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Abstract

Motivated by the Multicenter AIDS Cohort Study (MACS), we develop classification procedures

for cognitive impairment based on longitudinal measures. To control family-wise error, we adapt

the cross-sectional multivariate normative comparisons (MNC) method to the longitudinal setting.

The cross-sectional MNC was proposed to control family-wise error by measuring the distance

between multiple domain scores of a participant and the norms of healthy controls and specifically

accounting for intercorrelations among all domain scores. However, in a longitudinal setting where

domain scores are recorded multiple times, applying the cross-sectional MNC at each visit will

still have inflated family-wise error rate due to multiple testing over repeated visits. Thus, we

propose longitudinal MNC procedures that are constructed based on multivariate mixed effects

models. A χ2 test procedure is adapted from the cross-sectional MNC to classify impairment on

longitudinal multivariate normal data. Meanwhile, a permutation procedure is proposed to handle

skewed data. Through simulations we show that our methods can effectively control family-wise

error at a predetermined level. A dataset from a neuropsychological substudy of the MACS is used

to illustrate the applications of our proposed classification procedures.
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1 | INTRODUCTION

Classification plays an important role in many fields of medical science. For example,

identifying participants with cognitive impairment will enable clinicians to provide

patients with proper treatments. As true cognitive impairment status is typically unknown,

researchers often identify a group of healthy controls and measure their cognitive

functioning over multiple domains to understand how performance is distributed in the

healthy population. If a participant to be tested performs far below a typical healthy control,

he or she is deemed to have abnormal scores/impairment, though further diagnostic tests are

often carried out in clinical settings. Several methods of counting the number of domains

with abnormal scores1,2 have been used in the fields of HIV and Alzheimer’s Disease,

despite evidence that these methods are associated with inflated family-wise error rates

(FWERs). The FWER here refers to the probability of making a false cognitive impairment

classification, given that all cognitive domains of a participant function normally. In order

to control the FWER at a predetermined level and correct for intercorrelations among

multiple cognitive domains, Huizenga et al3 developed the so-called multivariate normative

comparison (MNC) method which specifically takes the covariance of the domain scores

into consideration. Let Xi denote a vector of q cognitive domain scores for participant i. The

healthy control group contains n participants, and their sample mean and sample covariance

matrix of the q domain scores are denoted as μc and ψc. If each vector of q domain

scores is independent and identically distributed over a multivariate normal distribution for

every participant, one could build an F-statistic to classify cognitive impairment for the ith
individual:

n(n − q)
(n + 1)(n − 1)q Xi − μc

TΨc
−1 Xi − μc F (q, n − q) .

In principle, the MNC method can effectively control the FWER in impairment

classification as long as all domain variables follow a multivariate normal distribution.4,5 In

practice, participants may visit the same clinician or institution multiple times. For example,

if participants come to an Alzheimer Disease Research Center with memory complaints,

they will be followed roughly annually and their cognitive functioning will be assessed

repeatedly over time. In a retrospective analysis, these longitudinal scores, which are used to

identify prior cognitive impairment, can provide important guidance on future treatments or

help researchers identify risk factors. If the MNC is employed at each visit and a participant

is repeatedly tested at a prespecified α level, the resulting FWER, which is the probability

of being categorized as having prior impairment at some visits, would be greatly inflated,

because the MNC fails to account for multiple testing over repeated visits. Thus, here we

propose longitudinal MNC procedures that specifically take into account multiple tests over

repeated measures to quantify an individual’s prior impairment.

The initial step, similar to the cross-sectional MNC, is to obtain characteristics, such as

mean scores over time and the covariance structure of the longitudinal measurements, from

healthy controls. One typical way to approach longitudinal data is to utilize a multivariate

linear mixed effects (MLME) model. Reinsel6 established theories for multivariate

longitudinal models with repeated measures when data are balanced and parameters are
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unrestricted. Heitjan and Sharma7 further considered an autoregressive error structure for

longitudinal data and estimated the parameters with the maximum likelihood approach.

Fang et al8 introduced a modified expectation-maximization algorithm to facilitate the

estimation of unknown parameters in an MLME model with constrained intercepts. Fieuws

and Verbeke9 studied how the associations between different responses evolve over time and

jointly modeled two responses by allowing a dependence structure among the random terms

in the model. They further proposed modeling longitudinal outcomes in a pairwise fashion

for computation efficiency when too many outcome variables are considered.10 Verbeke

et al11 gave a rather comprehensive review of development in multivariate longitudinal

analysis, and noted that joint modeling is preferred over univariate modeling to address

research questions regarding associations among various outcomes over time. van den Hout

et al12 proposed a longitudinal MLME model with change-point predictors for nonlinear

trends.

