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RESEARCH

Quantifying the effects of sensor 
coatings on body temperature measurements
Stephanie Snyder* and Peter J. S. Franks

Abstract 

Background: A characterization of an organism’s thermoregulatory ability informs our understanding of its physiol-
ogy, ecology and behavior. Biotelemetry studies on thermoregulation increasingly rely on in situ body temperature 
measurements from surgically implanted data loggers. To protect the organism and the instrument, the electronics 
and the temperature sensor are often encased in non-conductive materials prior to insertion into the organism. These 
materials thermally insulate the sensor, thus potentially biasing temperature measurements to suggest a greater 
degree of thermoregulation than is actually the case.

Results: Here we present methodology to quantify and correct for the effect of sensor coatings on temperature 
measurements by data recording tags. We illustrate these methods using Wildlife Computer’s Mk9 archival tag, field 
data from the peritoneal cavity of a juvenile albacore tuna (Thunnus alalunga) and simulated data of several species of 
ectotherms (fish: Hemitripterus americanus, Catostomus commersoni and Maxostoma macrolepidotum; reptiles: Macro-
clemys temminckii, Varanus spp.), ranging in size from 10 to 1000 g. Mk9 tags had rate constants (measures of the sen-
sor’s ability to respond to changes in temperature) of 1.79 ± 0.06 and 0.81 ± 0.07 min−1 for the external and internal 
sensors, respectively. The higher rate constant of the external sensor produced smaller errors than the internal sensor. 
Yet, both sensors produced instantaneous errors of over 1 °C for all species tested, with the exception of T. alalunga.

Conclusions: The effect of sensor coatings on body temperature measurements is shown to depend on the rela-
tive values of the sensor’s and the organism’s rate constant and the rate of change of environmental temperature. If 
the sensor’s rate constant is lower than that of the organism, the temperature measurements will reflect the thermal 
properties of the sensor rather than the organism.

Keywords: Thermal inertia, Coefficient of conductance, Rate constant, Thermoregulation,  
Waterproofing temperature sensor
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Background
Over the past few decades, biotelemetry studies have gen-
erated in situ measurements of body temperature response 
to environmental temperatures [1, 2], providing insights 
into thermoregulatory abilities [3, 4], mechanisms [5, 6] 
and strategies [7, 8]. Characterizations of thermoregulation 
can be used to determine habitat availability [9, 10], behav-
ior [11, 12] and vulnerability to climate change [13, 14]. 
Our understanding of thermoregulation relies on accurate 
measures of body temperature and the rates at which body 
temperature changes given different thermal environments. 

There are many challenges to obtaining these measure-
ments [15], not the least of which is sensor thermal inertia, 
i.e., the ability of the sensor to resist changes in tempera-
ture. While researchers acknowledge that sensor thermal 
inertia exists, the significance of its effect on body tempera-
ture measurements is under debate [16, 17].

Thermal inertia in the absence of radiation (e.g., either 
in water or in a body cavity) can be estimated as the 
inverse of its rate constant, which is also referred to as 
the coefficient of conductance, k (min−1)—at which the 
object’s temperature, Ti (°C), approaches the ambient 
temperature, Ta (°C, Eq. 1):

(1)
dTi

dt
= k(Ta − Ti)
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A large rate constant (low thermal inertia) results in 
a faster response to a given temperature change. This 
property holds true for all physical objects, organisms 
and sensors included. For aquatic ectotherms, organis-
mal rate constants (kb) decrease exponentially as body 
size increases, and species-specific relationships have 
been empirically defined for a number of species (e.g., 
[5, 18, 19]). On the other hand, a sensor’s rate constant ks 
is largely determined by the mass and specific heat of its 
surrounding.

Virtually every temperature sensor used to study ther-
moregulation in the field is coated with a material to 
waterproof the sensor and to protect the organism from 
infection. The protective coatings vary in composition 
(e.g., epoxy resin: [20–22]; silicon: [7, 23, 24]; paraffin 
wax: [25–27]; or plastic: [28, 29]) and in thickness, as 
coatings are often applied by the researcher rather than 
the sensor manufacturer. