
Lawrence Berkeley National Laboratory
LBL Publications

Title
TOUGH90: A FORTRAN90 Implementation of TOUGH2

Permalink
https://escholarship.org/uc/item/2hz7h0mv

Author
Moridis, George J

Publication Date
1998-04-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2hz7h0mv
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

'. ~ l •

4-"

LBNL·41640

ERNEST ORLAND[J LAWRENCE
BERKELEY NATI[JNAL LAB[JRAT[JRY

TOUGH90: A FORTRAN90
Implementation of TOUGH2

George J. Moridis

Earth Sciences Division

April 1998
Presented at the
TOUGH98 Workshop,
Berkeley, CA,
M~rJ~~)~?'?~~, .. _._ ..
and·:fo~be·:published ih"--
the Proceedings' .

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Gov~rnment nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

TOUGH90: A FORTRAN90

IMPLEMENTATION OF TOUGH2

George J. Moridis

Earth Sciences Division
lawrence Berkeley National laboratory
University of California
Berkeley, CA 94720

April 1998

lBNl-41640

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable
Energy, Office of Geothermal Technologies, of the U.S. Department of Energy, under contract
No. DE-AC03-76SF00098.

Abstract

TOUGH90: A FORTRAN90 Implementation of TOUGH2

George J. Moridis

Earth Sciences Division, Lawrence Berkeley National Laboratory
University of California, Berkeley, CA 94720

TOUGH90 is a FORTRAN90 implementation of TOUGH2, and represents a major change in syntax
and architecture over TOUGH2, while maintaining full backward compatibility with existing input
data files. The main features of TOUGH90 include dynamic memory management, the use of
modules, derived types, array operations, matrix manipulation, and new and very powerful intrinsic
procedures. These result in a faster, more efficient and compact code, which is conceptually simpler,
and significantly easier to modify and upgrade.

1. Introduction
The TOUGH2 [Pruess, 1991] family of codes is a descendant of the earlier MULKOM code [Pruess,
1983], and provides multi-dimensional numerical models for simulating the coupled transport of
water, vapor, non-condensible gas and heat in porous and fractured subsurface media. These models
describe the processes and interactions involved in the flow of fluids in the subsurface, including the
appearance and disappearance of liquid and vapor phases, boiling and condensation, multiphase flow
due to pressure, gravity, and capillary forces, vapor adsorption with vapor pressure lowering, heat
conduction, and heat exchange between rocks and fluids. TOUGH2 offers the flexibility of handling
different fluid mixtures, e.g., water, water with tracer; water and CO2; water and air; water and air with
vapor pressure lowering, water and hydrogen; water, gas and an organic liquid phase. Additional
information is available in a number of reports [Pruess, 1991, 1995; Pruess et ai., 1996; Wu et ai.,
1996], and on the web at URL http://ccs.lbl.govITOUGHI.

The code in all the members of the TOUGH2 family is written in FORTRAN, the most widely used
scientific programming language. Each FORTRAN version is a superset of all previous versions,
which therefore allows the seamless integration of code segments developed at different times since .
the first release of the MULKOM [Pruess, 1983] parent to TOUGH2. In that respect, the current
version of TOUGH2 can be compiled and run without any problem using a FORTRAN90 compiler.

FORTRAN90 is the latest version of FORTRAN, and was released as an international standard
language in 1991 [Ellis et ai., 1994]. It has many new features and capabilities (based on experience
gained with similar concepts in other languages) which extend the functionality of the language and
broaden its applicability, in addition to providing its own contributions to the development of new
programming concepts. TOUGH90 is a FORTRAN90 implementation of TOUGH2, written to take
advantage of the unique capabilities of the language. As such, it does not represent an incremental
change over TOUGH2 but is rather a completely rewritten code with different syntax and
architecture, although full backward compatibility with existing input data files is maintained.

In this paper, the most important features of TOUGH90 are discussed, i.e., the use of modules,
dynamic memory management, derived types, array operations, matrix manipulation, and new
intrinsic procedures. For demonstration purpose, code segments of TOUGH90 are compared to
equivalent TOUGH2 code.

2. The Use of Modules
Modules are new program units of FORTRAN 90, which provide a simple but highly adaptable
method to compartmentalize code. They are defined as a collection of declarations and
SUbprograms, and they make some or all of the entities declared within them accessible to the
program units that invoke them.

