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Abstract

A long tradition of studies in psycholinguistics has examined
the formation and generalization of ad hoc conventions in ref-
erence games, showing how newly acquired conventions for a
given target transfer to new referential contexts. However, an-
other axis of generalization remains understudied: how do con-
ventions formed for one target transfer to completely distinct
targets, when specific lexical choices are unlikely to repeat?
This paper presents two dyadic studies (N = 240) that address
this axis of generalization, focusing on the role of nameabil-
ity — the a priori likelihood that two individuals will share
the same label. We leverage the recently-released KILOGRAM
dataset, a collection of abstract tangram images that is orders
of magnitude larger than previously available, exhibiting high
diversity of properties like nameability. Our first study asks
how nameability shapes convention formation, while the sec-
ond asks how new conventions generalize to entirely new tar-
gets of reference. Our results raise new questions about how ad
hoc conventions extend beyond target-specific re-use of spe-
cific lexical choices.

Keywords: convention; communication; learning; generaliza-
tion; abstraction

Introduction

A core problem that all theories of reference must address is
the problem of generalization. When faced with a novel ref-
erent, we must somehow extend or combine existing items
from our lexicon to produce (as a speaker) or interpret (as a
listener) an utterance with the new meaning. This problem
was sidestepped under classical truth-conditional approaches
to reference, where the complete set of referents it applied
was built into its literal meaning (Dale & Reiter,|1995; Lewis,
1970). More recently, however, a family of probabilistic ap-
proaches to reference have emerged to handle graded phe-
nomena like vagueness (Goodman & Lassiter,2015) and typ-
icality (Degen et al.,|2020). Under these accounts, interlocu-
tors maintain graded uncertainty about exactly what an ex-
pression will mean to others (Bergen et al., 2016 Potts et al.,
2015). Hence, generalization is inherently risky. There is no
guarantee that a given referential meaning will be shared by
one’s partner, and the reference may fail.

How, then, do interlocutors decide which expressions
would be more or less effective when faced with something
new? One important source of evidence comes from a classic
line of work using repeated reference games with deliberately
ambiguous referential targets like abstract drawings or tan-
gram shapes (Clark & Wilkes-Gibbs, |1986; Hawkins et al.,

2020; Krauss & Weinheimer, |1964). These studies reliably340

Figure 1: Example tangram images from the KILOGRAM
dataset. The one on the left has relatively high nameability,
and the one on the right lower.

establish the basic conditions for studying referential gener-
alization: participants must rely on their pre-existing lexical
resources to talk about something new. A key finding from
these studies is that participants typically begin with verbose
descriptions appealing to multiple features of the target (“a
dog looking left with its tail pointed up”), but gradually form
conventions and converge to a set of short labels (“the dog”).

Classic studies have examined how newly-formed conven-
tions transfer when the same target appears with a new so-
cial partner (Brown-Schmidt et al., 2015} Metzing & Bren-
nan, 2003; Wilkes-Gibbs & Clark, [1992), or in a new ref-
erential contexts (Brennan & Clark, [1996; Ibarra & Tanen-
haus, 2016). However, a critical axis of generalization has
been comparatively underexamined: the problem of general-
ization to new referential zargets (Nolle et al., 2018 Raviv
et al., 2022; Shepard, [1987). If interlocutors are not sim-
ply memorizing a one-to-one mapping but achieving some
form of broader conceptual alignment (Clark, |1996; Stolk et
al., 2016), then we should observe a gradient of generaliza-
tion to nearby locations in the same conceptual space. Prob-
abilistic accounts of convention formation (e.g. Hawkins et
al., 2022)) naturally capture this gradient via hierarchical in-
ference. If people update their beliefs about whether a given
referring expressions will be understood for the same target
in the future, they should also (more weakly) update their be-
liefs about other targets in the same distribution.

We approach this problem by considering the property of
nameability — roughly, the a priori likelihood that two in-
dividuals will prefer the same label before interacting (Hu-
pet et al., |[1991} Zettersten & Lupyan, 2020). For a higher-
nameability referent, such as the left image in [Figure T| most
speakers will be expected to extend the same familiar label
dog. Meanwhile, for a lower-nameability referent, such as

5the image on the right, different speakers are expected to at-
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Figure 2: Experiment 1 design. On the left, we show an example of a single reference game trial, using a mixed context of ten
tangrams (borders added for this graphic). The context remains the same for all blocks and trials. On the right, we show a full
target sequence consisting of five blocks. In each block, we randomly inserted a single control tangram target (dashed border)

among the repeated targets (solid border).

tempt to extend very different labels (e.g., “lizard”, “robot
hand”, or even “lighter”). A recent study in the color domain
has suggested that speakers make fairly accurate predictions
about whether a given label will be shared by others (Murthy
et al.,2022)), although this may not be the case for all domains
(Lupyan et al., 2023} Mart1 et al.,[2023; Wang & Bi,|2021)).

