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There is an urgent need to identify biomarkers for diagnosis and disease activity
monitoring in rheumatoid arthritis (RA). We leveraged publicly available microarray gene
expression data in the NCBI GEO database for whole blood (N=1,885) and synovial
(N=284) tissues from RA patients and healthy controls. We developed a robust machine
learning feature selection pipeline with validation on five independent datasets culminating
in 13 genes: TNFAIP6, S100A8, TNFSF10, DRAM1, LY96, QPCT, KYNU, ENTPD1,
CLIC1, ATP6V0E1, HSP90AB1, NCL and CIRBP which define the RA score and
demonstrate its clinical utility: the score tracks the disease activity DAS28 (p = 7e-9),
distinguishes osteoarthritis (OA) from RA (OR 0.57, p = 8e-10) and polyJIA from healthy
controls (OR 1.15, p = 2e-4) and monitors treatment effect in RA (p = 2e-4). Finally, the
immunoblotting analysis of six proteins on an independent cohort confirmed two proteins,
TNFAIP6/TSG6 and HSP90AB1/HSP90.

Keywords: rheumatoid arthritis, biomarker, gene expression, machine learning, synovium, blood
INTRODUCTION

Rheumatoid arthritis (RA) is a systemic inflammatory condition characterized by a symmetric and
destructive distal polyarthritis. Undiagnosed and untreated, RA can progress to severe joint damage,
involve other organ systems and predispose individuals to cardiovascular disease (1, 2). While our
understanding of disease pathogenesis has greatly improved and the number of available, effective
therapeutics has significantly increased, there remains significant barriers to caring for patients with
org June 2021 | Volume 12 | Article 6380661
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RA, and they continue to suffer from the morbidity and mortality
associated with the disease. There is an urgent need to develop
objective biomarkers for the early diagnosis and prompt
initiation of disease-modifying therapy during the so-called
“window of opportunity” (3–6). Additionally, clinicians need
tests to help accurately assess disease activity or treatment targets
in order to adjust therapy appropriately. Identification of
biomarkers would greatly add to clinicians’ existing toolset
used to evaluate patients with RA, helping to improve
outcomes and alleviate the suffering caused by this
prevalent disease.

Over the past decade, advances in genomic sequencing
technology have greatly contributed to our understanding of
inflammatory diseases and informed development of effective
therapeutics. Transcriptomics provides a lens into the specific
genes over- or under-expressed in a disease yielding insights into
cellular responses. Given the numerous transcriptomic datasets
that have been generated and made publicly available, there are
now opportunities to combine these datasets in a meta-analytic
fashion for unbiased computational biomarker discovery. Meta-
analysis is a systematic approach to combine and integrate
cohorts to study a disease condition which provides enhanced
statistical power due to a higher number of samples when
combined. Additionally, it provides an opportunity for
leveraging all the disease heterogeneity combined from
multiple smaller studies across diverse populations creating a
more robust signature and better recognition of direct disease
drivers as well as disease subtyping and patient stratification.
Moreover, integrating datasets generated from the multiple
target tissues within a given disease further strengthens the
associations identified (7–13). This approach has been
successfully applied to the study of antineutrophil cytoplasmic
antibody (ANCA)-associated vasculitis (14), dermatomyositis
(15) and systemic lupus erythematosus (9). These large
datasets also present an opportunity to apply advanced
machine learning techniques that were not previously feasible
computationally, allowing for interrogation of the data with new
and unbiased approaches.

Mult iple studies have attempted to identi fy RA
transcriptomic signatures in blood (13, 16–18) and in synovial
tissue (19, 20) separately or in cross-tissue analysis (21, 22). The
tissue-specific studies have found very few overlapping signals.
The integrative meta-analysis studies combined a few datasets
from each tissue (21, 22) to identify an overlap of dysregulated
genes and to recognize similarities and differences in disease
pathways in both tissues. While this type of approach allows
better understanding of the disease, a corresponding set of
biomarkers is often redundant and requires extensive
prioritization analysis and validation. Thus, more rigorous
approaches for biomarker search with a built-in prioritization
procedure are needed.

In this study, we leveraged publicly available transcriptomic
datasets generated from microarray and RNA sequencing (RNA-
seq) platforms from over 2,000 samples from whole blood and
synovial tissue of patients with RA. After combining these
datasets using a well-described meta-analytic pipeline (23) and
Frontiers in Immunology | www.frontiersin.org 2
describing the expression pathways and cell types present in RA
tissues, we developed and applied a robust machine learning and
feature selection approach to identify unique and independent
biomarkers which were subsequently refined and validated on
test data. We then evaluated the diagnostic utility of this set of
biomarkers and the correlation with disease activity measures to
inform future clinical studies. The development of an effective
blood test for the diagnosis and monitoring of RA can add
valuable information to the physician’s assessment and help
inform decision-making to improve the morbidity and quality
of life for patients with RA.
MATERIALS AND METHODS

Discovery Data Collection and Processing
We carried out a comprehensive search for publicly available
microarray data in the NCBI Gene Expression Omnibus (24)
(GEO) database (http://www.ncbi.nlm.nih.gov/geo/) for whole
blood and synovial tissues in rheumatoid arthritis and healthy
controls using the keywords “rheumatoid arthritis”, “synovium”,
“synovial”, “biopsy” and “whole blood”, among organisms
“Homo Sapiens” and study type “Expression profiling by
array” (Figure 1A) by March 2019. Datasets were excluded
when samples were poorly annotated or run on platforms with
small numbers of probes. This search yielded 13 synovial
datasets, which included 257 biopsy samples from subjects
with RA and 27 from healthy controls obtained during joint or
trauma surgeries (Supplementary Table 1). We identified 14
whole blood datasets with 1,885 samples: 1,470 RA patients and
415 healthy controls (Supplementary Table 1).

