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ABSTRACT

We study the applicability of beam-beam deflection techniques as
a tuning tool for the SLAC/LBL/LLNL B factory, PEP-II. Assuming
that the closed orbits of the two beams are separated vertically at the
interaction point by a local orbit bump that is nominally closed, we
calculate the residual beam orbit distortions due to the beam-beam
interaction. Difference orbit measurements, performed at points conve-
niently distant from the IP, provide distinct coordinate- or frequency-
space signatures that can be used to maintain the beams in collision
and perform detailed optical diagnostics at the IP. A proposal to test
this method experimentally at the TRISTAN ring is briefly discussed.

* Work supported by the Director of Energy Research, Office of High Energy and Nuclear
Physics, High Energy Division, of the U.S. Department of Energy under contracts numbers
DE-AC03-76SF00098 and DE-AC03-765F00515.
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1. Introduction

The beam instrumentation needs of the SLAC/LBL/LLNL B Factory (PEP-

II) were first considered in the Conceptual Design Report (CDR‘).[11 Subsequently,
possible options for interaction point (IP)-related instruments were reviewed in a

one-day workshop!21 In addition to the traditional synchrotron-light monitors and

lifetime-measuring scrapers, this working group studied the feasibility of flying
wire scannersfal radiative Bhabha luminosity monitors,m and the extension of SLC
beam-beam techniques to PEP-IL It is this last topic that forms the subject of this
paper. :

Because of their two-ring structure, asymmetric B factories share, in a sense,
some of the basic features of both circular and linear colliders. Single-beam dy-
namics follows the same basic rules as in conventional storage rings. In particular,
the combination of the closed orbit constraint and of radiation damping provides a
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natural stabilization mechanism that is missing in linear colliders, where each pulse
must be mastered anew. On the other hand, because the two beams do not follow
identical orbits, central collisions are not guaranteed and must be maintained by
active feedback. This independence of the two beams (except for the beam-beam
interaction) allows one to envisage beam diagnostics that are fundamentally in-
applicable to a single-ring et—e— collider, but have proved very powerful at the

SLC.

The most obvious such case is that of beam-beam deflections, induced by one
beam on the other via the dipole mode of the beam-beam interaction'” At the
SLC, this deflection supplies an intense and unambiguous signal in beam position
monitors that is used routinely to maintain beams in collision™ This technique
also constitutes the backbone of a complete optical tuning procedure by which
the beam matrix at the IP can be experimentally diagonalized and the luminosity
optimized.m

Transplanting these techniques to an asymmetric collider raises fundamental
questions: What is the impact of large beam-beam dipole kicks on the closed orbit?
How do the beam-beam effects, so important in this machine, modify the naive
model of single-pass, impulse-approximation, rigid beam collisions that is applica-
ble at the SLC? Can beam blowup, in the case of off-axis collisions, sufficiently
distort the beam shape or the beam lifetime to render the approach impractical?

This report is organized as follows: In Sec. 2 we study the effect on the closed
orbit of deliberately off-centering the beams at the IP, under the simplifying as-
sumptions (Sec. 2.1) of rigid Gaussian beams acting on each other as thin lenses.
Such an analysis allows an exact mathematical solution'™ (Sec. 2.2, 2.3) which re-
veals (Sec. 2.4, 2.5) fundamental features of the phenomena studied, such as effects
of transparency symmetry (Sec. 2.6) or spontaneous orbit separation (Sec. 2.7).
The period-one fixed point condition for the one-turn map provides an elegant
numerical solution (Sec. 2.8) for the residual closed orbit distortion, which estab-
lishes, at least in the rigid-beam, thin-lens case, the viability of the beam deflection
technique. The well-known signature of the dipole beam-beam interaction in the
frequency domain is examined in Sec. 3, under the same assumptions as those of
Sec. 2. In Sec. 4 we relax most of our assumptions and study the closed-orbit
distortion for beams colliding off-center, by means of “strong-strong” multiparticle
tracking simulations that take into account synchrotron motion, noise, radiation
damping, thick lens effects and beam blowup. The experimental feasibility of using
beam-beam-induced orbit distortions as an orbital and optical diagnostic tool is
evaluated in Sec. 5, in the context of a proposed experiment at TRISTAN. Our
conclusions are collected in Sec. 6.

In the interest of simplicity of the analysis, we neglect in this paper all effects



from parasitic crossings. It is a straightforward matter to include these effects in
multiparticle simulations; we shall do so in a future note.

2. Analytical model for closed-orbit distortions

Under the simplifying assumptions listed below we can carry out the analytical
calculation of the closed orbit at any point in the ring. (Because of these assump-
tions, this calculation is of limited accuracy; nevertheless, it exhibits the general
qualitative features of the closed orbit distortion and its dependence on parame-
ters such as the tune, the beam-beam parameter and the azimuthal position of the
observation point). For typical PEP-II parameters the result of this calculation is
in good qualitative agreement with multiparticle tracking simulations (Sec. 4) that
do not involve these assumptions.

The analysis presented here follows that of Hirata and Keil!sl suitably aug-
mented to include a closed orbit bump at the interaction point (IP). Our presen-
tation is deliberately quite explicit in the hope that this study will be useful in
further analyses or in B-factory-related experiments.

2.1. SIMPLIFYING ASSUMPTIONS

We assume that there exists a closed orbit bump that splits the closed orbits
apart vertically by a distance d in the immediate neighborhood of the IP. For
our purposes, it does not matter how this distance is apportioned between the et
and the e~ beams as long as the total separation of the nominal orbits adds up
to d. In the context of this note, this orbit bump is a calculational device that
provides a convenient variable to test the sensitivity of the closed orbit to the
beam-beam force. In practice, such a bump would be intentionally implemented
with appropriate magnets or electrostatic beam separators. We assume that this
orbit bump is nominally closed, i.e., that in the absence of the beam-beam force
the orbits coincide exactly with the nominal orbits in the region “outside” the
bump. Because of the beam-beam interaction, however, there is a residual closed
* orbit distortion everywhere in the ring. The situation is sketched in Fig. 1. The
basic objective in this note is to compute this residual orbit distortion as a function

of d and other parameters.
For the purposes of this section we make the following assumptions:

(a) The orbit bump is nominally closed, and exists only in the immediate neigh-
borhood of the IP. The orbits are parallel-displaced by a distance d in the

vertical direction only.
(b) The bunches are not tilted.



(c) All effects of any parasitic crossings are ignored.
(d) The beam sizes are independent of d and have their nominal values.

'(¢) The beam-beam interaction is treated in the impulse (thin-lens) approxima-
tion. '

(f) For the purpose of computing the beam-beam kick, the particle distributions
are assumed Gaussian.

The analytical calculation presented in this section addresses only the coupled
dipole mode of the beams (rigid-Gaussian approximation). This calculation can
be easily extended to the case in which the orbits are displaced in an arbitrary
direction rather than vertically, and in which the beams are tilted in the transverse
plane.lg] We do not consider these generalizations in this note.

We will remove assumptions (d) and (e) in Sec. 4 by resorting to strong-strong
multiparticle tracking simulations, in which the beam sizes are determined dy-
namically and the beam-beam collision is treated in the thick-lens approximation.
Assumptions (c) and (f), however, will remain in force even then. An extension
of these simulations to include parasitic crossing collisions is straightforward and
will be presented separately. The importance of allowing for a self-consistent treat-
ment of non-Gaussian particle distributions has been recently emphasized; b9 an
extension of our calculation along these lines remains to be investigated.

2.2. ONE-TURN MAP

We assume that the two rings are represented by linear maps. The rings inter-
sect at the IP, which we choose to be the origin for the azimuthal coordinate s for
both rings. We imagine observing the beams at every turn at a point immediately
before the IP. The resultant map that relates turn n to turn n+1 for an individual
particle at this surface of section is written

r T4 b r r T4 L
! My 0 ' Az .
IC:': _ Ty + .‘Ei (2 1)
Y+ Y+
! 0 Myi ' !
[ Y far L | yv: + Ay I,

where + and — label the positron and electron beams, respectively. The coordi-
nates z, y and slopes z', y' are measured relative to the nominal closed orbits. The

M’s are the usual Courant-Snyder matrices

cos(2mvg4) + af 4 sin(27v;4) * . sin(2mvzt)
Mzi = « . . + . (2.2)
—vtysin(27v ) cos(27vz4) — by sin(27v,)



with a corresponding expression for Myy. Here o, B and « are the usual lattice
functions, satisfying 8y = 1 + o?, and the superscript * refers to the IP (s = 0).
As is customary, the design is such that o7y = ajy = 0.

Az' and Ay' describe the deflection produced by the opposing bunch as a result
of the beam-beam kick. The deflection that an individual positron at position X4
suffers in the collision is given, in complex form, in the impulse approximation,
and in the relativistic limit by

ToN_

Azl + 1Ay, = — 7+ F(xy —X_,0z_,0y-) (2.3)

(a corresponding expression applies to an electron in the opposing bunch, obtained
by exchanging + < —). Here r¢ = e2/mc? ~ 2.815 x 10~1° m is the classical elec-
tron radius, N_ is the number of particles in the electron bunch, X_ = (X-,Y_)is
the position of its centroid relative to the nominal orbit, and o;_, oy_ are its rms
beam sizes at the collision point. v, is the usual relativistic factor of the positron
and F'is a complex function” that, for Gaussian distributions, is expressed in terms

of the complex error function™”

The one-turn map, Eq. (2.1), is averaged over the particle distributions to yield
a map for the centroids. The centroid is defined by the simple particle average

N
(X,Y) = :,17 > (zkswr) (2.4)
k=1 ' '

As a consequence of the thin-lens approximation (bunch length is effectively zero),
the resultant map for the centroids is of the same form as the individual-particle

map,

[ X + l X + .
M,y O . v
x| X, +AX, 5
Y, Y: .
Y4 O Ml vy
L4+ J ntl + 7T + Jdn

The deflection of the centroid of the positron bunch is obtained by averaging
both sides of Eq. (2.3) over the positron bunch distribution, assumed Gaussian,

% Our definition of F differs from that in Ref. 11 by complex ;onjugation and a factor of 2i.
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and the result is (21

N_
AX, +iAYL = =22
1+

Yy = /0%, +0i, 2y=1/a§++o§_ (2.7)

A similar expression applies to the electron beam, obtained from the above
by the replacement + « —. The fact that the same function F' appears in both
Egs. (2.3) and (2.6), albeit with different arguments, is a property peculiar to the
Gaussian distribution. This mathematical property certainly makes it advanta-
geous to use this distribution in the analysis of the problem; it should be remem-
bered, however, that, in practice, the beam shape is only approximately Gaussian.
Also, under certain operating conditions, the distributions can differ substantially
from Gaussian.

Eqs. (2.5) and (2.6) fully describe the one-turn map for the centroids of the
two beams for given rms beam sizes (in practice, the beam sizes change turn by
turn until an equilibrium is reached). We have not included radiation damping
and quantum excitation because they are not important in determining the closed
orbit: they are important in determining the approach to the equilibrium orbit, but
not the orbit itself. Radiation damping and quantum excitation are much more
important for the quadrupole and higher modes, and therefore these effects are
fully included in the multiparticle simulations used in Sec. 4.

F(X4 ~X_,%2,5y) (2.6)

where

2.3. EQUATIONS FOR THE STATIC DIPOLE MODE

The above map determines the dynamics of the centroids, or the dipole motion,
of the beams, within our approximations. We first look for a period-one fixed point -
of the map. If this static solution exists and is stable we call it, by definition, the
closed orbit. The defining condition is (- -)p4; = {***)ns where - - - represents the
centroids and the sizes of either beam.

In our particular case, in which the displacement of the orbits produced by
the bump is purely vertical, we look for static solutions with X4 = X_ = 0.
The function F is nothing but the electric field (in complex from) per unit charge
produced by the particle distribution in the z — y plane. Because the Gaussian
distribution is an even function of z and y, F is odd in z and y. Therefore the
condition Xy = X_ =0 implies that AX_’,_ = AX' = 0, which means that the
static solution for the horizontal map is the trivial one (this is not true if the
condition for “spontaneous orbit separation” is satisfied; see below.)



Referring to Fig. i, in which we define the vertical components of the centroids
Y, and Y_ measured from their respective closed orbits, one sees that the actual
separation between the orbits is Yy — Y_ +d. We obtain from (2.6)

roN_

AY! = — - ImF(0,Yy — Y_ + 4,55, 5y)
+

o (2.8)

AY! = — ImF(0,Y_ — Y} — d,X;,%y)

From Eq. (2.5) one easily finds the well-known solution™ for the period-1 fixed
point | ’
Y, = %AYiﬂ;i cot(mvy+) (2.9)

which, when combined with Eq. (2.8), yields a set of two nonlinear equations for
the two unknowns Yy and Y_,

N— *
Y, = _M.t cot(mvy) ImF(0,Yy —Y_ +d, ¥g, Zy)
274
roNy Bt (2.10)
Y. = ———¥= cot(nvy-) ImF(0,Y_ — Yy — d,Z;,5y)

27

This set can be solved by first reducing it to a single equation for Y3 —Y_ by
subtracting the two equations. Thus one finds, using the antisymmetry of ImF,

z = (Ay+ + Ay._) ImF(O, z + d, Ez, Zy) ) (2.11)

where z = Y; — Y_ and

N *
cot(mvy+), Ay- = _1‘0_2_’-;{3_3,: cot(wry_) (2.12)

Once a solution is found for z, the beam offsets Y and Y_ are obtained by plugging
z into the right-hand side of Eqgs. (2.10).

Under the assumption that ofy = 0, Eq. (2.5) also implies that the period-1
fixed point satisfies

AY}] = —2Y} (2.13)

which means that the slopes of the closed orbit immediately before and immediately
after the IP are equal and opposite.



If both tunes vy are below the half-integer the cotangent term is positive and
Eq. (2.11) implies that the orbits “attract” each other (the actual separation is
< d). If the tunes are above the half-integer, the opposite is true and the orbits
“repel” each other. The equation also implies that the closed orbit offset vanishes
for vyy = n+1/2. Thisis misleading: although the period-1 fixed point solution
does vanish, it turns out that it is unstable, and the period-2 fixed point solution

is divergent for half-integer tunes'”

The solution to the set of equations (2.10) is discussed analytically and numer-
ically in the following subsections. The closed orbit displacement at any point s in
the ring is determined by applying the usual transport matrix; the result is

AY]
Veo) = oy B (6) cosleus(s) — 7vy)

Byx(s) cos(¢y+(s) — TVy+)
Bys cos(mvyz)

(2.14)

= Y4(0)

where Y4 (0) is what we have heretofore called Yz, and ¢y+(s) is the betatron phase
advance measured from the IP.

This equation implies that, in an idealized ring, a measurement of the closed
orbit Yi(s) allows one, in principle, to determine the closed orbit offset at the
IP. This diagnostic might be input to a feedback system in order to optimize the
collisions. In practice one might choose not one but many observation points s;
for example, one might measure the orbit at all beam position monitors, typically
near the center of all quadrupole magnets. We will briefly discuss such a scheme
in Sec. 5. For present purposes, we shall limit ourselves to finding Y+ and AY}.

It is worth noting that transverse momentum conservation during the collision
implies the easily-proven equality

v+ NLAY, +4-N_AY. =0 . (2.15)

with a corresponding equation for the horizontal deflections. This equality is sat-
isfied turn by turn, whether or not the dynamics has reached a fixed point. In
particular, Eqs. (2.8) for the period-1 fixed point do satisy this general property.



2.4. LIMITING EXPRESSIONS FOR THE CLOSED ORBIT DISTORTION

As mentioned earlier, for the case of Gaussian charge distribution, F' is ex-
pressed in terms of the complex error function™ The leading terms at short and

long distance are given by

i (—‘”—+il)+---, if0 < (—:’—+iai|51
g a, g .
F(mv y,a,,-,dy) = ’:2 v ! z zy ! (2‘16)
e, if —+i—|>>1
z—1y or Oy

By using these expressions one can find, analytically, the limits of the solution
for small d and for large d in the case when the beam-beam interaction is sufficiently
weak that there is no spontaneous orbit separation. This condition is satisfied in
the APIARY 7.5 design of PEP-II, and almost certainly in the design of all other
existing or planned colliders (see below for a detailed discussion of spontaneous
orbit separation). By inserting the first approximation for F into the closed-orbit
equations (2.10) we find, to first order in d,

d
Yi = $205 s deot(nuys) + O(d?),  AYi = FénZys 7ot o@d?) (2.17)
y+

where =4 is one of the four coherent beam-beam parameters, defined by™

_ roN_B4

Syt = 2.1
v 27714+ Zy(Zz + Zy) ( 8)

with corresponding expressions for the remaining three, obtained by the exchanges
+ & — and z < y. Expression (2.17) shows that the effective strength of the
dipole mode of the beam-beam interaction for small separations is o< Ecot(v):
rather than o ¢ (¢ = the usual incoherent beam-beam parameter).

In the limit of large separation the beam-beam force decreases as the electric
field falls off as 2/r, as seen in the large-distance approximation for F. In this case
we obtain, for d > Xz, Xy,

roNzFy+

Yy = :F—_’;—d_— COt(ﬂ‘I/y:!;) + O(d—z), AY:L = q:erN:F
+

7+d

+0@d™?) (2.19)
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2.5. THE WEAK-STRONG CASE

If one of the beams contains much fewer particles than the other one, we
call it the “weak beam” (this is not the only definition of “weak beam” used
in the literature). We consider the extreme case in which the weak beam is a
single particle, say a positron. Thus we take the limit Ny, 0z4, oy+ — 0 with
N_, 04—, oy fixed. Egs. (2.10) yields Y_ = AY! = 0, which means that the orbit
of the strong beam is not disturbed, as it should be expected. On the other hand,
the equation for the orbit offset of the weak beam becomes

Yy = Ay ImF(0, Yy + d, 0z, oy—) (2.20)

which is quite similar to Eq. (2.11). In the limit of small d the solution is

d
Yy = —2nbys doot(nvyy) + O(d?),  AYy = —4nfyy 7t o@d?) (2.21)
y+
where £,+ is one of the four incoherent beam-beam parameters, defined by

roN_fy+

= 2.22
2my40y—(0z— + 0y-) ( )

S+

with corresponding expressions for the remaining three, obtained by the exchanges
4+ o —andz ey

In the case d > 0;_, oy— We obtain

_ToN-By4
v+d

2roN_

cot(nvyy) + O(d™?),  AYy=-— ~d +0(d™?) (2.23)
+

+=

which are identical to the strong-strong results, Eq. (2.19). The reason that the
weak-strong and strong-strong results are the same at large distance is that the
beams behave, in leading order, like point particles in this limit.

This weak-strong case is of interest because it provides a first check on a track-
ing program when it is used to calculate the orbit offset. In Sec. 2.8 we compare
the solution of Eq. (2.20) with that of such a program for the case of the APIARY
7.5 design of PEP-IIL.

11



2.6. CONSEQUENCES OF TRANSPARENCY SYMMETRY

In the present conceptionm of the PEP-II B factory the nominal parameters
satisfy a transparency syrnmetryM whose relevant ingredients can be stated, for
our purposes, as:

N_B;,  NiBy-

T+ ¥
(2.24)
Vgy = Vg Vyy = Vy—

In this case it is easy to see that the two equations in (2.10) are identical,
except for an overall sign; therefore the orbit offsets of the two beams are very
simply related by

AY’ *
Yy =-Y_ t = 2.25

It is worth remarking that the second equality in (2.25), satisfied by the de-
flections AYJ, is valid turn by turn, whether the dynamics has or has not reached
a fixed point. The reason that this equality is more generally valid than what our
derivation would imply is that it follows from transverse momentum conservation,
Eq. (2.15), combined with the first transparency-symmetry condition in (2.24). On
the other hand, the first equality in (2.25), satisfied by the offsets Yz, is valid only
at the period-1 fixed point in the transparent-symmetric case.

2.7. SPONTANEOUS ORBIT SEPARATION

Consider now the case in which there is no orbit bump, i.e., d = 0. Then
Eq. (2.11) has the obvious solution z = 0, which implies Y4 = Y_ = 0. This
is the “normal” solution, in which the closed orbits coincide with the nominal
orbits despite the beam-beam interaction. However, if the beam-beam interaction
is effectively strong, this solution is not unique and, in fact, not stable' There is
a critical value of the strength of the beam-beam interaction beyond which two
new, nonzero, symmetric, solutions for z appear in Eq. (2.11). By studying the
one-turn map one can show that these solutions are, in fact, the stable ones; the
system chooses one or the other depending on the initial conditions. This implies
that Yy and Y_ are nonzero despite the fact that d = 0. This undesirable solution -
corresponds to “spontaneous orbit separation of the first kind,” and is analogous to
the spontaneous magnetization of a ferromagnet below the Curie temperature. It
can be shown that it occurs when the derivative with respect to 2 of the right-hand
side of Eq. (2.11) is greater than unity at z = 0. From Eq. (2.16) and the definition

12



(2.18) one finds that the necessary and sufficient condition for the occurrence of
spontaneous orbit separation is

—27 (Ey+ cot(rvy4) + Sy— cot(vru,,_)) >1 (2.26)

Because the beam-beam parameters are positive, this condition requires at
least one of the tunes to be above the half-integer, where the cotangent is negative.
For given Zy4, the condition is always satisfied if at least one of the tunes vyt is
below and sufficiently close to an integer.

Also possible is a “spontaneous orbit separation of the second kind.” In this
case the solution for the fixed point of the map has period two, so that the closed
orbits of the beams alternate from turn to turn between the two nonzero solutions
of Eq. (2.11). The necessary and sufficient condition for the occurrence of this

undesirable solution is el

27 (Ey+ tan(wvy4) + Sy tan(m/y_)) >1 (2.27)

which is satisfied if at least one of the tunes vy is below and sufficiently close to
a half-integer.

For the APIARY 7.5 design each of the four nominal coherent beam-beam
parameters satisfies

(1]

¢ (2.28)

DO

as a consequence of the pairwise equality of the nominal rms beam sizes. Fur-
thermore, transparency symmetry implies £y4 = §y— and vy = vy—. Thus the
condition for spontaneous orbit separation of the first kind becomes

£y > —tan(ryy)  forl >y >05 (2.29)
while the condition for spontaneous orbit separation of the second kind 1is

£y > g=cot(myy)  for 0> vy >0.5 (2.30)

These two conditions define undesirable regions in the £ — v plane shown shaded
in Fig. 2. The APIARY 7.5 design avoids these regions comfortably.

Hirata and Keil®™ also point out that asymmetric colliders can have a third
kind of instability corresponding to a sum resonance. The instability occurs when

vy+ + vy S integer (2.31)

which is also avoided by the APIARY 7.5 design.

13



9.8. NUMERICAL SOLUTION FOR NOMINAL PEP-II PARAMETERS

Eq. (2.11) can be easily solved by iteration in most cases of practical interest.
Here we present the solution for the case of nominal PEP-II pa,rameters.* A list
with approximate values for the parameters is presented in Table 1. The actual
values that were used as input in the various calculations throughout this paper
vary slightly from those in this table, and are displayed in full at the right margin
of each figure.

Table 1. Abbreviated list of APIARY 7.5 parameters.

LER (e*) HER (e-)
E [GeV] 3.1 9.0
N 5.6 x 101 3.9 x 101
B% [cm] 37.5 75.0
By [cm] 1.5 3.0
0§, [pm] 186 186
04y [um] 74 74
og, [mrad] 0.5 0.25
gy [mrad] 0.5 0.25
o¢ [cm] 1.0 1.0
oelE 1.0 x 1073 6.1 x 10—
Vs 0.04 0.05
7z [turns] 5 x 103 5x 10°
7y [turns] ' 5x10% 5x 103
¢ [turns] 2.5 x 103 2.5 x 103
Vg 0.64 0.64
vy 0.57 0.57

.

In this table the rms beam sizes o* and rms angular divergences o'* at the
IP carry a subscript 0 to emphasize that these are nominal values, corresponding
to completely neglecting the effects of the beam-beam interaction. As mentioned
earlier, the calculation of this section assumes rigid bunches whose rms sizes are
fixed at their nominal values.

% Because we neglect here all effects from parasitic collisions, the APIARY 7.5 design is
essentially identical to the APIARY 6.3D design.
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The transparency conditions (2.24) imply a pairwise equality of the nominal
beam-beam parameters, namely £oz+ = oz— and oy+ = €oy— With {oz I general
different from gy The parameters in Table 1 do satisfy the transparency con-
ditions; however, their values imply an additional equality on the nominal beam-
beam parameters, namely

bozs = Eoz— = Eoy+ = Eoy— = 0.03 (2.32)

The limiting forms (2.17) and (2.19) for the solution are

0.0211d [pm] 4+ O(d?) for small d
Y, [pm] = : (233)
60.4/d [pm] + O(d~?) for large d
and the orbit deflections are, in these limits,
—12.6d O(d? for small d
AY} [prad] = lpm] + O(L) or sm (2.34)
—0.0360/d [pm] + O(d~%) for large d

while the corresponding quantities for the electron beam are obtained from
Eq. (2.25) as
Y. =-Y,, AY! = —%AY_;_ (2.35)

Because of the smallness of £o and because of the proximity of vy to the half-
integer, the orbit offset has small sensitivity to d, as evidenced by the smallness of
the coefficient 0.0211 in Eq. (2.33). Fig. 3a shows the result of solving numerically
the closed-orbit equations (2.10) for a range of values of d; it can be seen that the
largest value of the offset is ~ 0.26 pm which occurs for d ~ 25um. Fig. 3b
shows an expanded view of the LER offset Y plotted vs. d and vs. the true
orbit separation, d + Yy — Y_. This figure also shows the small-d approximation,
Eq. (2.17). Fig. 3c shows the LER offset for larger values of d, and the large-d
approximation, Eq. (2.19). Fig. 4 shows the true orbit separation d + Y4 — Y_
plotted vs. d. The fact that it is almost a straight line along the diagonal is, again,
a reflection of the smallness of Yy and Y_. Fig. 5 shows the orbit deflections AYL
plotted vs. d, showing the —2:1 relation, Eq. (2.35).

Let us now consider the weak-strong case, for which the numerical solution
is shown in Figs. 6 and 7. As explained in Sec. 2.4, we have taken as the “weak
beam” a single positron. Fig. 6 shows the positron orbit offset, and Fig. 7 shows
the positron orbit deflection at the IP, AY], along with the results of a single-
.particle tracking calculation with Tennyson’s code™ In this calculation we assume
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the nominal HER beam parameters listed in Table 1. The positron is tracked for a
few hundred turns; its phase space coordinates, accumulated turn by turn, define
an elliptical curve, the center of which is used to calculate the deflection angle.
The result is displayed in Fig. 7 (crosses) superimposed on the numerical solution

of Egs. (2.20)-(2.9) (solid line).
2.9. RULE OF THUMB FOR THE MAXIMUM ORBIT DISTORTION

From the analytical and numerical solutions presented above, one sees that the
largest orbit distortion and the largest beam deflection, in absolute value, can be
estimated by

(Yi) pax = 27 Ey+ Dy cot(mvy+)
pY 2.36
(AYL). . o~ 4rSguat (2:36)
ﬂyﬂ:

For the APIARY 7.5 case these expressions underestimate the true maxima
by ~ 15 — 30%. For rounder beams the underestimate would be larger than this,
perhaps as much as ~ 50%. In any case, these expressions provide a reasonable
rule of thumb for the largest effect one should expect.

For the weak-strong case the above expressions are still valid provided one
makes the appropriate substitutions & — o and = — €.

3. The map in the frequency domain

In order to assess dynamical features of the coherent dipole mode of the beam-
beam interaction we iterate the map (2.5)-(2.6) from an initial condition that is
slightly away from the fixed point found from the closed-orbit equations (2.10).
Physically, this corresponds to kicking the beams away from their equilibrium
orbits and observing the subsequent motion turn by turn. We store the coordinate
Y._ of the centroid of the electron beam for 512 turns and use this set of values
to perform a fast Fourier transform (FFT). In this calculation, as in the previous
ones, the beam sizes are assumed to remain unaffected at their nominal values

(Table 1).

Figure 8 shows the spectrum for a large vertical bump of d = 50 um. Due to the
properties of the FFT, the spectrum peaks at the mirror frequency 1—0.57 = 0.43
rather than 0.57. The fact that d is fairly large compared to Ly implies that
the beams are approximately decoupled, hence the appearence of the fundamental

frequency only.
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Figure 9 shows the same spectrum for head-on collisions, d = 0. In addition to
the o mode at 0.43, a second line, the m-mode, is clearly visible. If vyq = vy_ it
can be shown that, to lowest order in = and for small-amplitude oscillations about
the closed orbit, the o — 7 tune split Av = vy — vx is given bylsl

cos (27(vy + Av)) = cos (2mvy) — 27 (Ey4 + Zy—) sin (27vy) (3.1)

For vy = 0.57 and Zy4 = Zy— = 0.015 this equation yields Av = 0.026, which is
in agreement with the observed difference between the tunes of the two peaks in
the FFT. |

The location of the two peaks as a function of the bump amplitude d is shown
in Fig. 10. Clearly, for large beam separation there is no coupling between the two
beams. Reducing the bump amplitude to smaller values increases the ¢ — 7 tune
split.

Repeating the same analysis for a horizontal bump scan gives a surprising
result, shown in Fig. 11. For almost head-on collisions the graph exhibits the same
features as Fig. 10. As the bump amplitude is increased, however, the splitting
between 7 and ¢ modes vanishes and then the 7-mode appears on the other side
of the tune. We interpret this by observing that the coupling between the two
oscillating beams is proportional to the slope of the mutual deflection curve. The
crossing of the modes at d; ~ 350 yum corresponds to the peak of the horizontal
beam-beam deflection curve, shown in Fig. 12. At an extremum the deflection
acts just as a dipole kick for both beams, but small oscillations around it “see”
the same deflection angle; therefore the tunes are not coupled. Furthermore, the
slopes of the deflection curve on either side of the extremum have opposite sign and
therefore the tune split changes sign. This effect is not visible for vertical scans
because the slope of the deflection curve does not turn rapidly enough after the
extrema are reached. The reason for this is, of course, the large aspect ratio of the
beams.