Modules in TOUGH90 replace all uses of INCLUDE statements, COMMON blocks, and statement
functions. The power of modules is in the collection of these basic concepts, i.e., shared declarations,
globally accessible data, in line code expansion, etc., and generalization in the more flexible and
powerful object of a module [Kerrigan, 1993]. This enables highly adaptable and easy to
compartmentalize code, provides protection of data and of important source code of major data
specifications or subprograms, and makes code upgrading an extremely easy task. In TOUGH90, all
subprograms related to fluid properties are included in appropriate modules.

A simple TOUGH90 module is:
MODULE T90~ithmetic

IMPLICIT NONE
SAVE

!Integer Parameters
INTEGER, PARAMETER :: kind_n = SELECTED~IND(P=14} !Set the required accuracy

END MODULE T90~ithmetic

The T90_Ari thmetic module demonstrates both the concept of the module and the power of the
new intrinsic functions of FORTRAN90. In addition to REAL and REAL * 8 variables, FORTRAN90
introduces the REAL (K IND=n) declaration. Setting n= 4 I 8 I 16 yields single-, double- and quad­
precision arithmetic. The intrinsic function SELECTED_REAL_KIND (P=14) returns the KIND
parameter of a real data type with decimal precision of 14 digits. Thus, inclusion of the module in
the various TOUGH90 program units allows the automatic setting of the arithmetic of real variables
regardlesS of machine and compiler specificities. In the module
MODULE T90_Constants

USE T90~ithmetic
IMPLICIT NONE
SAVE

!Real Parameters
REAL(KIND = kin~}, PARAMETER :: pi = 3.1415926536eO
REAL(KIND = kin~}, PARAMETER :: t_O = 2.7316e2
REAL(KIND = kin~}, PARAMETER :: zero = 0.0
REAL(KIND = kin~}, PARAMETER :: one = 1.0
REAL(KIND = kin~}, PARAMETER :: large = 1.0e50

END MODULE T90_Constants

which defines some basic parameters used in TOUGH90, the T90_Arithmetic module is invoked
(thUS making its contents accessible) by using the command USE T9 O_Ari thmetic. Compared
to a module, the concepts of COMMON and INCLUDE are limited.

3. Dynamic Memory Allocation
Memory allocation in TOUGH2 involves fixed-size arrays, and recompilation is required if the array
size is increased. The need to recompile is eliminated in TOUGH90 by exploiting the dynamic
memory management capabilities of FORTRAN90 through the use of allocatable arrays. These
afford complete control over the array size, which is specified during the program execution.
Moreover, memory occupied by arrays no longer needed is released, and made available to other
arrays, thus increasing the size of tractable problems. This represents an important capability for
creation and handling of internal work arrays in subprograms. An example of dynamic memory
allocation is demonstrated in the Water.J)roperties module below:
MODULE Water....properties

USE T90~ithmetic
IMPLICIT NONE

PRIVATE
PUBLIC :: SAT_PRESSURE

CONTAINS
SUBROUTINE SAT_PRESSURE(tempr,sat....P,unit~}

IMPLICIT NONE

INTEGER:: unit_n ! Number of printout unit
INTEGER:: nnn ! size of "tmpr"
INTEGER :: ~out ! # of cells where "tmpr" is outside the range
INTEGER :: i ! counter
INTEGER :: alloc_er1,alloc_er2,alloc_er3,dealloc_er1,dealloc_er2, dealloc_er3

Integer arays
INTEGER DIMENSION (.) ALLOCATABLE·· igood sat p I flag for saturation pressure

Real arays
REAL(KIND = kin~}, DIMENSION (:}, INTENT (IN) .. tempr
REAL(KIND = kin~}, DIMENSION (:} .. sat....p
RElIL!KINp - kind nl DIMENSION!' I ALLOCATABLE" tc sc

Constant coeffici~ts for Psat = Psat(tempr}

2

temperature vector
saturation pressure vector
inte:nnediate arraYS

!

