction: The last step is to construct the HQ-Filter

by inserting all of the non-empty RIDs {N0, N1, . . . , Nlf } up to level lf that we computed

in the previous step. Similar to BF, we hash the RIDs using k hash functions and set the

23

corresponding indices to 1 among all m bits. Please recall that, each tile in a multi-level

visualization system is represented as (l, x, y) tuples. To have an efficient way of representing

RIDs for tiles, we concatenate the bits of l, x, and y into a 64-bit long. Then by using the

MurmurHash3 [] and hashing method from [54], we hash the unique Tile IDs and set k

number of bits to 1 in the bit array.

Client-side Implementation: UCRStar’s front-end is built as a web application

using OpenLayers. It creates a tiled map layer that requests tiles with their IDs in the form

(l, x, y). To integrate the HQ-Filter, we intercept the tile request and test if the tile is

empty. If the level of the requested tile is less than or equal to lf , we directly test if the tile

ID is in the filter. If it is in the filter, we request it, otherwise, we skip the call. If the level

l > lf , we find the ascendant tile at level lf which has the ID (lf , x≫ (l− lf), y ≫ (l− lf)),

where ≫ is the logical right shift operation. Then, we test if the ascendant tile is in the

HQ-Filter in the same way described above to decide if we should skip the tile. This test

runs in constant time which adds a negligible overhead on the client.

2.3.4 HQ-Filter for Spatiotemporal-Textual Data Visualization

Similar to the previous section, we focus on four parts. Based on how Cloud-

berry [88] works, the user searches for a keyword, and all the queries contain this keyword.

By design, Cloudberry builds a materialized view for the tweets that match the keyword.

All the steps mentioned in this section are assumed to work on that materialized view. First,

we define the hierarchy which, in this application, consists of two hierarchies for space and

time.

24

Second, we show how to count the non-empty resources in AsterixDB. Third, we

calculate the bounded resource cardinality g. Fourth, we construct the HQ-Filter using an

SQL++ query in AsterixDB.

Resource Hierarchy: In this case study, we have two hierarchies to deal with,

spatial and temporal. The spatial hierarchy is defined by administrative levels, e.g., country,

state, and city. The temporal hierarchy splits the entire time range into 1, 2, 4, 8, . . .

partitions, and so on. For the temporal hierarchy, we define the number of levels such that

at the deepest level each resource covers one day. In summary, we define two levels, one for

each hierarchy, 0 ≤ lgeo ≤ lgeo−max where lgeo = 0 covers the entire input space; and the

other for time 0 ≤ ltime ≤ ltime−max. To combine them, we can define the level as a tuple

l = (ltime, lgeo). However, to keep it simple, we assign a unique integer to each level so that

0 ≤ 0 < (lgeo−max + 1)(ltime−max + 1). In this case, we can easily convert back and forth

using the following equations:

l = (lgeo−max + 1) · ltime + lgeo (2.4)

ltime = ⌊l/(lgeo−max + 1)⌋ (2.5)

lgeo = l mod (lgeo−max + 1) (2.6)

The linearization of the levels from multiple hierarchies makes it easier to apply Equa-

tion 2.1 in the optimization step. In the rest of this section, we will use l and (ltime, lgeo)

interchangeably. In this design, each resource is identified by a pair (geoID, timeID) where

geoID uniquely identifies a location, e.g., a state or a country, and timeID identifies a

single day or a range in the time hierarchy. The level of r is lr = (lr−time, lr−geo)

25

Step 1 - Counting: We count the number of non-empty resources in the input

data using an SQL++ query that runs in AsterixDB. To do that, we need to calculate the

timeID and geoID for each tweet at each level. Since the timeID has a regular structure,

we implement a user-defined function (UDF) that takes the tweet timestamp and the level

ltime and returns the timeID. For the geoID, we run a spatial join operation between the

tweet geolocation (longitude, latitude) and the boundaries of the geographical regions, e.g.,

countries and states, and project the geoID of each level as an additional column in the

data table. To count the number of non-empty resources per level, we perform one grouped

aggregation SQL++ query that groups the tweets by level and counts the distinct IDs per

level.

Step 2 - Optimization: To run the optimization step, this part defines the

bounded resource cardinality g(r, lmax). Given the irregularity of the spatial hierarchy, we

build a lookup table s(geoID) which contains the total number of spatial resource IDs that

are descendants of geoID. For example, s(US) contains the total number of states and

cities in the US, while s(NY) contains the total number of cities in New York state. Hence,

we can define the bounded resource cardinality as follows:

g(r, lmax) =

ltime−max∑
l=lr−time+1

(2ltime−max−l) · s(r.geoID)

= 2ltime−max−lr−time · s(r.geoID)

According to the above definition, the bounded resource cardinality can be com-

puted in constant time. However, unlike the tiled map application, tiles at the same level do

not all have the same cardinality. Hence, we still need to iterate over each empty resource

26

at level lf while calculating the filter performance using Equation 2.1. If the number of

empty resources is very large, we can instead calculate the summation of the non-empty

resources and subtract that from the total number of resources in levels lf +1 to lmax which

is a constant that is independent of the empty and non-empty resource IDs.

Step 3 - Construction: Once the optimal level lf is selected, this step con-

structs the HQ-Filter by inserting all the non-empty resources in levels zero through lf . We

implement this step as an SQL++ query in AsterixDB. To do that, we define a new UDF

that computes the hash function from the resource ID h(geoID, timeID). We apply this

function to select the bit positions in the HQ-Filter that need to be set. Then, we iterate

over all these bit positions and set them to construct HQ-Filter. Notice that regardless of

the data set, the number of bits to set is bounded by the filter size.

Client-side Implementation: CloudBerry [88]’s front-end is implemented as a

web application similar to the UCR-Star [36]. When the user enters a keyword, the client

requests the corresponding HQ-Filter. As the user navigates the map, the system generates

a sequence of requests each for a specific geolocation and date. The request level (lgeo, ltime)

is compared to the HQ-Filter level lf . If both are less than or equal to their corresponding

filter level lf , we directly test if the resource is non-empty in the filter. Otherwise, we

need to locate the ascendant resource at level lf . To find that resource in the geospatial

hierarchy, the client keeps a lookup table that contains the ascendant geoID at level lf for

each resource. The parent resource in the time hierarchy can be easily obtained using simple

calculations similar to the one used in the tiled map case study.

27

2.3.5 Optimizations for Counting

For both case studies described earlier, the first step, counting, is the most ex-

pensive step for two reasons. First, it counts the number of non-empty resource IDs in all

levels. Second, depending on the density of the dataset, the number of non-empty resource

IDs could be tremendously large at deep levels. For example, in the Parks dataset which

has only 10 million polygons, the number of non-empty resources in levels 17, 18, and 19,

is 720M, 2.8B, and 11B, respectively.

We make two observations that we utilize in this section to speed up the counting

process. First, since the goal of the counting step is to find the optimal level in Step 2,

we can use approximate counts and still get the same result. The first optimization uses

approximate counting to obtain the optimal levels lf . Second, based on the behavior of the

performance function P in Equation 2.1, we can find the optimum level lf by counting the

number of non-empty resource IDs in a few levels around the optimal level lf . However,

since lf is unknown, the second optimization uses incremental counting to search for the

optimal level but without counting all the levels.

Approximate Counting

Since the goal of the counting step is to find the optimal level lf , an estimation

of these resource counts can still produce an accurate answer. The algorithm we showed

earlier finds the exact count at all levels which might not be necessary. This part proposes

an alternative algorithm that approximately counts the number of resources per level. We

28

0 5 10 15 20

100

103

106

109

Visualization Level (l)

#
N
o
n
-E

m
p
ty

T
il
es

(N
l)

eBird
Geolife
Parks

Figure 2.5: Tiled Map Datasets

Figure 2.6: Classification of keywords according to popularity in space and time

Figure 2.7: Spatial and temporal distributions of keywords

29

can control the desired accuracy so that we can still achieve the same result for the overall

algorithm, i.e., find the same optimum level lf .

The approximate counting algorithm uses the HyperLogLog approximate counting

algorithm [42] which is widely used and already supported by some big data frameworks,

e.g., Spark. We used Streamlib’s implementation of HyperLogLog++ (HLL++). Given

that all the problematic cases that we faced for counting were in the tiled map visualization

application, we only implemented this approach in Spark but the main idea can easily

apply to other systems. The implementation is similar to the exact counting algorithm

described in Section 2.3.3. However, we replace the partial and full hash sets with the

HLL counting structure. This means that each worker approximately counts the number

of unique resource IDs for each level using HLL. Then, the partial HLL structures for each

level are transferred to one machine which combines them to compute the final approximate

count. The remaining steps work exactly as before but they use the approximate counts

instead of the exact ones.

Incremental Counting

This part shows a second optimization which relies on the properties of the opti-

mization function P . We observe that the function has only one global maximum and no

suboptimal local maxima. This means that if we find any local maximum, we can directly

use it as the global maximum as well. This optimization combines the counting and the

optimization steps into one step to count and search for the maximum, simultaneously. The

way it works is that it starts by counting the top few levels, e.g., seven levels, since they

are cheap to compute anyway. If a local maximum is found, it is returned. Otherwise, it

30

incrementally counts one additional level at each iteration and tests if a local maximum has

been found. In other words, it keeps going deeper into the levels as long as the performance

increases. Once the performance starts to decrease, the algorithm stops and returns to the

level that produced the highest performance.

Notice that the two optimizations are orthogonal which means we can apply either

or both of them if needed.

2.4 Experiments

We evaluate the HQ-Filter applied in two real-world applications: UCRStar [36]

and CloudBerry [88].

2.4.1 Setup

Software and Hardware setup

We compare HQ-Filter with two baselines: No-filter when all the requests are

sent to the server, and Bloom Filter (BF) when all non-empty resources are added to a

regular BF. For the two case studies, we have two implementations: one in Spark for tiled

map visualization, and the other in AsterixDB for spatiotemporal-textual visualization.

All experiments run on an Amazon Web Services (AWS) cluster with 20 machines of type

m5.xlarge which has 4 vCores, 16 GB memory, and 200 GB SSD. The single-machine server

resides in the North California data center while the client locations are varied between

Oregon, North Virginia, and Frankfurt.

31

Datasets and Workload

Datasets: Table 2.1 lists the datasets that we use. The first three are used

with tiled map visualization and are available at UCR-Star [36]. The fourth is used with

spatiotemporal-textual data exploration. Figure 2.5 shows the number of non-empty tiles

per level for the datasets used with tiled map visualization which highlights the character-

istics of these datasets. Most notably, the Parks dataset has about an order of magnitude

more non-empty tiles in deeper levels. For the Twitter dataset, Figure 2.7 shows a scatter

Table 2.1: HQ-Filter Evaluation Datasets

Name Size Records Description

eBird 211.2 GB 566 Million Points

Parks 7.9 GB 10 Million Polygons

GeoLife 1.7 GB 23 Million Points

Tweets 1.6 TB 387 Million Geo-tagged Tweets

plot where each point represents a keyword, and the x and y axes show the number of

days and cities in which this keyword appears, respectively. For example, a word in the

top-right corner appears on most days and in most cities. Based on that figure, we classify

the words along the two dimensions into high and low popularity. If a keyword has less than

the average along each dimension it is marked with low popularity, otherwise, it has high

popularity. Thus, we end up with two classifications low/high popularity in time (LT/HT),

and similarly, low/high popularity in space (LS/HS). Considering all the combinations, we

end up with four categories of keywords. Figure 2.6 shows examples of keywords in each

32

category. The radius of each bubble indicates the total number of empty resources which

is a good indicator for the potential saving of empty resulting queries for this keyword. For

example, words like ‘love’ and ‘good’ are in HSTS, hence there are only a very few empty

resources for them. On the other extreme, a word like ‘NationalFoodDay’ is categorized as

LSLT and hence has a lot of empty resources that the HQ-Filter can potentially save.

Workload: Based on each dataset and keyword characteristics, we define two

types of users, sparse and dense. Sparse users are those interested in regions that have

a lot of empty resources while dense users are the opposite. We pre-record several timed

sequences of requests for both user types and use them as an input workload which provides

the ability to control the ratio of dense and sparse users.

Parameters & Metrics

Parameters In our experiments, we vary the filter size (m), dataset size, ratio of

dense users, and number of users.

Metrics In our experiments we measure the HQ-Filter creation time, average

response time per client request, server workload, and the number of eliminated empty

queries.

2.4.2 Accuracy of the Performance Metric (P)

This experiment shows the accuracy of the proposed performance metric P in

representing the system performance. Thus, we can use it as the main performance metric

in constructing and evaluating the HQ-Filter. Figure 2.8 compares P (represented as dashed

33

2K
B

4
K
B

25
6K

B

51
2K

B

1M
B

1
,0
00
2
,0
00
3
,0
00

A
ct
u
a
l
#

F
il
te
re
d
R
eq
u
es
ts

eBird

2
K
B

3
2K

B

6
4K

B

12
8
K
B

51
2
K
B

1
,0
00

1
,5
0
0

HQ Filter Size

Parks

2
K
B

4
K
B

8
K
B

3
2K

B

25
6K

B2,
0
0
0
3,
00

0
4,
00

0

Geolife

0.
6

0.
8

1

0
.8
5

0
.9

0
.9
5

P (Calculated Performance of the HQ-Filter)
Filtered Empty Tiles

0
.9
9

1

P
er
fo
rm

an
ce

(P
)

Figure 2.8: Actual number of filtered requests for various size HQ-Filters along with their

computed P metrics

lined) to the actual number of filtered requests (represented as bars). In this experiment,

there is an equal mixture of dense and sparse users in the tiled map visualization study

case. We vary the filter size from 2KB to 1MB and report and show the sizes that make

the biggest difference to highlight the relationship between the two metrics. The coherence

between P and the actual number of filtered empty resulting queries can be clearly observed

in Figure 2.8. It is worth mentioning that, for Geolife, although P varies in a small range

(0.99-1.0), it still shows a strong correlation with the actual number of empty requests.

The reason for this tight range is that it is a highly skewed dataset with a small number of

non-empty resource ids. Notice that the estimated performance P is calculated based on

the total number of empty resources which makes it very high for deep levels that usually

contain a huge number of empty resources. However, the actual performance is based

34

10
0

75 50 25

0

0

20

40

%
.
F
il
te
re
d
R
eq
u
es
ts

eBird

1
00 7
5

5
0

2
5 0

0

10

20

30

% Dense users

Parks

BF - 512KB BF - 1MB HQ - 512KB

1
00 7
5

5
0

2
5 0

0

20

40

60

Geolife

Figure 2.9: User Types vs Filters

on specific user behavior that does not request all the records. However, the estimated

performance P is still good in estimating the potential saving.

2.4.3 Effect of User Types

This experiment studies the effect of the types of users on the performance of

the filter. Recall that sparse (dense) users who are interested in areas with a large (small)

number of empty resources. We vary the ratio of dense users while keeping the total number

of users fixed.

Tiled map visualization: Figure 2.9 compares HQ-Filter of size 512KB with

two Bloom Filters (BF) of sizes 512KB and 1MB. We vary the percentage of dense users

from 100% (all users are dense) to 0% (all users are sparse) and measure the percentage

of requests that the filter can detect, i.e., higher is better. We can make the following

observations from the results. First, HQ-Filter is consistently better even when it occupies

half the size of BF. This is a direct result of accounting for the data hierarchy which allows

35

99.6

99.8

100
%
F
il
te
re
d
R
eq
u
es
ts

LSLT

90

95

100 HSLT

10
0 75 50 25 0

96

97

98

99 LSHT

10
0

75 50 25

0

0

50

100

% Dense Users

HSHT

Figure 2.10: Filtered requests for various user combinations for all keyword categories

it to detect more empty resources with less size. Second, the fewer dense users, the better

the filters behave since there is a bigger pool of empty requests to filter. Third, for the Parks

dataset, both BF versions behave poorly due to a large number of non-empty resources (as

shown in Figure 2.5). On the other extreme, BF performs the best with the Geolife dataset

that has the least number of non-empty resources but HQ-Filter is still better while using

less memory. Fourth, this experiment reveals that BF is not competent to HQ-Filter due

to its false-positive rate approaching 1.0 even with a reasonable memory budget of 1MB.

A memory budget larger than 1MB is not practical for the proposed problem since it gets

computed on the server and transferred over the network to the client.

36

Spatiotemporal-Textual Data Exploration: Similar to the previous exper-

iment, we test the HQ-Filter when integrated into the Cloudberry application. In Fig-

ure 2.10, we vary the percentage of dense users and measure the percentage of filtered

requests. We repeat the experiment for the four classes of keywords as defined earlier in

this section. Similar to tiled map visualization, the less dense users we have, the better

the filters behave due to the availability of more empty resources to skip. Please note that

we assume each user zooms into a different country. As a result of that and the language

differences among those countries, our sparse users for each keyword category have almost

all of the requests for empty resources. In addition, we also observe that the category of

the keyword affects the performance where the highly popular keywords in space and time

(HSHT) have the least performance, especially, with more dense users due to a small num-

ber of empty resources that the filters can detect. On the other extreme, the keywords with

low popularity (LSLT) yield the highest performance even when dense users use the system.

The other two categories which have high popularity in one dimension only (either space

or time), fall in between these two extremes. Finally, the performance of this experiment

is much higher than the tiled map visualization since there is a higher number of empty

resources due to the keyword filter which reduces the number of non-empty resources.

2.4.4 Response Time Improvements

It is crucial to show that eliminating the requests for empty resources improves

system performance. Figure 2.11 shows the effect of eliminating empty-resulting queries on

both the client and server performance. In this experiment, we vary the number of filtered

37

0 1,000 2,000
0

2

4

6

A
v
g
.
R
es
p
o
n
se

T
im

e
(s
ec
)

Tiled Map

0 500 1,000
0

10

20

30

Spatiotemporal-textual

0 1,000 2,000
0

50

100

Filtered Requests

S
er
v
er

W
o
rk
lo
a
d
(s
ec
)

0 500 1,000
0

1,000

2,000

3,000

Filtered Requests

Figure 2.11: The effect of filtering empty requests on the client response time and server

workload

requests on the x-axis and measure the performance. We vary this number in a controlled

way to accurately measure its effect and we repeat each point four times to ensure the

accuracy of the result. We use the eBird dataset and the ‘love’ keyword for the tiled map

and spatiotemporal-textual exploration applications, respectively. The workload consists of

eight dense and eight sparse concurrent users.

Average Response Times (client-side): The top two figures show that as we

filter more empty resources, the average response time observed on the client side reduces

significantly. The correlation coefficient for the average response time and the number of

filtered empty requests is -0.923 and -0.896 for the tiled map and the spatiotemporal-textual

38

0 1,000 2,000
0

5

10

15
A
v
g
.
S
p
ee
d
U
p

eBird

0 1,000 2,000

Filtered Empty Tiles

Parks

Oregon N. Virginia Frankfurt

2,000 4,000

Geolife

Figure 2.12: Average speedups for three different client locations

data exploration, respectively. This is a result of saving the transmission of the request over

the network and the processing on the server side. It is worth mentioning here that the

times converge to a fixed value which represents the time needed to process the non-empty

requests since the filter only saves the empty requests.

Server Workload: The two figures at the bottom of Figure 2.11 shows the effect

of filtering the requests on the server side. The server workload is measured as the total time

needed to handle all the requests. We see a similar behavior in which the server workload

reduces significantly as we reduce the number of empty queries. Unlike the average response

times, we see that the server workload is decreasing linearly since we measure the total time

not the average. Additionally, the network round-trip time is not observed on the server

side. Finally, we can observe that the performance of the spatiotemporal-textual exploration

application improves significantly due to the high volume of requests that are typically sent

by its front-end design.

39

5 10 15
102

103

104

500 ms

R
es
p
o
n
se

T
im

e
(m

s) eBird

5 10 15

Number of users

Parks

HQ-Filter Bloom Filter No Filter

5 10 15

Geolife

Figure 2.13: Server performance with the usage of HQ Filter (512KB), Bloom Filter (1MB),

and NO Filter (without any filtering)

To further study the effect of filtering requests, we measure the speedup observed

at the client side but this time we run the client at three different locations, Oregon, N.

Virginia, and Frankfurt, while fixing the server in N. California. All clients are AWS ma-

chines of the same instance type. Figure 2.12 shows the result of the tiled map visualization

application with the three datasets. The results show that as the client gets further away

from the server, the speedup observed on the client side increases. This is due to saving the

request network roundtrip time which gets bigger as the client gets further away.

The above experiments reveal the strong correlation between the number of filtered

requests and the performance observed on both the client and server. For the rest of

the experiments, we will focus on reporting the number of filtered requests since these

experiments are easier to reproduce since they do not depend on the system load or hardware

specification.

40

2.4.5 Improvement on server capacity

This experiment studies how the use of HQ-Filter can increase the server capacity

in terms of the number of concurrent users that can be supported while providing a pro-

cessing time of less than 500 milliseconds. Figure 2.13 shows the average response time as

the number of concurrent users increases from 1 to 20. We measure the performance of

three approaches, No Filter is when all requests are handled, BF is when a Bloom filter

is used to filter empty requests, and when HQ-Filter is used. In this experiment, BF uses

1MB while HQ-Filter uses only 512KB of memory. The horizontal line indicates the cutoff

response time of 500 milliseconds.

The experiment clearly shows that the use of HQ-Filter increases the capacity of

the server for all three datasets. The server capacity increases by 50%, 66%, and 60%, for

eBird, Parks, and Geolife datasets, respectively. While BF is close to the performance of

HQ-Filter for the Geolife datasets, note that BF uses 1MB of memory while HQ-Filter uses

only 512KB. Finally, note that this improvement of the server capacity does not require any

change in the server architecture or design since all the filtering happens on the client side.

2.4.6 HQ-Filter Creation

In this section, we provide our evaluations of creating HQ-Filter for the two use-

cases that we study.

Tiled Map Visualization

Counting: The most expensive step of HQ-Filter creation is the counting step.

As Figure 2.5 shows, the number of non-empty resources can sometimes increase excessively

41

for deep levels which makes the counting step very expensive. We proposed three counting

techniques, exact (E), approximate (A), and incremental (I). Figure 2.14 shows the total

time for the counting step of the three techniques as we increase the maximum level of

the filter lmax from 10 to 19. For Geolife, as a result of having a small number of non-

empty tiles, any of our counting techniques perform similarly for any visualization level.

However, the best one is the exact counting because being a lean approach does not include

optimizations which requires additional work.

For eBird, since the number of non-empty tiles in deeper levels is larger, we start

to see a difference between the three techniques. The running time for the incremental

technique stabilizes after 12 levels since this is the optimal level for this dataset, and the

incremental technique always terminates after finding the optimal level regardless of the

maximum level. The exact technique is still faster since it is simpler and more direct.

Finally, for the Parks dataset, we see an interesting behavior where both the exact

and approximate techniques take too long which makes both of them unpractical to use.

This is due to the huge number of non-empty resources at deep levels. The approximate

technique is faster but it still takes too long for deeper levels. The incremental technique

shines for this case since it does not have to count the deeper levels. For the Parks dataset,

the optimal level is 12 so the running time stabilizes after that point.

Breakdown of Creation Time: Figure 2.15 shows the breakdown of the overall

construction time for the three counting methods. Since the incremental method combines

the counting and optimization steps, we report these two steps together for all three methods

but the time of the optimization step is negligible. To avoid excessive running time, we set

42

10 12 14 16 18
0

20

40

60

C
o
u
n
ti
n
g
T
im

e
(s
ec
)

eBird

10 12 14 16 18

Out of

memory after

this level

Maximum Visualization Level

Parks

Incremental Approximate Exact

10 12 14 16 18

Geolife

Figure 2.14: Non-empty tiles counting times for levels 10 to 19

the maximum level to 15. As noted earlier, the exact count is generally faster except for

the Parks dataset due to the large number of non-empty tiles. This experiment reveals an

interesting finding for the construction step. For both approximate and exact methods, the

construction time is the same since they first count all the levels and then construct the

filter for the chosen level. However, for the incremental method, the construction time is

much smaller since we can cache the tile IDs for the last counted level which can then be

used directly to construct the filter without scanning the dataset again.

Spatiotemporal-Textual Data Visualisation

Figure 2.16 shows the breakdown of the HQ-Filter construction process in the

spatiotemporal-textual data exploration application. Following the design of Cloudberry [88],

the filter is created from a materialized view of the tweets that match the query keyword.

We do not show the time for creating the materialized view since it is not part of the HQ-

Filter creation process. Similar to the previous experiment, the counting step is the most

43

I A E I A E I A E
0

20

40

60

eBird Parks Geolife

C
o
n
st
ru
ct
io
n
ti
m
e
(s
ec
)

Counting

& Optimization
Construction

Figure 2.15: Tiled map with Incremental (I), Approximate (A), and Exact (E) counting

methods

100 200 300
0

500

1,000

1,500

records (millions)

Counting Optimization Construction

Figure 2.16: For spatiotemporal-textual data application in AsterixDB

44

expensive step. Since we keep the resource ids in memory after counting, the construction

step remains stable as compared to the counting step. The optimization step for this ap-

plication is slightly more expensive due to the complexity of the performance function P

which needs to iterate over all non-empty resources and use the lookup table to count the

number of descendent resources. The overall creation time is very fast with no more than

1.5 seconds for the largest dataset due to the use of materialized view. Hence, we did not

implement the two optimized counting techniques, approximate and incremental, but they

can be implemented in the same way if needed.

2.5 Related Work

Existing work in the area of data exploration can be generally classified based on

the layer they focus on in three categories, presentation, application, or data layer [45].

Notice that some work belongs to more than one category if they contribute to more than

one layer.

2.5.1 Presentation Layer

Work in this category focuses on providing an interactive interface that allows users

to explore data. Vizdom [21] builds a visualization system that supports user interaction

with pen and touch. Couldberry [88] provides a front-end for searching and visualizing

tweets on a map by aggregating the results at the city, county, or state level. Polaris [87]

(commercialized as Tableau) visualizes the queries with a set of charts based on the grammar

of graphics algebra [100].

45

D3 [11] is a highly popular JavaScript data visualization library that supports a

vast variety of data visualizations and interactivity features.

Above mentioned works helped in building many interactive exploration systems

that encourage more users to explore the data. Consequently, this resulted in an increase

in the number of queries including the ones that generate an empty result. The proposed

work can be effectively used to improve the performance of all these systems by removing

the extra overhead caused by processing the empty resulting queries.

2.5.2 Application Layer

The work in this category takes a user query from the presentation layer and

processes it to return the result. Typically, processing a user query involves retrieving and

querying data from the database layer. Cloudberry [88] proposes a middleware component

in which frequent queries are materialized and a mechanism implemented to break a complex

user request into smaller queries to provide progressive results [48]. In this study, we describe

how to integrate HQ-Filter into Cloudberry to improve its performance by skipping empty-

resulting queries.

Some applications follow the Approximate Query Processing (AQP) approach [55,

74, 83] in which they use sampling to speed up the query processing of big data. The

goal is to maintain the interactivity of the system at the cost of an approximate result.

While HQ-Filter is also an approximate technique, it has a different goal than the work

in this category. The goal of the proposed work is to skip empty resulting queries while

regular queries are still processed using regular techniques. Even though HQ-Filter is an

approximate technique, the final result is still exact since it only skips queries that are

46

guaranteed to be empty. In summary, HQ-Filter is orthogonal to the work listed above

which also means that they can be combined together where the HQ-Filter can skip empty

resulting queries and these techniques can answer non-empty resulting queries.

Query relaxation is a well-studied topic which is related to the empty-answer

problem [33]. Given a query that returns an empty answer, the query relaxation techniques,

e.g., [66, 68, 92], can suggest alternative queries or relaxations of the conditions by relying

on application customized optimizations. In contrast, the proposed approach does not try

to modify the query or suggest an alternative but it just aims at quickly detecting queries

that return an empty answer at the client-side.

2.5.3 Database layer

The work in this category focuses on storing and indexing the data to serve in-

teractive exploratory systems. The Data Visualization Management System (DVMS) [105]

proposes a database system that pushes the visualization query awareness into the core of

the database. Tableau [99] uses the VizQL [87] visualization query language to answer the

visualization queries efficiently. HadoopViz [32] and GeoSparkViz [110] use a distributed

query engine for visualizing big spatial data using the tiled map approach. AID* [34, 35]

proposes an adaptive index that minimizes index size and construction time for tiled map

visualization. NanoCubes [56] builds an in-memory multidimensional cube to visualize

spatiotemporal aggregate heatmaps. imMens [59] uses an aggregation-based method for

big data visualization with a front-end that uses WebGL. VAS [71] and Tabula [109] use

sampling to downsize the data while reducing the error in the produced visualization. Glo-

BiMaps [98] proposes a randomized data structure that models sparse binary images, e.g.,

47

land and water, and provides an efficient query to find the value of a pixel as zero or one. It

differs from our work by being a visualization method taking advantage of the empty areas

in the geospatial datasets while our work focuses on pruning any empty-resulting query and

is not limited to raster images.

HQ-Filter can be constructed efficiently at the database layer and then shipped

to the application or presentation layers to reduce the number of queries that the database

layer has to answer. Therefore, if a large number of empty-resulting queries is expected,

HQ-Filter can be combined with any of the above approaches to reduce the workload on

the database layer.

2.6 Conclusions

HQ-Filter is a filter for queries that return the empty result in visual data explo-

ration systems. As a trial-error process, data exploration tends to deal with a large number

of this type of queries. HQ-Filter takes advantage of the natural hierarchy of the data

and provides filtering for all visualization levels in the user interface, which is a challenging

problem due to the high number of query possibilities. We address the challenges of this

problem and provide an efficient algorithm to implement HQ-Filter for tiled map visual-

ization and spatiotemporal-textual data visualization systems. Our experiments show that

for even large datasets, HQ-Filter can be created at reasonable times and it improves the

performance of the systems by increasing the capacity of concurrent users that are handled

within the interactivity limits, average response time for each user, and reduces the server

workload.

48

Chapter 3

FUDJ: Flexible User-defined

Distributed Joins

3.1 Introduction

Joining datasets is a fundamental task in data analysis that has been extensively

studied for decades [77]. Historically, Database Management Systems (DBMS) treated

”join” as an operation for structured data with simple conditions like equality. However,

with the growing volume and diversity of data, along with the rise of data-driven appli-

cations, various other types of join operations are becoming increasingly popular. Today,

data scientists often need to combine large and diverse datasets from sources like social

networks and IoT devices using distributed systems. This calls for optimization techniques

to enhance join query performance, especially as these new join types involve complex con-

ditions and data types from diverse and less structured sources. As a result, there has been

49

a significant amount of research work in the area. However, the availability of optimization

techniques for the new join types in DBMSs still remains limited due to implementation

and integration complexities as explained below.

Currently, there are three methods for implementing new join operators. First is

the standalone [12,19,28,43,50,89] approach, where developers independently craft algo-

rithms without any platform integration. Second is the use of the programming paradigm

of a distributed system, such as Spark [82, 111], Hadoop [1, 26, 27, 93], or Flink [49, 80].

These two approaches often yield tailored applications for specific query types, resulting in

inflexible and non-adaptable systems. Hence, they struggle to optimize join queries that

involve diverse and complex conditions since they are not integrated into a holistic query

optimization engine like in DBMSs.

Besides these methods, a few studies have proposed implementing join optimiza-

tion techniques as built-in operators within a DBMS context. For instance [17, 52] study

set-similarity and interval joins on AsterixDB, [72] studies spatial join on Paradise, and [84]

studies set-similarity join on PostgreSQL. These approaches demonstrate that incorporating

new join algorithms in DBMSs has clear benefits such as seamlessly integrating optimized

joins with other optimizations and enabling result pipelining for further processing. How-

ever, they do not offer a universal implementation model for other join types to follow.

Consequently, each new join method still requires implementation from scratch, and the

availability of DBMSs capable of accommodating an array of optimization techniques is

limited. This gap often leads to complex join queries being processed through on-top so-

lutions, wherein a User-defined Function (UDF) implements the predicate function and a

50

Nested Loop Join (NLJ) operator handles query processing. Unfortunately, this results in

slow query execution times that can affect the pace of the data analysis process.

3.1.1 Motivation

To better clarify the importance of complex join query optimization, we provide

an example scenario with three queries. Consider a data science team that wants to identify

which parks were affected by wildfires in the last year by using the ”Wildfires” and ”Parks”

datasets with the schemas shown below:

CREATE TYPE Parks_Type {id:uuid, boundary: geometry, tags: string}

CREATE TYPE Wildfire_Type {id:uuid, lat: float, lon: float, fire_start: datetime,

fire_end: datetime}

Type 3.1: Parks and Wildfires Type Definitions

SELECT p.id, p.tags, p.boundary, COUNT(w.id) AS number_of_fires

FROM Parks p, Wildfires w

WHERE ST_Contains(p.boundary, ST_MakePoint(w.lat, w.lon))

AND w.fire_start >= parse_date("01/01/2022" , "M/D/Y")

GROUP BY p.id, p.tags, p.boundary

ORDER BY number_of_fires DESC;

Query 3.1: Spatial Join Query

To have a list of recently damaged parks, the data science team wants to run the spatial join

query below with the computationally expensive predicate STCONTAINS that detects

whether one spatial object (wildfire locations as points) is contained by another one (park

51

boundaries as polygons). Note that the Query 3.1 is not only a join query but involves

other operations like filtering, aggregation, and sorting.

Even though the spatial join problem has been well-studied and there are several

papers proposing successful approaches, it is rare to find a general-purpose distributed big

data processing system that provides an efficient query execution plan for Query 3.1 out

of the box. Since the join condition is not equality and the data type is geometry, fast

and well-know solutions such as Hash Join (HJ) cannot be utilized and the NLJ operator

has to be used which results in prolonged running times. One could argue that there are

several extensions, packages, or systems available for spatial operations. However, for ad

hoc queries they are not a satisfactory answer since efficiently integrating them is not a

simple task.

After Query 3.1, a member of the team may want to find alternative parks for

the ones that are damaged by the wildfires to recommend to potential visitors. This might

be done with Query 3.2 by listing parks that have similar ”tags” for each damaged park

since tags are used to describe the properties of the parks with words like ”River, Scenic

Landscape, Camping, Backpacking”.

SELECT dp.park_id, p.id, jaccard_similarity(dp.tags, p.tags) as similarity

FROM Damaged_Parks dp, Parks p

WHERE dp.park_id <> p.id

AND jaccard_similarity(dp.tags, p.tags) >= 0.5

ORDER BY dp.park_id, similarity;

Query 3.2: Text-similarity Join

52

Next, another member of the team may want to investigate the relationship between the

weather and wildfires by using the ”Weather History” dataset with the schema defined in

Query 3.2. Assume that damaged parks are stored in the ”Damaged Parks” dataset.

CREATE TYPE Weather_History_Type {id:uuid, location: geometry, reading_interval:

interval, temp: int}

Type 3.2: Weather History Type Definition

To find the average temperature for each wildfire that has happened in each park,

they can use Query 3.3 which is a combination of spatial and interval joins. Query 3.3

finds the weather readings close to the wildfires that happened in each park by using predi-

cates ST DISTANCE and ST CONTAINS. Then, by using overlapping intervals, it detects

whether two intervals, weather sensor reading intervals and wildfires, are overlapping or

not.

SELECT f.id, f.fire_start, AVG(w.temp)

FROM Wildfires f, Parks p, Weather_History w

WHERE ST_Contains(p.boundary, ST_Make_Point(w.lat, w.lon))

AND interval_overlapping(

interval(f.fire_start, f.fire_end),

w.reading_interval

)

AND ST_Distance(f.location, w.location) < 1

GROUP BY f.id, f.start;

Query 3.3: Interval and Spatial Join Query

53

Both Query 3.2 and Query 3.3 would likely end up processed by NLJ operators due

to the limited availability of ready-to-use optimization tools for text-similarity and interval

joins in most systems, even if we assume the data science team employed tools for spatial

join queries for Query 3.1. In addition to that, note that Query 3.3 is a combination of

both spatial and interval joins which makes it even harder to optimize. To the best of our

knowledge, there is no DBMS today that would generate an optimized query plan for such

queries.

3.1.2 A New Approach

We argue that if there were a straightforward way to implement and integrate

optimized join algorithms into the query optimization engines for DBMSs, the availability

of such optimizations would increase and the queries above could be efficiently processed.

Consequently, data scientists would have more time and courage to extend their investiga-

tions.

In this work, we introduce the Flexible User-defined Distributed Joins (FUDJ)

framework, which seeks to enhance the availability of optimized join algorithms within

DBMSs. The FUDJ approach allows the implementation of partition-based distributed

join algorithms without requiring in-depth knowledge of database internals or distributed

programming while still achieving similar performance as if they were implemented as built-

in operators inside a DBMS. Figure 3.1 shows where we are aiming to position FUDJ in

comparison to the other implementation methods.

54

Performance

Productivity

Distributed-system based

Standalone Program

On-top Approach

As DBMS Operator

FUDJ

Figure 3.1: Productivity and Performance Evaluations of Existing Optimized Join Imple-

mentation Methods

To achieve these goals, we propose a novel extensibility architecture for imple-

menting and incorporating join algorithms into a DBMS. Our approach involves identifying

the fundamental principles shared among various distributed join techniques and integrat-

ing their touch points into the system’s code base. The method is roughly similar to

User-defined Aggregates (UDAs) [?], where users provide a function that accumulates the

information into a state record and, in some cases, a combining step is utilized, especially

in distributed or parallel processing scenarios, to efficiently combine partial results from

different nodes or threads. Subsequently, a function is applied over the states to compute

the actual aggregate value. We allow customization of the logic specific to each join oper-

ation through a series of specialized UDFs. In another sense, our approach is analogous to

Generalized Search Trees (GiST) [40] to some degree. In GiST, the common logic, such as

55

node merging and splits, is implemented in the code base of the database system itself. On

the other hand, the index-specific logic, such as comparison operations within tree nodes,

is defined by the developer creating a new index structure. In our approach, the developer

defines the logic specific to each join operation. This specific logic is externalized through

UDFs that encapsulate the join-specific logic, such as determining how the data will be

partitioned and joined. This approach aims to strike a balance between efficiency and pro-

ductivity, enabling the definition of new join operations with minimal lines of code (LOC)

while maintaining high execution efficiency.

Our contributions can be summarized below.

• FUDJ Programming Model: We propose a new functional programming model

that allows developers to implement existing and new partition-based distributed join

algorithms without requiring database internal and distributed programming knowl-

edge.

• FUDJ Infrastructure: Design of components to support FUDJ that could be ap-

plied to any DBMS with the following generic extensions:

– Install join libraries with a ”CREATE JOIN” statement,

– Detect FUDJ queries and generate optimized query plans,

– Offer a Serialization/Deserialization protocol that efficiently transfers tuples be-

tween the database engine and the FUDJ library.

56

• Realization of the concept on AsterixDB as proof of its feasibility, and providing FUDJ

implementations for Spatial, Overlapping Interval and Text-Similarity Distributed

Joins.

• Showing that the FUDJ implementations require roughly 20x less work while providing

as much as 500x speed-up against on-top approaches, which is close to even advanced

built-in implementations.

The rest of this chapter is organized as follows. Section 3.2 presents background

on joins, query optimization, and database extensibility. Section 3.3 discusses related work.

Section 3.4 addresses the commonalities and challenges of distributed optimized join al-

gorithms. Section 3.5 presents our programming model while Section 3.7 provides details

about our framework and its application to query optimizers. Section 3.6 shares the de-

tails of the realization of the architecture on AsterixDB and describes three example join

algorithm implementations. Section 3.8 explores the performance of FUDJ, and Section 3.9

concludes our study and discusses future work.

3.2 Background

Join methods. Joining two dataset is an important and expensive task for any

database system. Three commonly used join algorithms are hash joins, nested loop joins,

and indexed nested loop joins. Nested Loop Join (NLJ) is the primitive approach for joining

two dataset which is a basic two nested for loop where the two datasets scanned and the

condition is applied to all tuple pairs. NLJ can be preferred especially if one of the dataset

can fit into memory (Block Nested Loop Join). Another similar approach to NLJ is Indexed

57

Nested Loop Join (INLJ). INLJ can be used if the datasets are indexed already by pruning

some of the records using the condition and the index resulting in using the condition less

than the cartesian product. INLJ can be preferred if there is an index available for the key

and the condition is applicable.

Nested loop joins operate by iterating through each record in one table and match-

ing it with corresponding records in the other table based on the join condition. This al-

gorithm is straightforward but can be resource-intensive for large datasets as it requires

scanning the entire second table for every record in the first table.

Indexed nested loop joins leverage indexes to enhance the performance of nested

loop joins. By utilizing indexes, the join process becomes more efficient, as it avoids scanning

the entire second table and instead utilizes the index structure to locate matching records.

This optimization significantly reduces the computational burden.

Hash joins involve building hash tables to efficiently match records from the joined

tables. The join process entails hashing the join attribute values of one table and then

probing the hash table with the join attribute values of the other table. This algorithm is

particularly effective when dealing with large datasets and equality-based join conditions.

Query Optimization for Joins. Query optimization refers to the process of

enhancing the performance of database queries by selecting the most efficient execution

plans. When it comes to join queries, optimization becomes crucial due to the potential

complexity and resource requirements of joining large tables. Optimizing join queries in-

volves identifying the most suitable join algorithm, considering factors such as table sizes,

available indexes, join conditions, and available system resources.

58

The optimization process aims to minimize the execution time and resource con-

sumption of join queries. It involves analyzing query structures, estimating costs, and

selecting the join algorithm that offers the best trade-off between resource usage and per-

formance. Effective query optimization ensures that join operations are executed in an

efficient and scalable manner, leading to faster query execution and improved overall sys-

tem performance.

Database Extensibility. Database extensibility refers to the ability of a DBMS

to be easily extended and customized to accommodate specific application requirements.

This flexibility enables the integration of user-defined functionality, enhancing the capabil-

ities of the database system. Three common aspects of database extensibility are UDFs,

UDAs, and generalized index search trees.

UDFs allow users to define custom operations that can be executed within SQL

queries. UDFs expand the range of available functions and provide users with the ability

to tailor the database system to their specific needs. By incorporating UDFs into the

query execution process, complex computations and data manipulations can be performed

seamlessly within the database engine.

User-defined aggregates (UDAs) enable the creation of custom aggregate functions

that can be applied to groups of data within a query. UDAs offer a powerful mechanism

for performing specialized calculations and aggregations that may not be supported by

standard SQL functions. These aggregates provide greater flexibility in summarizing and

analyzing data based on specific user requirements.

59

Generalized index search trees extend the capabilities of traditional indexing struc-

tures by allowing the definition of custom search algorithms. These structures provide a

way to optimize query execution for specialized data types and access patterns that are

not adequately supported by standard indexing methods. By designing and implementing

customized index search trees, database systems can achieve improved performance and

efficiency in handling diverse data scenarios.

3.3 Related Work

Joins have been extensively researched both in academia and industry, spanning

various domains. For instance, studies such as [38,46,72,107,115] propose methodologies for

spatial joins, while survey papers such as [13,47,108,117] offer comprehensive evaluations of

existing methods. Set-similarity joins have been optimized in studies such as [9,26,27,52,65,

73,85,93,95]. Trajectory joins are explored in papers such as [4,5,20,81,82,111], along with

surveys such as [97]. JSON similarity studies are documented in [43,50]. Interval joins find

attention in works like [12,17,28], while kNN joins are explored in [62,79]. It is important to

note that each study introduces a method tailored for a specific join type. However, despite

this rich literature, it remains challenging to assert that these methods are widely available

within DBMSs. In other words, there is a scarcity of DBMSs that comprehensively support

a diverse array of join types.

When it comes to implementation methods for optimized joins, these can

be classified into three categories: distributed-system-based, as a DBMS operator, and

standalone programs. Many of the aforementioned join studies opt for implementation

60

through programming paradigms such as MapReduce [24], RDD [112], or PACT [8], or as

standalone programs. However, these often lead to isolated solutions that cater to specific

domains or systems, making their integration into a DBMS challenging. A select few ap-

proaches [17, 52, 72, 85] implement their methods within DBMSs. While these approaches

advocate for the advantages of DBMS integration, their applicability to other optimized

joins and DBMSs is limited, thereby necessitating a fresh implementation for each new join

method.

In contrast, the concept of database extensibility has been a well-explored and

well-established topic for decades [16]. Commonly adopted concepts include UDFs and

UDAs. Moreover, the Generalized Search Trees (GiST) [40] introduces an extensibility

framework that enables developers to implement and integrate custom indexing methods.

Although GiSTs can enhance join performance in specific cases when paired with Indexed

Nested Loop joins, they lack the capability to seamlessly integrate new join algorithms

into a DBMS. Consequently, the concept of database extensibility has yet to encompass a

method for accommodating User-defined Joins.

In summary, despite the rich existing literature for optimized joins, their availabil-

ity in DBMSs and systems that can optimize a good variety of join types is limited. Also,

the current preferred implementation methods for these optimized joins result in special-

ized programs which are far from being a universal model when it comes to the integration

to DBMSs. Additionally, while the concept of database extensibility has seen advance-

ments through mechanisms like UDFs, UDAs, and GiST, a comprehensive framework for

accommodating User-defined Joins is missing.

61

3.4 Common Challenges in Distributed Join Processing

Efficient joining methods are essential for improving the data processing capa-

bilities of distributed systems. The strategies employed in optimized joining methods are

crucial for achieving this goal. In this context, three primary optimized join approach

categories stand out: nested-loop joins, partition-based joins, and sort-merge-based joins.

Nested-loop joins, though follow a straightforward method to distribute the data and are

easy to implement, exhibit limited optimization potential due to their sequential nature,

often resulting in suboptimal performance on large datasets. Sort-merge joins, while favor-

able if the data is already sorted and effective in parallelization for some cases, encounter

challenges in shared-nothing environments due to the need for data shuffling across nodes,

leading to increased network overhead.

On the other hand, partition-based joins exhibit promising potential by leveraging

data partitioning and local processing, reducing data movement and network costs. These

concepts lead to more parallelism and efficient utilization of resources, making partition-

based methodology the most popular choice for optimizing joins in distributed systems

resulting in numerous studies for various domains.

Consequently, as we aim to increase the availability of optimized joins in DBMSs,

we introduce the FUDJ programming model that is designed to allow easy implementation

of partition-based join algorithms on DBMSs. The key idea is identifying the common

logic of partition-based distributed join techniques and injecting them into the code base of

DBMSs while externalizing the logic related to specific join operations through user-defined

join that are implemented using the FUDJ programming model.

62

r1
r2

rn

...R

Partitioner
Function

Match
Function

S

s1
s2

sm

...

⨝

⨝

⨝

...

SummaryR

SummaryS

r⨝s

r⨝s

r⨝s

...

Verification

Filtering

Duplicate
Handling

Figure 3.2: Summarize and Partition Phases

In the rest of this section, we identify the common challenges of partition-based

joins. First, we divide the common challenges into two categories based on the natural

phases of partition-based methods namely partition and join. As illustrated in Figure 3.2,

in the partition phase, the data is partitioned in a way that the next phase, joining, requires

the minimum resources and finishes the join process as efficiently as possible. Below we

analyze each phase’s challenges in its subsections.

3.4.1 Partitioning

The partitioning phase presents several challenges that require careful considera-

tion [6]. One of the foremost challenges is achieving optimal data distribution across the

nodes in the distributed system. Poor partitioning can result in data skew, where some

nodes are overloaded due to unevenly distributed data. Moreover, identifying potentially

matching keys is important to ensure that related data ends up on the same node, reducing

63

the need for extensive inter-node communication during subsequent join operations. Bal-

ancing partition granularity and size is yet another challenge. Overly fine-grained partitions

might lead to excessive overhead, while coarse-grained partitions could affect parallel pro-

cessing efficiency. Addressing these challenges in the partitioning phase is paramount for

achieving a well-balanced, efficient, and scalable partition-based approach within distributed

systems. To ensure optimal performance and overcome these challenges, it is crucial to have

a thorough comprehension of data characteristics. As shown in Figure3.2, an initial scan

of the input dataset to collect such information (Summary) to have a better partitioning

is one the most common ways. For instance, OIPJoin algorithm [28], requires minimum

interval start, and maximum interval end times to divide the space into equal sized granules.

PBSM [72] computes the Maximum Bounding Rectangles (MBR) of the input and divides

it into tiles. Finally, Text-simililartiy join approach described in [53] counts the words from

input datasets and sort them by their ranks to find out the least common words in each

records. In all these scenarios, the input space is divided into buckets at the logical level,

and each records is assigned to a physical partition accordingly by relying on buckets.

R'

Single-assign
Partitioning

r'2

r'1

...

3 Value 3

1 Value 1

2 Value 2

r3

r1

r2

R

1 Value 1

2 Value 2

3 Value 3

 ...

k Value k

Value kk

Summary

Data Source Partitioned Data

(a) Single-assign

R'

Multi-assign
Partitioning

r'2

r'1

...
3 Value 3
1 Value 1

2 Value 2

r3

r1

r2

R

1 Value 1

2 Value 2

3 Value 3

 ...

k Value k

Value kk

Summary

2 Value 2

3 Value 3

Data Source Partitioned Data

(b) Multi-assign

Figure 3.3: Partitioning Categories

64

Furthermore, it is important to note that some partitioning approaches result in

data replication (multi-assign) across partitions while others do not. Replication can help

mitigate data skew and reduce inter-node communication during joins, but it comes at the

cost of increased storage overhead. For instance, PBSM [72] assigns each geometry to all

of the tiles that they are overlapping with. Text-similarity join [53] assigns the text to a

certain amount of token based on the ranking of the words and the similarity threshold. Non-

replicative strategies (single-assign), on the other hand, focus on maintaining unique sets

of data on each node, reducing storage overhead but requiring more careful load balancing

and efficient data movement during joins. For instance, OIPJoin [28] assings intervals to

the smallest interval bucket that it can fit. In the rest of this chapter, we will term the

stage where the algorithms collect information about the data in the partitioning phase as

SUMMARIZATION, and the SUMMARY will be used to refer to the data where the

information is stored. Since the SUMMARY from both sides of the joins is collected to

conclude a partitioning strategy, the final information should be stored and available for

the joining phase. We will refer to this state as CONFIG and the method that divides the

input space into granules for the partitioning as divide. Finally, the methods that assign

records to partitions by using CONFIG will be termed as assign, and the identifiers of the

records to determine their partitions will be termed as bucket. Please note that a partition

can contain one or more buckets.

3.4.2 Joining

One of the primary challenges in the joining phase is the task of matching the

partitions. Eliminating irrelevant partitions from consideration or moving the relevant par-

65

titions to the same nodes before the join operation can reduce unnecessary data movement

and processing. The matching method for the partitions plays a crucial role to have an effi-

cient strategy to have an efficient partition matching. We can categorize such methods into

two: single-join (See Figure 3.4a) and multi-join (See Figure 3.4b). Single-join here means

each partition can only match with a single partition thus it becomes an equijoin operation

where the partitions can be hash partitioned as we see in hash-based joins. For instance,

PBSM [72] only joins the records that overlaps with the same tiles, and in Text-similarity

join [53], the records shares the same tokens are matched only. In a multi-join strategy, on

the other hand, a partition can match with one or more buckets which makes it a theta-join

operation. As a result, partitions from one side are mostly broadcasted. OIPJoin [28] is an

example of that since one interval partition can match with multiple partitions.

r1
r2

rn

...

Single-join

s1
s2

sm

...

r1 s1

... ...

⨝

⨝

s2

sm

... ...

r2

rn

⨝

⨝

⨝

Partitioned
Data

Partition
Matching

(a) Single-join

r1 s1

... ...

⨝

⨝

r1 s2 ⨝

r1
r2

rn

...

Multi-join

s1
s2

sm

...

s2

sm

... ...

r2

rn

⨝

⨝

⨝

Partitioned
Data

Partition
Matching

(b) Multi-join

Figure 3.4: Partition Matching Strategies

66

Local optimization strategies are also applied during the joining of partitions in

each node. Implementing a customized efficient join algorithm within individual partitions

or nodes to minimize the computational and memory overhead or utilizing parallel process-

ing techniques within partitions to take full advantage of available processing power and

speed up the join operation is common to see in partition-based join algorithms. In cases

of unbalanced partitions, memory utilization can become problematic too. Some partitions

might not fit entirely in memory, requiring the utilization of memory budget-aware oper-

ators that can spill to the disk. Another optimization can be sorting. By sorting tuples

within partitions based on join attributes, merge join algorithms can be utilized, requiring

a smaller memory footprint.

In addition, partitioning strategies that involve duplicating tuples across multi-

ple partitions can introduce duplicate handling challenges. Duplicate elimination becomes

essential in the subsequent stages. Duplicate elimination involves identifying and elimi-

nating duplicate tuples from the joined output. Avoidance techniques, on the other hand,

aim to prevent duplicates during the join process itself by cleverly designing matching and

partitioning strategies.

At the conclusion of the join phase, the filtering and verification stages come into

play. Filtering involves eliminating tuples that do not satisfy the join condition. Verification,

on the other hand, ensures that all tuples that should be in the join result are indeed present.

In the FUDJ programming model, we will refer to the methods that are used to

match the buckets as match. The logic of the match function actually defines whether

the join is a single-join or multi-join. For instance, if the match is a simple equality, then

67

join

join

...

join

r⨝s

r⨝s

...

r⨝s

Op

Op

...

Op D
up

lic
at

e
El

im
in

at
io

n

(a) Duplicate Elimination

r⨝s

r⨝s

...

r⨝s

join

join

...

join D
up

lic
at

e
Av

oi
da

nc
e

(b) Duplicate Avoidance

Figure 3.5: Partitioning Categories

the join becomes a single-join and the system can utilize the optimized hash join operator.

Lastly, the function that verifies the tuple pairs to finalize the join operation will be called

verify. The verify function usually uses the CONFIG from the partitioning phase to

determine whether the tuple pair belongs to the output or not.

3.5 Programming Model

Based on the common challenges and solutions in partition-based distributed op-

timized join algorithms that we describe in Section 3.4, we propose the FUDJ functional

programming model that consists of three phases namely, SUMMARIZE, PARTITION,

and COMBINE.

Figure 3.6 shows all the functions within its phase. We provide more details about

the phases and the functions in the following subsections.

68

COMBINEPARTITIONSUMMARIZE

summarize1
S1

 s S summarize2

C

C
divide

assign1

assign2
S2

 r R
bucket_id1, r,
bucket_id2,s

match

bucket_id1, r

bucket_id2, s

 r, s verify R ⋈ S
Output

C

number of
buckets*

query
parameters*

(*optional)

Figure 3.6: Flexible User-defined Distributed Join Data Flow Diagram

3.5.1 SUMMARIZE

To successfully decide how to partition the datasets, the join algorithms usually

apply an initial step where the datasets are first analyzed, and summarized to have a better

partitioning in the later phases. The summary can be the minimum bounding rectangle for

a spatial dataset [72], minimum starting and maximum ending time for an interval dataset

[28], or word frequencies for text-similarity joins [93]. Since we are considering distributed

systems, independent from the strategy, first, all the records should be visited locally, then

the local information should be merged and concluded into one global summary. This is a

typical aggregation operation that we can achieve by first running a local aggregation and

then merging it with a global aggregation.

We first provide two aggregate function interfaces as below.

local aggregate(T key, SUMMARY ⟨T ⟩S) : SUMMARY ⟨T ⟩

global aggregate(SUMMARY ⟨T ⟩S) : SUMMARY ⟨T ⟩

The local aggregate function is used to read keys from input dataset and create SUMMARY

objects locally. Then all SUMMARY objects merged into global SUMMARY objects by

69

global aggregate function. Please note that, the framework allows to have two versions of

local and global summary functions since key types can be different. On the other hand,

if the keys have the same type and only one version is implemented, the optimizer will be

aware of that and apply relevant optimizations if the query is for a self join.

Lastly, to divide the input domain space into meaningful partitions, we provide

DIV IDE function that takes two global SUMMARY from both sides of the join and

return a CONFIG object.

divide(SUMMARY ⟨T ⟩ S1, SUMMARY ⟨T ⟩S2) : CONFIG

For instance, divide combines two MBRs from both sides and returns the final MBR and

carries the number of tiles for spatial join, and minimum start time, maximum end times

for both datasets, and number of interval partitions for interval join, and ordered token

rank list which is computed by using word counts from both sides for text-similarity join.

3.5.2 PARTITION

The goal of this phase is to assign the input datasets into subgroups which we will

call as bucket and represent with a unique integer bucket id. The framework, will than use

the list of bucketid and the logic of the join algorithm to decide how to partition the input

datasets. For spatial join, a bucket is a tile and bucketid is the tile id, and for text-similarity

join, a bucket is a word from word count list and bucketid is the rank of that word.

assign(T key, CONFIG) : int[]

After the SUMMARIZE phase, the input datasets will be scanned and for each key, assign

function will return a list of bucket id which is computed based on CONFIG. A key can be

70

assigned to only one bucket (Single-Assign) or multiple buckets (Multi-Assign). In addition

to that, for the cases where different key types from different side of the join, there can be

a second implementation of assign function.

3.5.3 COMBINE

In this phase, first, we need to determine which bucket matches with which bucket

by using the match function. As we mentioned previously we have two cases for this

stage: single-join or multi-join. For single-join algorithms, we provide a default match

function which basically checks whether the both bucketid is the same or not. For this

type of algorithms, the developer should just use the default implementation since further

optimizations can be applied.

match(int bucket id1, int bucket id2) : boolean

After we match the buckets, the next step is verifying the record pairs by using the verify

function.

verify(int bucket id1, T key1

int bucket id2, Tkey2,

CONFIGC) : boolean

FUDJ’s default duplicate avoidance method relies on utilization of the assign functions

with CONFIG, and producing the list of bucketid for each record pair to find out if the

matching buckets are the first matching pair or not. As we discussed in Section 3.4, some

algorithms yield duplication due to the assignment of records to multiple buckets. FUDJ

71

framework takes care of the duplicates in the verify phase. For the algorithms that do require

another method for deduplication they can easily override the verify function provided by

the framework or if there is no need for the deduplication developers just disable that to

have a more efficient query processing.

3.6 Example Implementations

In this section we provide three example FUDJ implementations for spatial, text-

similarity and overlapping interval joins. These examples are representing the FUDJ ver-

sions of the algoritmhs that we studied in Section 3.4.

3.6.1 Spatial FUDJ

Our Spatial FUDJ implementation is based on PBSM algorithm described in [72].

We start with calculating the MBRs of each dataset with the summarize function. Here,

MBR() function returns the MBR of the given geometry and ∪ merges two MBRs and

returns an MBR that covers both MBRs.

1: function summarize(geometry, SUMMARY)

2: SUMMARY ←MBR(geometry) ∪ SUMMARY

3: return SUMMARY

After we have MBRs from both side of the join, we then use divide function to

compute the final MBR and create the grid that divides the space into n×n bucket. Next,

we store the MBR and n into CONFIG.