Raw data was downloaded and processed using R language
version 3.6.5 (25) and the Bioconductor (26) packages
SCAN.UPC (27), affy (28) and limma (29). Processing steps
included background correction, log2-transformation and
intra-study quantile normalization (Figure 1A). For the
Affymetrix platform, we used the R package SCAN.UPC (27)
which is a single-array method that normalizes samples
independently from others in a dataset and has been shown to
be robust to presence of any possible outliers (27). The mapping
between probes and Entrez gene IDs was performed using
custom CDF files from the BrainArray resource (30) version
22. For the Agilent and Illumina platforms, the non-normalized
raw data were downloaded and processed using the neqc()
function with default parameters within the limma R package
(29) that utilizes negative control genes or gene detection
significance. For datasets with no negative control probes and
detection p-values available, the similar processing steps were
performed by applying the backgroundCorrect() function from
the limma package using the mle normexp method with offset 16
followed by log2 transformation and quantile normalization. The
probe-gene mapping was implemented using the information
from the biomaRt database (31) or GPL files from GEO. The data
merging was followed by normalization across batches using
ComBat within the R package sva (32). The dimensionality
reduction plots before and after normalization are shown in
June 2021 | Volume 12 | Article 638066
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Supplementary Figure 1. To perform an additional evaluation of
the batch correction on the discovery datasets, we split the
corrected and uncorrected data into training and testing sets
with a 2:1 ratio and trained a Random Forest classifier on the first
20 principal components to predict a dataset of origin.
Multinomial logistic loss (mLogLoss) metric was used to
evaluate the prediction performance. The mLogLoss results for
prediction of batch corrected synovium data were 2.78 in
contrast to 0.37 in uncorrected data, and 1.06 and 0.01 in,
respectively, batch corrected and uncorrected blood data.
Additionally, we performed a correlation analysis of the first
10 principal components with batch categories (Supplementary
Figure 1I) using Kruskal-Wallis test. We found no statistical
significance in correlation with a batch in synovium and
dramatic improvement in blood compared to the original data
(Supplementary Figures 1J, K).

After merging studies, the total number of common genes was
11,057 in synovium and 14,596 in whole blood. The code for the
preprocessing steps is available here: https://github.com/
drychkov/RA_biomarkers.

Validation Data Collection and Processing
Five additional datasets from GEO were identified and
downloaded: synovium microarray and RNA-seq, PBMC
microarray and RNA-seq and whole blood microarray datasets
(Supplementary Table 1). Microarray data was processed as
described above but separately from the discovery data. RNA-seq
data from GSE89408 were downloaded in a form of processed
Frontiers in Immunology | www.frontiersin.org 3
data of feature counts, which were normalized using the variance
stabilizing transformation function vst() from the R package
DESeq2 (33). RNA-seq data from GSE90081 were downloaded in
a processed form of Fragments Per Kilobase Million (FPKM)
counts, which were converted to Transcripts Per Kilobase
Million (TPM) counts followed by log2 transformation with
0.1 offset.

Differential Gene Expression
and Pathway Analysis
Differentially expressed genes were identified using a linear
model from the R package limma (29). To account for factors
related to gene expression, the imputed sex and treatment
categories were used as covariates. Treatment types were
categorized based on the drug class (Supplementary Table 2).
For 877 (40%) samples without sex annotations, sex was imputed
using the average expression of Y chromosome genes.
Significance for differential expression was defined using the
cutoff of FDR p-value < 0.05 and abs(FC) > 1.2. Pathway analysis
of differentially expressed genes was performed using the
package clusterProfiler (34) with the Reactome database. To
assess statistical significance of gene overlaps we computed p-
values using the hypergeometric test with 10,071 total,
background, number of genes.

Cell Type Enrichment Analysis
In order to estimate the presence of certain cell types in a tissue,
we leveraged the cell type enrichment analysis tool, xCell (35)
A B C

FIGURE 1 | Study overview. (A) Public data collection, processing and DGE analysis. (B) Feature selection pipeline. (C) Gene list validation on the independent
datasets. Introducing the RA Score as a geometric mean of validated genes and its association with clinical outcomes.
June 2021 | Volume 12 | Article 638066
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which computes enrichment scores for 64 immune and stromal
cells based on gene expression data. We limited our analysis to 53
types of stromal, hematopoietic and immune cells we expected to
be present in blood and synovium. The cell types with a detection
p-value greater than 0.2 taken as a median across all samples in a
tissue were filtered. Non-parametric Wilcoxon-Mann-Whitney
test with multiple testing correction with Benjamini-Hochberg
approach (cut-off 0.05) was used to assess significantly enriched
cell types in synovium and whole blood in RA compared to
healthy control subjects. The effect size of each cell type was
estimated by computing the ratio of the mean enrichment score
in RA patients over the mean score in healthy individuals.

Feature Selection Pipeline
The feature selection procedure was partially described by Perez-
Riverol et al. (36) and is represented in Figure 1B. First, for each
tissue, the data were split into training and testing sets in an 80:20
ratio with random sample selection and class distribution
preservation using the function createDataPartition() from the
R package caret (37). Within each training set, a set of significant
genes was identified using limma FDR p-value < 0.05. Pearson
correlation coefficient was computed with the case-control status
for each significant gene and those with r < 0.25 were filtered out.
For robustness and reducing gene redundancy, we computed
gene pair-wise correlations and removed genes with correlation
greater than 0.8. Next, we overlapped the gene sets from both
tissues and filtered out any genes differentially expressed in
opposite directions in synovium and blood. To monitor
statistical significance of gene overlaps we computed p-values
using the hypergeometric test. To evaluate each gene’s
performance in distinguishing RA from healthy samples, we
trained a logistic regression model per gene on a training set for
each tissue and tested on a testing set using area under receiver
operating characteristic (AUROC) curve as a performance
measure. By using the AUROC as final metric, we aimed to
use a complimentary approach starting with a traditional
method of differential expression (limma) which has a strong
biological interpretation and then making sure that it is used as a
starting point for the predictions that we have via the machine
learning approach, therefore they are not just based on accuracy
or predictive value.

We repeated these steps 100 times to minimize bias of a
random split into training and testing sets. From the resulting
100 gene sets, any gene that was found in each set in both tissues
was further assessed. The AUC performance of each gene was
averaged, and its standard deviation was calculated. We then set
the AUC threshold to 2/3 and applied this criterion to the testing
results to identify the genes with the best performance, the
feature selected (FS) genes.