REAL(KIND = kin~n), DIMENSION (5) :: a_sat = (/-7.691234564eO,-2.608023696el,-1.681706546e2,&
& 6.423285504el,-1.189646225e2/)

REAL(KIND = kin~), DIMENSION(4) :: b_sat = (/4.167117320eO, 2.097506760el,l.Oe9,6.0eO/)

nDn - SIZE (tempr)
ALLOCATE (te(PDP) STAT = alloe erl) I Allocate space for the work arraYS
ALLOCATE (se (PDP) STAT - alloc er2)
ALldOCATE (;iggod sat piMP) STAT = alloc er3)

IF(alloc_erl 1= 0 .OR. alloc_er2 1= 0 .OR. alloc_er3 1= 0) THEN
WRITE(UNIT = unit-p, FMT = 6001)

STOP
END IF

sc = 0
igooCLsatJ> = 0

WHERE(tempr >= 1.0eO .AND. tempr <= 5.0e2) ! If the temperature is within range,
tc = (tempr+2.7315e2)/6.473e2 ! ... calculate satJ>
sc = a_sat(I)*(l.OeO-tc) + a_sat(2)*(1.OeO-tc) **2 + a_sat(2)*(1.OeO-tc)**3 &

& + a_sat(4)*(1.OeO-tc) **4 + a_sat(5)*(1.OeO-tc)**5
sat-p = 2.212e7*exp(sc/(tc*(1.0+b_sat(1)*(1.0-tc)+b_sat(2)*(1.0-tc)*(l.O-tc)) &

& -(1.0-tc)/(b_sat(3)*(1.0-tc)*(1.0-tc)+b_sat(4»)
ELSEWHERE Otherwise, ...

igood_satJ> = 2 ... set the flag and
END WHERE

n_out = COUNT(igooCLsatJ> .EQ. 2)
IF(n_out > 0) THEN

WRITE (UNIT = uni t-p , FMT = 6002) !1.-out
STOP

END IF

DEALLOCATE (tc STAT - dealloc er1)
DEALLOCATE (sc STAT - dealloc er2)
pEALLOCATE (igood sat p. STAT = dealloc er3)

. .. wri te the info out ...

IF(dealloc_erl 1= 0 .OR. dealloc_er2 1= 0 .OR. dealloc_er3 1= 0) THEN
WRITE(UNIT = unit_n, FMT = 6003)
STOP

END IF

END SUBROUTINE SAT_PRESSURE

END MODULE Water-properties

In its entirety, the Water-properties module includes all the variables and subprograms which
compute the properties of the water substance in the liquid and vapor state. The portion shown above
includes only the subprogram which calculates the saturation pressure of water as a function of
temperature .. Regarding dynamic memory allocation, the three temporary arrays te, se and
igood_sat-p are first declared as allocatable arrays (1st and 2nd underlined statements). The size
of the assumed-shape array tempr (containing the input temperature vector) is determined using the
SIZE intrinsic function (3rd underlined statement), and then memory for the te, se and
igood_sat-p arrays is allocated (4th through 6th underlined statements). After the computation
of the saturation pressures (assumed-shape array sat-p), memory no longer needed is deallocated
(last three underlined statements).

This module provides an opportunity to discuss some additional features of TOUGH90.
Water-properties as shown above includes only a subprogram, but no variable declarations. It
controls data access and protection through the use of the PRIV A TE and PUBLIC statements. If
these are missing, all contents in a module are public (i.e., accessible) to the program unit that invokes
it. In the case of Water-propert.ies, the contents of the module are all private (i.e., protected
and inaccessible), with the exception of the subroutine declaration which is explicitly declared as
public. Therefore, all the data in Water-properties (e.g., the values of the parameter arrays
a_sat and b_sat) are protected and cannot be accessed and/or altered during execution.

The other very important feature of FORTRAN90 in the Water-properties module is the use
of whole array operations. The statement s e = 0 involves such an operation by setting the whole s e
array equal to O. This is entirely equivalent to using a DO loop, but is simpler, less error-prone, and
usually faster. The masked array assignment of the WHERE construct iri the module is directly
related to array processing. The assignment statements following it are executed for only those array
elements for which the mask expression (i.e., tempr>=l. OeO . AND . tempr<=5. Oe2, the range
of acceptable temperatures) is true. Conversely, the statements following the ELSEWHERE statement
are executed for those elements for which the mask is false. It must be clearly pointed out that
although the WHERE construct has a certain syntactic similarity to the block IF construct, the former

3

does not involve sequential operations. Its effect is the simultaneous assignment of all the array
elements, with the mask either preventing some of the assignment taking place, or causing different
ones to take place.

4. Derived Types
FORTRAN77 in TOUGH2 requires that an array contain information of a single data type, leading to
arrays which hold either numbers of characters, but not both. FORTRAN90 in TOUGH90 allows the
creation of new data types to supplement the intrinsic types provided by the language. These derived
types are powerful tools for the creation of data structures which contain elements of any data type
mixed freely in any proportion. Gridblock names, connections and properties can thus be grouped
in derived-type arrays, allowing easier handling as well as programming. The use of derived types is
illustrated in the module T 90 _gr i d.

MODULE T90_Grid
USE T90~ithmetic

IMPLICIT NONE
SAVE

!Type Declaration
TYPE element_attributes

CHARACTER (LEN = 5) .. name
INTEGER .. mat....n
REAL(KIND = kind....n) .. vol
REAL(KIND = kind....n) .. phi
REAL(KIND = kind....n) .. p
REAL(KIND = kind....n) .. tempr

END TYPE element_attributes

TYPE connectio~attributes

element name
element rock number
element volume
element porosity
element pressure
element temperature

CHARACTER (LEN = 5) .. name_l,name_2
INTEGER .. ne,<-l, neJ<-2

element names in a connection
element numbers in a connection

INTEGER .• isox
REAL (KIND = kinQJ1) .. del_l, del_2
REAL(KIND = kind....n) .. area

specifies pemeability as k = k(isox); isox=1,2,3 for x,y,Z
element distances from interface
connection area

REAL (KIND = kind....n) .. beta angle between the g vector and the element line
END TYPE connectio~attributes

!Dimensioning

!

TYPE (element_attributes), DIMENSION (:), ALLOCATABLE ..
TYPE (connectio~attributes), DIMENSION (:), ALLOCATABLE ..

END MODULE T90_Grid

element
connection

The derived types element_attributes and connection_attributes which are defined
in the module include character, integer and real data types. Note that two allocatable arrays are
defined: element of type element_attributes and connection of type
connection_attributes, respectively. Memory for these arrays is allocated dynamically
immediately after determining the number of elements (nel) and connections (neon), i.e.,

ALLOCATE (element(nel), STAT = alloc_erl)
ALLOCATE (connection (ncon), STAT = alloc_er2)

Array operations can be used to assign values to the various components of the derived types. For
example, an initial temperature distribution of 20 °c is assigned by the statement

element%tempr = 20.

Thus the set of TOUGH2 statements
P~(MNEL=800,MNCON=2400,MNEQ=3,MNK=2,MNPH=2,MNB=6)
P~(MNOGN=50,MGTAB=2000)

COMMON/NN/NEL,NCON,NOGN,NK,NEQ,NPH,NB,NK1,NEQ1,NBK,NSEC,NFLUX

COMMON/E1/ELEM(MNEL)
COMMON/E2/MATX (MNEL)
COMMON/E3/EVOL(MNEL)
COMMON/E4/PHI(MNEL)
COMMON/E5/P(MNEL)
COMMON/E6/T(MNEL)

COMMON/Cl/NEXl(MNCON)
COMMON/C2/NEX2(MNCON)
COMMON/C3/DEL1(MNCON)
COMMON/C4/DEL2(MNCON)
COMMON/C5/AREA(MNCON)
COMMON/C6/BETA(MNCON)
COMMON/C7 I ISOX (MNCON)
COMMON/C9/ELEM1(MNCON)
COMMON/C10/ELEM2(MNCON)

4

is replaced by the T90_grid module and the following T90_Dimensions module

MODULE T90_Dimensions
IMPLICIT NONE
SAVE

!Integer Parameters
INTEGER :: nel # of elements/gridblocks
INTEGER :: nela # of active elements
INTEGER :: ncon # of connections
INTEGER :: neq # of equations per element
INTEGER :: nph # of phases
INTEGER :: nk # of components
INTEGER :: nogn # of sources and/or sinks
INTEGER :: n~tot # of total equations (= order of the Jacobian)
INTEGER :: ILzero ! # of non-zero elements of the Jacobian

END MODOLE T90-Pimensions

The information contained therein is accessible to all the program that invoke the modules. Note that
there is no explicit declaration of the values of the variables in T9 O_Dimensions. This is becauSe
the array sizes in TOUGH90 are allocated dynamically. The use of the derived types allows a simpler
and more intuitive handling of the grid-related properties.

