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Abstract

Brain-computer interface technology has made significant
progress in the field of intelligent human-computer interaction.
Among them, electroencephalography based emotion recogni-
tion, as one of the important research directions in emotional
brain-computer interaction, has received widespread attention.
However, most previous studies were limited to feature ex-
traction of global brain networks and local brain areas in the
EEG spatial domain but ignored the channel-level dynamic
features of EEG. To address this limitation, we proposed a
Channel-Adaptive Graph Convolutional Network with Tempo-
ral Encoder (CAG-TEN). In CAG-TEN, the channel-adaptive
graph convolutional module assigns a unique parameter space
to each channel, focusing on channel-level dynamic features.
Additionally, the temporal encoder module, inspired by the En-
coders concept, is used to explore long-term temporal depen-
dencies in EEG sequences. We conduct rigorous comparative
experiments of CAG-TEN against several representative base-
line models on the SEED dataset and achieve optimal perfor-
mance.

Keywords: Emotional brain-computer, Emotion Recognition,
EEG, Channel Adaptative, Temporal Encoder

Introduction
Emotions, as psychological states closely related to daily
life, are the inner expressions of an individual’s perception
and feelings (Panksepp, 2005; Vanderlind, Millgram, Baskin-
Sommers, Clark, & Joormann, 2020; Wang et al., 2022). In
recent years, the rapid development of brain-computer in-
terface (BCI) technology has propelled human-computer in-
teraction into a new phase. This revolutionary technology
no longer requires additional physical movements like tradi-
tional human-computer interactions (Fallman, 2003; Bos et
al., 2010), successfully establishing a direct communication
bridge between the brain and computer devices. However, ac-
curately and efficiently recognizing human emotions remains
a key challenge researchers face. Typically, the subjects of
emotion recognition studies can be divided into physiologi-
cal signals (such as electroencephalography (EEG) and elec-
trocardiogram) and non-physiological signals (such as facial
expressions and body language) (Li et al., 2022; Canal et al.,
2022). Compared to non-physiological signals, physiological
signals offer significant advantages such as spontaneity and
authenticity. Therefore, emotion recognition based on physi-
ological signals has become mainstream over the past decade.

Corresponding author: Panfeng An, Wenying Duan, Shengbo
Chen and Gang Luo.

In this paper, we have chosen EEG as our research subject and
conducted the following studies.

From machine learning algorithms to deep learning net-
works, researchers have come up with a myriad of mod-
eling solutions for EEG-based emotion recognition(Jenke,
Peer, & Buss, 2014; Tzirakis, Trigeorgis, Nicolaou, Schuller,
& Zafeiriou, 2017). Bazgir et al.(Bazgir, Mohammadi, &
Habibi, 2018) utilized Discrete Wavelet Transform (DWT)
techniques to manually extract a limited amount of channel
and frequency band information from raw EEG data, fol-
lowed by the application of Support Vector Machine (SVM)
and K-Nearest Neighbors (KNN) classifiers for emotion clas-
sification. Tao et al. (Tao et al., 2020) targeted the spatio-
temporal domain of EEG and proposed a cascaded Chan-
nel Attention and Self-Attention Network (ACRNN) based
on Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs). This work eliminated the pro-
cess of manual feature extraction, achieving end-to-end emo-
tion classification. With the deepening of EEG data research
and advancements in artificial intelligence technology, ear-
lier simple algorithms and networks are increasingly reach-
ing performance bottlenecks (Yang, Han, & Min, 2019). This
indicates the need for designing more complex and focused
models to adapt to various EEG-based emotion recognition
scenarios.