72

1: function divide(SUMMARY1, SUMMARY2, n)

2: MBR← (SUMMARY1 ∪ SUMMARY2)

3: CONFIG← (MBR, n)

4: return CONFIG

Now, our spatial join algorithm can assign geometries to relevant buckets. To

simplify the algorithm here the function getOverlappingT ileIds() represents a function

that divides the space into n × n equal-sized tiles and returns the ids of the tiles that

overlap with the given geometry’s MBR.

1: function assign(geometry, CONFIG)

2: MBR←MBR(geometry)

3: tileIDs← getOverlappingT ileIDs(MBR,CONFIG)

4: return tileIDs

When it comes to matching buckets, since our algorithm follows single-joining

strategy, we utilize the default match function. Finally, we provide the simple verify

function that only checks if the actual geometries are intersecting or not below.

1: function verify(geometry1, geometry2)

2: return intersects(geometry1, geometry2)

3.6.2 Text Similarity FUDJ

Similar to [52], we first count the words of all the records in the summary step by

using a hash map. Here the tokenize(text) function is used to get the list of the words of

each text.

73

1: function summarize(text, SUMMARY)

2: tokens← tokenize(text)

3: for each token ∈ tokens do

4: SUMMARY.merge(token, 1)

5: return SUMMARY

In divide, we first combine the two hash maps that consists the number of occurrence of

each word from both sides. Next, sortByCount() function sorts the words by their counts

in descending order and returns a new hash map that has the rank of each word as value.

Finally, the word rank map is put into the configuration along with the similarity threshold.

1: function divide(SUMMARY1, SUMMARY2, SimilarityThreshold)

2: for each token ∈ SUMMARY2 do

3: SUMMARY1.merge(token, SUMMARY2.get(token))

4: TokenRanks← sortByCount(SUMMARY1)

5: CONFIG← (TokenRanks, SimilarityThreshold)

6: return CONFIG

In assign, we first create the sorted rank list of words for each text. Then, we calculate the

prefix length p for each text using the similarity threshold. Finally we assign the text to

the buckets that are defined by the first p ranks of each text.

The purpose of this method is assigning each text to the smallest possible buckets

and choosing the rarest words of each text to increase the pruning.

74

1: function assign(text, CONFIG)

2: tokens← tokenize(text)

3: tokenRanks← ∅

4: for each token ∈ tokens do

5: tokenRanks.add(CONFIG.TokenRanks.get(token))

6: l← len(tokens)

7: prefixLength← (l − ceil(C.SimilarityThreshold ∗ l)) + 1

8: bucketIds← copyRange(sort(tokenRanks), prefixLength)

9: return bucketIds

Finally, in verify we calculate the jaccard similarity of the two sides as below and

return true if they are above the threshold.

1: function verify(text1, text2, CONFIG)

2: threshold← CONFIG.SimilarityThreshold

3: tokens1 ← tokenize(text1)

4: tokens2 ← tokenize(text2)

5: similarity ← (|tokens1 ∩ tokens2| ÷ |tokens1 ∪ tokens2|)

6: return similarity > threshold

3.6.3 Overlapping Intervals FUDJ

To partition the date first we need to divide the space into granules. For that

purpose, we start with finding the minimum start and maximum end times of each side

with summarize function.

75

1: function summarize(interval, SUMMARY)

2: if SUMMARY = NULL then

3: SUMMARY ← (+∞, −∞) ▷ Init. Min Start and Max End Time

4: if interval.start < SUMMARY.minStart then

5: SUMMARY.minStart← interval.start

6: if interval.end > SUMMARY.maxEnd then

7: SUMMARY.maxEnd← interval.end

8: return SUMMARY

In divide function, we first combine two summaries and unify both time spaces. Next, we

divide the space into NumberOfBuckets bucket and calcualte the length of each bucket.

Finally, we put all the information required to assign records to the partitions together into

CONFIG.

1: function divide(SUMMARY1, SUMMARY2, NumberOfBuckets)

2: if SUMMARY2.minStart < SUMMARY1.minStart then

3: SUMMARY1.minStart← SUMMARY2.minStart

4: if SUMMARY2.maxEnd > SUMMARY1.maxEnd then

5: SUMMARY1.maxEnd← SUMMARY2.end

6: Range← SUMMARY1

7: length← (Range.maxEnd−Range.minStart)

8: d← length/NumberOfBuckets

9: CONFIG← (Range, d,NumberOfBuckets)

10: return CONFIG

76

Each interval needs to be assigned to the smallest bucket that it can fit. By using the length

of each granule and minimum start time of the space, we find the starting and ending granule

ids for each interval. Then we combine these two ids into one integer as bits.

1: function assign(interval, CONFIG)

2: R← CONFIG.Range

3: d← CONFIG.d

4: front← (interval.start−R.minStart)/d

5: end← (ceil(interval.end−R.minStart)/d)− 1

6: bucketId← (front << 16)|(end&0xFFFF)

7: return bucketId

Bucket matching is not equality. So, we need to implement a match function that first

extract the starting and ending granule ids of each bucket, and return true if buckets are

overlapping.

1: function match(bucketId1, bucketId2)

2: b1Start = bucketId1 >> 16

3: b1End = (short)bucketId1;

4: b2Start = bucketId2 >> 16

5: b2End = (short)bucketId2

6: return (b1Start ≤ b2End) and (b1End ≥ b2Start)

Finally, we test i1 and i2 to see if they are overlapping or not in the verification phase.

1: function verify(i1, bucketId1, i2, bucketId2, CONFIG)

2: return (i1.start < i2.end) and (i1.end > i2.start)

77

3.7 FUDJ Infrastructure

In this section, we present the components of the FUDJ Framework. In general,

the framework can be implemented in any DBMS since it relies on the common concepts

of built-in functions, UDFs, and rule-based query optimization. We divide this section into

three subsections. First, we talk about how the logic from external join libraries will be

linked into the system through proxy built-in functions. Second, we will explain how new

join algorithms can be registered through a novel statement ”CREATE JOIN”. Finally,

we describe how can the DBMSs utilize FUDJs and generate optimized query plans using

rewrite rules.

3.7.1 Internal and External Actors

UDFs are well-known components of modern DBMSs, allowing users to implement

custom functions and integrate them into their system to process their data. With UDFs,

complex join predicates can be implemented, and various join operations can be performed.

However, it is important to note that UDFs are primarily supported as scalar functions,

and queries using UDFs may not achieve the same level of performance as those employing

optimized join algorithms due to be processed by NLJ operators.

Similarly, UDA functions assist developers in creating their custom aggregate func-

tions. UDAs distinguish themselves from UDFs by having a state that is used for aggrega-

tion and by involving stages such as local and global aggregation. In both cases, database

management systems typically define a distinct type of function. From the outset of query

optimization, DBMSs associate external library information with the function signature,

78

Proxy Built-in Function

Input
Record

FUDJ Deserializer

OutputDBMS
Deserializer

FUDJ Library

External
Function

Get the
Simple Data

DBMS
Serializer

Figure 3.7: A Proxy Built-in Function in FUDJ Framework

utilizing these libraries at runtime.

In the FUDJ Framework, we follow a similar principle. For each function interface

within our programming model, we provide a corresponding built-in function implemented

internally as internal actors. We also introduce a new external function signature type

associated with the FUDJ framework. When a new join algorithm is created, the FUDJ

framework generates FUDJ-specific UDF signatures, which include the join library infor-

mation for all functions in the programming model. These signatures are then registered

with the system as external actors. During runtime, whenever the DBMS encounters an

external actor call with the FUDJ’s external function signature, it must modify the evalua-

tor using the information embedded in the signature. Subsequently, it creates the internal

actor evaluator by passing the external FUDJ library information. Then in each internal

actor, FUDJ library should be initiated as an object only once.

In each built-in function, DBMSs deserialize records before processing. Most

DBMSs internally implement data types for various data types with specific serialization

and deserialization methods. For example, Apache AsterixDB has specific type handling

internally for data types like ”AInt” for integers. However, in FUDJ, as the programming

79

model is designed to work with simple data types, an additional step is required to convert

DBMS-specific data into simple data types. Figure 3.7 shows how the data transfer works

internally in a proxy built-in function of FUDJ. It is worth noting that some types require

specific handling; for instance, intervals can be converted into long arrays, where the first

element represents the start time and the second the end time. This aspect of the framework

is critical and requires careful implementation to avoid excessive overhead during runtime.

However, it is not a very expensive step as the only requirement is retrieving the data from

the object that is already deserialized as we show with evaluations in Section 3.8.

As discussed in Section 3.5, we have two states to consider: SUMMARY and

CONFIG. Since DBMSs already have solutions for built-in aggregate functions, we only

need to adhere to existing design principles and handle SUMMARY as a regular state

within a typical aggregate function. The same principle applies to CONFIG, which can be

treated as a single record with its type set as ”Object.” This approach also simplifies state

transfer, as both states appear as regular records from the database perspective.

3.7.2 Query Optimizer Integration

The first task of the query optimizer is to determine whether the join query includes

a FUDJ predicate. This detection is accomplished by examining the predicate function

signature. When a FUDJ predicate is detected, the query optimizer retrieves the external

library information from the metadata and commences the generation of the join query

plan, as depicted in Figure 3.8. For each stage in the FUDJ query plan, the optimizer

creates corresponding FUDJ external function calls.

80

During runtime, as mentioned in the preceding section, each external FUDJ func-

tion undergoes modification to incorporate the related proxy built-in function, and external

library information is associated with it. The query optimizer must also apply physical op-

timizations when applicable. In this initial design, we introduce two further optimizations.

The first one pertains to self-joins. Typically, DBMSs optimize self-joins by replicating

intermediate results that are used multiple times during query processing. For instance, in

a Spatial self-join, the resulting MBR (Minimum Bounding Rectangle) of one side after the

summarization stage can be replicated and fed into the DIV IDE function since the MBR

computation is the same for both sides. Query optimizers are usually designed to handle

self-joins in this manner. Consequently, the only requirement for the FUDJ framework is

to detect whether FUDJ implements separate SUMMARY and PARTITION stages or

not. This can be achieved by checking if the FUDJ is overriding the default summary and

assign functions. If the FUDJ uses the default functions, the same function signature is

used, enabling the query optimizer to apply further optimizations.

The second optimization concerns selecting the appropriate join operator for bucket

matching. For single-join FUDJs with a bucket matching condition as equality, the opti-

mizer can employ the Hash Join operator. This is advantageous, as Hash Partitioning can

also be applied. Similar to the previous approach, the optimizer must check if the ’match’

function is overridden or if it is using the default implementation to apply further opti-

mization by compelling the DBMS to utilize the Hash Join operator and partitioning, as

illustrated in Figure 3.9.

81

R
DATA SCAN

local_aggregate(R.key) :
S1

AGGREGATE

R.key
PROJECT

global_aggregate(S1) :
S1

AGGREGATE

S
DATA SCAN

local_aggregate(S.key) :
S2

AGGREGATE

S.key
PROJECT

global_aggregate(S2) :
S2

AGGREGATE

CARTESIAN PRODUCT

divide(S1, S2) : C
ASSIGN

CARTESIAN PRODUCT CARTESIAN PRODUCT

R
PROJECT

S
PROJECT

assign(R.key, C) :
bucket_id1,R

UNNEST

assign(S.key, C) :
bucket_id2,S

UNNEST

match(bucket_id1,
bucket_id2)

JOIN

verify(R.key, bucket_id1,
S.key, bucket_id2, C)

JOIN

R ⋈ S

Figure 3.8: Flexible User-defined Distributed Join Logical Plan

82

HASH_PARTITION_EXCHANGE

assign

UNNEST

assign

UNNEST

(bucketId1 == bucketId2)
match

HYBRID_HASH_JOIN

HASH_PARTITION_EXCHANGE

Figure 3.9: Single-Join Algorithms - Bucket Matching Phase

It is important to note that since the query optimizer generates query plans for

FUDJ join queries as part of its overall optimization process, FUDJ query processing can

take advantage of all the optimizations applied by the optimization engine. For example,

if the join query involves filtering operations, the optimizer will prioritize executing them

before the join query plan. Similarly, if there is a group by operator in the query, the

optimizer can generate efficient query plans to handle that part of the operation

3.7.3 Creating Joins

As outlined in our goals, our aim is to facilitate easy and convenient installation

of joins. To achieve this, we introduce a new SQL statement called ”CREATE JOIN.” In

Query 3.4, we provide an example of creating a join named ”text similarity join” with two

”String” keys. The external logic for this join is sourced from the ”flexiblejoins” library,

with the package and class name set as ”setsimilarity.SetSimilarityJoin.” Notably, this join

83

has three parameters. In this specific example, the join is based on a similarity metric,

and a predicate is considered satisfied if the metric surpasses a specified threshold. Given

that the algorithm necessitates the threshold in all stages (including prefix filtering), this

information is embedded into the caller function’s signature.

/*Creating a FUDJ*/

CREATE JOIN text_similarity_join(a:string, b:string, t:double) RETURNS boolean

AS "setsimilarity.SetSimilarityJoin"

AT flexiblejoins;

/*Dropping a FUDJ*/

DROP JOIN text_sim_join(a:string, b:string, t:double);

Query 3.4: Create Text-similarity Join

After executing Query 3.4, the DBMS creates all the corresponding UDFs and

registers the library information for them. When it comes to removing a join, similar to

other operations, we only need to run ’DROP JOIN text similarity join(a: string, b: string,

t: double),’ and all UDFs will be removed.

3.7.4 Realization of the Infrastructure

We implement the FUDJ framework on Apache AsterixDB [?, 2], and provide a

simple standalone version for testing purposes. Also, the first FUDJ interface based on the

FUDJ programming model is implemented in Java language to make it compatible with

Apache AsterixDB.

84

AsterixDB Implementation

Apache AsterixDB [2] is an open-source, scalable Big Data Management System

(BDMS) that offers a flexible data model, distributed storage and transactions, rapid data

ingestion, and data-parallel query execution runtime. In this section, we briefly describe

how we implemented the FUDJ Framework on Apache AsterixDB by adhering to the im-

plementation guidelines.

Apache AsterixDB offers a wide range of built-in functions. It also support UDFs

and allows developers to implement their custom functions. However, it is required to use

Apache AsterixDB specific data types. We further improved this feature for FUDJ and let

the developer use Java primitive types. In addition to that, while there are built-in aggregate

functions available in the codebase, currently, there is no support for external aggregate

functions. Therefore, we had to modify its runtime mechanism to accommodate external

aggregate functions. External functions are connected to Apache AsterixDB through the

concept of libraries, and we utilized the same mechanism for FUDJs as well. In contrast

to the default one-to-one mapping between external functions and libraries, in our case,

one library comprises all the functions belonging to the FUDJ programming model, and all

UDFs created for FUDJ are assigned to that library.

Query optimization is done in Apache AsterixDB by incorparating a set of

predefined rules that dictate how queries should be transformed and optimized. We imple-

mented a rewrite rule that checks the condition of the join query and intervenes if the join

condition involves a FUDJ function. Then, the rule is building the query plan by following

the steps described previously.