Here, we initially assume a multivariate normal distribution for longitudinal domain scores,

and use the MLME to obtain the mean function and covariance structure of domain

scores from healthy controls. As the true impairment status of an individual is generally

unknown, such characteristics from healthy controls can provide a benchmark to decide

if an individual’s repeatedly measured domain scores are abnormally low. Similar to

the way that the cross-sectional MNC tests all scores together, the proposed extended

longitudinal multivariate normative comparison (LMNC) is developed to test all scores

across visits simultaneously. Under multivariate normality, a testing procedure based on

χ2 is then proposed to classify cognitive status for each participant. However, if the

dependency structure is not sufficiently specified or the data fail to follow a multivariate

normal distribution, the χ2 procedure may still have an inflated FWER. Therefore, we

propose a permutation test for our proposed test statistic which is robust against distribution

assumptions.

The structure of the remaining article is as follows. First, we detail modeling and testing

procedures in Section 2. Next, we present results from simulation studies when the

multivariate normal distribution is satisfied and when the assumption is not satisfied

(Section 3). Third, we illustrate in Section 4 how to implement the MLME and the

χ2 and permutation tests for neuropsychological (NP) data collected in the Multicenter

AIDS Cohort Study (MACS). Finally, we conclude by discussing some advantages and

disadvantages of the MNC method compared with prior methods.

2 | LONGITUDINAL MULTIVARIATE NORMATIVE COMPARISONS

2.1 | Testing procedure based on χ2

Assume there are n participants enrolled in a healthy group which is used as the reference,

and each participant has q cognitive domains tested over mi total visits during the study.

Domain test scores are usually normalized so that a multivariate normal distribution holds

for each visit. Let Yijk, i = 1, …, n; j = 1, …, q; k = 1, …, mi denote the tested score

of participant i for domain j over the kth visit. Considering that scores of a single domain

assessed across mi visits are correlated with each other, and scores of two different domains

from the same participant are correlated, we model Yijk using an MLME model:
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Y ijk = βj0 + βj1tik + βj2tik2 + βj3tik3 + vij + δik + ϵijk . (1)

Here, we use q polynomial functions of degree 3 to describe the changes in the mean domain

scores over time, and can add higher order terms if necessary. Alternatively, the B-spline

technique can be used to approximate the true mean domain scores over time.13–17 ϵijk

is assumed to be independent and identically distributed (i.i.d.) normal N(0, σ2), which

is specific to each observation or measurement. Similarly, δik, which represents the visit-

specific effect, is also assumed to be i.i.d. normal N(0, θ2). Given different domain functions

tend to be correlated with each other for the same participant, νi = (νi1, .., νiq)⊤ is assumed

to be N(0, Σ), where Σ = [ρsr], s, r = 1, …, q. Generally, the symmetric matrix Σ could be left

unspecified, or assumed to have the structure of autoregression or compound symmetry.

All unknown parameters can be estimated from an MLME model,8,9 which are denoted as

β j0, β j1, β j2, β j3, j = 1, …, q, ρSr, s, r = 1, …, q, θ2, and σ2. For participant d to be tested,

we take all q domain scores observed over md visits, and stack them into a single vector

Ud = Y d11, …, Y dq1, Y d12, …, Y dq2, …, Y d1md, …, Y dqmd
⊤ . (2)

From the linear mixed effects model in (1), the estimated mean vector of Ud is written

as μd = β10 + β11td1 + β12td1
2 + β13td1

3 , β20 + β21td1 + β22td1
2 + β23td1

3 , …, βq0 + βq1td1 + βq2td1
2

+ βq3td1
3 , …, β10 + β11tdmd + β12 tdmd

2 + β13tdmd
3 , …, βq0 + βq1tdmd + βq2tdmd

2 + βq3tdmd
3 ⊤

,

which is of length qmd. Furthermore, based on the covariance matrix structured in this

model, we can estimate the covariance matrix for Ud as Ψd = τsr , s, r = 1, …, qmd. Each

element in Ψd corresponds to the covariance between a pair Y dj1k1 and Y dj2k2, which can be

estimated as ρj1j2 + θ2I k1 = k2 + σ2I j1 = j2, k1 = k2 , with domain indexes 1 ≤ j1, j2 ≤ q,

visit indexes 1 ≤ k1, k2 ≤ md, and I ⋅  being an indicator function.