We emphasize that we have only analyzed the dipole mode &f the beams, t.e.,
the coherent behavior of rigid beams. In reality, or in more complete calcula-

tions?s'm the o — = tune split is different from the result stated here because of

higher-order mode effects.
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4. Multiparticle tracking calculations

So far we have presented results under the assumption that the beam sizes are
fixed and equal to their nominal values. In reality, however, the beam sizes depend
on the bump amplitude d. Furthermore, we have neglected synchrotron motion
and all longitudinal effects in the beam-beam collision (thick-lens effects). In this
section we present “strong-strong” multiparticle tracking simulations that correct
these deficiencies. We have carried out simulations with Yokoya’s code" and with
Tennyson’s code™ These two codes use different kinds of approximations that are
needed in simulations with a finite number of particles. The results shown below
are in qualitative agreement, and the quantitative differences give us an idea of the
accuracy that can be expected of these kinds of simulations.

In the simulations with Yokoya's code, the bunches are represented by 200
“superparticles” each. Thick-lens effects are taken into account by dividing the
bunches up in the longitudinal direction into 5 slices located at z = 0, +o¢ and
4+20,. This “slicing” of the bunch takes care of the phase averaging during the
collision™ Previous experience in PEP-II simulations"! suggests that five slices is
a reasonable number to use with this code. This represents a compromise between
a desire for accuracy, requiring many slices, with the constraints of computational
expense, requiring few slices. When fewer than five slices are used, the results tend
to show an artificially large beam blowup. The superparticles undergo synchrotron
oscillations at a specified tune vs. The simulations were carried out for 25,000
turns, or about 5 damping times. The beam sizes and beam centroid positions
and deflection angles were determined by averaging over the last 10,000 turns of
the run, sampling at every turn. The exact values of the parameters used in these
simulations differ slightly from those in Table 1, and are listed at the right margin
of the corresponding figures.

At the beginning of the run the superparticles are Gaussian-distributed in phase
space. At every turn thereafter the distribution necessarily deviates from Gaussian,
at least to some extent, due to the nonlinear force. Nevertheless, for the purposes
of calculating the beam-beam force, we assume the distribution to be Gaussian.
The algorithm is the following: at every turn we compute the centroid and o’s of
the particle distribution, and then use Eq. (2.3) to obtain the beam-beam kick on
each superparticle of the opposing bunch. »

Figure 13 shows the rms beam sizes, pormalized to their nominal values, ob-
tained from the simulation.

Figure 14 shows the beam centroid offset Y. Three sets of data are plotted.
The solid lines are the true offsets, obtained by measuring the beam centroid
position from the simulation. The dashed lines are the offsets calculated from the
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closed-orbit equations (2.10), but using the actual blown-up beam sizes obtained
from the simulation (shown in Fig. 13). The dotted lines are the offsets calculated
from Eqs. (2.10) assuming the nominal beam sizes listed in Table 1 (i.e., no beam

blowup).

Figure 15 shows the beam centroid deflections AY’. The three sets of curves
shown correspond to the same conditions as in the preceding paragraph.

In Figs. 14 and 15 the solid and dashed curves are not expected to be identical
because thick lens effects are fully taken into account only in the simulation case
(solid curves). The fact that these curves are so close to each other means that, in
our particular case, thick lens effects are important only inasmuch as they influence
beam size. It is known that thick lens effects are importanthgl in higher-order
modes. Another set of simulations (not presented here) shows that the beam
blowup is a factor ~ 2 larger in the thin-lens approximation (one longitudinal
slice) than in the thick-lens case with 5 longitudinal slices.

In the simulations with Tennyson’s code the beams are represented by 256
superparticles each, and thick lens effects are taken into account using 5 slices
located at z = 0, :}:{io@ and :}:%og. As in the case with Yokoya'’s code, the
simulations were carried out for 25,000 turns, and the beam sizes and centroid
positions were obtained by averaging over the last 10,000 turns of the run; the
sampling, however, was done every 50 turns. The exact values of the parameters
used were slightly different from those previously used, and are listed at the right
margin of the corresponding figures.

Figure 16 shows the results for the beam blowup factors obtained from the sim-
ulation. The blowup factor reaches a maximum of ~ 2, which is somewhat larger
than the result obtained with Yokoya’s code. We attribute the difference between
these results to the minor differences in the values of the damping times and other
beam parameters assumed in the two calculations, (compare parameters at the
right margins of the corresponding figures), and to differences in the mathematical
approximations underlying the two codes. In particular, Tennyson’s code concen-
trates the slices closer to the origin than does Yokoya's code, thus resembling more
the thin-lens case which, as mentioned earlier, entails more beam blowup.

Figures 17 and 18, respectively, display the beam centroid offsets and their
deflections as extracted from the full simulation and from the analytical calculation,
either with blown up or with nominal beam sizes. The statistical fluctuations
are larger than in Yokoya’s code because the beam size average is computed by
sampling every 50 turns rather than every turn. This is reflected in the lack of
smoothness of the curves in these figures, compared to the results displayed in Figs.
14 and 15.
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In summary, both simulations suggest that the vertical positron spot size blows
up by a factor of 1.5 to 2 when the beams are separated by about one to three
times the vertical RMS beam size. The vertical electron spot size increases by
only 15% to 25% in the same range of separations, and the horizontal beam sizes
remain essentially unaffected by vertical beam separation at the IP. The closed or-
bit distortion, in turn, is well described by the analytical one-turn map approach,
provided one takes into account the effective beam blowup predicted by the sim-
ulations. Finally, the magnitude of the beam centroid offsets and deflections, and
their dependence on the beam separation, differ by at most 10% when compar-
ing the naive, rigid bunch analytical calculation of Sec. 2 to the full simulation
described in the present section.