In this paper, we investigate the effect of nameability on
referential generalization in two studies, drawing on the re-
cently introduced KILOGRAM collection of well-normed tan-
gram stimuli. Our studies employ the well-studied repeated
reference game scenario (Clark & Wilkes-Gibbs, [1986),
where two participants repeatedly communicate about a set
of abstract images. On each trial, one participant, who is as-
signed the speaker role, describes a prespecified target image
from a set of image for the other participant, who is the lis-
tener, to select. Success is measured as the listener correctly
selecting the target image. The first study focuses on the ef-
fect of nameability when reference targets repeat and con-
ventions are formed, while the second studies the transfer of
such conventions to new target images. The studies advance
our prior understanding of generalization in reference along
multiple aspects: (a) we extend the study of repeated refer-
ence games to a much larger set of abstract tangram shapes
with a higher range of nameability; (b) we evaluate the im-
pact of nameability on the formation of conventions; and (c)
we measure the impact of transfer of conventions to new ref-
erence targets within a new context.

Experiment 1: Manipulating nameability

Participants We recruited 60 pairs of participants from
Prolific, based on preregistered inclusion criteria (English as

first language and location based in US or UK). We excluded
8 pairs of participants, because their games contained more
than 20% empty responses. Participants provided informed
consent in accordance with the institutional IRB. Each game
lasted an average of 23 minutes and participants were given a
base payment of $4.25 (approximately $11 per hour) with a
performance bonus up to $0.90.

Stimuli We designed a reference game using the black-and-
white tangram shapes from the KILOGRAM dataset (Ji et al.,
2022). Each shape in KILOGRAM was previously normed
for nameability using a metric called Shape Naming Diver-
gence (SND), computed over naming annotations included in
the dataset. This metric is defined as the mean proportion
of words in each description that do not appear in any other
description for that tangram. For example, if all annotators
of a tangram used the one-word description “bird”, the SND
would be 0 because there are no unique words; if all annota-
tors used distinct one-word descriptions, the SND would be
1. We sorted all 1016 tangrams in the dataset by SND and
selected the top 100 tangrams to use for the low-nameability
condition and the bottom 100 for the high-nameability condi-
tion to ensure maximal differentiation.

For each pair of participants, we sampled a context of 10
tangrams, 5 tangrams from the high-nameability set and 5
tangrams from the low-nameability set. We ensured that tan-
grams in the context are sufficiently distinct to avoid chal-
lenging informativity pressures (e.g. two high-nameability
tangrams that both have the consensus label bird). For each
tangram, we extracted the head word from each of the 10
KILOGRAM descriptions using SpaCy v3 (Honnibal et al.,
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2020) dependency parser. We then set a threshold of 10%
overlap in any pairwise list of head words. We reject and re-
sample sets with pairs above the threshold.

Design and procedure [Figure 2lillustrates the design. Each
game contained 5 blocks, and each block had 6 trials. All
trials in a game were based on the same context. In each
context, 5 tangrams were assigned to the repeated condition,
each appearing exactly once in each block. Among the 5 re-
peated tangrams, we ensured that 2 were drawn from the low-
nameability condition and 3 from the high-nameability con-
dition, or vice versa. The other 5 tangrams were assigned to
the control condition and only appear in one of the blocks as
the target. Thus, all experimental manipulations were within-
dyad. The order of targets are randomized in each block, and
participants alternated roles between blocks.

Participants were randomly assigned to pairs after provid-
ing consent and passing a tutorial and a quiz. The participants
were randomly assigned to the speaker or the listener roles.
When the game started, both players saw 10 tangrams and
a chat box. The order of the tangrams was different from
the speaker’s and the listener’s views, so that the speaker
could not rely on the position when describing the target. The
speaker was asked to send only one message to describe the
highlighted target tangram from the context in 45 seconds.
The listener needed to select a tangram based on the descrip-
tion. An additional 15 seconds were given to the listener to
make the selection if they had not already. Both participants
received feedback after each trial indicating if the listener had
responded correctly. At the end of the experiment, the par-
ticipants were given a demographic survey about their age,
gender, language background, game experience, feedback for
the study, etc. The experiment was built with Empirica (Al-
maatouq et al., 2020), a platform for building and conduct-
ing synchronous and interactive online experiments with hu-
man participants. We hosted the games on Meteor Cloud and
stored game data in MongoDB.

