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From Trials to Public Health Impact: Transportability of Causal Effects to Inform 

Implementation of HIV Pre-exposure Prophylaxis 

Megha L. Mehrotra 

ABSTRACT 

 With the support of several successful randomized placebo-controlled trials, the FDA 

approved Truvada for daily oral pre-exposure prophylaxis of HIV (PrEP) in the United States in 

2012, and shortly thereafter the CDC and WHO released guidelines for widespread PrEP use 

by all at-risk individuals around the world. However, PrEP rollout is still is infancy, and there are 

several important questions regarding PrEP implementation that cannot be addressed by 

randomized trials. The causal transportability theory developed by Pearl and Bareinboim is a 

mathematically-grounded framework used to consider how effects observed in one setting might 

be applied to another. This dissertation proposes novel ways transportability can be applied to 

improve how trial results are used to inform implementation of PrEP. applies transportability to 

address some of these lingering questions about PrEP implementation.  

 The first chapter uses transportability to better understand why randomization to PrEP 

was effective in preventing HIV among cisgender men but not effective among transgender 

women in the iPrEx study. We find that after transporting the results of the trial from cisgender 

men to transgender women, differences in measured baseline characteristics between the 

populations were sufficient to explain the observed effect heterogeneity in the trial. The second 

chapter demonstrates how transportability can be applied to subgroup analyses of randomized 

controlled trials to produce target-specific guidance for how to most efficiently implement new 

interventions. To illustrate this approach, we transport subgroup analyses of the iPrEx trial to 

two hypothetical target populations and show that the subgroups with the lowest number 

needed to treat differs depending on the composition of the target population. The third and final 

chapter addresses a common practical challenge faced in applying transportability theory to 

real-world data: how to decide which variables to include in a transport estimator. In this 
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chapter, we discuss the various types of unnecessary variables that may inadvertently be 

included in transport estimators. We use a Monte Carlo simulation study to identify what types 

of variables should be included to maximize the performance (with respect to mean-squared 

error) of the parametric g-computation transport estimator.  

 Together these projects highlight how transportability theory can be applied to improve 

translation of study results to real-world populations.  
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INTRODUCTION 

 Results of randomized controlled trials are critically important in the early stages of 

implementing a new intervention. Trial results 1) demonstrate if the intervention was effective, 2) 

highlight which groups it was most effective for, and 3) provide early insight into some potential 

challenges in how an intervention should be implemented. However, trial populations are rarely 

representative of real-world populations planning on implementing a new intervention, and 

differences between populations may affect how useful trial results can be for planning 

implementation. Until recently, this issue of external validity of trial results was an intractable 

problem. However, recent developments in the causal inference literature provide a theoretical 

solution to many of these challenges and can improve the interpretation of trial results for 

broader populations. 

THE TRANSPORTABILITY FRAMEWORK 

Why interventions might vary in effectiveness across different settings is intuitive: if there 

are certain characteristics that modify the effect of an intervention, and the distribution of those 

characteristics varies from setting to setting, then the intervention’s effectiveness would similarly 

vary. Further, if we can measure and account for all the characteristics that both modify the 

effect of the intervention and differ between two settings, then we should be able to predict how 

effective an intervention would be if it were to be implemented in the new setting. 

Transportability formalizes this intuition by building on the theoretical foundations of 

observational causal inference. In doing so, simple modifications of existing tools and statistical 

estimators that are widely used in the causal inference literature can be applied to predict how 

well an intervention might work when implemented in a new setting where it was not formally 

tested. That is, transportability provides tools to (1) formally evaluate whether findings in one 
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setting could be used to generate valid estimates in another, and (2) if so, estimate what the 

effect would have been had the study been conducted in the new setting. 

Much in the same way that observational causal inference uses directed acyclic graphs 

(DAGs)
9
 to identify the variables needed to control for confounding, transportability employs 

similar causal graphs—called selection diagrams-- to assist in isolating the important 

characteristics that determine whether and how the effectiveness of an intervention might differ 

between the study population and the population to which we wish to apply the results (the 

target population). Selection diagrams encode formal assumptions about the underlying causal 

relationships and mechanisms through which an intervention is believed to operate in the study 

population as well as assumptions about how the target and study populations differ from one 

another.  

Selection diagram begin with a traditional DAG representing the study population—

paying special attention to the mechanisms through which the intervention is hypothesized to 

affect the outcome and to any characteristics that may affect the outcome or modify the 

effectiveness of the intervention (Figure 1.1).  Selection diagrams explicitly consider how a 

target population differs from the study population by including selection nodes indicating these 

potential differences (Figure 1.2). Unlike standard random variables that are usually included in 

DAGs, selection nodes do not have probability distributions and cannot be influenced by other 

variables in the graph. Instead, they function as indicators that point to where the data 

generating processes may differ between the two settings. In other words, they indicate where, 

if we were to draw a separate DAG for the target population, we might expect the processes 

that give rise to the data might differ between contexts. Importantly, the absence of a selection 

node on a variable indicates that we assume there are no differences in that variable’s 
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distribution between the two populations given its parents (ie. the most proximal causes of the 

variable explicitly represented on the DAG). 

  

Figure 1.1 Directed Acyclic Graph 

 

 
Figure 1.2 Selection Diagram 

 
Selection diagrams reveal first whether the effect of the intervention which was 

estimated in the study population can be transported to a specific alternative target population 

given the data available from both the study population and the target population:  if we can 

measure (and thereby adjust) for enough variables such that all the selection nodes are 

rendered independent of the outcome, the observed estimate could be used to produce a valid 

estimate in the target population, and we would deem that the observed estimate is 

Intervention Mediator Outcome

Baseline Characteristic

Intervention Mediator Outcome

Baseline Characteristic

S
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transportable to the target population.
1
 Further, we can derive the specific transport formula to 

predict the effect in the target population based on the selection diagram. 

HIV PRE-EXPOSURE PROPHYLAXIS 

 In 2010, the iPrEx study published the first results from a randomized controlled study 

showing a 44% reduction of HIV incidence in those randomized to receive daily oral Truvada for 

pre-exposure prophylaxis (PrEP) compared to placebo.
2
 In 2012, with the support of additional 

randomized controlled trials (RCTs) in serodiscordant couples
3
 and heterosexual men and 

women,
4
 the US Food and Drug Administration approved the use of Truvada for prevention of 

HIV infection.
5
 In 2015, PrEP was included as a key component of President Obama’s National 

HIV/AIDS Strategy,
6
 and recently the WHO released updated guidelines for widespread PrEP 

use globally.
7
 Given the tremendous promise of PrEP thus far and the demonstrated 

effectiveness of widespread HIV testing and treatment,
8,9

 researchers, advocates, and policy-

makers are beginning to recognize that we now have the necessary tools to dramatically reduce 

– if not completely halt—HIV transmission.
10–12

 However, despite calls from the CDC, WHO, and 

International AIDS Society for global PrEP roll-out, the United States, France, and South Africa 

remain the only countries to have approved Truvada for prevention of HIV thus far. In order for 

PrEP to reach its full potential, it must be efficiently and widely implemented around the globe. 

The urgent need to address the challenges in PrEP implementation is reflected in the recent 

strategic plans and research priorities of PEPFAR, the National Institute of Mental Health, and 

the Office of AIDS Research 
13–17

. 

PrEP effectiveness is strongly tied to adherence, 
2–4,18–22

 and those who are unable to 

achieve sufficient adherence will not benefit from PrEP. Thus, adherence support through 

counseling and monitoring will play an important role in PrEP programs. However, these tools 

are often costly and may require substantial investments in health-systems infrastructure. Thus, 

particularly in resource-limited settings, policy makers will need to efficiently target adherence 
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support tools towards those who need them most. Unfortunately, identifying priority populations 

for adherence support based on clinical studies can be challenging. For example, transgender 

women (TGW) had much lower adherence compared to men who have sex with men (MSM) in 

the iPrEx study, and therefore did not benefit from PrEP randomization according to an 

intention-to-treat analysis.
2,23

 However, because the TGW and MSM populations in the iPrEx 

study differed significantly in a number of important demographics (including age, education, 

and race), it is possible that the observed differences in adherence between MSM and TGW 

can be fully explained by the other demographic disparities between the populations. Because 

of the large number of differences between MSM and TGW, standard regression approaches to 

attempt to answer this question are not practical.
24

 

Since 2007, UNAIDS has promoted the “Know your epidemic. Know your response.” 

campaign.
25,26

 This strategy highlights the need for tailored HIV prevention policies to match the 

heterogeneous nature of the HIV epidemic; no single prevention strategy will work in all 

contexts. PrEP implementation is no different, and policy makers will need to know how PrEP 

fits in to the response to their own HIV epidemic.  Successful PrEP implementation will require 

interpreting and synthesizing the clinical trial data to (1) estimate how well PrEP will work in 

each context, and (2) identify populations who would most benefit from additional adherence 

support.  

 

OBJECTIVES OF DISSERTATION 

 The overall goal of this dissertation is to apply transportability methods to address 

several of these important issues surrounding implementation of HIV pre-exposure prophylaxis. 

This will be addressed over three different chapters: 1) Using transportability to determine 

whether population compositional differences between cisgender men and transgender women 

in the iPrEx study were sufficient to explain the observed effect heterogeneity in the trial; 2) 
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applying transportability to subgroup analyses of the iPrEx study to produce target-specific 

implementation guidance of PrEP; and 3) conducting a simulation experiment to guide variable 

selection strategies for applied transport estimators. 

 Chapter 1 is an application of transportability that addresses a key question about PrEP 

effectiveness in transgender women. Chapter 2 applies transportability to the subgroup 

analyses of the iPrEx study, but also illustrates how this approach can be useful more broadly in 

other subgroup analyses of clinical trials. Chapter 3 is a methods paper that aims to inform how 

transportability theory can best be applied in practice. 