85

Standalone (Single-Machine) Version

One of the biggest challenges for joining algorithm integration into DBMSs is

debugging and testing due to the complex notion of DBMSs. Having strict mechanisms

for query processing and data reading makes it hard to handle bugs or test new ideas

easily without rebuilding or redeploying the system. Motivated by these challenges, we

also provide a Single-machine Standalone version of the FUDJ Framework. The standalone

version can run any FUDJ algorithm for testing and debugging purposes. Since it simply

reads the data and feeds it to the FUDJ, finding the logical bugs or trying new ideas

is straightforward. We share JAVA implementation with this study, but it can also be

transformed into another programming language easily.

3.8 Experiments

In this section, we evaluate FUDJ framework and Spatial, Interval and Text-

similarity FUDJ implementations applied to Apache AsterixDB. Our evaluation begins with

a productivity assessment of the implementation methods (FUDJ and built-in). Next, we

demonstrate that the utilization of the FUDJ extensibility framework introduces negligible

to zero query processing overhead when compared to the built-in approach. We then proceed

to evaluate the performance and scalability of the three example join implementations in

comparison to on-top solution (NLJ operator with a UDF). Finally, we study alternative

duplicate handling strategies and outline future directions for the FUDJ framework and

programming model by comparing it against advanced optimized join implementations.

86

https://github.com/akilsevim/FUDJ-Single-Machine

Hardware setup: The experiments run on a cluster with one head node and 12

worker nodes. The head node has Intel(R) Xeon(R) CPU E5−2609 v4 @ 1.70GHz processor,

128 of GB RAM, 2 TB of HDD, and 2×8-core processors running CentOS and Java 17.0.1.

The worker nodes have Intel(R) Xeon(R) CPU E5-2603 v4 @1.70GHz processor, 64 GB of

RAM, 10 TB of HDD, and 2×6-core processors running CentOS and Java 17.0.1.

Datasets: We use four real-world datasets. For spatial join queries Parks [31]

and Wildfires [86] datasets are used , NYCTaxi [101] is used for interval join queries, and

AmazonReview [39] is used for text-similarity queries.

Table 3.1: Datasets for FUDJ Experiments

Name Size #Records Key Type

Wildfires [86] 22.1 GB 18M Point

Parks [31] 7.7 GB 10M Polygon

NYCTaxi [101] 38.8 GB 173M Interval

AmazonReview [39] 58.3 GB 83M Text

Implementations: We implemented FUDJ framework on Apache AsterixDB

version 0.9.8. The three example join algorithms Spatial, Interval, and Text-similarity that

are based on studies [28, 53, 72] are implemented on Apache AsterixDB from scratch, and

we will refer to them as built-in implementations. Finally, we implemented the FUDJ

versions of the three example join algorithms and installed them on Apache AsterixDB.

We will use the term on-top to refer to join query processing using the BNLJ operator in

Apache AsterixDB.

87

Workload(Queries): We evaluate join implementations by using the queries

from Query 3.5. Spatial join query counts the number of wildfires that are occurred in each

park. Text-similarity join query computes the jaccard similarity of each review pair that

have overall ratings 4 and 5 and counts the ones that are similar. Overlapping interval join

query finds overlapping taxi rides belongs to different vendors. For each experiment, we

stop query processing after 4000 seconds and assume the setup is not scalable for processing

the query.

/*Spatial Join*/

SELECT p.id, count(1) c FROM Parks p, Wildfires w

WHERE ST_CONTAINS(p.boundary, w.location)

GROUP BY p.id

/*Text-similarity Join*/

SELECT COUNT(1) FROM AmazonReview r1, AmazonReview r2

WHERE r1.overall = 5 AND r2.overall = 4 AND

similarity_jaccard(word_tokens(r1.review), word_tokens(r2.review)) >= 0.9;

/*Interval Join*/

SELECT COUNT(1) FROM NYCTaxi n1, NYCTaxi n2

WHERE n1.Vendor = 1 AND n2.Vendor = 2 AND overlapping_interval(n1.ride_interval,

n2.ride_interval);

Query 3.5: Queries for the experiments

88

3.8.1 Productivity

Since both FUDJ and Built-in versions implement the same algorithms, we use

Lines of Code (LOC) as a metric for productivity evaluations. For built-in implementations,

we implement all required built-in functions and a rewrite rule for query optimization. On

the other hand, as we explained in Section 3.5, FUDJ framework empowers the developer

to define the logic for each function, allowing for flexibility and customization while sig-

nificantly reducing the LOC required. Figure 3.10 clearly illustrates that FUDJ versions

of the Spatial, Interval, and Text-similarity joins demand significantly fewer LOC, high-

lighting the efficiency and developer-centric design of the framework and the programming

model. Note that here we are not comparing FUDJ against the distributed-system-based

approaches since the yielding applications cannot be integrated directly into DBMSs hence

they require the same lengthy process as in built-in approaches.

Text-similarity

Spatial

Interval

279 loc

354 loc

208 loc

4,773 loc

4,543 loc

4,421 loc

Line of Code (LOC)

FUDJ Built-in

Figure 3.10: Lines of Code (LOC) Comparison of Join Implementations Using FUDJ and

Built-in Approaches

Moreover, the reduced LOC in FUDJ versions not only improves productivity

but also simplifies the debugging testing and code reviewing processes. With fewer LOC

89

to manage, developers can pinpoint issues more easily and expedite the debugging phase.

Additionally, since users have control over the logic of each function within FUDJ, they can

fine-tune and adapt their code for specific testing scenarios, enhancing the robustness and

reliability of their applications. This combination of reduced LOC and enhanced debugging

and testing capabilities underscores the advantages of the FUDJ framework in distributed

programming and database internals.

The integration of new join algorithms into traditional DBMSs often incurs sig-

nificant deployment costs. Following the finalization of the implementation, it is common

practice to rebuild the DBMS software. In our experimental environment, rebuilding a

DBMS like AsterixDB typically takes around 5 minutes, which, although a necessary step,

can introduce delays. However, in distributed systems, the process becomes more intricate,

as the rebuilt package must be deployed to each node, consuming additional minutes. Fur-

thermore, the DBMS often necessitates stopping and rerunning, causing further disruptions.

In contrast, FUDJ offers a distinct advantage in this regard. It eliminates the need for such

extensive deployment procedures, as new FUDJ packages can be swiftly and seamlessly

deployed within seconds without any disruption to the system, making it a more efficient

choice for introducing new join algorithms.

3.8.2 Performance

Figure 3.11 shows the evaluation of the three implementation methods run on 12-

core for a variety of the data sizes. Here we run queries using subset of the datasets to

control the workload. For Spatial FUDJ, the number of buckets, which is equivalent to the

grid size that divides the space into tiles is set to 1200 × 1200, and for the Interval FUDJ,

90

the number of buckets which is used to divide the time span into equal segments is set to

1000. Finally, for Text-similarity FUDJ, we use 0.9 as our similarity threshold since the

algorithm is an exact similarity algorithm and higher thresholds is useful when it comes

to analysis of similar reviews that have different overall ratings. In this experiment, the

Spatial FUDJ demonstrates a speedup of around 1200x, while the Text-similarity FUDJ

achieves a 6.5x improvement, and the Interval FUDJ delivers approximately a 2.5x boost in

performance. Since the on-top approach cannot scale for Text-similarity and Interval joins,

these speed upds had to be measured for small datasets. Hence, the speed up compared

to the Spatial FUDJ seem smaller. In addition, we observe a high correlation between the

performance of Text-similarity join and the dataset characteristics. We further discuss this

in the following sections. Finally, we also observe that Interval join suffers mostly from

NLJ operator that handles the bucket matching. While FUDJ framework can utilize HJ for

Text-similarity and Spatial joins, it has to use NLJ since its matching function is a theta

function.

Another aspect of the experiment that shown in Figure 3.11 the overhead caused

by the FUDJ extensible framework is minimal. The difference between FUDJ and Built-in

methods for Spatial and Interval joins are approximately 0 per record, while it is 0.061 ms.

for Text-similarity. This cost can be explained by the cost of having summaries and config

object as Hash Maps.

91

28K 280K 2.8M 28M

100

102

E
x
ec
u
ti
o
n
T
im

e
(s
ec
.)

(a) Spatial J., n=1200

173K 346K 865K
101

102

Number of Records

(b) Interval J., n=1000

FUDJ Built-in On-top

83K 166K 332K

103

(c) Text-similartiy J., t=0.9

Figure 3.11: FUDJ, Built-in and On-top Query Execution Times of Spatial, Interval, and

Text-similarity Join Examples For Various Dataset Sizes with 12 cores.

3.8.3 Scalibility

Here we evaluate the scalability of our design. We present query execution times of

three versions of each algorithm by changing both the number of cores for joins and dataset

sizes.

Figure 3.13 shows that Spatial and Text-similarity FUDJ algorithms scales well

compare to the on-top approach. Besides that, it can be seen the difference between the

built-in and FUDJ implementations remains limited as we increase the number of the cores

and the data size. As a result, we can say that FUDJ is not causing any issues from the

scalability perspective. On the other hand, As can be seen from the charts for Interval

FUDJ, we cannot say the scaling is promising. This is due to the multi-join notion of the

Interval FUDJ that result in NLJ operator utilized during the partition matching phase.

92

48 96 144
0

100

200

300

E
x
ec
u
ti
o
n
T
im

e
(s
ec
.)

Spatial J., 10M ▷◁ 18M

48 96 144
0

100

200

300

Number of Cores

Interval J., 1.73M ▷◁ 1.73M

FUDJ Built-in

48 96 144
0

200

400

600

Text-sim. J., 415K ▷◁ 415K

Figure 3.12: FUDJ Query Execution Times vs Dataset Size

5M 15M 25M

0

500

1,000

E
x
ec
u
ti
on

T
im

e
(s
ec
.)

Spatial FUDJ, n=1200

1M 2M 3M

Interval FUDJ, n=1000

12-Core 48-Core 96-Core 144-Core

200K 500K 800K

Text-sim. FUDJ, t=0.9

Figure 3.13: FUDJ Query Execution Times vs Dataset Size

Since there is not an efficient Theta Join operator available in Apache AsterixDB, this

operation requires one side is randomly partitioned hence result in performance degrading.

We are aware of this limitation of FUDJ and in the progress of development for an efficient

Theta Join operator as future work.

93

3.8.4 Characteristics of the FUDJ Algorithms

In this section, we analyze the characteristics of the FUDJ algorithms and the

datasets. First we study the effect of the number of buckets for Spatial FUDJ, and In-

terval FUDJ. Then, we show how similarity threshold effects the Text-similarity FUDJs

performance.

Number of buckets

500 1,000 1,500 2,000 2,500
0

500

1,000

1,500

Number of Buckets

E
x
ec
u
ti
on

T
im

e
(s
ec
)

Spatial FUDJ, 10M▷◁18M

12-Core 48-Core 96-Core 144-Core

200 400 600 800 1,000
0

200

400

600

Interval FUDJ, 173K ▷◁ 173K

Figure 3.14: The Effect of Number of Buckets

The decision of the number of buckets is a crucial step for any distributed join

algorithm. Before starting to evaluate FUDJ framework, we first analyze the logical char-

acteristics of the FUDJ algorithms and dataset. As we discussed in Section 3.4, this step is

crucial and a big challenge in complex join query processing.

94

For Spatial FUDJ and Interval FUDJ, we test the performance of the query pro-

cessing by varying the number of buckets and measure the query execution times and show

the results on Figure 3.14.

Similarity threshold

On the other hand, although Text similarity FUDJ does not require a number of

bucket is determined, the characteristic of the dataset and most importantly the similarity

threshold is the main factor for the execution performance. Furthermore, due to the du-

plication and prefix filtering method, it loses its benefits for thresholds above 0.6 in this

scenario as can be seen from Figure 3.15.

0.84 0.86 0.88 0.9 0.92 0.94 0.96
100

500

2000

Similarity Threshold

Q
u
er
y
E
x
ec
u
ti
o
n
T
im

e
(s
ec
.)

Text-similarity FUDJ, 415K ▷◁415K

48-core On-top 48-core FUDJ
96-core On-top 96-core FUDJ
144-core On-top 144-core FUDJ

Figure 3.15: The Effect of Similarity Threshold

95

We used the best performing number of buckets for Spatial and Interval FUDJ

experiments. For Text-similarity FUDJ, we pick 0.9 as the similarity threshold since the

goal of the query is to find how 5 star reviews are similar to the 4 star reviews.

3.8.5 Duplicate Handling Methods

Duplicate handling is an important aspect of multi-assign optimized join algo-

rithms as we discussed in Section 3.4. In FUDJ framework, the default duplicate handling

method is Duplicate Avoidance since it is more promising by not requiring an additional

shuffling stage after bucket matching. As a result the Text-similarity FUDJ is using the

Duplicate Avoidance in contrast to the proposed method in its original study [53]. In this

section, we first test the performance of these two methods on Text-similarity join. Fig-

ure 3.16 shows that Duplicate Avoidance outperforms Duplicate Elimination in all of the

dataset sizes in the experiment by providing 1.15x speedup in average.

83K 166K 249K 332K 415K
0

200

400

600

Number of Records

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(s
ec
.)

Text-similarity FUDJ, 48-core

Duplicate Avoidance
Duplicate Elimination

Figure 3.16: Text-similarity FUDJ Duplicate Handling: Duplicate Avoidance vs Elimination

96

The FUDJ programming model also allows the developers to implement their own

Duplicate Avoidance methods. For instance, in Spatial FUDJ, we implement the Reference

Tile method that described in [72] and compare the query execution performances of both

methods for a various number of buckets. Since the number of buckets is the biggest factor

in the duplication, we measure execution times for a variety of numbers. Figure 3.17 shows

that there is not any dramatic difference in between the Reference Tile and FUDJ’s duplicate

avoidance methods. Consequently, we show that our default method can compete with one

of the most successful Duplicate Avoidance methods without any tuning from the DBMS

admin or implementation from the developer.

400 800 1,200 1,600 2,000 2,400

200

400

600

800

Number of Buckets

E
x
ec
u
ti
on

T
im

e
(s
ec
.)

Spatial FUDJ, 10M ▷◁ 18M, 48-core

Default FUDJ D. Avoidance
Reference Tile

Figure 3.17: Spatial FUDJ Duplicate Handling: Default Method vs Reference Tile

3.8.6 Advanced Optimization Evaluations

Finally, we will discuss the performance improvement potential of FUDJ by com-

paring it to the implementations that involves advanced optimization techniques. For that

97

purpose, we implement the PBSM [72] algorithm on Apache AsterixDB with a highly cus-

tomized Spatial Join Operator. This operator’s main advantage compare to the FUDJ ver-

sion is that it can apply local optimizations while joining the buckets. In detail, it applies

plane-sweep method that described in [72] by first sorting the geometries in each tile and

applying the spatial-merging to efficiently joining geometries within each tile. Figure 3.18

shows that having local optimization for spatial joins yields 1.38x speedup in average.