Results

We tested three key hypotheses about performance over time.
First, we expected that high-nameability targets would be
“easier” to communicate about than low-nameability targets
across the board. Second, we expected that performance
would improve overall for repeated targets to a greater de-
gree than the non-repeated controls interspersed throughout
the trial sequence. Third, and of greatest theoretical inter-
est, we ask whether there is a three-way interaction: the per-
formance improvements that accrue over successive interac-
tions for repeated targets may more readily transfer to im-
proved performance on low-nameability controls than high-
nameability controls.

We evaluated these predictions using a series of mixed-
effects regression models for three complementary metrics of
communication performance: referential accuracy (whether
or not the listener successfully selected the target), verbosity
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Figure 3: Experiment 1 results. (A) accuracy, (B) de-
scription length, and (C) time elapsed between speaker mes-
sage and listener response (in seconds) for low- and high-
nameability tangrams in the repeated (left) or control (right)
condition. Error bars are bootstrapped 95% Cls.

(the number of words in the speaker’s description), and speed
(the time taken for the listener to make a selection after re-
ceiving the message). For each metric, we construct a regres-
sion model including fixed effects of condition (repeated vs.
control) and nameability class (high vs. low), as well as an
effect of block number (integers 1 to 5, centered) and all their
interactions. For accuracy (coded as a binary variable: correct
vs. incorrect), we use a logistic linking function. Because all
manipulations were within-dyad, we included the maximal
random effect structure at the dyad-level.

Accuracy Our raw accuracy metric is shown in [Figure 3A.
First, we observed a significant main effect of nameability: all
else equal, listeners were more likely to make errors for low-
nameability targets than high-nameability ones, b = 0.87,z =

3407
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Figure 4: Experiment 1 analysis. To evaluate the stability
of referring expression content over the course of the game,
we computed the Jaccard index between the set of all words
used in each pair of successive blocks. We found a gradual
increase in the metric, indicating increasing block-to-block
similarity in word sets.

—3.4,p < 0.001. While success rates improved overall over
the course of the task, b = 33.3,z = 4.1,p < 0.001, the
most complex model supported by our data only included
a significant interaction between condition and nameability,
b=—-0.32,z=-2.06,p =0.039, likely reflecting ceiling ef-
fects for high-nameability targets, and no significant interac-
tion was found with block number.

Description length We considered the efficiency with
which speakers were able to communicate, measured as the
number of words in their descriptions (Figure 3B). We first
found an overall main effect of block, b = —18.6, £(105) =
—3.7, p < 0.001, consistent with classic observations (Clark
& Wilkes-Gibbs, [1986; Krauss & Weinheimer, |[1964), as well
as a significant main effect of nameability, b = 0.38, 1(47) =
2.8, p = 0.008, where high-nameability targets received
shorter descriptions. We also found a significant interac-
tion between condition and block: holding nameability con-
stant, the decrease in utterance length for repeated tangrams
was significantly greater than for control tangrams, b =
25.2, 1(689) = 6.5, p <0.001. Finally, we found a significant
three-way interaction, b = 8.4, ¢(1066) = 2.1, p = 0.039,
consistent with the hypothesis that dyads are able to converge
on shorter descriptions for repeated tangrams regardless of
their nameability, but these improvements only generalize to
high-nameability control tangrams. If anything, when speak-
ers must refer to a low-nameability control tangram for the
first time late in the game, they produce slightly longer ex-
pressions than they did earlier in the game.

Listener response time Our third performance metric is
the time required for listeners to respond after receiving a de-

scription (Figure 3[C), as listeners may be expected to pause

longer when uncertain about their response. To ensure that
listener response times are not driven by the time window left
by speakers, we capped response times at the maximum value
of 15 seconds given to listeners on trials when the speaker ran
out the clock. We found a significant main effect of name-
ability, where listeners responded more quickly overall for
high-nameability targets, b = 0.63, 1(139) = 4.7, p < 0.001.
As with accuracy, we did not find any significant interactions
with block number, but did find an interaction between con-
dition and nameability, b = 0.28, £(1372) = 2.3,p = 0.02.
Although listeners were always a bit slower to respond for
control tangrams than repeated tangrams, the gap was signif-
icantly bigger for low-nameability ones.