 Individually, each chapter evaluates an important question about PrEP implementation 

or application of transportability theory to real-world questions. Together, these projects 

highlight the broad utility of transportability theory and provide a guide for maximizing the public 

health relevance of randomized trial results. 
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CHAPTER 1: Baseline characteristics explain differences in effectiveness of 

randomization to daily oral TDF/FTC PrEP between transgender women and 

cisgender men who have sex with men in the iPrEx trial 

Megha L. Mehrotra, Daniel Westreich, Vanessa M. McMahan, M. Maria Glymour, Elvin Geng, 

Robert M. Grant, David V. Glidden 

 

 

 

ABSTRACT 

Background: The iPrEx trial found that randomization to daily oral tenofovir disproxil 

fumarate/emtracitabine pre-exposure prophylaxis (PrEP) reduced HIV incidence by half in 

cisgender men who have sex with men (MSM) but found no benefit for transgender women who 

have sex with men (TGW). This unexplained difference is a barrier to PrEP implementation in 

TGW. We assess whether measured baseline participant characteristics can account for the 

difference in effectiveness of randomization to PrEP between TGW and MSM. 

Methods: With data for 2,160 MSM and 339 TGW iPrEx participants who were HIV negative at 

baseline, we used the transportability framework to estimate what the intention to treat (ITT) 

effect of randomization would have been in MSM participants, had they shared the same 

distribution of baseline characteristics as TGW participants. We used a generalization of the 

parametric g-formula to transport the ITT incidence rate ratio (IRR) from MSM to TGW. 

Results: The observed IRR in TGW was 1.29 (95%CI [0.24, 2.35]) and 0.53 (95%CI [0.36, 

0.77]) in MSM. The final transport estimator included condomless receptive anal intercourse, 

number of partners, history of STIs, history of transactional sex, living situation, and baseline 

depressive symptoms. The transported estimate for MSM, i.e., the effect anticipated if MSM had 

the same distribution of these 6 characteristics as TGW, was IRR=1.28 (95%CI [0.12, 40.04]). 
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Conclusions: Population composition differences between MSM and TGW in iPrEx fully 

explained the observed effect heterogeneity in the trial. 

 

INTRODUCTION 

Daily oral tenofovir disproxil fumarate/emtracitabine (TDF/FTC) for HIV pre-exposure 

prophylaxis (PrEP) nearly eliminates the risk of HIV infection in certain populations when taken 

consistently.
27–29

 However, PrEP will not live up to its full potential unless those at greatest risk 

of HIV infection use it. In particular, PrEP has the potential to be particularly impactful for 

transgender women-- a key population carrying one of the highest HIV burdens globally.
30

 

However, uptake of PrEP in this population has been low, and this may be in part due to a lack 

of high quality evidence about PrEP in transgender women.
31

  

iPrEx was the only placebo-controlled randomized study of daily oral PrEP that included 

any transgender women who have sex with men (TGW), and consequently, the trial’s results 

play an outsized role in our understanding of PrEP’s efficacy in this key population.
2
 Though 

randomization to the active arm was associated with a 44% reduction in HIV incidence in the 

sample overall, stratified analyses found no benefit for TGW (hazard ratio 1.1, 95%CI [0.5, 

2.7]).
23

 A closer look at measured drug levels in iPrEx found that tenofovir concentrations were 

generally lower in TGW compared to cisgender men who have sex with men (MSM), and drug 

was not detected at the seroconversion visit in any TGW on the active arm who became HIV 

positive.
23

  

There are at least two possible explanations for the iPrEx results. First, there were a 

multitude of measured baseline differences between TGW and MSM. If these population 

composition differences occurred across characteristics that were important effect modifiers of 

PrEP’s effectiveness—either by affecting adherence to PrEP or by modifying HIV risk—then 

even in the absence of any biological differences in TDF/FTC’s efficacy, the intention-to-treat 
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(ITT) estimate of PrEP’s effectiveness in iPrEx might differ between the two groups.
32

  Second, 

there may be other unknown or unmeasured differences between TGW and MSM that might 

impact TDF/FTC’s effectiveness. For example, recent small pharmacological studies suggest 

that feminizing hormones might interfere with the ability of tenofovir to block HIV infection by 

lowering the available blood concentration of tenofovir diphosphate.
33,34

 However, whether these 

potential drug interactions would be sufficient to affect the overall efficacy of TDF/FTC in TGW 

is unclear. Understanding why randomization to PrEP was not effective in TGW in iPrEx may 

have useful implications for PrEP implementation. 

In this manuscript, we aim to better understand to what extent population composition 

differences between MSM and TGW could explain the observed effect heterogeneity in iPrEx. 

We frame this issue as a transportability
1
 question, and estimate what the ITT effect of 

randomization to PrEP would have been in MSM had they shared the same population 

composition as TGW in the study.
24,35

 If this transported estimate is similar to the observed ITT 

estimate in TGW, then we can conclude that the effect heterogeneity in iPrEx might be due to 

measured population composition differences alone. If, on the other hand, the transported 

estimate is not similar to what was observed in iPrEx, then this suggests that unique contextual 

or biological factors (or unmeasured differences in population composition) were the sources of 

the effect heterogeneity in the study. 

METHODS 

Study population and procedures 

iPrEx was a placebo-controlled randomized trial of daily oral TDF/FTC PrEP conducted 

between 2007 and 2011 in Brazil, Peru, Ecuador, the United States, South Africa, and Thailand. 

iPrEx enrolled 2499 cisgender men and transgender women who have sex with men.
2
 All 

participants were HIV-negative at enrollment, reported risk behavior for HIV, and were assigned 

male sex at birth. Gender identity was recorded via a computer assisted structured interview 
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(CASI) where participants were asked how they identified, and any participant who selected 

“trans”, “woman”, or “travesti” (in Brazil, Peru, or Ecuador) was considered to be a TGW for the 

purposes of this analysis. In addition, we included any participant who reported taking 

feminizing hormones (irrespective of gender identity) as a TGW. This is consistent with prior 

subgroup analyses of the iPrEx trial.
23

  

The same baseline CASI questionnaire also asked participants questions about 

demographics, living situation, relationship status, recent and lifetime sexual history, and 

substance use. Depressive symptoms were measured via an interviewer-administered Center 

for Epidemiologic Studies Depression Scale (CES-D). Detailed study procedures can be found 

in Grant et al, 2010.
2
 

 

Variable selection and statistical methods 

We first estimated the observed intention to treat incidence rate ratio in MSM (!""#$#) 

and TGW (!""%&') using a Poisson regression that included an offset for follow-up time. We 

excluded individuals who were HIV positive at enrollment or who did not return after their 

enrollment visit. 

We estimated what the incidence rate ratio would have been in MSM had they shared 

the same baseline characteristics as the TGW study participants (!""( #$#). We identified 15 

candidate baseline characteristics that we hypothesized were both associated with HIV 

incidence and differed in distribution between MSM and TGW in iPrEx: age; total number of 

partners in the prior 3 months; any condomless receptive anal sex in the prior 3 months; sexual 

role (top, bottom, or versatile); race; ethnicity (Hispanic/Latino or non-Hispanic/Latino); country 

of residence; highest level of education; marital status; living situation (“With whom do you live 

primarily?”); past month alcohol consumption; history of transactional sex in the past 6 months; 

any history of a sexually transmitted infection in the past 6 months; past month cocaine use; and 
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past week depressive symptoms. We used a data-driven variable selection algorithm to narrow 

this list of 15 potential covariates down to include only those that are necessary and sufficient to 

transport the ITT incidence rate ratio from MSM to TGW. In order for a variable to be selected, it 

must both modify the ITT incidence rate ratio among MSM and differ in distribution between 

MSM and TGW.
36

  

Using this reduced set of variables ()∗), we applied a generalization of the g-formula
37

 

to estimate !""( #$#.
37,38

 This approach is analogous to model-based direct standardization in 

which the MSM population is standardized to resemble the distribution of covariates observed in 

TGW.
39

 Assuming correct model specification, !""( #$# estimates the ITT incidence rate ratio 

MSM would have had if they had the same distribution of baseline covariates as TGW in iPrEx. 

We also estimate the percent of the observed effect heterogeneity between MSM and TGW that 

can be accounted for by measured population composition differences as 

+
,-.	(122343)6,-.	(122

(
343)

,-.	(122343)6,-.(122789)
∗ 100<. All analyses were performed using R v3.4.1 and STATA 

15.1.
40,41

 

	
RESULTS 

Of the 2499 participants enrolled in iPrEx, 10 were HIV positive at enrollment and 44 did 

not return for follow-up visits. Of the remaining 2445 participants, 290 identified as trans, 29 

identified as women, and 14 identified as men but reported using feminizing hormones. 

Together, these participants comprised the TGW group for this analysis (N=333/2445 (14%)). 

67 (20%) of the 333 TGW participants reported using feminizing hormones.
23

 

Table 2.1 compares the 15 candidate baseline characteristics between MSM and TGW. 

All but 3 of these variables differed significantly between MSM and TGW (mean baseline CESD 

score, ethnicity, and cocaine use in the past month). In addition, treatment assignment was 

balanced in both groups.  
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The variable selection algorithm identified 6 of these 15 baseline characteristics as being 

necessary and sufficient for transporting the incidence rate ratio: CES-D score; number of 

partners in the prior 3 months; any condomless receptive anal intercourse in the prior 3 months; 

living situation; any history of transactional sex in the prior 6 months; and any STI diagnoses in 

the prior 6 months.  