Under the assumption of multivariate normal distribution for all observations measured over

time, we now propose an extended LMNC statistic for testing whether the dth participant

has impaired cognition:

Td = Ud − μd
⊤Ψd

−1 Ud − μd χqmd
2 , (3)

which can be modified to an F test when the number of participants is small in the healthy

control group. For participant d, if we are concerned that this participant’s performance

is either too high or too low, we will use (1 − α) quantile of χqmd
2  as the threshold for

the significance level α. In practice, clinicians are typically more interested in screening

for cognitive impairment with extremely low scores. One can conduct a statistical test

considering the direction of domain scores by rejecting the null hypothesis if participant d’s
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measured distance Td exceeds the (1 − 2α) quantile of χqmd
2  and Ud′ 1qmd < μd′ 1qmd, where

1qmd is the qmd-vector of ones.

2.2 | Permutation testing

In practice, multivariate normality may not hold for the recorded measurements, and the

test statistic in (3) might not follow an χ2 distribution. In such case, the Td statistic in (3)

can still serve as a distance measure of individual scores to the norm. However, we need

to develop a new method to find the critical value for the test statistic without relying on

a particular parametric distribution. We propose the innovative use of a permutation test to

find such a critical value for each participant. In order that a test statistic from a permuted

sample is comparable to the one from the original data, the permutation should retain the

covariance structure of νi. For example, the covariance structure in Model (1), Σ = [ρsr],

s, r = 1, …, q, is set to be compound symmetric, where ρss = ρrr for s, r = 1, …, q, and

ρsr = ρut for s, r, u, t = 1, …, q and s ≠ r, u ≠ t. The compound symmetry is a reasonable

covariance structure when all cognitive domain scores in the reference group have been

standardized and their errors can be assumed to follow an identical distribution. Meanwhile,

as the test statistic depends on the number of total visits md completed by the dth participant,

the permutation test should be done in a way specific to md.

Suppose there are M distinct number of visits in the testing group. We take M bootstrap

samples, one for each unique number of visits. The following procedure details how

permutation tests should be done for all of the participants in the testing group who have

m total number of visits. We first take a bootstrap sample of the desired number N of

participants with replacement (say 5000) from the healthy control group. Then, we remove

the time effect (ie, β j0 + β j1tik + β j2tik2 + β j3tik3  from model (1)) to obtain participant-specific

errors over time for participant i from the bootstrap sample, 1 ≤ i ≤ N. Next, to carry

out the permutation test for each participant in the bootstrap sample, we consider errors

of each domain function across all visits as a whole column. As a result, the multivariate

longitudinal measures can be organized into a matrix of q-domain columns and mi-visit

rows. Then, we permute these q columns within the same participant so that this compound

symmetric covariance structure will be sustained after each permutation.

For each participant i in the bootstrap sample, we then sample m visits with replacement

to represent the bootstrapped sample errors with the number of visits matching with that

of those participants to be tested. The bootstrapped sample errors from the m visits can be

stacked in a similar way as in Equation (2) to a vector Vi = (Ei11, …, Eiq1, Ei12, …, Eiq2,

…, Ei1m, …, Eiqm)⊤. Then, the bootstrap test statistic is calculated for the rearranged error

sample from participant i as Ti = V i
⊤Φmi

−1V i. However, the covariance structure Φmi used

here is not the same as Ψ from Equation (3), given that we draw errors with replacement

for m times at the visit level within participant i. Φmi is a mq × mq matrix. For domain

indexes 1 ≤ j1, j2 ≤ q and visit indexes 1 ≤ k1, k2 ≤ m, its element can be estimated as

ρj1j2 + θ2 I k1 = k2 + mi−1I k1 ≠ k2 + σ2 I j1 = j2, k1 = k2 + mi−1I j1 = j2, k1 ≠ k2 , where

I is an indicator function. This covariance matrix Φmi cannot be inverted when m > 1 and
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the participant that was bootstrapped has only one visit (mi = 1). As a result, we will

exclude participants with only one visit from the healthy control (reference) group when

the permutation test is administered after longitudinal modeling. It is worth noting that for

a testing participant with a specific number of visits, we can use all participants in the

control group to create permutation samples, as long as those individuals have at least two

visits. In subsequent sections, we demonstrate in our simulations that the permutation test

performs well when the number of remaining participants is 100 or above after excluding

those individuals with only one visit. This exclusion seems to have a minimal impact on the

MACS sample that we use. With a sufficient number of permutation tests conducted, the (1

− α) quantile specific to m visits can be found among all TiI V i
⊤1qm < 0 , i = 1, …, N, to

serve as the critical value. Thus, we relax the assumptions that the test statistic follows a χ2

distribution and that the upper tails and the lower tails of the domain scores are symmetric.

Participant d with total md = m visits will be classified as cognitively impaired if their test

statistic exceeds this critical value and Ud
⊤1qm < μ⊤1qm.

3 | SIMULATION ANALYSIS

We ran a series of simulation studies to evaluate the performance of the proposed

procedures. Given that the MACS data analyses in Section 4 involve six cognitive domains,

we also considered q = 6 hypothetical domains in the simulation studies. We first generated

longitudinal multivariate data following the multivariate normal distribution with several

forms of polynomial mean functions over time. The testing procedure based on χ2 was

evaluated by FWER over different levels of α. Then, we considered data that do not follow

multivariate normality to evaluate the performance of the proposed permutation test. Two

forms of data were examined. The first form was generated from multivariate t distributions

with symmetric but heavier tails than normal distributions. The second form was generated

by transforming Gamma distributions to achieve negative skewness.

We carried out 1000 simulations for each scenario. For each simulation, we generated

longitudinal scores for 1000 participants supposedly from the healthy control group, and

generated longitudinal scores for another 1000 participants independently as the test group.

For each participant, we simulated survival time from an exponential distribution with

mean 30 years and censored at 15 years. Since participants in the MACS were tested

semiannually (around 0.5 year between any consecutive two visits) or biannually on their

cognitive performance,18,19 the time between any consecutive two visits was assumed to

follow independent and uniform (0,1) distribution with the first visit at time 0. We continued

to simulate visits until the accumulated visit times exceeded the censored survival time for

the ith participant. The number of visits at the last visit before the boundary was recorded as

mi.

In practice, one might be interested in determining whether cognitive functions are

significantly better in one group compared with another. Thus, we also examined and

compared various testing groups with different visit frequencies and mean functions under

alternatives and under the null. Finally, we studied the performance of the proposed
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tests under various sample sizes and percentage of subjects with only one visit. Detailed

simulation specification and results are described below.

3.1 | Multivariate normal distribution

After the set of visits mi was generated for participant i, six domain scores were simulated

from the multivariate normal distribution at each visit. The covariance matrix for Ui was

specified as following. We set σ2 = 30, θ2 = 10, ρsr = 20, for s = r, and ρsr = 60, for s ≠

r with s, r = 1, …, 6. Each element for covariance matrix can then be computed. Diagonal

elements are σ2 + θ2 + ρ11 = 100. Covariance of different cognitive domains at the same

visit is θ2 + ρ12 = 30. Covariance of the same cognitive domains at different visits is ρ11 =

60. The remaining elements are ρ12 = 20.

We considered four types of polynomial mean functions over time. For the constant trend, all

six cognitive domains were assumed to have mean of 50 at any given t. For the linear trend,

the first three cognitive domains were set to have means of 50 − 0.3t, and the other three to

have means of 50 − 0.5t. For the quadratic trend, the first three cognitive domains were set

to have means of 50 − 0.02t2 + 0.1t, and the other three to have means of 50 − 0.15t2 + 0.2t.
Finally, for the cubic trend, the first three were set to have means of 50 − 0.001t3 + 0.05t2 +

0.3t and the remaining to have means of 50 − 0.0015t3 + 0.07t2 + 0.6t.

The mvrnorm from the R library MASS was then used to generate longitudinal cognitive

errors following the multivariate normal distribution with means set to 0 and the covariance

matrix as described above. The mean polynomial functions with the four forms (see above)

were added to the errors to represent the simulated longitudinal cognitive scores. For the

healthy control group, the lmer from the library lme4 was used to implement model

(1). Without assuming any prior knowledge of the true longitudinal mean trend, cubic

polynomial functions were used to describe the mean functions for all four sets of data.

For each type of mean functions, the test statistics were then computed for 1000 testing

participants using the sample mean and covariance matrix obtained from the corresponding

healthy control group. The χ2 tests were conducted for each simulated dataset at different

levels of α (from 0.001 to 0.1), and the average FWER was computed based on 1000

simulations for each type of mean functions. Figure 1 illustrates the obtained FWERs of

the LMNC χ2 test across all α levels under the cubic mean trend. The results for the

other three mean trends are almost identical to those for the cubic trend and thus are not

shown here. The estimated FWERs are denoted by the black solid lines, and the nominal

α levels are denoted by gray dash lines. The two lines are almost identical under the four

mean trends. The LMNC χ2 test seems to have exact FWER when domain scores follow

multivariate normal distributions and the underlying means and covariance structure are

correctly specified.

3.2 | Multivariate t and Gamma distributions

Real data often do not follow multivariate normal distributions. Skewness and heavy tails are

commonly observed. In this simulation setting, we considered the same four mean functions

described in Section 3.1 but with nonnormal errors. One set of errors had symmetric heavy

Wang et al. Page 7

Stat Med. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tails from multivariate t distributions, and the other set had negative skewness transformed

from correlated Gamma distributions.