Graph Convolutional Networks (GCNs) are often used to
capture global dependency correlations in node spaces due to
their inherent advantage of a global perception field (Kipf &
Welling, 2016; S. Zhang, Tong, Xu, & Maciejewski, 2019;
Manessi, Rozza, & Manzo, 2020). Additionally, GCNs have
been widely applied in data domains of non-Euclidean spaces
such as knowledge graphs and social networks. As EEG
data is typically non-Euclidean, GCNs are commonly em-
ployed to extract key features from the spatial domain of EEG
data. Song et al. (T. Song, Zheng, Song, & Cui, 2018) in-
troduced a Dynamic Graph Convolutional Neural Network
(DGCNN) that dynamically learns global dependencies in the
EEG spatial domain by randomly initializing a custom ad-
jacency matrix. Ultimately, DGCNN achieved good perfor-
mance in emotion classification. Gu et al.(Gu, Zhong, Qu,
Liu, & Chen, 2023) designed a Domain-level Graph Gen-
erative Adversarial Network (DGGN), which uses a Graph
Convolutional Network (GCN) to extract features in the spa-
tial domain and synchronously input sample data into a Long
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Short-Term Memory network (LSTM) to learn temporal do-
main features. The outputs are then adversarially trained with
a discriminator. DGGN also demonstrated excellent perfor-
mance in classification. These approaches can be summa-
rized as using GCN in the EEG spatial domain to extract dy-
namic features, followed by the targeted design of additional
modules to extract deeper features.

Our main contributions in this paper are summarised as fol-
lows:

• We propose a spatio-temporal model for EEG emotion
recognition named CAG-TEN. CAGCN is designed to
extract global dynamic features in the spatial domain
of EEG data while ensuring attention to channel-level
features, addressing the insufficiencies in spatial domain
exploration that exist in previous work. Additionally, we
concurrently design a TE network tailored for temporal
sequence EEG data to extract temporal domain informa-
tion.

• We introduce a data augmentation method called Ran-
dom Label Recombination. This method not only ex-
pands the quantity of the training set but also enhances
the model’s robustness and generalization.

• We conduct comprehensive and rigorous comparative
experiments between CAG-TEN and several represen-
tative baseline models, effectively demonstrating the ad-
vancement of CAG-TEN.

Related work
GCNs work in EEG emotion recognition
In the early applications of GCNs in EEG emotion
recognition(T. Zhang, Wang, Xu, & Chen, 2019; Zhong,
Wang, & Miao, 2020), a pre-defined adjacency matrix was
commonly used to represent the spatial relationships between
EEG channels. However, these pre-defined matrices are gen-
erally created through manual calculations, such as measur-
ing the 3D spatial distances between electrode points or com-
puting the similarity between channel features (Nie, Ren,
Nie, & Zhao, 2020). This method often adheres too closely
to human subjective judgment and fails to comprehensively
cover the spatial relationships between channels. Addition-
ally, the relationships among EEG channels are not static, yet
pre-defined adjacency matrices lack this dynamic adaptabil-
ity. Subsequent research (T. Song et al., 2018) introduced a
dynamically learning GCN, which replaced the pre-defined
adjacency matrix with a custom adjacency matrix that could
be continuously updated during the training iterations. This
improvement eliminated the subjective biases introduced by
manual pre-definition and also enabled the model to adapt
to variations in channel relationships across different sample
data. However, the custom approach often relies heavily on
the initialization of the adjacency matrix, which can lead to
issues such as exploding or vanishing gradients during the
training process. Moreover, previous works utilizing GCNs
in the spatial domain of EEG data have primarily focused on
exploring either global brain networks or specific local brain

regions (clusters of channels located in particular scalp areas).
However, these approaches often overlook the channel-level
features inherent in the EEG spatial domain, which implies
that some spatial information may be lost during the model
learning process.

Shortcomings in GCNs work
From the perspective of a single channel, the operation of
a GCN can be seen as transforming the features of a single
channel through a graph convolution computation that applies
weights and then produces an output. However, this also im-
plies that all channels share the same set of parameters. In
this shared-parameter pattern, GCN is more focused on ex-
tracting a prominent global feature pattern from all channel
features, which overlooks the unique feature pattern that may
exist within each channel individually. For instance, in two
different channels, one might reflect features related to emo-
tions, while the other could indicate features related to brain
disorders. In such cases, the custom adjacency matrix ap-
proach of GCNs may fail to fully capture discriminative fea-
tures that closely represent real emotional states. Therefore,
in this paper, we maintain a unique parameter space for each
channel to conduct channel-specific feature extraction, allow-
ing for more tailored and accurate modeling of each channel’s
characteristics.