 In MSM in iPrEx, there were 77 incident HIV infections in the placebo arm and 41 

infections in the active arm; in TGW, there were 10 infections in the placebo arm and 13 in the 

active arm. The ITT incidence rate ratio in MSM (!""#$#) was 0.53 (95%CI [0.36, 0.77]), and in 

TGW the !""%&' was 1.29 (95%CI [0.24, 2.35]). After standardizing the MSM population 

according to the 6 selected baseline characteristics, the transported incidence rate ratio 

(!""( #$#) was 1.28 (95%CI [0.12, 40.04]) (Table 2.2). This corresponds to nearly complete 

(99%) reduction in the observed effect heterogeneity. Overall, after accounting for baseline 

characteristics, the transported ITT incidence rate ratio closely resembles what was observed in 

transgender women in iPrEx. 

	
DISCUSSION  

 Differences in population composition between MSM and TGW in iPrEx explained the 

observed effect heterogeneity in the trial results. This finding should allay concerns that 

biological differences in TDF/FTC’s efficacy in TGW or other unmeasured factors were major 

drivers of the effect heterogeneity in iPrEx. 

Whether using feminizing hormones reduces the absorption of tenofovir diphosphate 

enough to produce clinical differences in PrEP’s efficacy remains an important question. Only 

20% of TGW in iPrEx reported taking feminizing hormones, and there were no HIV infections 

among any of the participants taking feminizing hormones who were assigned to the placebo 

arm. Thus, we were unable to rule out the possibility that hormones reduce PrEP effectiveness 

using the iPrEx study data. Nonetheless, our results suggest that differences in a handful of 
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other measured characteristics between MSM and TGW in iPrEx could fully account for the 

effect heterogeneity observed in the trial. 

The small number of transgender women included in iPrEx is a major obstacle for 

understanding PrEP in this key population. By using a transportability approach, we were able 

to better describe the effect heterogeneity in iPrEx after accounting for numerous differences 

between transgender women and cisgender men. Given the limited sample size, this would 

have been impossible using traditional regression adjustment. Additionally, we could have also 

estimated what the ITT result would have been had TGW in the trial had the same baseline 

characteristics as MSM to confirm our findings. Doing so would require fitting a conditional 

model adjusting for baseline characteristics in TGW alone, which was impossible given the 

small sample of TGW. Our findings are valuable despite wide confidence intervals, given that 

iPrEx is the only placebo-controlled randomized trial of PrEP that included any transgender 

women. Any insights about the effects of PrEP in this population are valuable even if substantial 

uncertainty remains.  

The six baseline variables identified as necessary for transporting the incidence rate 

ratio between MSM and TGW were: number of partners in the prior 3 months; any condomless 

receptive anal intercourse in the prior 3 months; history of transactional sex in the prior 6 

months; any STI diagnoses in the prior 6 months; current living situation; and CES-D score. 

Upstream structural and social factors that disproportionately affect TGW likely contribute to 

differences across these variables, so it is possible that these differences will persist in real-

world contexts.
30,42–46

 Consequently, our results do not imply that effectiveness of TDF/FTC 

PrEP implementation in the general population will necessarily be the same for both 

transgender women and MSM.  Generalization to external settings requires knowledge about 

the population compositions of TGW and MSM in the specific target population of 

interest.
1,32,47,48
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Moving forward, there remains an urgent need for high-quality trans-specific research on 

HIV prevention strategies.
49

 The effect heterogeneity in iPrEx exemplifies why transgender 

women should not be aggregated with cisgender men when conducting research, and future 

studies should ensure that enough transgender women are included in studies to provide 

adequate power to analyze these groups separately.
50

 Additionally, further research is needed 

on PrEP for transgender men or non-binary individuals to ensure that PrEP implementation 

programs meet the needs of everyone who could benefit from PrEP. 

Overall, our study--along with others from iPrEx and iPrEx OLE-- suggests TDF/FTC 

PrEP works similarly for MSM and transgender women when accounting for other 

characteristics. PrEP should be offered to anyone at risk of HIV infection regardless of gender 

identity.
23
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Table 2.1 Baseline characteristics by gender 

 

  

TGW (N=333) MSM (N=2112) p-value

26 (7) 27 (9) 0.030

17 (8) 17 (8) 0.63

15 (5, 55) 5 (3, 13) <0.001

US 6 (2%) 217 (10%)
Peru 184 (55%) 1192 (56%)

Ecuador 60 (18%) 228 (11%)
Brazil 37 (11%) 327 (15%)

South Africa 4 (1%) 77 (4%)
Thailand 42 (13%) 71 (3%)
Placebo 165 (50%) 1056 (50%)

Active Arm 168 (50%) 1056 (50%)
Non Hispanic/Latino 84 (25%) 597 (28%)

Hispanic/Latino 249 (75%) 1515 (72%)
Black/African American 19 (6%) 186 (9%)

White 38 (11%) 386 (18%)
Mixed/Other 234 (70%) 1452 (69%)

Asian 42 (13%) 88 (4%)
Single 237 (71%) 1594 (75%)

w/Partner 95 (29%) 455 (22%)
Married 0 (0%) 33 (2%)

Divorced 1 (<1%) 28 (1%)
Widowed 0 (0%) 2 (<1%)

With family/friends 226 (68%) 1628 (77%)
w/ Male partner 26 (8%) 120 (6%)

Alone 75 (23%) 299 (14%)
w/ Female partner 1 (<1%) 30 (1%)

other 5 (2%) 35 (2%)
Less than Secondary 125 (38%) 385 (18%)

Completed Secondary 122 (37%) 744 (35%)
Post-Secondary 84 (25%) 960 (45%)

No Answer/Missing 2 (1%) 23 (1%)

Top 14 (4%) 609 (29%)
Bottom 238 (71%) 587 (28%)

Versatile 75 (23%) 858 (41%)

Don't know 6 (2%) 58 (3%)
214 (64%) 790 (37%) <0.001
126 (38%) 515 (24%) <0.001

None/< once a month 63 (19%) 427 (20%)
1-4 per day 67 (20%) 557 (26%)
>=5 per day 150 (45%) 756 (36%)

Refused/Missing/Don't know 53 (16%) 372 (18%)
25 (8%) 105 (5%) 0.055

Ethnicity

Race

0.25

<0.001

0.005Marital Status

Living Situation <0.001

Education Level <0.001

Country

<0.001

<0.001

Treatment assignment 0.88

Any cocaine use in the past month

Alcoholic drinks per day 
in the past month 0.008

Sexual Role <0.001

Any transactional sex in prior 6 months
Any STI diagnosis in prior 6 months

Table 1. Baseline characteristics by gender

CESD Score, mean (SD)

Number of partners in prior 3 months, median (IQR)

Any condomless receptive anal intercourse in the prior 3 
months 286 (86%)^ 1172 (55%)

Age at baseline, mean (SD)

^   All variables are N (%) except where noted
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CHAPTER 2: Target-specific subgroup analyses for implementation of new 

interventions 

Megha L. Mehrotra, Daniel Westreich, M. Maria Glymour, Elvin Geng, David V. Glidden 

 

ABSTRACT 

Subgroup analyses of randomized controlled trials guide resource allocation and 

implementation of new interventions by identifying groups of individuals who are likely to benefit 

most from the intervention. Unfortunately, trial populations are rarely representative of the target 

populations of public health or clinical interest; unless the relevant differences between trial and 

target populations are accounted for, subgroup results from trials might not reflect which groups 

in the target population will benefit most from the intervention. Transportability provides a 

rigorous framework for applying results derived in potentially highly selected study populations 

to external target populations. The method requires that researchers measure and adjust for all 

variables that (1) modify the effect of interest and (2) differ between the target and trial 

populations. To date, applications of transportability have focused on the external validity of 

overall study results and understanding within-trial heterogeneity; but this approach has not yet 

been used for subgroup analyses of trials. Through an example from the iPrEx study of HIV pre-

exposure prophylaxis, we illustrate how transporting subgroup analyses can produce target-

specific subgroup effect estimates and numbers needed to treat. This approach may lead to 

more tailored and accurate guidance for resource allocation and cost-effectiveness analyses. 
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INTRODUCTION 

Researchers regularly use subgroup analyses of randomized controlled trials (RCTs) to 

find groups within the overall trial population that benefitted most from randomization to the 

intervention.51,52
 Policy-makers then prioritize those groups with the lowest numbers needed to 

treat (NNTs)
53,54

—that is, the number of individuals needed to be offered the intervention to 

prevent one incident outcome-- to receive the intervention. For example, iPrEx
2
 was a placebo 

controlled RCT that evaluated the safety and effectiveness of combination daily oral tenofovir 

disproxil fumarate/emtracitabine for HIV chemoprophylaxis (PrEP) in transgender women 

(TGW) and cisgender men who have sex with men (MSM). The study found that randomization 

to the active arm was associated with a 44% reduction in HIV incidence compared to the 

placebo arm.
2
 A subsequent post-hoc subgroup analysis of the trial found that the lowest NNTs 

were among those participants who reported condomless receptive anal intercourse (ncRAI), 

cocaine use, or a sexually transmitted infection.
55

 These results have subsequently informed 

policy recommendations and cost-effectiveness analyses of PrEP implementation.
56–58

 

 Using results from subgroup analyses to prioritize implementation relies on the often-

unspoken assumption that the strata-specific effect sizes estimated in the trial accurately reflect 

expected effect sizes in real-world target populations. However, this assumption is unlikely to be 

met in most applications; with the exception of large, pragmatic, cluster-randomized trials, trial 

populations are highly selected and rarely representative of real-world target populations that 

ultimately implement new interventions. Just as differences between trial and target populations 

undermine the external validity of the overall study findings,
32

 these differences also mean that 

the effect sizes estimated for a subgroup of the trial with a particular characteristic may be poor 

indicators of the expected effect sizes in target populations similar on that characteristic.
59–64

 

Indeed, even if the overall trial population resembles, on average, a particular target population, 

within subgroups, differences may still exist between the trial and the target populations. 
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 Consider a simple example of a clinic deciding whether to adopt a new blood pressure 

therapy based on evidence from an RCT that enrolled individuals at high cardiovascular risk. 