Please note that with the current join operators in Apache AsterixDB, allowing

developers to implement their custom local joining mechanism is not possible. We will

address this limitation in the following research work and propose new operators that can

handle this optimization.

28K 280K 2.8M 28M
0

50

100

150

200

Number of Records

Q
u
er
y
E
x
ec
u
ti
on

T
im

e
(S
ec
.)

Spatial Join, 10M ▷◁ 18M, n=1200, 48-core

Spatial FUDJ
Optimized Spatial Join

Figure 3.18: FUDJ Spatial Join vs Optimized Spatial Join

98

3.9 Conclusions and Future Work

By offering FUDJ, we can revolutionize the way join algorithms are implemented

in data analysis. Such a system would empower users with varying levels of expertise to

efficiently leverage join algorithms, significantly reducing the code and knowledge required

for implementation. The utilization of native data types, flexible query execution plans,

integration with the query optimization engine, easy installation of compact join libraries,

and comparable performance to built-in implementations would unlock new possibilities for

efficient join operations. Ultimately, this system would facilitate more comprehensive data

analysis, uncover hidden insights, and drive accurate decision-making in diverse industries

and applications.

3.9.1 Future Work

Number of buckets

Finding the optimum number of buckets is vital but complicated at the same time

for the methods such as Spatial and Interval FUDJ. Our plan is to automize this decision by

taking advantage of having the SUMMARIZATION step in which at the same time we can

collect statistics about the dataset with minimum overhead. Figure 3.14 shows a pattern

in the query time as we vary number of buckets. Next version of FUDJ framework shall

utilize sampling or machine learning based methods to determine the number of buckets

seamlessly by relying on these patterns.

99

Theta and Ternary Join Operators

Similar to the other DBMSs, in the current design of Apache AsterixDB, the join

operators designed as to take two inputs and produce an output by applying a condition to

them. Also, out of the box there are is not a Theta Join operator that we could utilize to

process multi-joins or , and there is not a Ternary Join Operator that we could utilize to

merge match and verify operations hence we would not need to transfer the data in frames

from matching join operator to the verifying join operator.

100

Chapter 4

Conclusions

In conclusion, our research has introduced two innovative solutions, HQ-Filter and

FUDJ, each addressing critical challenges in the realm of data exploration and analysis.

HQ-Filter, designed for visual data exploration systems, effectively utilize the in-

herent hierarchy of data to enhance filtering capabilities across all levels of visualization in

the user interface. This approach optimizes query performance, enabling the handling of

large datasets, reducing response times, and alleviating server workloads. Our experiments

have demonstrated its efficiency, and how it enhances the overall user experience in data

exploration systems.

On the other hand, FUDJ presents a new implementation approach for the join

algorithms to increase their availability by being a democratizing their usage across a spec-

trum of user expertise levels. By seamlessly integrating with query optimization engines,

supporting native data types, and offering flexible execution plans, FUDJ streamlines the

implementation of join operations. This advancement not only simplifies the code required

101

but also opens up new possibilities for efficient join operations, ultimately leading to more

comprehensive data analysis, revealing hidden insights, and empowering accurate decision-

making across diverse industries and applications.

Together, HQ-Filter and FUDJ represent significant contributions to the field of

data exploration and analysis, addressing complex challenges and enabling more efficient

and accessible data processing for a wide range of users and scenarios.

102

Bibliography

[1] Foto N. Afrati, Anish Das Sarma, David Menestrina, Aditya G. Parameswaran, and
Jeffrey D. Ullman. Fuzzy joins using mapreduce. In Anastasios Kementsietsidis and
Marcos Antonio Vaz Salles, editors, IEEE 28th International Conference on Data
Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1-5 April,
2012, pages 498–509. IEEE Computer Society, 2012.

[2] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm, Vinayak R.
Borkar, Yingyi Bu, Michael J. Carey, Inci Cetindil, Madhusudan Cheelangi, Khurram
Faraaz, Eugenia Gabrielova, Raman Grover, Zachary Heilbron, Young-Seok Kim,
Chen Li, Guangqiang Li, Ji Mahn Ok, Nicola Onose, Pouria Pirzadeh, Vassilis J.
Tsotras, Rares Vernica, Jian Wen, and Till Westmann. Asterixdb: A scalable, open
source BDMS. Proc. VLDB Endow., 7(14):1905–1916, 2014.

[3] Sattam Alsubaiee et al. Asterixdb: A scalable, open source BDMS. PVLDB,
7(14):1905–1916, 2014.

[4] Petko Bakalov, Marios Hadjieleftheriou, Eamonn Keogh, and Vassilis J Tsotras. Effi-
cient trajectory joins using symbolic representations. In Proceedings of the 6th inter-
national conference on Mobile data management, pages 86–93, 2005.

[5] Petko Bakalov and Vassilis J Tsotras. Continuous spatiotemporal trajectory joins.
In GeoSensor Networks: Second International Conference, GSN 2006, Boston,
MA, USA, October 1-3, 2006, Revised Selected and Invited Papers, pages 109–128.
Springer, 2008.

[6] Maximilian Bandle, Jana Giceva, and Thomas Neumann. To partition, or not to par-
tition, that is the join question in a real system. In Guoliang Li, Zhanhuai Li, Stratos
Idreos, and Divesh Srivastava, editors, SIGMOD ’21: International Conference on
Management of Data, Virtual Event, China, June 20-25, 2021, pages 168–180. ACM,
2021.

[7] Leilani Battle, Remco Chang, and Michael Stonebraker. Dynamic prefetching of data
tiles for interactive visualization. In SIGMOD, 2016.

103

[8] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, and Daniel
Warneke. Nephele/pacts: a programming model and execution framework for web-
scale analytical processing. In Proceedings of the 1st ACM symposium on Cloud
computing, pages 119–130, 2010.

[9] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs
similarity search. In Proceedings of the 16th International Conference on World Wide
Web, WWW ’07, page 131–140, New York, NY, USA, 2007. Association for Comput-
ing Machinery.

[10] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin. Orleans:
Distributed virtual actors for programmability and scalability. MSRTR2014, 41, 2014.

[11] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven documents.
TVCG, 17(12):2301–2309, 2011.

[12] Panagiotis Bouros and Nikos Mamoulis. A forward scan based plane sweep algorithm
for parallel interval joins. Proc. VLDB Endow., 10(11):1346–1357, 2017.

[13] Panagiotis Bouros and Nikos Mamoulis. Spatial joins: What’s next? SIGSPATIAL
Special, 11(1):13–21, aug 2019.

[14] Francesco Cafagna and Michael H. Böhlen. Disjoint interval partitioning. VLDB J.,
26(3):447–466, 2017.

[15] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and
Kostas Tzoumas. Apache flink™: Stream and batch processing in a single engine.
IEEE Data Eng. Bull., 38(4):28–38, 2015.

[16] Michael Carey and Laura Haas. Extensible database management systems. ACM
SIGMOD Record, 19(4):54–60, 1990.

[17] Jr. Carman, Eldon P. Interval Joins for Big Data. PhD thesis, 2020. Copyright -
Database copyright ProQuest LLC; ProQuest does not claim copyright in the indi-
vidual underlying works; Last updated - 2023-06-21.

[18] Bhupesh Chawda, Himanshu Gupta, Sumit Negi, Tanveer A. Faruquie, L. Venkata
Subramaniam, and Mukesh K. Mohania. Processing interval joins on map-reduce.
In Sihem Amer-Yahia, Vassilis Christophides, Anastasios Kementsietsidis, Minos N.
Garofalakis, Stratos Idreos, and Vincent Leroy, editors, Proceedings of the 17th Inter-
national Conference on Extending Database Technology, EDBT 2014, Athens, Greece,
March 24-28, 2014, pages 463–474. OpenProceedings.org, 2014.

[19] Lisi Chen, Shuo Shang, Christian S. Jensen, Bin Yao, and Panos Kalnis. Parallel
semantic trajectory similarity join. In 36th IEEE International Conference on Data
Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020, pages 997–1008. IEEE,
2020.

104

[20] Yun Chen and Jignesh M Patel. Design and evaluation of trajectory join algorithms.
In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pages 266–275, 2009.

[21] Andrew Crotty et al. Vizdom: Interactive analytics through pen and touch. PVLDB,
8(12):2024–2027, 2015.

[22] Manoranjan Dash et al. An interactive analytics tool for understanding location
semantics and mobility of users using mobile network data. In MDM, 2014.

[23] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Eric A. Brewer and Peter Chen, editors, 6th Symposium on Operating
System Design and Implementation (OSDI 2004), San Francisco, California, USA,
December 6-8, 2004, pages 137–150. USENIX Association, 2004.

[24] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, 2008.

[25] Ibrahim Dellal et al. On addressing the empty answer problem in uncertain knowledge
bases. In DEXA, 2017.

[26] Dong Deng, Guoliang Li, Shuang Hao, Jiannan Wang, and Jianhua Feng. Massjoin:
A mapreduce-based method for scalable string similarity joins. In Isabel F. Cruz,
Elena Ferrari, Yufei Tao, Elisa Bertino, and Goce Trajcevski, editors, IEEE 30th
International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March
31 - April 4, 2014, pages 340–351. IEEE Computer Society, 2014.

[27] Dong Deng, Guoliang Li, He Wen, and Jianhua Feng. An efficient partition based
method for exact set similarity joins. Proc. VLDB Endow., 9(4):360–371, 2015.

[28] Anton Dignös, Michael H. Böhlen, and Johann Gamper. Overlap interval partition
join. In Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu, editors, International
Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-
27, 2014, pages 1459–1470. ACM, 2014.

[29] Xin Ding et al. VIPTRA: visualization and interactive processing on big trajectory
data. In MDM, 2018.

[30] Philipp Eichmann, Emanuel Zgraggen, Carsten Binnig, and Tim Kraska. Idebench:
A benchmark for interactive data exploration. In SIGMOD, 2020.

[31] Ahmed Eldawy and Mohamed F. Mokbel. Boundaries of parks and green areas from
all over the world as extracted from openstreetmap., 2019. Retrieved from UCR-STAR
https://star.cs.ucr.edu/?OSM2015/parks&d.

[32] Ahmed Eldawy, Mohamed F. Mokbel, and Christopher Jonathan. HadoopViz: A
MapReduce Framework for Extensible Visualization of Big Spatial Data. In ICDE,
2016.

105

https://star.cs.ucr.edu/?OSM2015/parks&d

[33] Sneha Gathani, Peter Lim, and Leilani Battle. Debugging database queries: A survey
of tools, techniques, and users. In CHI, 2020.

[34] Saheli Ghosh and Ahmed Eldawy. AID*: A Spatial Index for Visual Exploration of
Geo-Spatial Data. 2020.

[35] Saheli Ghosh, Ahmed Eldawy, and Shipra Jais. AID: an adaptive image data index
for interactive multilevel visualization. In ICDE, 2019.

[36] Saheli Ghosh, Tin Vu, Mehrad Amin Eskandari, and Ahmed Eldawy. UCR-STAR:
The UCR Spatio-Temporal Active Repository. SIGSPATIAL Special, 11(2):34–40,
December 2019.

[37] Hua Guo et al. A case study using visualization interaction logs and insight metrics
to understand how analysts arrive at insights. TVCG, 22(1):51–60, 2016.

[38] Himanshu Gupta, Bhupesh Chawda, Sumit Negi, Tanveer A. Faruquie, L. Venkata
Subramaniam, and Mukesh K. Mohania. Processing multi-way spatial joins on
map-reduce. In Giovanna Guerrini and Norman W. Paton, editors, Joint 2013
EDBT/ICDT Conferences, EDBT ’13 Proceedings, Genoa, Italy, March 18-22, 2013,
pages 113–124. ACM, 2013.

[39] Ruining He and Julian J. McAuley. Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering. In Jacqueline Bourdeau, Jim
Hendler, Roger Nkambou, Ian Horrocks, and Ben Y. Zhao, editors, Proceedings of the
25th International Conference on World Wide Web, WWW 2016, Montreal, Canada,
April 11 - 15, 2016, pages 507–517. ACM, 2016.

[40] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. Generalized search
trees for database systems. In Umeshwar Dayal, Peter M. D. Gray, and Shojiro
Nishio, editors, VLDB’95, Proceedings of 21th International Conference on Very Large
Data Bases, September 11-15, 1995, Zurich, Switzerland, pages 562–573. Morgan
Kaufmann, 1995.

[41] Abdeltawab M. Hendawi et al. An interactive map-based system for visually exploring
and cleaning GPS traces. In SIGSPATIAL. ACM, 2019.

[42] Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in practice: algo-
rithmic engineering of a state of the art cardinality estimation algorithm. In EDBT,
pages 683–692, Genoa, Italy, March 2013. ACM.

[43] Thomas Hütter, Nikolaus Augsten, Christoph M. Kirsch, Michael J. Carey, and Chen
Li. JEDI: these aren’t the JSON documents you’re looking for? In Zachary Ives,
Angela Bonifati, and Amr El Abbadi, editors, SIGMOD ’22: International Conference
on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 1584–
1597. ACM, 2022.

[44] IDC. Revenue from big data and business analytics worldwide from 2015 to 2022 (in
billion u.s. dollars, April 2019. last visited March 11, 2020.

106

[45] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. Overview of data ex-
ploration techniques. In SIGMOD, 2015.

[46] Edwin H. Jacox and Hanan Samet. Iterative spatial join. ACM Trans. Database Syst.,
28(3):230–256, sep 2003.

[47] Edwin H. Jacox and Hanan Samet. Spatial join techniques. ACM Trans. Database
Syst., 32(1):7–es, mar 2007.

[48] Jianfeng Jia, Chen Li, and Michael J. Carey. Drum: A rhythmic approach to interac-
tive analytics on large data. In IEEE BigData, pages 636–645, Boston, MA, December
2017.

[49] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. Ajoin: Ad-hoc stream joins at
scale. Proc. VLDB Endow., 13(4):435–448, dec 2019.

[50] Nikolai Karpov and Qin Zhang. Syncsignature: A simple, efficient, parallelizable
framework for tree similarity joins. Proc. VLDB Endow., 16(2):330–342, oct 2022.

[51] Martin L. Kersten et al. The researcher’s guide to the data deluge: Querying a
scientific database in just a few seconds. PVLDB, 4(12):1474–1477, 2011.

[52] Taewoo Kim, Wenhai Li, Alexander Behm, Inci Cetindil, Rares Vernica, Vinayak
Borkar, Michael J Carey, and Chen Li. Similarity query support in big data manage-
ment systems. Information Systems, 88:101455, 2020.

[53] Taewoo Kim, Wenhai Li, Alexander Behm, Inci Cetindil, Rares Vernica, Vinayak R.
Borkar, Michael J. Carey, and Chen Li. Similarity query support in big data man-
agement systems. Inf. Syst., 88, 2020.