Datasets
To validate the effectiveness of our model, we used the SJTU
Emotion EEG Dataset (SEED) (Zheng & Lu, 2015; R.-
N. Duan, Zhu, & Lu, 2013) provided by the Brain-like Com-
puting and Machine Intelligence Laboratory team as our re-
search subject. The SEED dataset was collected from 15 sub-
jects (7 males and 8 females), and in this paper, we only used
the EEG data of each subject.

Method
Overview
In this section, we first outline the EEG emotion recognition
framework of the CAG-TEN model, as illustrated in Figure
1. After preprocessing the EEG data, we elaborate in detail
on the construction of the CAGCN and TE modules within
the CAG-TEN model. Finally, we list several details of the
CAG-TEN model during the training process.

Channel adaptive graph convolution
Generally, nearly all graph convolutional methods can be
summarized by the following nonlinear function (Wu et al.,
2019):

X̂ i+1 = f
(
X i,A

)
. (1)

In this case, a batch of data samples X0 ∈ RB×W×C×F and
an adjacency matrix A ∈ RC×C serve as the initial inputs for
the convolution function f . The only difference between dif-
ferent graph convolutional methods lies in the construction of
the function f and the adjacency matrix A. Therefore, we will
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Figure 1: (a) The pipeline of the proposed CAG-TEN. (b) The CAGCN branch, which learns dynamic feature information in
the spatial domain of DE features from both channel-level and global perspectives, then outputs to the next branch for further
learning. (c) The TE branch, where the output from the CAGCN is fed into Encoders in a sequential format to learn long-term
dependencies within the sequence samples. The subfigures on the left and bottom right provide explanations of some units
within the CAG-TEN model.

introduce the Channel Adaptive Graph Convolution based on
Equation 1.

Since GCN primarily focus on the interdependencies of
channel features in the spatial domain, to provide a clearer
explanation, we have selected representative GCN applica-
tion models in the field of EEG emotion recognition, such as
DGCNN, RGNN (T. Song et al., 2018; Zhong et al., 2020).
In these models, a single layer of GCN applied to the spatial
domain can be defined as:

X̂ = σ

((
IN +D− 1

2 AD− 1
2

)
XW +b

)
. (2)

In the equation, IN represents the identity matrix for the
self-connections of all nodes. D denotes the degree matrix.
W ∈ RF×O is the trainable parameter matrix in graph convo-
lution, and b is the bias term. σ(·) is the activation func-
tion. In Equation 2, multiplying A by D− 1

2 on both sides
can prevent unfair weighting between nodes with high de-
grees and those with low degrees towards their neighboring
nodes, thereby keeping the model’s variance within a control-
lable range. However, this also introduces additional compu-
tational between matrices. In the following content, we will
improve on this basis.

While such models may capture inter-channel correlations
to some extent, their reliance on prior knowledge of graph
structures could limit their capabilities, as many relation-
ships in the brain are implicit and difficult to preset, and
various types of spatial relationships coexist simultaneously
(W. Duan, He, Zhou, Thiele, & Rao, 2023). Additionally,
due to the complexity of information in the brain, significant
differences may exist between spatial adjacent channels. In-
spired by the concept of adaptive dependency matrices (Bai,

Yao, Li, Wang, & Wang, 2020), We utilize channel-adaptive
graph convolutions to learn spatial correlations as well as
channel differences in the brain.

Therefore, in our approach, we prioritize assigning a
unique parameter space to each channel (node). Initially,
we transform the trainable parameter matrix W ∈ RF×O into
W ∗ ∈ RC×F×O, where C represents the number of channels.
Thus, each channel is provided with its own dedicated param-
eter space. However, if C is too large, the parameter W ∗ also
faces the issue of being too huge to optimize, which could
lead to overfitting. Therefore, we apply matrix decomposi-
tion to W ∗ to solve this issue (Bai et al., 2020).