We generated longitudinal random errors from multivariate t distributions with 5, 25, and 50

degrees of freedom. The covariance matrix for the error terms was assumed to follow the

same structure as described in Section 3.1, and the means of the errors were set at 0. The

rmt from the library csampling was used for multivariate t random error generation. Then

we added four polynomial mean trends to the simulated random errors to represent observed

longitudinal scores with heavy symmetric tails.

Next, a gamma distribution was utilized to simulate data with negative skewness. In order to

comply with certain covariance structure, that is, compound symmetric, we first generated

longitudinal multivariate normal errors ζijk, j = 1, …, 6, k = 1, …, mi for participant i
with the means of zero. The covariance matrix from Section 3.1 divided by 100 was used

here. Then we considered three different gamma distribution designs. For the first one,

we calculated 70 − Γ−1(Φ(ζijk)) as our negative skewed errors, where Γ is the cumulative

distribution function (CDF) of the gamma distribution with shape of 4 and scale of 5 and

Φ is the CDF of the standard normal distribution. For the second design, we calculated

100 − Γ−1(Φ(ζijk)) as our negative skewed errors, where we assumed shape of 25 and scale

of 2 for the gamma distribution. For the third design, we used 150 − Γ−1(Φ(ζijk)) as our

negative skewed errors, where the gamma distribution has shape of 100 and scale of 1. The

same longitudinal mean functions from Section 3.1 were again added to the simulated errors

to obtain observed longitudinal cognitive domain scores with negative skewness. All three

designs have baseline scores with mean 50 and variance 100.

For each scenario we generated longitudinal cognitive domain scores for 1000 participants

from the healthy control group and scores for the other 1000 as the test group. Other

simulation setups were the same as those from Section 3.1. To implement the permutation

test, we first fit an MLME with cubic polynomial terms to data from the healthy control

group as specified in Model (1) and obtained the estimates for the mean trends and the

covariance matrix. Then, for each unique number of visits M observed in the test group,

we bootstrapped 5000 participants with replacement (N = 5000). For each participant, we

subtracted the estimated mean trend from their longitudinal scores. The resulting errors were

rearranged randomly by columns as illustrated in Section 2.2 and then sampled by rows

with replacement for M visits. The (1 − α)th quantile was found among those 5000 test

statistics whose average mean values are negative to serve as the threshold for cognitive

impairment classification in the test group. After 1000 simulations, summarized FWERs

at various levels of α are shown in the upper panel of Figure 2 for data generated from

multivariate t distributions and in the bottom panel of Figure 2 for data generated from

gamma distributions, both with cubic mean trends. The results under other mean trends are

similar and not shown here. For comparison, we also carried out the testing procedure based

on χ2 to examine how FWERs are controlled relative to different α levels. Their FWERs at

various levels of α are also shown in Figure 2 along with those from the permutation test.

When multivariate normality does not hold, the FWER based on the χ2 procedure can be

greatly inflated, as shown in Figure 2 where the three black curves denoting the FWERs
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from the χ2 test are way above the empirical α levels denoted by the gray broken dash

lines. Moreover, the inflation appeared more drastic at smaller levels of α. Conversely, the

permutation test successfully maintained FWER at or below any predetermined level as

shown in Figure 2. Since the permutation test was applied to the error terms, this suggests

that Model 1 is adequate in capturing the mean functions even when the data do not follow

multivariate normal. Another interesting phenomenon about the permutation test that we

observed from the plots is that FWERs were smaller compared with α when the multivariate

t distribution had less heavy tailedness and the gamma distribution had less skew. Simply,

when the data move closer to normality, the permutation test becomes more conservative.

Though the conservativeness of permutation tests has been observed previously,20 our

permutation test is more complicated and the dependency on the skewness of the data

requires further investigation. Therefore, it remains important to check the normality of the

data before determining whether the χ2 or permutation test should be used when applying

the LMNC for classification.

3.3 | Comparing groups under different visit frequencies

In this section, we examined the power and the FWER of the proposed tests under different

settings of visit frequency for the test group. The MACS study, which inspired us to

develop the LMNC method, followed men living with and without HIV at roughly the same

frequency. Thus, the two comparison groups have similar distributions for the number of

visits as shown later in Section 4. However, this may not hold when a new study with certain

treatment/condition is tested against an old study, because various factors can contribute to

significant differences in visit frequencies. Even within the same study, participants from

different cohorts may have different follow-up visits. Therefore, we carried out the following

numerical studies to examine how different visit frequencies affect FWER as well as power

if comparisons between groups are desired. Four different designs were considered for the

test group by changing mean survival time and censoring time:

1. Survival time follows exponential distribution with mean 30 years and is

censored at 15 years (median visit number 28);

2. Survival time follows exponential distribution with mean 50 years and is

censored at 15 years (median visit number 29);

3. Survival time follows exponential distribution with mean 30 years and is

censored at 10 years (median visit number 19);

4. Survival time follows exponential distribution with mean 30 years and is

censored at 25 years (median visit number 42).