The hypothetical RCT found that men benefitted more from the new therapy than women; cost-

effectiveness analyses based on these results suggested that the clinic should only offer men 

the new therapy but keep women on the previous standard of care. Because individuals at high 

cardiovascular risk were differentially recruited for the study, the proportion of women in the trial 

who smoked was much higher than in the clinic population. If the new therapy is not effective 

among tobacco users, this could account for the lackluster results among women in the trial. If 

the trial had been conducted in the clinic population, where smoking is less common among 

women, the new therapy would have been deemed cost-effective for men and women alike. In 

this simple example, using the subgroup analyses from the RCT without accounting for 

differences in the trial and target populations would lead to incorrect decisions about who to 

prioritize to receive the new therapy.  

Recent developments in causal inference provide a principled approach for extending—

or transporting-- the results of a study to an external target population.
65

 This approach sets 

forth the principles and conditions that enable using the results of a study to infer what those 

results would have been had the study been conducted in an external target population.
1,32,66

 To 

do so, all variables that (1) modify the effect of the intervention and (2)  differ in distribution 

between the study and target populations must be measured and accounted for.
1,65,67

 When 

differences between populations are limited to pre-treatment (baseline) covariates, 

transportability conceptually coincides with standardization across several characteristics.
68

   

To date, transportability has previously been applied to transport average treatment 

effects to new target populations
47,69,70

 or to understand observed heterogeneity between sites
35

 

or groups
71

 in a trial. The theory also presents a promising solution for producing target-specific 

guidance for how to prioritize new interventions, but to our knowledge this framework has not 

yet been employed for these purposes. Here, we use an example from the iPrEx study of HIV 
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chemoprophylaxis
2
 to illustrate how to apply transportability theory and estimators to transport 

subgroup effect estimates and NNTs to two specific external target populations. We discuss the 

necessary assumptions and data that are required for this approach to be successful in practice. 

METHODS 

Motivating example 

The iPrEx study population comprised a heterogeneous group of 2499 MSM and TGW 

in Brazil, Peru, Ecuador, the United States, South Africa, and Thailand. All participants were 

HIV-negative at enrollment, reported risk behavior for HIV, and were assigned male sex ant 

birth. The median age at enrollment was 25 and most participants had not received a college 

education.
2
 In aggregate, the iPrEx study population is unlikely to be representative of other 

target populations planning to roll out PrEP. Moreover, the populations who are at highest risk of 

HIV vary across the world, and guidance for how to prioritize PrEP should be tailored 

accordingly to each specific setting.
26

 

Suppose we are interested in implementing PrEP in two clinics that serve young Latino 

TGW and MSM with men in San Francisco and Chicago. The clinics have limited resources, 

and each would like to target outreach and marketing of PrEP to those who are most likely to 

benefit from it. Here, we focus on subgroups that can easily be measured via survey or self-

report: gender identity, including cisgender men or transgender women (=>=	and	?@A); recent 

sexual behavior, including any condomless receptive anal intercourse in the prior 3 months 

(BC"D!) and primary sexual role (EFG, IFEEFJ, KLMNOEPQL); and any cocaine use in the prior 6 

months. To generate customized recommendations for each clinic based on these subgroups, 

we estimate what the subgroup-specific intention-to-treat (ITT) one-year HIV risk differences 

and NNTs would have been had the iPrEx trial been conducted in each clinic population.  
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Data and measurements  

 The iPrEx study randomized 2499 HIV-negative MSM and TGW to receive either daily 

oral PrEP or placebo, and participants were followed from 2007-2010. We included all 

participants from the iPrEx trial who were HIV-negative at their enrollment visit and who had 

contributed any follow-up time (N=2441).  

To represent our two target populations, we used all HIV-negative participants in the San 

Francisco (N=210) and Chicago  (N=263) study sites of the Latino MSM Community 

Involvement Study.
72,73

 The study was a cross-sectional survey conducted in 2004 of Latino gay 

or bisexual cisgender men or transgender women that aimed to collect information about the 

participants’ experiences in their community, sexual behavior, and substance use. Data from the 

Latino MSM Community Involvement study were accessed through the Inter-university 

Consortium for Political and Social Research.
73  

In both the iPrEx and the Latino MSM Community Involvement studies, participants were 

asked about their sexual behavior, demographics, STI history, and alcohol and drug use via a 

computer assisted structured interview (CASI).
2,72,73

  

Notation, target parameters and identification 

Our goal was to estimate the subgroup-specific ITT HIV risk difference at one year 

between those randomized to the PrEP arm and those randomized to the placebo arm and the 

corresponding numbers needed to treat to prevent one infection per year in iPrEx, San 

Francisco, and Chicago. Our subgroups variables of interest were cisgender men who have sex 

with men (=>=); transgender women who have sex with men (?@A); people who reported any 

condomless receptive anal intercourse in the prior 3 months (BC"D!); primary sexual role 

(EFG, IFEEFJ, KLMNOEPQL); and people who reported using cocaine in the prior 6 months (CFCOPBL). 

We use random variable R to denote treatment assignment where R = 1 indicates assignment to 

receive PrEP and R = 0 indicates assignment to the placebo arm. We use T!UV to represent the 
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counterfactual outcome that would have been observed if R = W were assigned. > indicates the 

population of interest where > = 0 is the iPrEx study population; > = N′ is one of the two target 

populations where NY ∈ {\ℎPCO^F, >OB	_MOBCPNCF}. @ = ^ indicates the subgroup of interest 

where ^ ∈ {=>=, ?@A, BC"D!, EFG, IFEEFJ, KLMNOEPQL, CFCOPBL}. 

 

We define the ITT effect in subgroup @ = ^ in population > = N as: 

ab

c
= defgh

ijk
− fgh

ijm
no = b, p = c	)     (Eq.  1) 

and the NNT
54

 for each subgroup @ = ^ in population > = N as: 
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6fgh
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    (Eq.  2) 

 For simplicity, we assume there was no measurement error. To identify the target 

parameters within the iPrEx study population, we must assume: 

1. Conditional treatment exchangeability: R is independent of (T!Us, T!Ut) given @ = ^, and 

> = 0. That is, there is no confounding of the association between treatment assignment and 

HIV incidence in the iPrEx study population within subgroup @ = ^. This assumption is met 

by randomization of treatment assignment in the iPrEx trial. 

2. Treatment positivity: u(R = W	|@ = ^) > 0 for all ^ for which u(@ = ^) > 0. That is, there 

must be a non-zero probability of being assigned each treatment for each subgroup.
74

 

Randomized treatment assignment in the iPrEx trial guarantees that there are no structural 

positivity violations, but does not guarantee the absence of practical positivity violations, 

which are more likely to occur in smaller samples in subgroups.   

In addition to the above assumptions, to identify the transported target parameters we must also 

meet the following criteria
24

: 
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3. Conditional population exchangeability: x(T!U|> = 0,)b, R, @ = ^) = 	x(T!U|> =

N′,)b, R, @ = ^). Within subgroup @ = ^, the iPrEx study population and target population 

are exchangeable with respect to HIV incidence conditional on some set of measured 

characteristics ()b) and treatment assignment. 

4. Population positivity:	ue> = 0, R = Wn)b, @ = ^y > 0	u)b|zj&,{j$Y
	O. L. That is, every 

combination of	)b = }b that could be drawn from the distribution of )b	in each strata @ =

^ within each target population is represented in the iPrEx study population in @ = ^	and 

has a non-zero probability of being assigned R = W.  

Thus, for each subgroup @ = ^ we must condition on the set of variables )bthat ensures that 

assumption 3 is met.  

Selection diagrams are augmented directed acyclic graphs
75,76

 introduced by Pearl and 

Bareinboim that assist in identifying a set of variables that satisfies assumption 3 above. In 

these graphs, selection nodes are not standard random variables. Instead, they indicate where 

differences in the causal model might exist between the trial and target populations.
1,77

 An effect 

can be transported across the populations if there exists a set of variables that, if conditioned 

on, will make all the selection nodes independent (or d-separated
78

) from the outcome 

variable.
1
This set of variables, called the s-admissible set, satisfies the conditional population 

exchangeability assumption given above. For rules on how to evaluate d-separation in selection 

diagrams, please see Appendix A. 

Figure 3.1 depicts our proposed selection diagram representing the assumed causal 

model within the iPrEx study and assumed differences between the study population and each 

target population. Based on our selection diagram, we identified the s-admissible set
 
 of 

variables ()b) for each subgroup analysis, i.e.  the set of variables that is sufficient to d-

separate all the selection nodes from the outcome conditional on the subgroup of interest such 

that T!U ⊥ >	|	R, @ = ^,)b: 
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Gender identity (�p� and Äo)): age, education, number of partners, 

BC"D!, cocaine use, and alcohol consumption. 

Condomless receptive anal intercourse (ÅÇÉÑg): age, education, number 

of partners, cocaine use, alcohol consumption. 

Primary sexual role (ÖÜá, àÜÖÖÜâ, äãåcçÖéèã): age, education, number of 

partners, BC"D!, cocaine use, alcohol consumption, and gender 

identity. 