5. Array Operations, Matrix Manipulation and Expanded Set of Intrinsic Functions
An indication of the power and convenience of whole array operations has already been shown in
Section 3. In this section we discuss some additional features of array operations and related intrinsic
procedures. This is illustrated by an example involving the following code segment from the DBCG
subroutine of the T2CGl module [Moridis and Pruess, 1995]:

C

IF(ITER .EQ. 1) THEN
00 18 I = 1,N

P(I) = Z(I)
PP(I) = ZZ(I)

18 CONTINUE
ELSE

BK = BKNUM/BKDEN
00 20 I = 1, N

P(I) = Z(I) + BK*P(I)
PP(I) = ZZ(I) + BK*PP(I)

20 CONTINUE
ENDIF
BKDEN = BKNUM

CALL MATVEC(N, p, Z, NELT, lA, JA, A, ISYM)

DOOT = O.DO
00 25 I = 1,N

DDOT = DDOT + PP(I)*Z(I)
25 CONTINUE

AKDEN = DOOT

In the same routine ofTOUGH90 this segment is replaced by the much easier and more compact

IF(ITER .EQ. 1) THEN
p = z
pp = zz

ELSE
BK = BKNUM/BKDEN
P = z + bk*p
pp = zz + bk*pp

ENDIF
BKDEN = BKNUM

CALL MATVEC(N, P, Z, NELT, IA, JA, A, ISYM)
!
AKDEN = OOT_PRODUCT(pp,z)

It is evident that the code in TOUGH90 is more intuitive and much easier to develop and follow, as
the code is quite similar to the descriptive pseudocode. The above example also illustrates the use of
the DOT.:....PRODUCT array intrinsic function, which returns the dot product of the two vectors in its
argument list and can be significantly faster than the equivalent DO loop, in addition to being simpler
and less error-prone. Similarly, the determination of the maximum residual and its location in the
MULTI subroutine changes from
C
C
C-----TEST FOR CONVERGENCE--
C

RERM=O.DO
0010 N=l,NELA

NLOC= (N-l) *NEQ

5

DOLO K=l,NEQ
NLM=NLOC+K
DOA=ABS(DOLD(NLM))
IF(DOA.LT.RE2) RER=R(NLM)/RE2
IF(DOA.GE.RE2) RER=R(NLM) IDOLD(NLM)
IF(ABS(RER).LE.RERM) GOTO 10
RERM=ABS (RER)
NER=N
KER=K

10 CONTINUE

to the following array-based syntax in TOUGH90.
WHERE(abs(dold) .LT.RE2)

rerm = MAXVAL(abs(r/RE2»
merm = MAXLOC((abs(r/RE2»)

ELSEWHERE
rerm = MAXVAL(abs(r/dold»
merm = MAXLOC((abs(r/dold»)

END WHERE
nnn = SIZE (r,DIM=2)
ner = merm(l)
ker = merm(nnn)

The above segment uses the WHERE construct, and obtains. the maximum values and their locations
using the MAXVAL and MAXLOC intrinsic procedures. The array merm contains the indices of the
location of the maximum residual, from which the corresponding element and equation numbers are
determined.

The matrix manipulation capabilities of FORTRAN90 greatly reduce the coding complexity in the
handling of linear algebra. All the matrix-vector multiplication routines (e.g., DSMV, DSMTV,
DSLUI, DSLUTI) in the T2CGl package [Moridis and Pruess, 1995] have been replaced by the very
efficient (in terms of speed and storage) procedure

where matrix_A and matrix_A are arrays of rank 1 or 2. The replacement of whole TOUGH2
subroutines by the simple and powerful new intrinsic functions available to the FORTRAN90 is quite
common in TOUGH90. For example, the FLOP subroutine in TOUGH2 determines the number of
significant decimal digits and the default increment for the calculation of derivatives based on
machine-specific values.
SUBROUTINE FLOP

C

END

A = SQRT(.99DO)
B = A
DO 1 N=1,260

B = B/2.DO
C = A+B
D = C-A
IF(D.EQ.O.DO) GO TO 2

1 CONTINUE

2 B2=B*2.DO
N10=-INT(LOG10(B2»
DF=SQRT(B2)

FLOP is replaced in TOUGH90 by the statements

nlO = PRECISION (one)
df = SQRT (EPSILON (one))

which use the intrinsic FORTRAN90 functions PRECISION (determining the decimal precision of a
variable of the same type as one) and EPSILON (returning the smallest possible number £ such that
1.0+£ is numerically different than 1). Similarly, the subroutine SECONDS (which provides timing
information in TOUGH2 by using system- and machine-specific subroutines) is replaced in
TOUGH90 by::
CALL SYSTEM_CLOCK (COUNT=itime, COUNT~TE=irate)

This is a FORTRAN90 generic statement, and is compiler- and machine-independent, thus
eliminating the need for adjustments which TOUGH2 requires when moving between computing
platforms and compilers.