Feature Validation and RA Score
To evaluate and confirm superiority of the set of the FS genes
over the set of the common DE genes, we trained machine
learning models on the discovery blood data with these two gene
sets and tested them on five separate independent datasets. As
some genes were not present in all sets, the gene sets were
reduced to the genes that were found in all five sets. To bring
Frontiers in Immunology | www.frontiersin.org 4
datasets to the same scale, we applied a z-scaling transformation
to both discovery and validation datasets. We used three
machine learning models: Logistic Regression, Elastic Net and
Random Forest, to compare the gene sets performance
using AUROC.

Next, to further validate the FS genes identified in our
pipeline, we trained a Logistic Regression model for each FS
gene individually on the discovery data and tested on the
validation sets (Figure 1C). Since the primary aim of the study
was to identify biomarkers for future clinical tests based on
blood, we used the discovery blood data for training the model.
AUROC was used as a performance measure. With the goal of
choosing the strongest features, the stricter threshold 0.8 of
averaged AUC on the validation datasets was chosen for
further gene selection. The selected genes were used to create
the RA Score, computed by subtracting the geometric mean
expression of the down-regulated genes from the geometric
mean expression of the up-regulated genes. By creating the RA
score based on the computation of geometric means, we were
aiming for better interpretability and ease of clinical application
of the findings. The thirteen RA Score panel genes were meant to
perform independently of each other, therefore the score would
still work if any of the genes failed in further validation analysis
or were unavailable in a clinical test.

Next, to assess the clinical value of the selected genes and the
RA Score, we identified datasets with samples that included
values for the disease activity score based on the 28 examined
joints (DAS28) (38). We computed the Pearson correlation
coefficients of the RA Score and expression levels of the RA
Score genes with DAS28. Eight datasets with both RA and
Osteoarthritis (OA) samples (Supplementary Table 1) were
used to evaluate the ability of the RA Score to distinguish RA
from OA. To report the summarized statistics as a combined p-
value, Fisher’s method implemented in the R package metap was
applied. The summarized odds ratio was computed by
bootstrapping. GSE74143 was used to test the difference in
RA Score between RA sub-phenotypes with and without
rheumatoid factor by applying Student’s t-test. GSE45876
and GSE93272 were used to test the RA Score difference
between treated and untreated RA patients via Student’s t-test.
Additionally, we leveraged 10 datasets to test the ability of the RA
Score to recognize polyarticular juvenile idiopathic arthritis
(polyJIA), an inflammatory arthritis similar to RA affecting
children under 16 years of age, by calculating the Odds Ratio
(Supplementary Table 1).

Immunoblot Analysis
Patients with RA were recruited at University of California San
Francisco Rheumatology Clinics. Blood samples and clinical
measurements were obtained at the time of enrollment.
Clinical measurements included Clinical Disease Activity Index
(CDAI), erosion status (presence vs. absence), rheumatoid factor
(positive vs. negative) and anti-cyclic citrullinated peptide (anti-
CCP) autoantibodies (positive vs. negative). Healthy controls
were recruited through local advertising and ResearchMatch
(39), a national health volunteer registry that was created by
several academic institutions and supported by the U.S. National
June 2021 | Volume 12 | Article 638066
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Institutes of Health as part of the Clinical Translational Science
Award (CTSA) program. Controls were matched to RA patients
by age, gender and race. Written informed consent was obtained
from all participants and Institutional Review Board approval
was obtained.

Frozen human PBMCs from 8 patients with RA (87.5% were
seropositive) and 7 healthy controls were thawed, washed,
resuspended in RPMI media. Those determined to have
viability >89% (ViCell Counter) were used to make lysates for
western blot. Cells were pelleted and then lysed by directly
adding 10% NP-40 lysis buffer to the final concentration of 1%
NP40 (containing inhibitors of 2 mM NaVO4, 10 mM NaF, 5
mM EDTA, 2 mM PMSF, 10 mg/ml Aprotinin, 1 mg/ml Pepstatin
and 1 mg/ml Leupeptin) as previously described (40). Lysates
were placed on ice and centrifuged at 13,000 g to pellet cell
debris. Supernatants were mixed with a 6X loading buffer
containing BME. Proteins were separated on 10% Bis-Tris gels
(Thermo Fisher) and transferred to Immobilon-P polyvinylidene
difluoride membranes (Millipore) via standard tank transfer
techniques. Primary staining was performed with the following
antibodies: TSG-6 (Santa Cruz Biotechnology: sc-377277, clone:
E-1), Protein S100A8/Calgranulin A (Santa Cruz Biotechnology:
sc-48352, clone: C-10), CD39 (MyBiosource: MBS2541905),
HSP90beta (Cell Signaling Technology: #5087), Ly96/MD-2
(Novus Biologicals: NB100-56655), TRAIL (Cell Signaling
Technology: #3219S). Membranes were blocked using a TBS-T
buffer containing 2% BSA and probed with primary antibodies as
described, overnight at 4°C. The following day, blots were rinsed
and incubated with HRP-conjugated secondary antibodies.
Horseradish peroxidase (HRP)-conjugated secondary
antibodies from Southern Biotech and blots were visualized
with SuperSignal ECL reagent or SuperSignal West Femto
maximum sensitivity substrate (Pierce Biotechnology) on
Chemi-Doc Image Lab station (Bio-Rad).

Each protein was measured on a set of two immunoblots and
normalized to the beta-actin level. In order to combine and
normalize measured protein amounts from both blots for further
analysis, we applied an empirical Bayes approach ComBat
implemented in R package sva (32). Each of two pairs of
control replicates were averaged. The Wilcoxon-Mann-
Whitney test was used to compare groups and unadjusted p-
values were reported.
RESULTS

Cross-Tissue Differential Expression and
Pathway Analysis Reveals Significant
Similarities on Gene and Pathway Levels
The differential gene expression analysis identified 1,389 genes
with 789 up-and 600 down-regulated genes in the synovium
(Supplementary Figures 2A, B and Supplementary Table 3)
and 155 genes with 110 up- regulated and 45 down-regulated
genes in the blood (Supplementary Figures 3A, B and
Supplementary Table 4). Out of 1,389 genes in synovium,
Frontiers in Immunology | www.frontiersin.org 5
there were 77 up- and 35 down-regulated genes not shared
with the blood data. Similarly, out of 155 genes in blood, there
were 20 up- and 5 down-regulated genes not shared with the
synovium data. The pathway analysis revealed that in both
tissues, up-regulated genes shared enrichments in innate
immune system, neutrophil degranulation, interferon signaling,
cytokine signaling, toll-like receptor (TLR) cascades, regulation
of TLR by endogenous ligand and caspase activation via extrinsic
apoptotic signaling pathways (Figure 2A, Supplementary
Figures 2D, E, 3D, E and Supplementary Tables 5, 6).
However, interferon gamma signaling, immunoregulatory
interactions between a lymphoid and non-lymphoid cell, PD-1
signaling were specific for synovium (Supplementary Table 5),
whereas apoptosis, programmed cell death, antiviral
mechanisms, caspase activation via death receptors in the
presence of ligand were specific for blood (Supplementary
Table 6). The down-regulated genes were commonly involved
only in the interleukin-4 and interleukin-13 signaling pathways
(Figure 2B and Supplementary Figures 2F, G, 3F, G). Some of
the pathways were not shared, suggesting the existence of distinct
underlying molecular mechanisms operating in tissues. For
example, signaling by interleukins, TCR signaling and MHC
class II antigen presentation pathways were specific only for
synovium (Supplementary Tables 5, 6). The latter was fully
consistent with our previous work demonstrating enrichment of
Nur77 – a specific marker of TCR signaling – in joint infiltrating
CD4+ T-cells, suggesting that CD4+ T-cells are recognizing
intra-articular antigen (40).

When evaluating the overlap between differentially expressed
genes in synovium and blood, there were 29 genes commonly up-
regulated: TNFAIP6, S100A8, MMP9, S100A9, IFI27, EVI2A, NMI,
BCL2A1, TNFSF10, LY96, SAMSN1, GPR65, DDX60, ISG15, MX1,
OAS1, IFI44, ENTPD1, IFIT3, CSTA, CLIC1, IFIT1, DOCK4, NAT1,
FAS, C1GALT1C1, CD58, COMMD8, TXNDC9; and 4 down-
regulated genes: S1PR1, TUBB2A, ABLIM1 and MYC (Figure 2C
andSupplementaryTable7, hypergeometric test p=3e-9).However,
the overlap of down-regulated genes did not meet statistical
significance (hypergeometric test p = 0.28, Figure 2D). The
common differentially expressed (DE) genes formed more distinct
clusters of RAand control samples for both synovium(Figures 2E, F)
and blood (Figures 2G, H) than all DE genes for these tissues
(Supplementary Figures 2A, B, 3A, B). To test this, we applied an
unsupervisedk-meansclassifieron thefirst twoprincipal components
computed from all DE, 33 overlapping and 33 random genes in both
synoviumand blood data.We evaluated the predicted clusters using a
fewmetrics for classification. In synovium, the clusterswere identified
for DE genes with Sens = 1, Spec = 0.78 and Prec = 0.31, Recall = 1
(Supplementary Figure 2B); 33 overlapping genes with Sens = 1,
Spec = 0.79 and Prec = 0.34, Recall = 1 (Figure 2F); and 33 random
genes with Sens = 0.96, Spec = 0.51 and Prec = 0.17, Recall = 0.96
(Supplementary Figure 2C). In blood, the clusterswere identified for
DE genes with Sens = 0.88, Spec = 0.71 and Prec = 0.46, Recall = 0.88
(Supplementary Figure 3B); 33 overlapping genes with Sens = 0.9,
Spec = 0.67 and Prec = 0.44, Recall = 0.9 (Figure 2H); and 33 random
genes with Sens = 0.65, Spec = 0.61 and Prec = 0.32, Recall = 0.65
(Supplementary Figure 3C).
June 2021 | Volume 12 | Article 638066
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The enriched Reactome pathways of these common up-
regulated genes included interferon signaling, neutrophil
degranulation, regulation of TLR by endogenous ligand and
caspase activation via extrinsic apoptotic signaling pathway
and via death receptors in the presence of ligand, whereas
down-regulated genes are associated with Interleukin-4 and 13
signaling and cell cycle pathways. These results were consistent
with the pathway analysis above.

Cell-Type Deconvolution Analysis
Identifies a Reverse Signal in Blood
and Synovium
The cell type enrichment analysis with xCell in synovium
revealed the significant enrichment of immune cell types,
including, CD4+ and CD8+ T-cells, B-cells, macrophages and
dendritic cells in RA samples (Figure 3A). However, opposite
but weaker associations were seen in whole blood samples with
enrichment of T- and B-cells in healthy controls (Figure 3B).
Lymphocytes, including CD8+ T cells and B cells, were
significantly enriched in both tissues, however, these were
Frontiers in Immunology | www.frontiersin.org 6
enriched in opposite directions with enrichment in cases in
synovium but enrichment in controls in blood (Figure 3C).
This finding was confirmed in validation datasets (Figure 3D).
The significant cell types in synovium and blood showed high
correlations in validation data: r = 0.71 (p = 1.3e-5) for synovium
(Figure 3E) and r = 0.61 (p = 0.004) in blood (Figure 3F).

Machine Learning Feature Selection
Strategy to Identify Robust Cross-Tissue
Biomarkers of RA
Aiming to determine a more robust list of putative biomarkers
that are strongly associated with RA in both synovium and whole
blood tissues and have higher predictive power, we applied an
iterative feature selection procedure leveraging the gene
expression data from both tissues. In the pipeline, only 10,071
genes that were common between synovium and whole blood
data were used. At each iteration, only genes found significantly
dysregulated in both tissues following the condition of co-
directionality were kept (p = 6.3e-10). As a result of these
filtering steps, on average 65 up-regulated and 71 down-
A B

D

E F

G H

C

FIGURE 2 | DE genes overlapped between synovium and whole blood tissues. Top Reactome common and different pathways for (A) Up-regulated and
(B) downregulated genes. (C) Venn diagram of up- and down-regulated genes in synovium and blood: 29 common up-regulated genes (p =3e-09) and 4
common downregulated genes (p = 0.28). (D) Comparison scatter plot of fold changes between common genes in synovium and blood. Heatmap and PCA
plots of common genes in (E, F) synovium and (G, H) blood. Vertical bars in the heatmap plots represent the color-coded coefficients of variation, Pearson
correlations and log2 fold changes.
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regulated were selected from each iteration (see Methods). From
100 iterations, any gene significantly dysregulated in all the
iterations was selected, resulting in a set of 53 genes: 25
upregulated and 28 down-regulated (Supplementary Table 8).
A summary of the average AUC performance from the 100
iterations for each gene are shown in the Figure 4A and
Supplementary Table 8. The AUC for selected genes in
synovial tissue varied with mean 0.853 ± 0.005 for cross-
validation in training and 0.866 ± 0.006 for testing sets of the
discovery data, whereas for the whole blood the mean AUC was
0.744 ± 0.006 for training and 0.747 ± 0.006 for testing sets. To
address the class imbalance and confirm the robustness of using
the AUC metric for the feature selection, we additionally
computed the area under the precision-recall curve (AUCPR)
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for each of 53 genes and compared them to AUROC using the
Pearson correlation (Supplementary Figure 4). We found that
the AUCPR was significantly correlated with the AUROC: r =
0.62 (p = 7.7e-7) and r = 0.88 (p = 1.5e-15) for synovium and
blood, respectively. Therefore, even though using AUCPR
thresholding slight variations in the set of feature selected
genes are possible, the gene set based on AUC is still robust.

We leveraged 5 publicly available independent datasets on
synovium and blood to validate these results (see Methods)
(Supplementary Table 1). First, we compared the classification
performance of the set of 53 feature selected genes to the set of 33
common DE genes (Methods). Since not all genes were measured
across the validation studies, the sets were reduced to 26 of 33
common DE genes and 38 of 53 feature selected genes. We found
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FIGURE 3 | Cell type enrichment analysis for synovium and whole blood tissues. 30 cell types were significant (BH adj p-values < 0.05) in synovium and 20 were
significant in whole blood with 11 common cell types between the tisuues. Heatmap plots of significantly enriched cell types in (A) synovium and (B) blood. The
scatter plots comparing log10 transformed fold changes of significant cell types between synovium and blood in (C) discovery and (D) validation cohorts. The scatter
plots comparing log10 transformed fold changes of significant cell types between discovery and validation cohorts in (E) synovium and (F) blood tissues, with
Pearson correlation coefficient and it's p-value.
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the set of 38 feature selected genes has superior performance over
the set of 26 common DE genes for all three ML methods
(Supplementary Figure 5). The largest difference in
performance was for the Random Forest model: the model
with the common DE genes had an AUC of 0.868 ± 0.043
(95% CI [0.785, 0.951]) (Figure 4B), while the model with the
feature selected genes performed with 0.889 ± 0.044 (95% CI
[0.811, 0.966]) (Figure 4C). The Random Forest model trained
on the 300 random genes performed with AUC 0.837 ± 0.037 on
the validation datasets (Supplementary Figure 5).

Next, by using the original threshold of averaged AUC > 2/
3 on the validation datasets, 38 (72%) out of 53 genes were
marked as validated and by applying the stricter threshold
AUC > 0.8 thirteen genes (25%) were finally selected: 10 up-
regulated TNFAIP6, S100A8, TNFSF10, DRAM1, LY96, QPCT,
KYNU, ENTPD1, CLIC1 and ATP6V0E1, and three down-
regulated HSP90AB1, NCL and CIRBP genes (Figure 4A and
Supplementary Figure 6). Five of the related proteins, TSG-6,
MRP-8/Calgranulin-A, TNFSF10/TRAIL, Ly-96 and QC, are
known to be normally secreted into blood, while Kynureninase
Frontiers in Immunology | www.frontiersin.org 8
(Table 1), HSP 90-beta and CLIC1 are localized to
cytosol (41).

Clinical Implications of Transcription
Based Disease Score
In order to assess the clinical utility of the 13 validated genes, we
introduced a scoring function, RA Score, which is derived by
subtracting the geometric mean of expression values of down-
regulated genes from the geometric mean of up-regulated genes.
With this definition, the RA Score is 2-fold (95% CI [1.8, 2.2], p =
3e-15) larger for RA in comparison to healthy samples in
synovium. In whole blood, the RA Score has a mean effect size
of 1.37 (95% CI [1.34, 1.4], p = 1e-108). In validation datasets, the
RA Score had a mean effect size of 5.5 in synovium (95% CI [3.8,
8.2], p = 1e-10) and 2.4 in blood (95% CI [2.1, 2.8], p = 3e-23).
This score showed utility in monitoring disease activity,
diagnostics and treatment response and also was generalizable
to both RF-positive and RF-negative RA as well as polyJIA.

Four datasets with 411 samples included in our meta-analysis
had available disease activity score (DAS28) annotations.
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FIGURE 4 | Feature selected genes. (A) Mean AUC performance with standard error for each feature selected gene on testing synovium and blood datasets (green)
and on five independent validation datasets (black). 13 genes with AUC greater than 0.8 on validation datasets were chosen as the best performing genes. Mean
AUC performance with standard errors of a RF model trained on discovery blood data with (B) common DE genes and (C) feature selected genes on five
independent validation datasets. The discovery-based classifiers were held fixed and used once on each validation dataset.
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Assessing the correlation with DAS28 for each gene individually,
the most positively correlated gene was S100A8 with mean R =
0.28 (95% CI [0.19, 0.37]) and most anti-correlated gene
HSP90AB1 with mean r = -0.23 (95% CI [-0.32, -0.14])
(Supplementary Figures 7, 8A). The RA score performed
better than any single gene, positively correlated with DAS28
where the average correlation was 0.33 with 95% CI [0.24, 0.41]
(Supplementary Figures 8B, C), suggesting this score could be
helpful as a disease activity biomarker. We also determined the
correlation of the RA Score with DAS28 in these datasets
separately and obtained Pearson correlation coefficients from
0.25 to 0.43 in blood and 0.31 in synovium (Supplementary
Figure 8B). Additionally, we tested how the correlation of
DAS28 with the RA Score is different from the correlation with
the score composed from a random set of 13 genes
(Supplementary Figure 8D). From 100 iterations the mean
Pearson correlation was 0.22 which was significantly different
from the correlation with the RA Score 0.33 with p-value = 6e-50
using the Student’s t-test.

To investigate the ability of the RA Score to differentiate RA
from osteoarthritis (OA), we identified eight datasets that had
both RA and OA samples available. Figure 5A shows the
distributions of RA Score for RA, OA and healthy samples in
eight available datasets. In most datasets, the RA Score was able
to significantly differentiate OA from RA (OR 0.57, 95% CI [0.34,
0.80], p = 8e-10) and healthy samples (OR 1.53, 95%CI [1.37,
1.69], p = 7.5e-4) suggesting that this score could be
useful diagnostically.
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One dataset in whole blood, GSE74143, had annotations for
RF-positivity. The RA Score performed similarly in both RF-
positive and RF-negative RA samples suggesting the applications
of this score are generalizable to these RA subtypes (t-test, p =
0.9) (Supplementary Figure 8E). Furthermore, we tested the
utility of this score in 10 datasets from polyJIA given that this
subtype of JIA is most similar to RA and also found comparable
performance in the ability to differentiate polyJIA from healthy
controls (OR 1.15, 95% CI [1.01, 1.3], p = 2e-4) (Figure 5B).
Thus, this score could also be useful in the pediatric
arthritis population.

Lastly, we observed that the RA Score might also track
treatment response. In two synovium and blood datasets, RA
patients had transcriptional measurements before and after
treatment with disease-modifying antirheumatic drugs
(DMARD): methotrexate, tocilizumab (GSE45867, GSE93272)
and infliximab (GSE93272). The RA score significantly (p = 2e-
4) decreases between pre- and post-treatment measurements
(Supplementary Figure 8F).

Western Blot Validation
We next examined whether we could validate differences in
transcript expression by protein in patients with newly
diagnosed RA (validation cohort) prior to treatment initiation
based on our RA Score results. Six candidate proteins, for which
commercial antibodies are available, were selected by highest
absolute fold changes based on transcript expression visible in
PBMC’s, as well as in synovial tissue, from our discovery data.
TABLE 1 | Summary of 13 validated RA Score Panel genes.

Gene Gene name Regulation Discovery Synovium Discovery Blood Validation Protein Secretion

FC (FDR
adj. p-value)

r (BH adj.
p-value)

AUC FC (FDR
adj. p-value)

r (BH adj.
p-value)

AUC AUC

TNFAIP6 TNF Alpha Induced Protein 6 up 2.46 (4E-06) 0.39 (7E-
11)

0.81 1.36 (8E-16) 0.39 (3E-
67)

0.77 0.88 Secreted in blood

S100A8 S100 Calcium Binding Protein
A8

up 2.28 (7E-05) 0.34 (1E-
08)

0.81 1.46 (7E-32) 0.48 (9E-
108)

0.81 0.94 Secreted in blood

DRAM1 DNA Damage Regulated
Autophagy Modulator 1

up 1.55 (6E-07) 0.46 (3E-
15)

0.93 1.18 (8E-15) 0.41 (6E-
76)

0.79 0.81

TNFSF10 TNF Superfamily Member 10 up 1.55 (1E-09) 0.52 (3E-
19)

0.9 1.27 (1E-23) 0.44 (4E-
88)

0.8 0.84 Secreted in blood

LY96 Lymphocyte Antigen 96 up 1.54 (1E-09) 0.51 (2E-
18)

0.94 1.22 (7E-11) 0.28 (2E-
35)

0.69 0.87 Secreted in blood

QPCT Glutaminyl-Peptide
Cyclotransferase

up 1.46 (4E-05) 0.39 (7E-
11)

0.92 1.19 (4E-10) 0.29 (1E-
37)

0.71 0.82 Secreted in blood

KYNU Kynureninase up 1.41 (5E-05) 0.36 (1E-
09)

0.84 1.17 (2E-11) 0.28 (3E-
34)

0.69 0.82 Intracellular or
membrane-bound

ENTPD1 Ectonucleoside Triphosphate
Diphosphohydrolase 1

up 1.33 (1E-08) 0.52 (2E-
19)

0.94 1.21 (2E-16) 0.4 (5E-71) 0.78 0.86

CLIC1 Chloride Intracellular Channel 1 up 1.32 (5E-08) 0.47 (7E-
16)

0.91 1.2 (5E-27) 0.47 (4E-
103)

0.84 0.8 Intracellular or
membrane-bound

ATP6V0E1 ATPase H+ Transporting V0
Subunit E1

up 1.23 (3E-04) 0.37 (8E-
10)

0.84 1.08 (4E-10) 0.28 (3E-
35)

0.7 0.82

NCL Nucleolin down 0.83 (2E-05) -0.39 (4E-
11)

0.82 0.88 (4E-09) -0.32 (2E-
44)

0.72 0.82

CIRBP Cold Inducible RNA Binding
Protein

down 0.8 (3E-05) -0.41 (4E-
12)

0.83 0.91 (2E-10) -0.33 (2E-
47)

0.74 0.89

HSP90AB1 Heat Shock Protein 90 Alpha
Family Class B Member 1

down 0.79 (2E-04) -0.37 (3E-
10)

0.82 0.84 (4E-12) -0.36 (7E-
56)

0.73 0.8 Intracellular or
membrane-bound
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Protein levels were assayed using mixed PBMC lysates from the
validation cohort (Figure 6 and Supplementary Figure 9).
Notably, the TSG6 protein was significantly upregulated in RA
PBMCs (Figure 6B), while HSP90 was significantly
downregulated in the RA validation cohort compared to
controls (Figure 6D), supporting findings from the
transcriptional discovery data. Similar to our RA Score
findings, S100A8 was upregulated in some RA samples, though
it did not reach statistical significance. Notably, Ly96 protein
levels trended in the opposite direction compared to the
transcriptional dataset (Figure 6B).
DISCUSSION