Stability of descriptions So far we have observed that
dyads are able to communciate more efficiently and accu-
rately over the course of a game, as a function of nameabil-
ity. However, these coarse metrics are agnostic to the ac-
tual linguistic content of descriptions, the vocabulary used
by the speaker in order to describe targets. To examine
whether interlocutors are truly converging on shared conven-
tions (despite swapping roles each block), we calculated a
measure called the Jaccard index, J(W;,W;;1), between the
set of words W; used on successive blocks for tangrams in
the repeated condition. The Jaccard index is a measure of set
similarity defined as the size of the intersection over the size
of the union, e.g.

J(W17W2) = |W1 ﬂW2|/‘W1 UW2|

To ensure effects were not driven by spurious changes in
function words or pluralization, we lemmatized all descrip-
tions and excluded stop words prior to computing sets. The
results of this analysis are shown in We found a steady in-
crease in similarity across successive blocks[Figure 4] indicat-
ing that participants increasingly reused lexical choices from
their partner in the previous block as shared conventions sta-
bilized[]

Experiment 2: Generalizing to unseen targets

Our findings from Experiment 1 not only emphasize the
added difficulty of communicating about low-nameability ob-
jects overall, but also hint at the additional difficulty of gen-
eralizing newly acquired conventions to low-nameability ob-
jects. This effect was particularly strong for description
length, where speakers were only willing to extend reduced
descriptions to high-nameability control objects. One expla-
nation for the differential effect of nameability on control tri-
als is that speakers became increasingly confident that their
partner would share the same meaning for unseen tangrams
only when they were expected to have high consensus a priori

'We found a similar effect for a directed variant of the Jaccard
index: Jy;(Wy,Wa) = |W) NW,|/|Wa| normalizing by the size of the
later description rather than the union. This supplemental analysis
suggests that the observed changes in set similarity were not driven
by non-stationarity in set size over time.
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the same procedure as Experiment 1 as a training phase, they
proceeded to a new test phase where they played a reference
game with an entirely new context of 10 tangrams.

and existing conventions were likely to be effective (Murthy
et al., |2022). However, it is also possible that these control
tangrams were simply more familiar as they had appeared in
context alongside the repeated tangrams prior to appearing as
the target. In Experiment 2, we introduce a stronger test of
this hypothesis by measuring how speakers generalize to new
contexts where all targets are entirely novel.

Methods

Participants We recruited 60 pairs of participants, 8 of
whom were excluded based on the same criteria used in Ex-
periment 1. Games lasted an average of 27 minutes and par-
ticipants were paid $5.50 (approximately $11 per hour) with
a performance bonus up to $1.20.

Stimuli, design and procedure We used the same sets of
high- and low-nameability stimuli from Experiment 1, and
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Figure 6: Experiment 2 results. (A) Accuracy and (B) de-
scription length for the train phase (blocks 1-5) and test phase
(block 6). Transparent dashed lines are control conditions.
(C) Within-game differences in description length relative
to the first block of train for the first train and test blocks,
for high- and low-nameability targets. Error bars are boot-
strapped 95% Cls.

the procedure was a direct replication and extension. The
first phase of the experiment (the training phase) was an ex-
act replication of the within-dyad 2 x 2 design used in Ex-
periment 1. The second phase (the fest phase) was new. A
6th block was appended, containing 10 additional trials
lure 5). Critically, these test trials used a completely non-
overlapping context with 10 new targets presented in a ran-
domized sequence. Each tangram in the new context was
given a single trial. Speaker and listener roles were swapped
between every trial.

Results

We evaluated the performance of a new context by examining
two metrics: accuracy and verbosity (we omit the Experiment
2 response time analysis due to space constraints).

Accuracy In addition to replicating the nameability effects
examined in Experiment 1 (see[Figure §A), the primary anal-
ysis of interest is a direct comparison against the initial block
of the train phase (block 1) and the initial block of the test
phase (block 6). In both cases, it is the speaker’s first time
referring to all targets in context. Thus, any differences in the
test phase can be attributed to some generalizable learning
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taking place over the training block. We ran a mixed-effects
logistic regression model predicting accuracy only for these
two blocks, including fixed effects of phase (train vs. test)
and nameability (low vs. high), as well as random intercepts
and slopes at the dyad-level. We found a significant inter-
action, b = —0.31,z = 2.25, p = 0.024, indicating that there
was greater improvement from the beginning of train to test
for high-nameability tangrams than low-nameability ones.