Cocaine use: age, education, number of partners, BC"D!, and alcohol 

consumption 

 

 Given the above assumptions, the target parameters within the iPrEx study population 

are identified by:  

ab

m
≡ defgh

ijk
− fgh

ijm
no = b, p = m)       

= d[fgh|i = k, o = b, p = m] − d[fgh|i = m, o = b, p = m]           (Eq.  3) 

and: 

qb
m
=

k

na
b

m
n
=

k

|d[fgh|ijk,ojb,pjm]6d[fgh|ijm,ojb,pjm]|
   (Eq.  4) 

 

The transported target parameters are the subgroup-specific ITT effects and NNTs had the 

study been conducted in each target population (San Francisco or Chicago) and are identified 

by: 

 

ì&
$Y
≡ x(T!U

Vjt
− T!U

Vjs
|@ = ^, > = N′	) 
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= ded[fgh|i = k,)b, o = b, p = m]|p = c
Y
y     

 −ded[fgh|i = m,)b, o = b, p = m]|p = c
Y
y  (Eq.  5) 

And the transported NNTs are:   
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=
k

ded[fgh|ijk,)b,ojb,pjm]|pjcYy6ded[fgh|ijm,)b,ojb,pjm]|pjcYy
  (Eq.  6) 

Estimation 

 To estimate the ITT risk difference for each subgroup in iPrEx, we used the parametric g-

formula. We fit a log-binomial regression model with main terms for treatment assignment and 

the subgroup variable as well as an interaction term between treatment assignment and 

subgroup. Using this model, we predicted the marginal incidence risk difference at one year 

within each subgroup. Because treatment was randomly assigned, we did not adjust for any 

additional covariates in each subgroup analysis in the iPrEx study population.  

 To transport the ITT effects, we first generated stabilized inverse odds of selection 

weights
79

 using the following formula: 

!ò>Aô = ö

ue>ô = 0|)
b
, @

ôy

ue>ô = N′n)b
, @

ôy

∗ 	

u(>ô = N
Y
, @ô)

u(>ô = 0, @ô)
, >

ô
= 0,

0																						, >ô = N′

  

Each component of the IOSW was estimated using logistic regression. Note that because the 

iPrEx study population is not a subset of either target population, inverse odds weights were 

used instead of inverse probability weights. In settings where the study population is fully nested 

within the target population, inverse probability weights would be an appropriate analogous 

estimator.
68,79

 

The inverse odds weights were used to fit weighted log-binomial regressions with an 

interaction between treatment assignment and subgroup. We used this model to predict the 



 26 

number of incident HIV infections at one year by treatment assignment within each subgroup in 

each target population, and we calculated the transported marginal risk difference. Standard 

errors and 95% confidence intervals were calculated using a bias corrected and accelerated 

bootstrap
80

 with 2000 resamples. The bootstrap resampled both the iPrEx study population and 

target populations, and then calculated new weights and fit the weighted log-binomial regression 

on each bootstrap sample. This ensured that the variability in the target population was also 

incorporated into the standard errors. 

 The number needed to treat was estimated as the inverse of the difference in risk of HIV 

infection at one year of follow-up
81

 giving the number of individuals who need to be offered PrEP 

needed to avert one infection in one year. 

 All analyses were conducted using R version 3.4.1
40

 and STATA version 15.1.
41

 

RESULTS 

There were differences in most baseline characteristics across settings (Table 3.1), and 

in particular, the iPrEx study population had on average more recent sexual partners and more 

individuals reporting recent condomless receptive anal intercourse. 

Figure 3.2 shows the subgroup-specific intention-to-treat risk differences at one year, 

and Figure 3.3 shows the numbers needed to treat to prevent one infection in each population. 

In all settings, cocaine users had the lowest number needed to treat. In Chicago, the NNT was 

next lowest among those whose primary sexual role was “bottom,” whereas in iPrEx the sexual 

role with the lowest NNT was “versatile.” In all settings, PrEP is not expected to be beneficial for 

those whose primary sexual position is “top.” Finally, though there were apparent differences in 

the effectiveness of randomization to PrEP between cisgender men and transgender women in 

iPrEx, after transporting the results to San Francisco these gender differences are diminished. 
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DISCUSSION 

 Subgroups with the lowest NNTs in trial populations may not be the same groups that 

would have the lowest NNTs in target populations. Without formally accounting for differences 

between trial and target populations, subgroup-specific effect sizes and NNTs from trials may 

not provide useful guidance for implementing new interventions in target populations. The 

transportability framework is a rigorous solution for generating target-specific subgroup results 

and tailored implementation guidance. 

Assuming that we have adequately measured and accounted for all of the characteristics 

that both modify the effectiveness of randomization to PrEP and differ between the study and 

target populations, our worked example demonstrates how subgroup analyses might give 

meaningfully different guidance regarding resource allocation if they are transported to the 

specific target populations. In iPrEx, those who indicate that their primary sexual role is 

“versatile” have much lower NNTs than other sexual roles. However, after transporting the 

results to Chicago, we see that the sexual role with the lowest NNT is “bottom,” and in San 

Francisco we find that those who report recent condomless receptive anal intercourse have a 

lower NNT than any specific sexual role. Prioritizing PrEP according to self-reported sexual role 

is appealing, as the information can easily be gathered in a clinic-setting through a single 

question. To use sexual role as a means to prioritize PrEP efficiently however, the iPrEx results 

must be transported to each target population with distinct covariate distributions.  

 The application of transportability relies on the availability of high-quality individual-level 

data in both the trial and target populations. The outcome itself does not need to be measured 

in target populations—which is particularly helpful for rare or hard to measure outcomes like HIV 

incidence-- but in order for the transportability assumptions to reasonably be met, there needs 

to be a rich dataset of characteristics that are associated with the outcome gathered in the 

target population. Which characteristics need to be measured depends on the intervention and 

outcome of interest; simply gathering basic demographic information may not always be 
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sufficient for a particular outcome. Similarly, individual-level trial data including all relevant effect 

modifiers need to be available to generate policy-relevant recommendations. These data 

requirements are not trivial, but as increasingly more studies make their data available for 

secondary analyses, and as more data are collected and aggregated on individuals in real-world 

target populations, transportability will likely soon become more feasible in applied research. 

Though the particular examples presented here are helpful for illustrating how 

transportability can be used to improve subgroup analyses, there are several important 

limitations that preclude interpreting these findings substantively. First, the Latino MSM 

Community Involvement Study was conducted in 2004, so the characteristics and behaviors 

described in these data may not reflect the current needs of these populations. Next, as PrEP 

has become more widely adopted around the world, the characteristics of those individuals who 

are likely to adhere to PrEP has undoubtedly changed. This means that, assuming we have met 

all the assumptions necessary for transport and that our models were correctly specified, our 

transported estimates could only be interpreted as the effects we would have observed had the 

iPrEx trial been conducted in each target population at the time it was conducted (2007-2010). 

This limitation is not unique to our example. Unless trial results are transported immediately at 

the end of the study, factors that affect uptake, adherence, and effectiveness of a new 

intervention are likely to change, and the transported results will become less relevant over 

time. 

The results of our illustrative example were uncertain, as demonstrated by the wide 

confidence intervals in Figure 3.2. The numbers needed to treat, which are derived from the risk 

differences, are similarly uncertain--particularly for those subgroups that included few individuals 

(cocaine users, for example). This uncertainty reflects the fact that both the study and target 

populations included relatively small samples, and also underscores an important challenge in 

transporting subgroup analyses more broadly. Trials are often underpowered to detect subgroup 

differences, and transport estimators may reduce the precision of subgroup estimates. While 
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other transport estimators such as the parametric g-computation transport estimator and 

targeted maximum likelihood might be more efficient than the IOSW estimator, researchers 

applying these tools in practice should be careful in weighing the bias-variance tradeoff for their 

particular application. 

Finally, a central issue that researchers will face when employing transportability 

methods is results are likely to be sensitive to the assumptions made in the selection diagram, 

and many of these assumptions are untestable. Selection diagrams, as with any other causal 

graph, are typically built using a combination of prior knowledge, subject matter expertise, and 

previously published literature. Usually there will still be considerable uncertainty about the 

accuracy of these diagrams. In practice, quantitative bias analyses that put reasonable bounds 

on the transported estimates are merited and further work should explore how best to 

implement these analyses for transportability. 

 Transportability is a transparent framework for describing, evaluating, and testing the 

assumptions needed to produce target-specific subgroup effect estimates and NNTs. Moving 

forward, researchers publishing trial results should ensure that all important variables that might 

be relevant for transporting findings to target populations are made available so that local health 

departments, policy-makers, and other researchers can generate tailored recommendations for 

how to implement new interventions. 
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 Table 1. Demographic Characteristics

16.9 (35.6) 8.0 (10.2) 7.3 (10.0)

18-25 1374 (55.0%) 37 (17.6%) 76 (28.9%)

26-35 730 (29.2%) 78 (37.1%) 113 (43.0%)

36-45 270 (10.8%) 66 (31.4%) 50 (19.0%)

>45 125 (5.0%) 29 (13.8%) 24 (9.1%)

Less than HS 524 (21.0%) 57 (27.1%) 63 (24.0%)

HS 884 (35.4%) 38 (18.1%) 68 (25.9%)

College 1091 (43.7%) 115 (54.8%) 132 (50.2%)

Cisgender Man 2174 (87.0%) 172 (81.9%) 249 (94.7%)

Transgender Woman 325 (13.0%) 38 (18.1%) 14 (5.3%)

None/< once a month 496 (19.8%) 90 (42.9%) 68 (25.9%)

1-4/day 635 (25.4%) 72 (34.3%) 85 (32.3%)

>=5/day 931 (37.3%) 47 (22.4%) 108 (41.1%)

Don't Know 437 (17.5%) 1 (0.5%) 2 (0.8%)

No 2368 (94.8%) 187 (89.0%) 214 (81.7%)

Yes 131 (5.2%) 23 (11.0%) 48 (18.3%)

Top 641 (25.7%) 34 (16.2%) 37 (14.1%)

Bottom 834 (33.4%) 89 (42.4%) 132 (50.2%)

Versatile 1024 (41.5%) 87 (41.4%) 94 (35.7%)

No 1014 (40.6%) 159 (75.7%) 185 (70.3%)

Yes 1485 (59.4%) 51 (24.3%) 78 (29.7%)

iPrEx (N=2499) San Francisco (N=210) Chicago (N=263)

ncRAI in prior 3 months^

Age at baseline

Number of male parters in prior 3 
months

Highest level of education

Gender Identity

Alcohol consumption in prior month

Primary sexual position

Cocaine use in prior month

 ̂any condomless receptive anal intercourse in the prior 3 months

Table 3.1. Baseline characteristics by population. 
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Figure 3.1 Z is treatment assignment; Adh is adherence; Age is age at baseline; Gender is 

gender identity; Education is highest level of education; Sexual role is primary sexual position 

(“top”, “bottom”, “versatile”); Alcohol is prior month alcohol consumption; Cocaine is prior month 

cocaine use; ncRAI is any condomless receptive anal intercourse in the 3 months prior to 

baseline; Number of partners is total number of male partners in the 3 months prior to baseline. 