In this study, we leveraged publicly available microarray gene
expression data from both synovium and peripheral blood
tissues in search of putative biomarkers for RA. The cell type
enrichment analysis revealed the prevalence of lymphocytes in
RA synovial tissue, in contrast to RA blood, likely due to synovial
tissue infiltration of immune cells as well as their homing to
lymph organs (lymph nodes and spleen) from blood. While
lymphopenia, i.e. low concentration of lymphocytes in blood,
and synovial infiltration by lymphocytes have been recognized
features of RA, the reasons are still not fully understood (42–45).
This observation additionally supported our study objective of
leveraging the data from both synovium and blood to identify
genes expressed concurrently in both tissues. We first applied a
conventional approach (13, 46–49) of intersecting the
differentially expressed genes from both tissues and obtained a
list of 33 common genes. Some of our results showed agreement
Frontiers in Immunology | www.frontiersin.org 10
with previous studies, identifying similar biological processes
(e.g., cytokine signaling, immune and defense response, response
to biotic stimulus) (13, 18, 21). Furthermore, the differentially
expressed genes common to both tissues better distinguished RA
cases from healthy controls than all differentially expressed genes
combined. While this list of overlapping genes provides valuable
insight into disease biology, the predictive ability can be further
improved by applying more advanced machine learning methods
to prioritize candidate markers and remove redundancy.

Our specific machine learning method identified a robust and
non-redundant set of biomarkers concurrently expressed in both
RA target tissues. This resulted in 53 protein-coding genes that
outperformed the set of the common DE genes in outcome
prediction tasks using independent data. Even though the feature
selected genes perform better, the common genes still have
predictive value which is important to recognize. In further
validation steps, we identified and selected 10 up- and three
down-regulated genes with the highest performance. The up-
regulated genes are highly expressed in diseased synovial tissue,
and their elevated protein levels in blood may represent RA
biomarkers. However, the combination of these 13 validated
genes into a transcriptional gene score, the RA Score, performed
better in clinical applications than any one gene and could
potentially serve as a clinical blood test for accurate disease
diagnosis and monitoring disease activity and response to
treatment. Furthermore, this score performed similarly in RF-
positive and RF-negative RA and also distinguished polyJIA
from healthy controls, broadening the scope of possible clinical
applications. Some genes/proteins, e.g. S100A8/MRP8, ENTPD1/
CD39, KYNU and TNFAIP6, from the score were previously
found to be associated with JIA (50–57). Treatment effect was
A B

FIGURE 5 | Clinical Interpretation of the RA Score. (A) The RA Score distinguishes Healthy, OA and RA samples in synovium. (B) The RA Score distinguishes
Healthy and polyJIA samples. The p-values were obtained using Student’s t-test.
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also captured with a significantly lower RA Score for DMARD-
treated patients compared to untreated patients. Moreover, since
the genes were identified from both blood and synovium and
followed the condition of co-directionality, i.e., upregulated or
downregulated in both tissues, the RA Score test based on blood
only becomes tenable.

The 13 genes identified using these machine learning
methods in the feature selection pipeline represent candidate
biomarkers in RA. Six of the 13 RA Score Panel genes (TNFAIP6,
S100A8, TNFSF10, LY96, ENTPD1 and CLIC1) were also among
the 33 common DE genes, whereas seven of the 13 RA Score
Panel genes (DRAM1, QPCT, KYNU, ATP6V0E1, NCL, CIRBP
and HSP90AB1) were not. Many of these genes have been
described in the literature and studied in the context of RA
demonstrating biologic plausibility of the RA Score.

TNFAIP6, also known as TSG-6, encodes a secretory protein
that is produced in response to inflammatory mediators, with
high levels detected in the synovial fluid of patients with RA and
OA (58). TNFAIP6 is thought to play an anti-inflammatory role
in arthritis and protect destruction of joint cartilage, which has
been demonstrated in many arthritis mice models (59). S100A8
is a calcium binding protein that forms a heterodimer with
S100A9 known as calprotectin (S100A8/A9). Calprotectin is
constitutively expressed in neutrophils and monocytes but
massively upregulated during inflammatory responses as an
important mediator of inflammation (60). Thus, it has been
extensively studied as a potential biomarker in several
inflammatory diseases including RA. A study investigating the
use of calprotectin as measured in sera of RA patients with
moderate to severe disease found an association with disease
activity, though it was less useful in monitoring radiographic
Frontiers in Immunology | www.frontiersin.org 11
disease progression or treatment response (61). Of note, while
the 33 common DE genes set includes S100A9, this gene is not
one of the 53 FS genes or subsequent 13 RA Score Panel genes
likely because our process excludes genes that are highly
correlated (pairwise feature correlation greater than 0.8).
TNFSF10, also known as TNF-Related Apoptosis Inducing
Ligand (TRAIL), encodes a protein that induces apoptosis of
tumor cells but is also of interest in RA as it has been thought that
TNFSF10 might induce apoptosis of hyperplastic synoviocytes
and reduce immune cell hyperactivity thus providing a protective
effect to the joint. However, this is still controversial as there is
also evidence that TNFSF10 may promote joint destruction and
exacerbate RA (62). LY96, also known as MD2, encodes a protein
which often is a coreceptor with TLR4 forming the TLR4/MD2
complex (63) and has previously been found to be upregulated in
patients with rheumatoid arthritis (64–66). ENTPD1, also
known as CD39, is a gene found to be an expression
quantitative trait locus associated in RA affecting levels of
CD39+, CD4+ regulatory T-cells (67). In RA, low levels of
CD39+ expressing Tregs were associated with methotrexate
resistance suggesting this could be a biomarker to predict
responders and non-responders (68–70).