6

6. Summary
TOUGH90 is a FORTRAN90 implementation of TOUGH2, and represents a major change in syntax
and architecture over TOUGH2, while maintaining full backward compatibility with existing input
data files. The main features of TOUGH90 include dynamic memory management, the use of
modules, derived types, array operations, matrix manipulation, and new and very powerful intrinsic
procedures. These result in a faster, more efficient and compact code, which is conceptually simpler,
and significantly easier to modify and upgrade.

Modules in TOUGH90 replace all uses of INCLUDE statements, COMMON blocks, and statement
functions. Additionally, all subprograms related to fluid properties are included in the appropriate
modules. The power of modules is in the collection of the basic concepts represented in the standard
FORTRAN features, i.e., shared declarations, globally accessible data, inline code expansion, etc., and
generalization in the more flexible and powerful object of a module. This enables highly adaptable
and easy to compartmentalize code, provides protection of data and of important source code of
major data specifications or subprograms, and makes code upgrading an extremely easy task.

The need to recompile TOUGH90 with an increasing problem size is eliminated by exploiting the
dynamic memory management capabilities of FORTRAN90. Allocatable arrays allow the total size
of the arrays to be specified through the input files during the program execution. Moreover,
memory occupied by arrays no longer needed is released, and made available to other arrays. This
represents an important capability for creation and handling of internal work arrays in subprograms,
and increases the size of tractable problems.

Derived types are powerful tools for the creation of data structures which contain elements of any
data type mixed freely in any proportion. Gridblock names, connections and properties can thus be
grouped in derived-type arrays, allowing easier handling as well as programming. TOUGH90 uses
the array operations of FORTRAN90 for a code that is more transparent, faster and easier to
program. Extensive use of array and matrix manipulation operations is made in the linear algebra of
the solvers in TOUGH90. This leads to a sizable reduction in the memory requirements and
improvements in the execution speed.

7. Acknowledgments
This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy,
Office of Geothermal· Technologies, of the U.S. Department of Energy, under contract No. DE­
AC03-76SFOO098. Drs. J. Apps and C. Oldenburg are thanked for their helpful review comments.

8. References
Ellis, T.M.R., I.R. Philips and T.M. Lahey, FORTRAN90 Programming, Addison-Wesley, New York,

NY. 1994.
Kerrigan, J.F., Migrating to FORTRAN90, O'Reilly and Associates, Sebastopol, CA, 1993.
Moridis, GJ. and K. Pruess, Flow and transport simulations usingT2CG1, a package of

preconditioned conjugate gradient solvers for the TOUGH2 family of codes, Rep. LBL-36235,
Lawrence Berkeley National Laboratory, Berkeley, CA, 1995.

Pruess, K, Development of the general purpose simulator MULKOM, Rep. LBL-15500, Lawrence
Berkeley Laboratory, Berkeley, CA, 1983.

Pruess, K., TOUGH2 - A general-purpose numerical simulator for multiphase fluid and heat flow,
Rep. LBL-29400, Lawrence Berkeley Laboratory, Berkeley, CA, 1991.

Pruess, K (ed), Proceedings of the TOUGH2 Workshop '95, Rep. LBL-37200, Lawrence Berkeley
Laboratory, Berkeley, CA, 1995.

Pruess, K., A. Simmons, Y.S. Wu and G. Moridis, TOUGH2 software qualification, Rep. LBL-38383,
Lawrence Berkeley National Laboratory, Berkeley, CA, 1996.

Wu, Y.S., C.P. Ahlers, P. Fraser, A. Simmons and K. Pruess, Software qualification of selected
TOUGH2 modules, Rep. LBNL-39490, Lawrence Berkeley Laboratory, Berkeley, CA, 1996.

7

o