  

Z HIV

Education

ncRAI

Sexual role

Gender

Adh

Age

Alcohol
Cocaine

Number of 
partners

S

S

S

S

S

S

S

S

Figure 1. Z is treatment assignment; Adh is adherence; Age is age at baseline; Gender is gender identity; Education is highest level of education; Sexual role is primary sexual position 
(“top”, “bottom”, “versatile”); Alcohol is prior month alcohol consumption; Cocaine is prior month cocaine use; ncRAI is any condomless receptive anal intercourse in the 3 months prior to 
baseline; Number of partners is total number of male partners in the 3 months prior to baseline.
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Figure 3.2.  Subgroup-specific risk differences in iPrEx, San Francisco, and Chicago 

 
 

Figure 2. Subgroup-specific risk differences in iPrEx, San Francisco, and Chicago. 
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Appendix 

d-separation rules for selection diagrams 

  The d-separation rules as described by Pearl, 1988
78

 that are traditionally applied to 

directed acyclic graphs and other causal diagrams can also be applied to determine if there 

exists a set of variables such that conditional on that set, the conditional population 

exchangeability assumption is fulfilled. 

Consider the selection diagram given in Supplementary Figure 3.1. In this example, A is the 

exposure, Y is the outcome, W1, W2, and W3 are other covariates, and the S nodes are the 

selection nodes. To transport the causal effect of A on Y from the study population to the target 

population, we must be able to identify a set of variables that makes all of the selection nodes 

independent of the outcome—or d-separates all of the selection nodes from the outcome. 

To test whether all the selection nodes in a selection diagram are independent of the 

outcome, we need to test whether all of the paths from the selection nodes to the outcome can 

all be blocked by conditioning on other measured variables. A path between S and Y is blocked 

if: 

1) SàW1àY and W1 is conditioned on  

or 

2) SàW2ßY and W2 is not conditioned on. 

W2 is a collider, and conditioning on a collider opens a path between the parents of the collider.  

This could be corrected by simultaneously conditioning on W3, thus blocking the path.  

 In Supplementary Figure 1, we would need to condition on W1 to block all the paths 

between the selection nodes and Y. If we condition on W2, we would open a path between the 

selection node and Y through W3. 

 

 



 35 

 
Supplementary Figure 3.1. Selection Diagram  
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CHAPTER 3: Variable Selection for Transportability 

Megha L. Mehrotra, M. Maria Glymour, Elvin Geng, Daniel Westreich, David V. Glidden 

 

ABSTRACT 

Transportability provides a principled framework to address the previously intractable 

problem of applying study results to new populations. Several transport estimators have been 

developed to use alongside the formal transportability theory.  Here, we consider the problem of 

selecting variables for these transport estimators. We provide a brief overview of the 

transportability framework and illustrate that though selection diagrams are a vital first step in 

variable selection, these graphs alone may not identify the optimal set of variables for 

generating an unbiased transport estimate. Next, we conduct a simulation experiment assessing 

the impact of including unnecessary variables on the performance of the parametric g-

computation transport estimator. Our results highlight that the types of variables included can 

affect the bias, variance, and mean squared error of the estimates. We find that addition of 

variables that differ between the source and target populations but that don’t cause the outcome 

can increase the variance and mean squared error of the estimates, while inclusion of causes of 

the outcome—regardless of whether they modify the causal contrast of interest—reduces the 

variance of the estimates without increasing the bias. Exclusion of variables that are causes of 

the outcome but are not modifiers of the causal contrast does not increase bias. These findings 

suggest that variable selection approaches for transport should prioritize identifying and 

including all causes of the outcome in the study population rather than focusing on differences 

between the populations. 
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INTRODUCTION 

The transportability framework, which builds on the theoretical foundations of causal 

inference, outlines the necessary rules and assumptions for determining when and how a 

causal effect estimated in one study population can be applied to an external target 

population.
65

 These tools present a promising solution to the long-standing challenge of 

assessing the external validity of research findings and can also be used to better understand 

observed effect heterogeneity within a study.
35,38,82

  

 However, applying transportability methods to real-world problems is not always 

straightforward. A central challenge that researchers face in using these tools is deciding what 

variables need to be measured and included in their transport estimators. Similar to variable 

selection for confounding adjustment,
83

 these decisions can greatly affect the bias and variance 

of the transported effect estimate, but to our knowledge, little has been written about different 

variable selection strategies for transport. 

  Ideally, subject matter expertise and a clear understanding of the study and target 

populations would be the primary guide for variable selection decisions. Selection diagrams—

the causal graphs used for transport-- facilitate using prior knowledge of the underlying causal 

mechanisms to identify a set of variables that would be sufficient to transport an effect from a 

study population to a given target population. However, because of uncertainty about the 

underlying causal structure or mechanisms in real-world applications, using selection diagrams 

alone may be insufficient to narrow down the list of candidate variables to include only those 

that are necessary for a given application. Ultimately, even after careful use of selection 

diagrams, an applied researcher working with a finite sample of data will likely have to decide 

which variables she thinks are essential from an extensive list. 

 Here, we provide a practical guide to variable selection for transportability. We begin by 

briefly reviewing the transport framework and graphical approach to variable selection. Next, we 

introduce the minimally sufficient transport set, and illustrate why transporting causal contrasts 
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may require fewer variables than a standard selection diagram may indicate. Finally, we 

categorize the different types of variables (according to causal structure) that might be included 

in transport estimators and use Monte Carlo simulation experiments to evaluate how inclusion 

or exclusion of different variable types affects bias, variance, and mean squared error of the 

parametric g-computation transport estimator. 

NOTATION AND DEFINITIONS 

o Source population—population you are transporting results from (ie. study population) 

o Target population—population you are transporting results to  

o u(õ
V
)-- the distribution of counterfactual outcome õ if exposure R is assigned value W.  

o Φ -- a causal quantity that is a function of the counterfactual outcome distribution. For 

example, a causal contrast, i.e. a causal risk difference (x(õVjt − õVjs)). 

o S – selection node indicating population membership where N ∈ {0,1} and > = 1 indicates 

the source population and > = 0 indicates the target population. These nodes are not 

standard random variables, but instead indicate where the data generating mechanisms 

may differ between the two populations. 

o ûü† – an s-admissible transport set defined as a set of variables that d-separates all 

selection nodes from the outcome variable (õ ⊥ >	|	Äpc). There may be more than one s-

admissible set for a given graph. 

o ûü – a transport set defined as the set of variables included in a transport estimator. The 

transport set may or may not be an s-admissible set.  

o °üûü – a minimally sufficient transport set. The smallest possible s-admissible transport 

set. There may be more than one MSTS for a given problem. 

 

TRANSPORTABILITY 

The goal of transportability is to extend or apply the results of a study conducted in one 

population (the source population) to another population (the target population). Why the results 
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of a study conducted one population may not apply to another is intuitive: if there are 

characteristics or factors that modify the effectiveness of the intervention under study and the 

distribution of these characteristics differs between the source and target populations, then we 

would expect that the results of a study would similarly vary depending on which population it 

was conducted in. If we are able to measure and account for those characteristics that both a) 

modify the effectiveness of the intervention and b) differ between two populations, we should be 

able to apply study results gathered in the source population to an external target population 

without having to repeat the entire study.  

The transportability framework formalizes this intuition and sets forth formal 

mathematical rules and conditions under which the results of a study can be transported from a 

source population to a target population.
65

 We define u(õV) as the counterfactual distribution of 

outcome õ if exposure R is assigned value W for all possible values of õ and R. This quantity can 

be thought of as the most general definition of a causal effect, as any causal contrast (ie. the 

causal risk difference x(õVjt − õVjs)) is a function of this counterfactual distribution. u(õV) can 

be transported from a source population (> = 1) to a target population (> = 0) if the following 

assumptions are met: 

1) S-admissibility (or conditional population exchangeability): õ ⊥ >	|	Äpc where Äpc is 

an s-admissible set. 

2) Population positivity: u(> = 1|Äpc = Öcc) > 0	for every Öcc that has a positive density 

in the target population. That is, all values of the s-admissible set  

 

Selection Diagrams for Variable Selection 

To illustrate the transportability framework in action, we use a simple toy example 

loosely motivated by the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment 

and Disability (FINGER)
84

. Suppose we conducted a randomized controlled trial evaluating 
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whether a multicomponent behavioral intervention was effective in reducing the 2-year risk of 

cognitive decline compared to standard of care among participants in Finland. The study found 

that randomization to a multicomponent behavioral intervention was effective in reducing the 2-

year risk of cognitive decline, but we want to know what the results of this trial would have been 

had it been conducted in a US-based target population.  