5. Discussion of experimental feasibility

While the closed orbit distortion at the IP is very small for the nominal PEP-II
design (Figs. 14, 17) under normal operating conditions, the beam-beam-induced
angular deflection (Figs. 15, 18) represents a sizeable fraction (~ 30%) of the
angular divergence a{,‘; of the beam. The orbit distortion should therefore become
measurable at points away from the IP, where favorable phase relationships and
large enough beta functions provide the necessary amplification. If sufficient beam
position monitors (BPMs) are available at well-chosen locations around the ring,
then the dependence of the closed-orbit distortion on the IP beam separation could
be exploitedm] to optimize the optical functions at the IP following a procedure

similar to that used at the sLc.®" . ,

A proposal has been put forth to test these ideas experimentally at the TRIS-
TAN ring at KEK."”" We present here the corresponding results of the analyti-
cal calculations and multiparticle simulations similar to those in Sec. 4. We also
present a brief summary of the error analysis bearing on the feasibility of such an
experiment!”] The assumed parameters for the TRISTAN ring are summarized in
Table 2.

The values in Table 2 imply nominal beam-beam parameters ozt = €0z— =
0.018 and £gy4 = oy~ = 0.025, that are smaller than those for PEP-II (§o = 0.03).
However, since the vertical tune is closer to the integer, the closed orbit distortion
due to the beam-beam interaction is larger for TRISTAN.

Figure 19 shows the true orbit separation d+Y, —Y_ plotted vs. d computed
analytically in the rigid-Gaussian bunch approximation. Results from multiparticle
tracking simulations with Yokoya’s code are shown in Figs. 20-22 (these are the
analogues of Figs. 13-15 for PEP-II). The beam blowup in the case of TRISTAN
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Table 2. Parameters for TRISTAN simulations (Yokoya’s code).

et and e~
E [GeV] 29.0
N 1.885 x 10™
B¢ [cm] 100
By [cm] 4.0
ogp [pm] 1284.6
o5y [pm] 8.050
afy, [mrad] 0.285
og;, [mrad] 0.201
o¢ [cm] 1.5
oplE 2.33 x 1073
Vs 0.113
7, [turns] 110
7y [turns] 228
7¢ [turns] 228
Vg 0.61
vy 0.72

(Fig. 20) is quite modest (S 10%) so the difference between the analytical results
and multiparticle simulations is very small.

In order to carry out an error analysis, we make the following simplifying
assumptions: (a) equal BPM errors for all BPMs, (b) equal beta functions B at
the BPMs and (c) random average betatron phases at the BPMs. It can then be
shop\gn that the error with which one can determine the deflection angle is given
by

2/2 sin(7vy) oBPM
. \/N ’ (51)
\/ BB

where N is here the total number of BPMs and oppy is the rms measurement error
of the BPMs. Using the parameters from Table 2 and f =20 m and N = 100,
which are typical values for TRISTAN, we obtain

a(AY') ~

U(AY’) [urad] ~ 0.25 oBPM [gm] (5.2)

Consequently, a 5 um BPM error leads to 1 —2 prad error in the vertical deflection
angle. A similar analysis shows that the error bars for the horizontal deflection
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curve are < 0.5urad. The amplification factor for the closed orbit distortion,
Y(BPM)/Y(IP), is =~ 25; therefore the error by which the orbit separation at
the IP can be determined is small (~ 0.2 um) compared to its maximum value
(~ 1 um). This error is probably dominated by the jitter of the power supply for
the separator plates.

We have computed the deflection curves from Egs. (2.8), (2.9) and (2.10) and
fitted an approximate expression, valid for ¥, /Zy > 1, given by

1. 2Nro ) 7 y—% )\ Y—yo

AY' =~ — o {\/; erf ( ﬁz,,) 5. } (5.3)
where y is the perturbation applied to beam by the closed bump and yo is the
initial separation between the beams before the scan. Given the above estimates
for the accuracy of the measurements, the spot size Xy and the position of the beam
centroid yo can be measured with an accuracy of about 1 micron. This precision
makes the beam-beam deflection method quite promising in its applications to IP

spot size determination, as well as to feedback systems that maintain the beams
in collision.

6. Conclusions

We have presented an analysis of the beam-beam effect on the closed orbits for
asymmetric colliders, and studied its possible applicability to the determination
of the spot size and the beam separation at the IP. An error analysis suggests
that this method is a promising diagnostic and feedback tool for beam collisions.
This technique is intended to complement other methods in the optimization of
the luminosity performance of the collider.

In this analysis we have neglected all effects from the parasitic collisions. We
believe that these effects will not change our results qualitatively. In a future note
we intend to present more detailed multiparticle tracking simulations that will
include parasitic collisions.

A proposed experiment at TRISTAN will allow us to assess the feasibility of
this method and to calibrate our calculations in a more realistic fashion.

Acknowledgements: We thank H. DeStaebler, A. Hutton and R. Siemann for help-
ful discussions, and M. Zisman for a careful reading of the compuscript.
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