Seven of the 13 RA Score Panel genes (DRAM1, QPCT,
KYNU, ATP6V0E1, NCL, CIRBP and HSP90AB1) were
uniquely identified by our machine learning pipeline and not
identified by the traditional DE gene overlap method. Four of
these genes, KYNU, QPCT, CIRBP and HSP90AB1 have
previously been associated with RA. KYNU encodes the
Kynureninase enzyme which is involved in a pathway of
tryptophan metabolism related to immunomodulation and
inflammation (71, 72). KYNU expression has been found to be
A

B D

C

FIGURE 6 | Validation of the RA Score proteins. (A, C) Immunoblot analysis of 6 RA Score proteins in unstimulated PBMC lysates from subjects with RA (n=4) and
healthy controls (n=5). Data representative of 2 immunoblots. (B, D) Box plots are quantification of RA Score protein levels normalized to GAPDH pooled from 2
immunoblot experiments [as shown in (A, C) and Supplemental Figure 8]; RA (n=8) and healthy control (n=7) samples. Significance determined by Mann-Whitney-
Wilcoxon test, (B, D). Dotted line represents lanes removed from non-RA subjects, otherwise immunoblots a and d are montages of the same western blot.
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increased in chondrocytes and synovial tissue of RA patients
compared to healthy patients (73). Moreover, increased
tryptophan degradation has been observed in the blood of RA
patients (74). The gene QPCT encodes Glutaminyl-Peptide
Cyclotransferase, or QC for short (75), which plays a role in
maintaining inflammation (76). A clinical study found that
expression of QPCT was significantly increased in the blood
and in the fluid from gingival crevices of RA patients compared
to healthy controls (77). CIRBP encodes cold-inducible RNA-
binding protein which can be induced under stress and have a
cytoprotective role but has also been increasingly recognized for
participating in proinflammatory response (78). CIRBP binds to
the TLR4/MD2 complex of macrophages and monocytes in the
circulation or tissues, thereby activating the NF‐Kappa B
pathway and resulting in the release of inflammatory
mediators (78, 79). A clinical study measured CIRBP mRNA
expression of CD14+ monocytes of five healthy and five RA
patients and found the relative expression of CIRBP was higher
in RA patients (80), whereas our analysis found down-regulated
CIRBP expression in whole blood from RA compared to healthy
control. Further study of CIRBP in RA patients, particularly
single cell analysis, is warranted. HSP90AB1 encodes the protein
HSP90b (81). Post-translationally citrullinated isoforms of heat
shock protein 90, including citHSP90b, have been identified as
potential autoantigens in patients with RA-associated interstitial
lung disease (82, 83). We did not find evidence of an association
between DRAM1, ATP6V0E1 and NCL, however, these may
represent novel genes that warrant future study. DRAM1 and
NCL have been shown to be associated with other autoimmune
diseases, such as Systemic Lupus Erythematosus (84, 85) and
Multiple Sclerosis (86). Furthermore, DRAM1 is a gene involved
in autophagy, an important mechanism for regulating the
immune response and autophagy modulation has been
postulated as a potential therapeutic in RA (87).

We examined six proteins from RA Score using the
immunoblotting technique and confirmed two of them,
TNFAIP6/TSG6 and HSP90AB1/HSP90, with S100A8/MRP8
protein trending near significance. Our findings for these
proteins highlight that the generation of the RA Score by
which to help diagnose patients from RA could be helpful in
clinical practice. Further validation studies are underway to
examine the transcriptional profile of RA PBMCs on a single
cell level, in which transcript changes can be assessed based on
cell type, followed by protein validation studies in more RA
subjects looking at lysates sorted from specific immune cell
subtypes identified by single cell analysis. This will allow us to
further fine tune the RA Score genes identified by our analysis.
Indeed, studies examining the relationship between protein and
mRNA levels highlight the complexity of gene expression
regulation (88).

Several limitations of this study should be recognized. A few
datasets, especially in whole blood, had significantly more cases
than controls with some datasets containing no healthy controls.
Therefore, a more robust leave-dataset-out cross validation
method, such as fSVA, was not possible to implement in the
current feature selection pipeline, though it could be used in the
Frontiers in Immunology | www.frontiersin.org 12
future improvements of our approach with newly generated and
better-balanced datasets. The significant class imbalance might
result in class variance imbalance and lead to increased type 1
and type 2 errors. To at least partially address this limitation, we
included two datasets of healthy individuals to enrich the blood
data with control samples. Likewise, the validation cohorts also
had an imbalance of cases and controls and two out of three were
from PBMC rather than whole blood. The latter was also the case
for the validation cohort in the immunoblotting analysis. This
could possibly lead to lower AUC performance for genes in the
validation datasets but likely does not overestimate the
performance of our genes. Class imbalance in datasets also
limits the application of the batch correction method ComBat,
which was used in this study, as explained by Nygaard et al. (89).
In our previous work, we compared ComBat’s performance with
other batch correction methods including Remove Unwanted
Variation (RUV) (90) using the Guided Principal Component
Analysis (91) for batch presence evaluation. We found that
ComBat was the most appropriate for both synovium and
blood datasets based on the test statistic, d, which quantifies
the proportion of variance owing to batch effects, where its p-
value determines whether d is significantly larger than would be
obtained by chance.

Additionally, not all samples were annotated for important
covariates such as sex and medication use. All sample
annotations were kept from the original publications, though
for 40% of samples the sex annotations were not available and
they were imputed based on the expression levels of Y
chromosome genes. Likewise, most case samples were from RA
patients who were taking various medications. Even though the
treatments were used in the differential expression analysis as
covariates (including untreated patients) there still exists the
possibility of confounding.

In this study, we present a robust machine learning pipeline
to search for putative biomarkers: each gene went individually
through a feature selection procedure with multiple iterations on
the discovery data and was independently tested on the
validation cohorts. The gene redundancy was decreased
selecting the best performing genes in RA association
prediction. We apply the pipeline to a set of over 2000 samples
to identify the RA Score as a potential diagnostic panel and show
some clinical utility. The strength of the RA Score is in the
independence of its constituent genes. Further development of
the RA Score as a clinical tool requires greater understanding and
validation of its component genes with experimental analysis of
the protein levels in RA patients and healthy individuals through
prospective trials. It is also important to note that the DAS28
score, which was used to evaluate utility, might not be
independent of RA phenotype, which potentially can create
bias in findings. However, DAS28 is one of the measures that
accounts for the disease severity, and its significant correlation of
the RA Score might still indicate the potential clinical utility of
the latter. An independent longitudinal study would bring better
understanding of the early diagnostic and disease monitoring
capability of the proposed panel. Additional experiments
leveraging single cell technologies will further enhance our
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understanding of the biology and cell type specific effects in RA
allowing us to refine the proposed potential diagnostic strategies.
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