Here for the healthy control group, we adopted the same multivariate t setting with 5 degrees

of freedom and the same quadratic mean trend from Section 3.1. Under the first design the

test and control groups had an identical visiting frequency. To evaluate the FWER under the

null, we generated 1000 participants following the same mean trend and covariance structure

as the test group at each simulation. The only difference was the observed survival time and

the subsequent visit frequency. To examine power under alternatives, we assumed the first,

third and fifth cognitive domains of the test group to have mean trends of 50 − 0.02t2 and

the remaining cognitive domains to have mean trends of 30 − 0.04t2. As the two sets of
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domain scores had different means, we lowered the dependence in our covariance structure

by setting σ2 = 60, θ2 = 10, ρsr = 5, for s = r, and ρsr = 25, for s ≠ r with s, r = 1, …, 6.

Therefore, the covariance of different cognitive domains at the same visit was θ2 + ρ12 = 15.

Covariance of the same cognitive domains at different visits was ρ11 = 25. The remaining

elements were ρ12 = 5. Again, we considered the four different designs of visit frequencies

for the test group and simulated 1000 participants for each design at every simulation run.

At each simulation for every participant, both the χ2 test and the permutation test based

on 5000 permutations were used for cognitive impairment classification. One thousand

simulations were implemented and summarized in Figure 3. From the graph under the null

hypothesis, we can see that the frequency-specific permutation test can effectively control

FWER at a per-determined α level for all different survival time designs. Because data

do not follow a multivariate normal distribution, using the χ2 test will inflate FWER.

The inflation in cognitive impairment differs with various survival time designs and visit

frequencies and seems more noticeable when the testing group has many more visits than

the control group. Not surprisingly, the χ2 test has more power than the permutation test

under alternative hypotheses. Although close, the testing group with many more visits tends

to have higher power in both the χ2 and permutation tests. Considering both the FWER and

power, it is important to make sure that the visit number distributions are comparable when

comparisons between two groups are desired.

3.4 | Impact of effective sample size

Under the multivariate normal assumption, the inference is based on an asymptotic χ2

distribution. With few participants in the healthy control group, the χ2 test may yield

inflated FWERs. When the permutation test is used, a small sample size may limit its

ability to obtain a proper permutation distribution. Moreover, the permutation test only

uses participants with more than one visit to establish a permutation distribution, because

repeated measures are considered in the covariance matrix. Thus, if more people from the

healthy control groups are lost to follow-up after the initial measurement, we will have less

people left to conduct the permutation test, which translates into a smaller effective sample

size. Considering all these, we are interested in evaluating how different effective sample

sizes of healthy controls impact the LMNC method in terms of FWER.

To examine how the performance of our proposed χ2 test was affected, we simulated

multivariate normal data using the same setup as in Section 3.1 for the quadratic mean trends

but with different effective sample sizes. The number of participants enrolled in the healthy

control group was set at 25, 50, 100, 200, 500, and 1000. The size of the testing group

was the same as the healthy control group. Average FWERs computed based on 10 000

simulations from both the χ2 and permutation tests are summarized in Figure 4 with α =

0.05 for each sample size considered. To evaluate how different effective sample sizes of

healthy controls impact the performance of our proposed permutation test, we used the same

multivariate t errors as from Section 3.2. Changes were made to the survival time generation,

the time between any consecutive two visits, and the number of participants enrolled in

healthy and testing groups. The survival times for both groups follow an exponential

distribution with mean 10 years and are censored at 10 years. For the time between any
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two consecutive visits, uniform (0,1), (0,6), (0,11.5), (0,18), and (0,41) were used to create

about 5%, 25%, 45%, 65%, and 85% of participants with only one visit (lost to follow-up)

in both healthy control and testing groups. Meanwhile, we examined different sample sizes

of 50, 100, 200, and 500. Results from 10 000 simulations are summarized in Figure 4 as

average FWERs at α = 0.05.

From the left plot of Figure 4, we can see that a small number of participants in the

healthy control group yields an inflated FWER. When sample size reaches 100, the χ2

test has FWERs very close to the α level. On the other hand, the permutation test can

always control the FWER below the α level, though it can be quite conservative when the

sample size is large and errors follow a multivariate normal distribution. When data do not

follow multivariate normality, the permutation test also inflates FWERs when the number of

participants is small in the healthy control group. At a fixed sample size, a large proportion

of people lost to follow-up after initial measurement can also inflate FWER for the LMNC

permutation test. Based on the simulations here, when we have more than 100 participants

with more than one visit, or the effective sample size is greater than 100, the FWER from the

permutation test is very close to the α level.