W ∗ = EgWg (3)

Eg ∈ RC×d is called the channel-embedding matrix, where
d is the embedding dimension, and d ≪ C. Wg ∈ Rd×F×O

is known as the shared parameter pool. This process can be
interpreted as Eg learning a specific set of feature patterns
from a vast candidate set Wg, thereby gaining insights into
the dynamic features of each channel. This is one of the core
idea of our proposed channel-adaptive concept. The same
operation can be applied to b as well. Therefore, our design
of assigning a parameter space to each channel, integrated
with GCN, can be represented as follows:

X̂ =
(

IN +D− 1
2 AD− 1

2

)
XEgWg +Egbg (4)

Furthermore, the predefined adjacency matrix A often leads
to spatial graphs that do not comprehensively cover the in-
terdependencies between nodes due to its overly intuitive na-
ture, and without appropriate prior knowledge, the predefined
A generally lacks universality for different graph tasks. To
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solve this issue, we designed EA ∈ RC×da , an embedding ma-
trix, where da represents the embedding dimension. This
is another core idea of our proposed channel-adaptive con-
cept. We infer the implicit interdependencies between every
pair of channels in the data by calculating the similarity be-
tween EA and ET

A . Additionally, instead of directly generating
D− 1

2 AD− 1
2 , we have applied the ReLU function and so f tmax

function sequentially to normalize EA ∗ET
A , directly produc-

ing D− 1
2 AD− 1

2 . This design effectively saves the redundant
and unnecessary computational overhead mentioned earlier
during iterative training. Therefore, the symmetric normal-
ization of the adjacency matrix A can be represented as:

D− 1
2 AD− 1

2 = so f tmax
(
ReLU

(
EA ∗ET

A
))

(5)

Finally, we have refined the concept of channel adaptivity
by setting Eg = EA. By making improvements to the classic
GCN. we have obtained the complete representation of the
CAGCN module:

X̂ =
(
IN + so f tmax

(
ReLU

(
EgET

g
)))

XEgWg +Egbg (6)

Temporal encoder
After obtaining the output X̂ ∈ RB×W×C×O from the CAGCN
module, we synchronously designed the TE module to learn
the temporal domain information of EEG data. Prior to this,
we reshape X̂ into X̄ ∈ RB×W×I , where I = N ×O, for the TE
module.

Unlike the spatial domain of EEG data, the sequential na-
ture and historical dependencies in the temporal domain are
particularly prominent. During the collection of each sub-
ject’s emotional EEG, the temporal information exhibits clear
characteristics such as duration and intervals. Moreover, the
current state’s temporal information of a subject is often influ-
enced by previous states, showing significant sequential de-
pendencies. Therefore, learning from the temporal domain
information can be simply viewed as a sequence modeling
problem. Inspired by (Vaswani et al., 2017), based on En-
coders, we designed a Temporal Encoder specifically tailored
for EEG data to learn the temporal information of EEG.

First, the EEG data in the form of a sequence will be fused
with position coding information in the sample by a posi-
tion encoder in advance. This operation allows TE to learn
the pre-arranged position information between sequences on
a basis for subsequent training. This is also one of the rea-
sons for the essential difference between TE and traditional
sequential networks because TE can have a global perspective
of all sequences and focus on and mine the truly important in-
formation in the sequence in parallel like the human attention
mechanism. Subsequently, the EEG data will enter Encoders
composed of multiple encoder units connected in series for
attention learning. Each encoder is mainly composed of a
multi-head self-attention (MHA) and feed-forward network.
The process of MHA can be expressed as:

MHA(Q,K,V ) =Concat (head1, ...,headh)W O (7)

In the MHA process, Q, K, and V serve as the inputs, rep-
resenting the query, key, and value vectors of the EEG data,
respectively. W O is the parameter matrix for the linear trans-
formation in MHA. Concat(·, ..., ·) is the concatenation func-
tion used for combining the outputs of multiple heads, and
the i-th head, represented as headi, is defined as:

headi = Attention
(

QW Q
i ,KW K

i ,VWV
i

)
(8)

Please note that W Q
i , W K

i , and WV
i are the parameter ma-

trices used for the linear transformations of the vectors Q, K,
and V respectively. Subsequently, the transformed Q, K, and
V serve as inputs for the scaled dot-product attention func-
tion, denoted as Attention(). The computation process for
scaled dot-product attention can be represented as:

Attention(Q,K,V ) = so f tmax
(

QKT
√

dk

)
V (9)

In this case, dk is a hyperparameter.
√

dk acts as a scaling
factor, ensuring that the self-attention scores are maintained
within a suitable range. This scaling helps improve the stabil-
ity and learning effectiveness of the model.