[54] Adam Kirsch and Michael Mitzenmacher. Less hashing, same performance: Building
a better bloom filter. Random Struct. Algorithms, 33(2):187–218, September 2008.

[55] Kaiyu Li and Guoliang Li. Approximate query processing: What is new and where
to go? - A survey on approximate query processing. Data Sci. Eng., 3(4):379–397,
2018.

[56] Lauro Didier Lins, James T. Klosowski, and Carlos Eduardo Scheidegger. Nanocubes
for real-time exploration of spatiotemporal datasets. TVCG, 19(12):2456–2465.

[57] Jonathan Liono et al. UTE: A ubiquitous data exploration platform for mobile sensing
experiments. In MDM, 2016.

[58] Zhicheng Liu and Jeffrey Heer. The effects of interactive latency on exploratory visual
analysis. TVCG, 20(12):2122–2131, 2014.

[59] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. imMens: Real-time visual querying of
big data. Comput. Graph. Forum, 32(3):421–430, 2013.

107

[60] Ming-Ling Lo and Chinya V. Ravishankar. Spatial hash-joins. SIGMOD Rec.,
25(2):247–258, jun 1996.

[61] Ming-Ling Lo and Chinya V. Ravishankar. Spatial hash-joins. In Proceedings of the
1996 ACM SIGMOD International Conference on Management of Data, SIGMOD
’96, page 247–258, New York, NY, USA, 1996. Association for Computing Machinery.

[62] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. Efficient processing of k nearest
neighbor joins using mapreduce. Proc. VLDB Endow., 5(10):1016–1027, jun 2012.

[63] Gang Luo. Efficient detection of empty-result queries. In VLDB, pages 1015–1025,
Seoul, Korea, September 2006. ACM.

[64] Xinze Lyu and Wei Hu. RQE: rule-driven query expansion to solve empty answers in
SPARQL. In JIST, 2019.

[65] Willi Mann and Nikolaus Augsten. PEL: position-enhanced length filter for set similar-
ity joins. In Friederike Klan, Günther Specht, and Hans Gamper, editors, Proceedings
of the 26th GI-Workshop Grundlagen von Datenbanken, Bozen-Bolzano, Italy, Octo-
ber 21st to 24th, 2014, volume 1313 of CEUR Workshop Proceedings, pages 89–94.
CEUR-WS.org, 2014.

[66] Davide Mottin et al. IQR: an interactive query relaxation system for the empty-answer
problem. In SIGMOD, pages 1095–1098, Snowbird, UT, June 2014. ACM.

[67] Davide Mottin et al. A holistic and principled approach for the empty-answer problem.
VLDB, 2016.

[68] Davide Mottin, Alice Marascu, Senjuti Basu Roy, Gautam Das, Themis Palpanas,
and Yannis Velegrakis. A probabilistic optimization framework for the empty-answer
problem. PVLDB, 6(14):1762–1773, 2013.

[69] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, Stéphane Bres-
san, and Anastasia Ailamaki. Touch: In-memory spatial join by hierarchical data-
oriented partitioning. In Proceedings of the 2013 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’13, page 701–712, New York, NY, USA,
2013. Association for Computing Machinery.

[70] Alper Okcan and Mirek Riedewald. Processing theta-joins using mapreduce. In Pro-
ceedings of the 2011 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’11, page 949–960, New York, NY, USA, 2011. Association for Com-
puting Machinery.

[71] Yongjoo Park, Michael J. Cafarella, and Barzan Mozafari. Visualization-aware sam-
pling for very large databases. In ICDE, 2016.

[72] Jignesh M. Patel and David J. DeWitt. Partition based spatial-merge join. In H. V.
Jagadish and Inderpal Singh Mumick, editors, Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, Montreal, Quebec, Canada, June
4-6, 1996, pages 259–270. ACM Press, 1996.

108

[73] Leonardo Andrade Ribeiro and Theo Härder. Generalizing prefix filtering to improve
set similarity joins. Information Systems, 36(1):62–78, 2011. Selected Papers from the
13th East-European Conference on Advances in Databases and Information Systems
(ADBIS 2009).

[74] Julian Ramos Rojas et al. Sampling techniques to improve big data exploration. In
LDAV, 2017.

[75] Mohamed Sarwat. Interactive and scalable exploration of big spatial data - A data
management perspective. In MDM, 2015.

[76] Abdullah Sawas et al. Trajectolizer: Interactive analysis and exploration of trajectory
group dynamics. In MDM, 2018.

[77] Stefan Schuh, Xiao Chen, and Jens Dittrich. An experimental comparison of thir-
teen relational equi-joins in main memory. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, page 1961–1976, New York, NY,
USA, 2016. Association for Computing Machinery.

[78] P. Schwarz, W. Chang, J. C. Freytag, G. Lohman, J. McPherson, C. Mohan, and
H. Pirahesh. Extensibility in the starburst database system. In Proceedings on the
1986 International Workshop on Object-Oriented Database Systems, OODS ’86, page
85–92, Washington, DC, USA, 1986. IEEE Computer Society Press.

[79] Amirhesam Shahvarani and Hans-Arno Jacobsen. Distributed stream KNN join. In
Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava, editors, SIGMOD
’21: International Conference on Management of Data, Virtual Event, China, June
20-25, 2021, pages 1597–1609. ACM, 2021.

[80] Salman Ahmed Shaikh, Komal Mariam, Hiroyuki Kitagawa, and Kyoung-Sook Kim.
Geoflink: A distributed and scalable framework for the real-time processing of spatial
streams. In Proceedings of the 29th ACM International Conference on Information
& Knowledge Management, CIKM ’20, page 3149–3156, New York, NY, USA, 2020.
Association for Computing Machinery.

[81] Shuo Shang, Lisi Chen, Zhewei Wei, Christian S Jensen, Kai Zheng, and Panos Kalnis.
Parallel trajectory similarity joins in spatial networks. The VLDB Journal, 27(3):395–
420, 2018.

[82] Zeyuan Shang, Guoliang Li, and Zhifeng Bao. DITA: distributed in-memory trajectory
analytics. In Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein, editors,
Proceedings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 725–740. ACM, 2018.

[83] A. B. Siddique, Ahmed Eldawy, and Vagelis Hristidis. Comparing synopsis techniques
for approximate spatial data analysis. PVLDB, 12(11):1583–1596, 2019.

109

[84] Yasin N. Silva, Walid G. Aref, and Mohamed H. Ali. The similarity join database
operator. In 2010 IEEE 26th International Conference on Data Engineering (ICDE
2010), pages 892–903, 2010.

[85] Yasin N. Silva, Spencer S. Pearson, Jaime Chon, and Ryan Roberts. Similarity joins:
Their implementation and interactions with other database operators. Information
Systems, 52:149–162, 2015. Special Issue on Selected Papers from SISAP 2013.

[86] S. Singla, T. Diao, A. Mukhopadhyay, A. Eldawy, R. Shachter, and M. Kochenderfer.
Wildfiredb : an open-source dataset that links wildfire occurrence with relevant fea-
tures, 2021. Retrieved from UCR-STAR https://star.cs.ucr.edu/?wildfiredb&d.

[87] Chris Stolte and Pat Hanrahan. Polaris: A system for query, analysis and visualization
of multi-dimensional relational databases. In INFOVIS, pages 5–14, Sald Lake City,
October 2000. IEEE Computer Society.

[88] Simon Su et al. Visually analyzing A billion tweets: An application for collaborative
visual analytics on large high-resolution display. In IEEE BigData, pages 3597–3606,
Seattle, WA, December 2018. IEEE.

[89] Na Ta, Guoliang Li, Yongqing Xie, Changqi Li, Shuang Hao, and Jianhua Feng.
Signature-based trajectory similarity join. IEEE Trans. Knowl. Data Eng., 29(4):870–
883, 2017.

[90] Usgs earthquake map, 2020.

[91] Elena Vasilyeva et al. Answering ”why empty?” and ”why so many?” queries in graph
databases. J. Comput. Syst. Sci., 82(1):3–22, 2016.

[92] Elena Vasilyeva, Thomas Heinze, Maik Thiele, and Wolfgang Lehner. Debeaq - debug-
ging empty-answer queries on large data graphs. In ICDE, pages 1402–1405, Helsinki,
Finland, May 2016.

[93] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity joins
using mapreduce. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’10, page 495–506, New York, NY, USA, 2010.
Association for Computing Machinery.

[94] Tin Vu, Alberto Belussi, Sara Migliorini, and Ahmed Eldawy. Towards a learned cost
model for distributed spatial join: Data, code & models. In Proceedings of the 31st
ACM International Conference on Information & Knowledge Management, CIKM ’22,
page 4550–4554, New York, NY, USA, 2022. Association for Computing Machinery.

[95] Jiannan Wang, Guoliang Li, and Jianhua Feng. Can we beat the prefix filtering?: an
adaptive framework for similarity join and search. In K. Selçuk Candan, Yi Chen,
Richard T. Snodgrass, Luis Gravano, and Ariel Fuxman, editors, Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD 2012,
Scottsdale, AZ, USA, May 20-24, 2012, pages 85–96. ACM, 2012.

110

https://star.cs.ucr.edu/?wildfiredb&d

[96] Meng Wang et al. Towards empty answers in SPARQL: approximating querying with
RDF embedding. In ISWC, 2018.

[97] Sheng Wang, Zhifeng Bao, J. Shane Culpepper, and Gao Cong. A survey on trajectory
data management, analytics, and learning. ACM Comput. Surv., 54(2), mar 2021.

[98] Martin Werner. Globimaps - A probabilistic data structure for in-memory processing
of global raster datasets. In SIGSPATIAL, pages 3–12, Chicago, IL, November 2019.
ACM.

[99] Richard Michael Grantham Wesley, Matthew Eldridge, and Pawel Terlecki. An ana-
lytic data engine for visualization in tableau. In SIGMOD, 2011.

[100] Leland Wilkinson. The Grammar of Graphics, Second Edition. Statistics and com-
puting. Springer, 2005.

[101] Chris Wong. Pickup and drop-off locations of taxi rides in new york city, 2019.
Retrieved from UCR-STAR https://star.cs.ucr.edu/?NYCTaxi&d.

[102] Kanit Wongsuphasawat et al. Towards a general-purpose query language for visual-
ization recommendation. In HILDA, 2016.

[103] Kanit Wongsuphasawat et al. Voyager 2: Augmenting visual analysis with partial
view specifications. In CHI, pages 2648–2659. ACM, 2017.

[104] Daniel Wu, Divyakant Agrawal, and Amr El Abbadi. Mobility and extensibility in
the stratosphere framework. Distributed Parallel Databases, 7(3):289–317, 1999.

[105] Eugene Wu, Leilani Battle, and Samuel Madden. The case for data visualization
management systems. PVLDB, 7(10):903–906, 2014.

[106] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and Douglas Stott Parker Jr. Map-
reduce-merge: simplified relational data processing on large clusters. In Chee Yong
Chan, Beng Chin Ooi, and Aoying Zhou, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, Beijing, China, June 12-14, 2007,
pages 1029–1040. ACM, 2007.

[107] Simin You, Jianting Zhang, and Le Gruenwald. Large-scale spatial join query pro-
cessing in cloud. In 2015 31st IEEE International Conference on Data Engineering
Workshops, pages 34–41, 2015.

[108] Simin You, Jianting Zhang, and Le Gruenwald. Large-scale spatial join query pro-
cessing in cloud. In 2015 31st IEEE International Conference on Data Engineering
Workshops, pages 34–41, 2015.

[109] Jia Yu and Mohamed Sarwat. Turbocharging geospatial visualization dashboards via
a materialized sampling cube approach. In ICDE, 2020.

[110] Jia Yu, Zongsi Zhang, and Mohamed Sarwat. Geosparkviz: a scalable geospatial data
visualization framework in the apache spark ecosystem. In SSDBM, 2018.

111

https://star.cs.ucr.edu/?NYCTaxi&d

[111] Haitao Yuan and Guoliang Li. Distributed in-memory trajectory similarity search and
join on road network. In 35th IEEE International Conference on Data Engineering,
ICDE 2019, Macao, China, April 8-11, 2019, pages 1262–1273. IEEE, 2019.

[112] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Steven D.
Gribble and Dina Katabi, editors, Proceedings of the 9th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2012, San Jose, CA, USA, April
25-27, 2012, pages 15–28. USENIX Association, 2012.

[113] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Arm-
brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache spark:
A unified engine for big data processing. Commun. ACM, 59(11):56–65, oct 2016.

[114] Hao Zhang, Miao Qiao, Jeffrey Xu Yu, and Hong Cheng. Fast distributed complex
join processing. In 37th IEEE International Conference on Data Engineering, ICDE
2021, Chania, Greece, April 19-22, 2021, pages 2087–2092. IEEE, 2021.

[115] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. SJMR: par-
allelizing spatial join with mapreduce on clusters. In Proceedings of the 2009 IEEE
International Conference on Cluster Computing, August 31 - September 4, 2009, New
Orleans, Louisiana, USA, pages 1–8. IEEE Computer Society, 2009.

[116] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. Sjmr: Paral-
lelizing spatial join with mapreduce on clusters. In 2009 IEEE International Confer-
ence on Cluster Computing and Workshops, pages 1–8, 2009.

[117] Xiaofang Zhou, David J Abel, and David Truffet. Data partitioning for parallel spatial
join processing. Geoinformatica, 2:175–204, 1998.

112

	List of Figures
	List of Tables
	Introduction
	HQ-Filter: Hierarchy-Aware Filter for Empty-Resulting Queries in Interactive Exploration
	Introduction
	Problem definition
	Baseline 1: Exact Approach
	Baseline 2: Probabilistic Approach

	Hierarchy-Aware Filter For Empty-Resulting Queries (HQ-Filter)
	Performance Metric
	HQ-Filter Construction
	HQ-Filter for tile-based Map Visualization
	HQ-Filter for Spatiotemporal-Textual Data Visualization
	Optimizations for Counting

	Experiments
	Setup
	Accuracy of the Performance Metric (P)
	Effect of User Types
	Response Time Improvements
	Improvement on server capacity
	HQ-Filter Creation

	Related Work
	Presentation Layer
	Application Layer
	Database layer

	Conclusions

	FUDJ: Flexible User-defined Distributed Joins
	Introduction
	Motivation
	A New Approach

	Background
	Related Work
	Common Challenges in Distributed Join Processing
	Partitioning
	Joining

	Programming Model
	SUMMARIZE
	PARTITION
	COMBINE

	Example Implementations
	Spatial FUDJ
	Text Similarity FUDJ
	Overlapping Intervals FUDJ

	FUDJ Infrastructure
	Internal and External Actors
	Query Optimizer Integration
	Creating Joins
	Realization of the Infrastructure

	Experiments
	Productivity
	Performance
	Scalibility
	Characteristics of the FUDJ Algorithms
	Duplicate Handling Methods
	Advanced Optimization Evaluations

	Conclusions and Future Work
	Future Work

	Conclusions
	Bibliography