Figure 4.1 represents the true data generating mechanism for this toy example. For 

simplicity and without loss of generality, we assume that there are only two additional variables 

that might affect cognitive decline: systolic blood pressure >140 mmHg; and being a carrier of 

the apolipoprotein E-¢4 (APOE-¢4) variant. We define our outcome as risk of a 10% reduction in 

neurocognitive test battery (NTB) score after 2 years of follow-up. We define our source 

population > = 1 as the Finnish study population and our target population > = 0	as the US-

based target population; R is randomized treatment assignment; § = 1 (systolic blood pressure 

> 140mmHg) and @ = 1 (APOE-¢4 carrier) both affect the risk of NTB score reduction by year 2. 

§ and @ differ in distribution between the study and target populations. 

Akin to how directed acyclic graphs (DAGs) are used to select variables to control for 

confounding, selection diagrams are causal graphs used to determine which variables satisfy 

the s-admissibility criteria for transportability. To create a selection diagram, we begin by 

drawing a DAG that represents the data-generating model for the source population. Next, we 

add selection nodes that indicate where there might be differences in the data-generating 

models between the source and target populations (Figure 4.2). Selection nodes are not 

standard random variables; instead, they are indicators that point to the portions of the data-

generating model that might differ between the two populations. 

Any set of variables that d-separates all of the selection nodes from the outcome is an s-

admissible set (Äpc) for transporting u(õV). Note that a given graph may reveal more than one 
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s-admissible set. Based on the selection diagram given in Figure 4.3, the s-admissible set for 

this example is systolic blood pressure >140mmHg and APOE-¢4 (Äpc = {§, @}). 

Throughout this manuscript we restrict our discussion to scenarios in which selection 

nodes are only directed at pre-treatment variables. Transporting results in situations where 

there are selection nodes directed at mediating variables requires additional measurements and 

assumptions that are beyond the scope of this manuscript. For background on transporting 

causal effects when selection nodes are directed at mediating variables, we point readers to 

Appendix 3 of Pearl and Bareinboim, 2011
1
 and Bareinboim and Pearl, 2012

85
 for more details. 

MINIMALLY SUFFICIENT TRANSPORT SET 

A minimally sufficient transport set (=>?>) is the smallest possible s-admissible set that 

would satisfy assumption 1 for transporting a particular causal quantity from a source population 

to a target population. Though selection diagrams are useful for identifying s-admissible sets, in 

practice, they may not be able to isolate the =>?> for two key reasons.  

 

Transportability of causal contrasts 

 The transportability framework gives the assumptions and criteria for transporting the full 

counterfactual distribution of outcomes u(õV) from the source population to the target 

population. However, in many applications, researchers may only be interested in transporting a 

particular causal quantity (e.g. a causal contrast or mean outcome value). If the causal quantity 

of interest (Φ) is a function of u(õV), then any set of variables that is s-admissible for 

transporting u(õV) would also be s-admissible for transporting Φ. However, there may be some 

variables that are necessary to transport u(õV) that would be unnecessary for transporting Φ. 

For example, according to the selection diagram given in Figure 4.2, the s-admissible set to 

transport u(õV) includes both § and @. This is also apparent from the structural equations in 

Figure 4.1: u(õ = 1) depends on both § and @. However, suppose we are only interested in 
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transporting the causal risk difference between those assigned to the intervention arm and 

those assigned to the treatment arm: 

Φ = 	u(õ
Vjt

= 1) − u(õ
Vjs

= 1) = u(õ = 1|R = 1) − u(õ = 1|R = 0) 

From the structural equations in Figure 4.1, we see that this quantity only depends on §: 

u(õ = 1|R = 1) − u(õ = 1|R = 0) = −.4§ − .001(1 − §) 

We can re-draw the selection diagram to reflect that we only want to transport this risk 

difference (Figure 4.3) and to indicate that the risk difference does not depend on @; only § is 

required to d-separate the risk difference from the selection nodes.  

 

The transport formula for transporting u(õV)	from the source to the target population using the 

transport set {§, @} is:	

u(õ
V
|> = 0) =••u(õ = 1|R, @, §, > = 1)u(§, @|> = 0)

¶&

 

And the transport formula for transporting Φ using the transport set {§} is: 

 

Φ = 	u(õ
Vjt

= 1	|> = 0) − u(õ
Vjs

= 1|> = 0)

=•u(õ = 1|R = 1, §, > = 1)u(§|> = 0)

¶

−	•u(õ = 1|R = 0, §, > = 1)u(§|> = 0)	

¶
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Figures 4.1- 4.3 Structural causal model, standard selection diagram, and modified selection 

diagram illustrating that fewer variables might be needed to transport a causal contrast than for 

transporting the full counterfactual outcome distribution. 

 

Table 4.1 shows the results of using each transport set to transport the mean outcome 

in each arm; the risk difference between arms; and the risk ratio between arms. We see that Eq. 

4, which includes both causes of the outcome, allows us to accurately transport all 3 quantities, 

but Eq. 5 is sufficient to transport our causal quantity of interest (the risk difference). 
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  P(Y=1) Risk 
Difference 

Risk Ratio 

Truth 
ß(® = k|i = m, p = m) 0.680 

-0.121 0.823 
ß(® = k|i = k, p = m) 0.559 

Transported 
using {©, o} 

Transported  
ß(® = k|i = m, p = m) 

0.680 
-0.121 0.823 Transported  

ß(® = k|i = k, p = m) 0.559 

Transported 
using {©} 

Transported  
ß(® = k|i = m, p = m) 0.632 

-0.121 0.809 
Transported  

ß(® = k|i = k, p = m) 
0.511 

 

 This toy example illustrates that transporting a specific causal quantity may require fewer 

variables than would be necessary for transporting the full counterfactual distribution. In 

practice—when the true data-generating model is unknown—knowing which variables from the 

s-admissible set for transporting u(õV) are unnecessary for transporting Φ requires parametric 

assumptions on the outcome-generating function that may be difficult to justify. As a result, 

researchers may reasonably choose to use the s-admissible set for u(õV) to avoid making these 

types of parametric assumptions even if doing so increases the chance that unnecessary 

variables are included in the transport estimators.  

 

Uncertainty in causal diagrams 

 Even if a researcher intends to transport the entire counterfactual outcome distribution, 

uncertainty about the data generating processes in each population will lead to including 

extraneous variables in transport estimators. For selection diagrams to be most effective, they 

need to adequately and honestly reflect our prior knowledge and assumptions about the causal 

Table 4.1 shows the transported risk difference and risk ratio adjusting for APOE-¢4 (G) and 
systolic blood pressure (B) or systolic blood pressure alone. If the target parameter is the 
risk difference, we see that adjusting for systolic blood pressure alone is sufficient. 
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mechanisms underlying the observed (and unobserved) data. As with all causal graphs, 

excluding edges or selection nodes from a selection diagram is a stronger assumption than 

including them.
86

 That is, the most conservative graph would include edges between all random 

variables and would include selection nodes directed at every random variable. This graph 

would indicate that we think there is a possibility that each variable may cause the others (or be 

associated with through a common ancestor) and there may be differences anywhere in the 

data-generating model between the source and target populations. 

 In most (if not all) applied settings, there is often considerable uncertainty about the true 

data-generating model. Further, we often have little knowledge about how two populations might 

differ from one another. As a result, selection diagrams that honestly capture this uncertainty 

are likely to include more selection nodes or edges than are present in truth. The s-admissible 

sets based on these graphs will therefore likely include many more variables than necessary.  

Overall, selection diagrams are an important tool to guide variable selection, but in most 

applications, selection diagrams may not be able to reveal a minimally sufficient transport set 

and transport estimators based on selection diagrams are likely to include additional 

unnecessary variables. How these extraneous variables might affect the performance of 

transport estimators is unclear. 

 

SIMULATION EXPERIMENT 

 We conducted a Monte Carlo simulation experiment to examine the variable selection 

problem in transport estimators. Specifically, we explored how the inclusion of 5 different types 

of unnecessary variables (in addition to the MSTS) affect the bias, mean square error, and 

confidence interval coverage of the parametric g-formula transport estimator.
38

 We limit our 

experiment to only consider variables that are not on the causal path from the exposure to the 

outcome (ie. pre-treatment variables). 
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Classification of transport variables according to causal structure 

Figure 4.4 shows the 5 different variable types that might be unnecessarily included in 

an s-admissible set (Äpc). In this example, all variable types are subsets of the s-admissible set 

and are (by definition) not part of the =>?>; all types are mutually exclusive. The unnecessary 

variables are categorized according to their relationships to the selection nodes, outcome 

variable, and causal quantity conditional on a specific =>?>. Note that if a variable is not a 

cause of the outcome, it also cannot be a cause of Φ. Similarly, if a variable is a cause of Φ it 

must also be a cause of the outcome. 

 

1. )ç: differ in distribution between the source and target populations; cause the 

outcome; but do not affect Φ. 

2. )à: differ in distribution between the source and target populations and are not 

causes of the outcome. 

3. )Ç: do not differ between the source and target populations and cause Φ. 

4. )´: do not differ between the source and target populations; cause the outcome; but 

do not affect Φ. 

5. )ã: do not differ between the source and target populations and do not cause the 

outcome.  
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Simulation Experiments 

We generated data according to the following data-generating processes. The magnitude and 

likelihood of practical positivity violations was highest in data-generating model 3. 