Finally, to enhance the model’s nonlinear fitting capabil-
ity, we introduce more flexibility and complexity by adding
a layer of feed-forward network after each MHA output se-
quence. After passing through N encoder units, we obtain the
final output from the Temporal Encoder (TE).

Experiments
In this section, we first describe the experiment setup and
then introduce a data augmentation method specifically de-
signed for EEG data, named Random Label Recombina-
tion. To thoroughly evaluate our proposed model, we or-
ganized experiments from both within-domain and cross-
domain perspectives, which include subject-dependent and
subject-independent experiments. We then conducted a com-
prehensive analysis of the results from both types of experi-
ments. In terms of comparative studies, we selected four rep-
resentative models that have emerged in recent years in the
field of EEG emotion recognition as baseline models. Ad-
ditionally, we employed two widely used evaluation metrics
for our analysis: Test Accuracy (ACC) and Standard Devia-
tion (STD). Finally, we conducted an ablation study on the
CAG-TEN and provided visualizations of CAG-TEN’s train-
ing process as experimental support for this section.

Experiment setup
During the training process of the model, we adopt the cross-
entropy loss function to measure the error between the true
labels and the predicted results and use the Adam optimizer
to update the model parameters during the training iterations

6017



to minimize the loss function. In addition, in a single ex-
periment, we test the model after each epoch of training and
record the test accuracy of the current epoch of training. In
the list of test accuracy rates for a single experiment, we will
use the item with the highest test accuracy rate as the final test
result of the single experiment. Detailed statistical results can
be found in our experimental protocol

Data augmentation
In subject-dependent experiments, the limited EEG data col-
lected from subjects often leads to overfitting. Moreover,
considering the robustness and generalizability of the model,
the sufficiency of the data volume is also a critical issue
that can limit model performance. Inspired by the work in
(Lotte, 2015), we designed the Random Label Recombination
method to mitigate this problem. Through this method, we
successfully doubled the original data volume. Before train-
ing the model, we extracted a batch of DE features from the
training set, assuming a size of 72. Then, based on the la-
bel categories (three categories), we attempted to obtain an
equal batch size of 72 augmented DE features from the train-
ing set (24 per category). For example, if the current label
category is positive, we first locate all positive samples in the
training set and divide the feature dimension (the last dimen-
sion) of these positive samples into Fs equal parts (assuming
Fs = 5). Keeping the original order of feature dimensions, we
randomly select an equal amount of features in a sequential
index order for recombination. Importantly, the augmented
samples produced by this process do not repeat any samples
already in the training set. Finally, we concatenated the ini-
tially extracted DE features with the enhanced DE features
and used them as the training data input to the model.

Subject-dependent experiment
Subject-dependent experiments focus solely on the EEG data
of the current subject, meaning both the training and testing
sets are derived from the same subject. This experimental
approach aims to assess performance specific to the subject,
providing a personalized evaluation that better adapts to the
subject’s physiological characteristics and emotional expres-
sion patterns. To objectively evaluate the CAG-TEN model,
we employed a five-fold cross-validation method. Firstly, we
divided the subject’s 15 emotional labels equally into five
parts, each containing all three emotional categories (posi-
tive, neutral, negative). We then rotated through these five
parts, using four as the training set and the remaining one as
the testing set, repeating this process five times. For a fair
comparison, the same type of DE features were used as the
original input across all models. Table 1 lists the performance
of each model in the subject-dependent experiments.

From Table 1, it can be observed that all the baseline mod-
els achieved high test accuracies, particularly DGGN and
Comformer, which are roughly on par 94.7%. Compared
to other models, CAG-TEN exhibited a test accuracy lead
of 6.87%, 5.13%, 0.61%, and 0.7% respectively, while also
maintaining a lower standard deviation. These results high-