Description length  Average description lengths are shown
for the training phase and test phase in [Figure 6B. We again
replicated the nameability effects found in Experiment 1, and
focus here on the direct comparison between the first block
of training and the first block fo test. We ran a mixed-
effects linear regression model predicting description length,
including fixed effects of phase (train vs. test) and name-
ability (low vs. high) with random intercepts and slopes
at the dyad-level. In addition to a significant main effect
of nameability at the beginning of both train and test, b =
0.32,#(112) = —2.181,p = 0.03, we found a marginal in-
teraction, b = 0.25,7(629) = 1.8,p = 0.069. In a Bayesian
mixed-effects model with full random effects, we obtained a
95% credible interval of [—0.05,0.54]. In other words, there
was a small but meaningful gap in description length between
high and low-nameability tangrams in the test phase, while
no such gap was observed in the first block (see[Figure 6C for
a finer-grained visualization controlling for individual differ-
ences in overall verbosity). Put together, these effects suggest
that participants were better able to anticipate in the test phase
which tangrams would be harder and adjust their description
length accordingly.

Discussion

The study conducted in this paper investigated the effect of
nameability on the process of reference generalization us-
ing tangrams from the KILOGRAM dataset, a large-scale
high-diversity resource for abstract stimuli. We conducted
two experiments that track the development of conventions
during a repeated reference game, and assessed the impact
of these conventions on a reference game with a new con-
text. We observed that conventions, expressed through more
efficient communication and stable vocabulary, are formed
through repeating games, re-affirming observations from past
work (Clark & Wilkes-Gibbs, (1986; Hawkins et al., [2020)
using the larger-scale KILOGRAM data (Ji et al., 2022). Our
key contributions concern the transfer of conventions to novel
stimuli (i.e. control images), and the influence of nameabil-
ity on this process. Our analyses showed that conventions
formed for repeating stimuli transfer to both control stimuli
that do not repeat, and to completely new context with pre-
viously unseen tangrams. This form of generalization has
been generally understudied in prior work. Moreover, this
process is modulated by the nameability of the target objects.
Objects with higher nameability lent themselves to transfer
of acquired conventions significantly more than objects with

lower nameability.

Our studies raise several important directions for future
work. Most importantly, we leave open the question of what,
exactly, is transferred. One possibility is that pairs of partici-
pants aligned their semantic spaces in a way that generalized
beyond the specific visual stimuli observed in the repeated
condition. This conceptual alignment then allowed them to
produce and comprehend references in new contexts more ef-
ficiently and more effectively. The differences we observed
across nameability classes suggest that this alignment is not
perfect, and generally noisier for objects that are harder to
describe. Indeed, the conceptual alignment hypothesis pre-
dicts that generalization would fall off as a function of per-
ceptual or conceptual distance. An alternative hypothesis is
that participants developed a shared model of which stimuli
are easy or hard to describe (i.e. have high or low nameabil-
ity). The speakers could have then utilized this information
and the mutual knowledge that it is shared with their partners
to be more efficient referring to objects in the new context.
In a nutshell, the two hypotheses contrast the direct tuning of
semantic knowledge against the acquisition of a higher-level
task model. Identifying which, if either, of these hypothe-
ses is correct requires further studies, likely with more con-
strained structure. For example, rather than using behavior
during the first block as a baseline, which also impacts the
actual conventions formed, future studies could prefix the re-
peating game with an asocial naming block.

Another important direction for future work concerns how
the statistics of the object distribution in each of the contexts
(either for the train or test phase), may influence the transfer
of conventions. For example, could contexts with a larger ra-
tio of high nameability objects facilitate faster convention for-
mation? Could contexts with more low nameability objects
provide a more challenging environment and result in more
enduring conventions? Our studies have also not explored the
impact of the semantics of the objects on participants behav-
ior. For example, if we were to create contexts that include
more semantically related objects, would that lead to faster
or slower convention formation? Would it result in more ro-
bust transfer to new contexts? Many of these questions could
be readily addressed with carefully designed contexts making
use of the diversity and scale of KILOGRAM.

It is highly unlikely for the exact same concepts and sit-
uations to repeat in realistic situations. Thus, generalizing
partner-specific conventions to new concepts is an crucial part
streamlining interaction with repeating partners. Understand-
ing and modeling such generalization behavior is paramount
to gain insight into the development of language as a system
for coordination and efficient communication between indi-
viduals.
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