4 | APPLICATION TO THE MACS

We applied the proposed LMNC to the NP data that were collected from an ongoing

MACS. The MACS study has been administered by the University of Pittsburgh, Johns

Hopkins University, Northwestern University, and the University of California at Los

Angeles.21,22 Since its first enrollment in 1984, the MACS has recruited more than 7000

men who have sex with men (MSM), either infected with HIV or at risk for infection

at study entry. Participants have been regularly interviewed and examined semiannually

about a broad range of variables including their age, depressive symptoms, sexual activity,

substance use, cognitive functioning, and physical measurements. HIV infection negatively

impacts patients’ brain, and the effect of HIV on brain functioning was found to be

less drastic after the highly active antiretroviral therapy (HAART) became available in

early 1990s. In a MACS NP substudy, participants have been repeatedly tested on a NP

test battery assessing six cognitive domains which included learning, motor speed and

coordination, speed of information processing, memory, working memory and attention,

and executive functioning.23,24 As of October 2017, some participants had more than

20 years of longitudinal NP data. This provides a unique opportunity to examine how

cognitive impairment compares between those infected with HIV and those not infected in

the HAART era.

At each NP visit, the battery of tests was administrated, and these test scores were

summarized by T-scores which were calculated from regression models adjusting for

education, race/ethnicity, age, and the number of tests administrated, and standardized to

have a mean of 50 and standard deviation of 10. Then, summary T-scores were obtained

from taking the arithmetic mean of all T-scores in each domain, except for motor speed

and coordination domain, where the lowest T score is used. In this analysis, we focus

on visits where participants had all six cognitive domain scores available, and include

3701 participants who have at least one such visit. Among participants included in this
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analysis, 1667 were seronegative (279 having one visit), while 2034 were infected with

HIV (328 having one visit) at the study entry. Those not infected with HIV serve as the

“healthy” control group, representing HIV-uninfected MSM. Because the motor speed and

coordination domain used the lowest T score instead of the average, we can see from Figure

5 that baseline motor domain scores for seronegative participants failed to follow a normal

distribution. The LMNC using the χ2-test may be of concern and the permutation test should

be considered. For both seropositive and seronegative groups, we calculated the number

of participants for each total visit frequency and plotted them by group in Figure 5. The

Kolmogorov-Smirnov test shows that the visit number distributions do not differ (P = .90),

and the visit frequencies are comparable between the two groups. At the same time, the

number of participants with more than one visit is large enough to construct the permutation

distribution. Thus, the LMNC permutation test is expected to work well in this application.

Specifically, we first fit the model described in (1) with cubic mean trends in the healthy

control group. After estimates were obtained, both the χ2 test and the permutation test

were applied to data from the healthy control group across different levels of α. For both

tests, fivefold cross validation was used to test cognitive impairment among those not

infected with HIV. The results are shown in Figure 6. The first thing we can see is that the

permutation test (N = 100 000) can effectively control FWER at predetermined α levels. By

contrast, the χ2 test would have inflated the family-wise error when the data fail to follow

a multivariate normal distribution but the model is sufficiently specified. We also applied

both the permutation test and the χ2 test to data from seropositive men. The results are also

shown in Figure 6. The permutation test identified about the same proportion of seropositive

men with cognitive impairment as in the seronegative group across αs. Meanwhile, the χ2

test identified a much higher proportion of cognitively impaired men in the seropositive

group than in the seronegative group. The standard Chi-square test for the association

between serostatus and cognitive impairment that is identified by our χ2 test yields a

P value less than .0001, and that for cognitive impairment identified by our proposed

permutation test results in a P value of .07, suggesting different levels of associations.

This may have subsequent clinical and research implications. Not only would the χ2 test

identify more people with cognitive impairment in seronegative and seropositive groups,

but also different conclusions might be drawn about the relationship between serostatus and

cognitive impairment during the HAART era. By contrast, the permutation test shows that

the association between cognitive impairment and HIV infection is rather weak, leading

to the conclusion that people infected with HIV seem to enjoy relatively healthy cognitive

functioning after being properly treated with HAART.