 

>	~	§LM(0.5) 

R	~	§LM(0.5) 

=>?>,AÆ,A¶	~	Ø(1 + 3>, N≤#) 

A≥,A¥	~	Ø(1, 1) 

Aµ	~	Ø(0, 1) 

õ	~	Ø(100 + 20R + 10(=>?>)R + 10(AÆ) + 10(A≥)R + 10(A¥
), 5) 

 

Where for each data-generating model = = J: 

N≤# = ∑

1 + 5>, J = 1

1 + 3>, J = 2

1 + >, J = 3

 

Figure 4.4. Selection diagrams showing the 5 categories of unnecessary variables 

that may be included in an s-admissible set. �pÄp is the minimally sufficient transport 

set. After conditioning on this set, )ç,)à,)Ç,)´, and )ã are all unnecessary to 

transport Φ across the populations. 
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We aim to transport the causal quantity Φ = x(õ
Vjt

) 	− x(õ
Vjs

) from the study 

population (> = 1) to the target population (> = 0). In all 3 data-generating models, the true 

value of Φ in the target population is 40 and the true value of Φ in the study population is 70.  

For each data-generating model, we simulated 5000 datasets with a total N=5000 (with 

approximately 50% in > = 1 and 50% in > = 0). For each dataset, we fit a parametric g-

computation transport estimator
38

 for each of the following transport adjustment sets: 

 

 

 

 

Transport Adjustment Set (Äpé) 

?>t = {MSTS} 

?>∫ = {MSTS,AÆ} 

?>ª = {MSTS,A¶
} 

?>º = {MSTS,A≥} 

?>Ω = {MSTS,A¥
} 

?>æ = {MSTS,Aµ} 

?>ø = {MSTS,AÆ,A¶
} 

?>¿ = {MSTS,AÆ,A≥,A¥
} 

?>¡ = {MSTS,A≥,A¥
} 

?>ts = {MSTS,AÆ,A¶,A≥,A¥,Aµ} 

?>tt = {A≥} 

 

Table 4.2. List of transport adjustment sets used with the parametric g-formula transport 
estimator for each simulation. ?>ø includes any variables that differ between the two 
populations; ?>¿ includes all causes of Y; ?>¡ includes the =>?> and all causes of Y that 
don’t differ between the two populations; ?>ts includes the full set of variables; and ?>tt 
does not meet the s-admissibility criterion and serves as a negative control.  
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To fit the g-formula transport estimators, we first fit a conditional linear regression in the 

source population (> = 1) regressing Y on Z and all variables in the transport set including all 

possible interaction terms. We then used this model to predict the values of Y in the target 

population setting R	 = 1 and R = 0 and calculated the difference in mean outcomes under each 

treatment assignment.
38

 We used a non-parametric bootstrap with 1000 bootstrap samples to 

estimate the standard error.
87

  

We report the estimated bias, variance, mean square error (MSE), and confidence 

interval coverage for each transport set. All analyses were conducted using R version 3.5.2.
88

 

 
RESULTS 

 Across all 3 data-generating models, all transport sets that included the =>?> (and 

therefore met the s-admissibility criterion) were unbiased (Table 4.3). However, using the =>?> 

alone was not the optimal transport set in terms of MSE; ?>¿ had the lowest MSE across all 

data-generating models. Among the s-admissible sets (all except ?>tt), ?>ª had the highest 

MSE in each of the 3 data-generating models.  

Excluding variables that were causes of the outcome but did not modify the causal quantity of 

interest (AÆ and A¥) did not negatively affect the bias of the estimators, and including 

unnecessary variables that were not causes of the outcome and that did not differ between the 

populations (Aµ) did not increase the MSE compared to the MSTS alone. 

Because of the smaller standard deviations for =>?>,AÆ,	and A¶ in data-generating model 3, 

this model was most likely to produce practical positivity violations. However, the parametric 

models in the estimators were correctly specified and could therefore accurately extrapolate 

beyond the bounds of the source data, so these practical positivity violations did not induce bias 

in the transport estimators. Additionally, because the standard errors were smaller in the source 

population in this data-generating model compared to models 1 and 2, the estimates were 
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generally more precise. However, the pattern of relative performance between the transport sets 

differed in this data generating model. ?>¿, which included all causes of Y but no other 

unnecessary variables, performed substantially better than the other transport sets, while ?>ª 

and ?>ø	had markedly higher MSEs. 

 

DISCUSSION 

 The impact of including unnecessary variables in the parametric g-formula transport 

estimator varies depending on the type of extraneous variable that is included. As expected, 

excluding variables that cause the outcome but don’t modify the causal quantity of interest does 

not increase bias. However, including all causes of the outcome—regardless of whether the 

variable modifies the causal quantity of interest or varies between the populations—improves 

the MSE by reducing the standard error. Additionally, including variables that differ between the 

populations but don’t cause the outcome tends to increase the MSE. 

There are several practical implications uncovered by this study. When faced with a 

variable selection problem for transport, it’s best to focus on including as many causes of the 

outcome as possible. This is perhaps counterintuitive. Obvious differences between source and 

target populations are often the impetus for applying transportability methods in the first place, 

and these types of differences are often easier to detect. However, the strategy of including all 

variables that differ between two populations increases the chance that some variables that are 

not causes of the outcome will be included in the transport set, and the inclusion of these 

variables will likely increase the MSE of the estimators.  

Because we intended to highlight the impact of including different types of extraneous 

variables for the most common types of transport questions researchers are likely to face, we 

restricted our experiment to only include data-generating models with selection nodes on pre-

treatment variables, and we only evaluated the parametric g-formula transport estimator. Other 
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commonly used transport estimators include the inverse odds of selection weights and doubly 

robust targeted maximum likelihood transport estimators. We expect to find similar patterns 

across the different estimators, but future work should explore variable selection under other 

data-generating conditions and with other estimation approaches.  

 Our simulation experiment also only included correctly specified parametric models in 

the g-formula transport estimators. As a result, the estimates were unbiased in spite of the 

practical positivity violations in data-generating model 3. If the models used in the estimators are 

not correctly specified, there is no guarantee that the estimates would be unbiased. 

Based on our findings, a potential practical approach to variable selection for 

transportability would be to use the study data alone to determine what variables should be 

measured in target populations to transport the results. For example, after completion of a trial, 

researchers could conduct a careful analysis to identify all the characteristics that modified the 

effect of interest. Researchers looking to transport the trial’s results to a specific target 

population would then know what characteristics they would need to measure to do so. So long 

as the study measured all effect modifiers, this approach would ensure that the s-admissibility 

criteria is met and that any unnecessary variables included transport set (because they don’t 

differ between the populations) would improve the precision of the estimates. Of course, trial 

results can only be transported if they enroll populations that are heterogeneous with respect to 

the effect modifiers and if all those effect modifiers are measured. Future work should explore 

data-driven approaches for identifying optimal transport sets to further improve the accuracy 

and precision of transport estimators. 
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CONCLUSIONS 

The three studies described within this dissertation demonstrate how causal 

transportability can improve how results of clinical trials are used to inform implementation of 

new interventions. The first study found that population compositional differences between 

transgender women and cisgender men in iPrEx were sufficient to explain differences in the 

effectiveness of randomization to the active arm of the trial. The second study demonstrated 

how to generate target-specific guidance about how best to implement new interventions by 

transporting subgroup analyses of randomized trials to each target population. The third study 

considered how best to select variables for transport estimators to maximize the performance of 

the parametric g-computation transport estimator.    

Overall, causal transportability theory provides a rigorous solution to a wide range of 

previously intractable problems surrounding external validity of studies. However, there are 

important challenges in implementing these methods. First, transportability requires individual-

level measurements of the transport adjustment set in both the study and target populations. 

This means that trials need to consider what characteristics are likely to impact the 

effectiveness of the intervention under study prior to collecting data. Additionally, it may require 

that these characteristics are measured in a representative sample of each target population. 

Another challenge in implementing transportability is that as time passes, it may become less 

possible to account for all the relevant differences between populations. This means that 

transporting results of a trial should occur as quickly as possible to maximize the chance that 

the s-admissibility criteria have been met. Overall, for transportability to be most useful, 

researchers need to plan on implementing these tools early in the design of the study so that 

they can be used as quickly as possible. 

In the pursuit of maximizing external validity, many researchers  have championed 

pragmatic trials as a means of evaluating the effectiveness of implementation strategies in usual 
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care settings.
89

 However, in the face of heterogeneous effects of implementations, the quest for 

a single effect that applies universally is hopeless even if the trial design conforms to all the 

established features of a pragmatic trial (e.g., no recruitment restrictions, flexible interventions). 

So, unless the trial population is a random sample of all future target populations (an 

implausible concept given that even in the same location, the data generating process may 

evolve over time), even results of pragmatic trials will need to be formally transported to produce 

evidence that is relevant for different settings (or the same setting in the future). However, to 

avoid altering standard care practices, pragmatic trials often minimize the number of 

measurements taken over the course of the study, but formal transport requires individual-level 

measurements of variables that modify the effectiveness of the implementation strategy. By 

minimizing the number of characteristics measured, pragmatic trials preclude the ability to 

transport their results to external settings and are undermining their own goals of generating 

study results that could be applied to a range of target populations. Instead, if the objective of 

pragmatic trials is to produce more generalizable knowledge, it is essential that these studies 

understand and measure the mechanisms and modifiers of the implementation strategies being 

evaluated. 

Overall, this dissertation demonstrates a few areas in which transportability can greatly 

improve implementation of new interventions. There remains much work to be done in this area, 

and future researchers should consider how the transportability framework might affect their 

approach to designing and analyzing randomized trials.  
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