Table 1: subject-dependent experiments in SEED

Model Acc Std
DGCNN(T. Song et al., 2018) 88.53% 9.6

ACRNN(Tao et al., 2020) 90.27% 10.3
Conformer(Y. Song et al., 2022) 94.7% 9.7

DGGN(Gu et al., 2023) 94.79% 8.3
Ours 95.4% 9.3

light the significant advancements of CAG-TEN in emotion
recognition tasks. Specifically, DGCNN relies solely on a
custom adjacency matrix in the EEG spatial domain for dy-
namic learning, neglecting the dynamic features at the chan-
nel level within the spatial domain, and also lacks a pro-
cess for learning temporal domain information. ACRNN em-
ploys a CNN network enhanced with channel attention scores
within the EEG spatial domain. However, due to the limited
receptive field of CNNs, they cannot focus on the global cor-
relations of features and also fail to learn dynamic features at
the channel level. Similarly, DGGN overlooks the dynamic
features at the channel level from the EEG spatial domain, but
it significantly enhances the spatio-temporal representation
of subject samples through generative adversarial learning.
Conformer uses the Encoders(Vaswani et al., 2017) network
from the Transformer architecture to capture temporal infor-
mation but still lacks consideration of dynamic features at the
channel level in the EEG spatial domain. Overall, CAG-TEN
demonstrates a deeper capability for exploring information in
both the spatial and temporal domains, and its focus on dy-
namic features at the channel level within the EEG spatial
domain is crucial and significant.

Subject-independent experiment
In contrast, subject-independent experiments take into ac-
count the EEG data of all subjects in the dataset. This exper-
imental setup aims to evaluate the model’s generalizability
and universality in recognizing emotional states across dif-
ferent subjects, and the model does not need to be trained
specifically for unknown subjects, making it more suitable
for practical applications. To fully assess the model’s gener-
alizability, we employed a leave-one-out cross-validation ap-
proach. Likewise, in the comparative experiments, the same
input data were used for all models. Table 2 lists the perfor-
mance of each model in the subject-independent experiments.

From Table 2 we can see that since the individual differ-
ences under cross-domain conditions cannot be ignored, the
overall test accuracy of the subject-independent experiment
is lower than that of the subject-dependent experiment. But
compared to other baseline models, CAG-TEN still maintains
its lead. And on the premise of having a large amount of sub-
ject data, the stability in CAG-TEN is also the best. This is
because assigning a unique parameter space to each channel
can better adapt to the differences between different subject
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Table 2: subject-independent experiments in SEED

Model Acc Std
DGCNN(T. Song et al., 2018) 79.95% 10.02

ACRNN(Tao et al., 2020) 80.27% 13.32
Conformer(Y. Song et al., 2022) 86.39% 6.32

DGGN(Gu et al., 2023) 83.84% 6.92
Ours 87% 5.56

samples, and the complexity of the model can also be en-
hanced by adjusting the depth d of the parameter space, and
the model can also accommodate more information and de-
tails. Overall, CAG-TEN’s generalization in cross-domain
context is promising.

Conclusion
In this paper, we introduce a spatio-temporal model for EEG-
based emotion recognition, named CAG-TEN. The CAG-
TEN consists of two core modules: the CAGCN (Channel
Adaptive Graph Convolutional Network) and the TE (Tem-
poral Encoder). In the spatial domain, we offer a novel graph
convolutional perspective by designing the CAGCN to fo-
cus on exploring channel-level dynamic features of EEG data
while also addressing the extraction of global dynamic fea-
tures. This represents the first application of channel-adaptive
concepts in the domain of emotion recognition that we are
aware of. We restructured and decomposed the traditional
GCN parameter matrix to obtain two key inputs: the chan-
nel embedding matrix Eg and the parameter pool matrix Wg,
which are used to explore the channel-level dynamic features
of EEG data. Additionally, we designed the adjacency ma-
trix A as Eg × ET

g to explore global dynamic features. In
the temporal domain, inspired by the Encoders concept from
the Transformer architecture, we designed the TE to per-
form temporal sequence modeling on the outputs from the
CAGCN. TE possesses significant advantages in global par-
allel computation and the exploration of long-term dependen-
cies, playing an indispensable role in the exploration of se-
quential features. Moreover, we also designed a data augmen-
tation method called Random Label Recombination, which
doubles the training samples. Finally, comparative experi-
mental results show that CAG-TEN has higher test accuracy
and stability compared to the other four baseline models. It
is worth discussing whether CAG-TEN, as a synchronized
spatio-temporal model, also possesses similar decoding per-
formance in other EEG tasks, which will be one of the themes
of our future work.
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