Both the χ2 and permutation tests are based on the fact that the seronegative group

(not infected with HIV) is treated as the reference group of healthy controls. Unlike the

simulation study, where we know all the participants tested are under the null distribution

when evaluating FWER, the true cognitive impairment status from the MACS seronegative

group is actually unknown but their functioning scores are assumed to follow a normal aging

process. The impairment rate and the above conclusion may differ had we used another

reference group. To further validate the comparisons between the two tests, Table 1 shows

the mean scores of all six cognitive domains for both seronegative and seropositive groups at

the first visit (100% participants), the forth visit (50% participants), and the tenth visit (15%
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participants). We can see that, relative to standard deviation of 10, the score differences are

very small between the two groups. A wrong conclusion would be drawn if a method failing

to control family-wise error, like the χ2 test in this case, is used otherwise.

5 | DISCUSSION

Our work demonstrated that the proposed LMNC method can effectively control FWER.

Multivariate normality is a key assumption in using the χ2 test for cognitive impairment

classification. When such an assumption is not satisfied by data or the model in use does not

fully address random effects, the permutation test can still guard FWER at a predetermined

level.

The MNC method specifically takes intercorrelations among domain scores into account,

and may lead to different results as some existing methods that are used in AIDS research.

As an example, we only consider two cognitive domains at a single visit. Suppose that the

variance of two domain scores is 1 and the correlation is 0.5, and both mean cognitive scores

are zero. The participant having cognitive scores of (− 1, − 2) will have a larger P value than

the one with scores (0, − 2). This is contrary to the intuition that the first participant seems to

have more extreme scores. However, the correlation between two domains is high. Thus, the

scores (0, − 2) from the second participant is more unusual than (− 1, − 2) under the strong

positive correlation, and consequently, the second participant has a longer “distance” from

the means, after inversely weighted by the covariance matrix. If the correlation between two

domains is set to be zero, then the first participant will have a smaller P value. Therefore,

the MNC results may not be consistent with some existing ad hoc diagnoses methods such

as counting the number of domains with scores 1 or 1.5 standard deviations below the

means.1,2

This paradox also exists in a longitudinal setting. For illustration purposes, let us assume that

only one cognitive domain is tested, with a mean of 0 and variance of 1. The correlation

between any two visits is 0.5. One participant with the domain score tested at two visits as

(0, −2) will have a larger P value than another participant with the domain score tested at

three visits as (0, 0, −2). This is also against the intuition as the first participant seems to

have worse cognition earlier. However, the second participant has longer records of being

“normal,” so the “distance” from the means is also larger after weighted by the inverse

covariance matrix. Consequently, the second participant has a smaller P value. If domain

scores are independent among all visits, the P value for the second participant would be

larger, because of more visits and a larger degree of freedom when performing the χ2

test. This may serve as an explanation to why we observed greater power under a higher

visit frequency design, even though they follow the same mean trends. To generalize our

proposed method to groups with very different visit number distributions, further efforts

should be made to improve our proposed permutation test. Moreover, our current MNC

analysis only uses visits at which all domain scores are available, while naive methods can

tolerate one or two missing domains. Nevertheless, our proposed LMNC method provides

insights into how “abnormal” domain scores may be, which could be missed by naive

methods ignoring intercorrelations among domain scores and repeated visits. How to extend

our LMNC method to missing domain data will be an interesting future research topic.
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FIGURE 1.
The longitudinal multivariate normative comparison χ2 test when data follow multivariate

normal distribution
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FIGURE 2.
The longitudinal multivariate normative comparison χ2 and permutation tests; the upper

panel is when data follow multivariate t distributions (permutation test when df = 5

overlapped with the nominal α line); the bottom panel is when data are transformed from

Gamma distributions
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FIGURE 3.
The longitudinal multivariate normative comparison χ2 test and permutation test using

multivariate t data when testing group has different visit frequencies
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FIGURE 4.
The longitudinal multivariate normative comparison (LMNC) χ2 test and permutation test

with different sample sizes under multivariate normality (left); the LMNC permutation test

with different sample sizes and visit frequencies using multivariate t data (right); α = 0.05

represented as the horizontal dashed line
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FIGURE 5.
Q-Q plot of baseline motor score in the seronegative group and visit frequencies of two

serostatus groups
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FIGURE 6.
Comparing proportion of cognitive impairment in seronegative and seropositive groups in

the Multicenter AIDS Cohort Study
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TABLE 1

Mean scores of six cognitive domains for seronegative and seropositive groups at different visit

Cognitive domain Motor Executive Speed Learning Memory Working memory

At visit 1 Seronegative 47.12 49.81 49.92 49.67 49.90 49.64

Seropositive 46.73 49.77 49.25 49.71 49.98 49.40

At visit 4 Seronegative 45.86 50.17 50.45 49.33 49.04 48.99

Seropositive 45.79 49.31 49.33 48.96 49.04 48.36

At visit 10 Seronegative 48.14 53.14 51.25 50.94 50.74 51.86

Seropositive 48.26 51.93 51.00 52.41 52.38 51.51
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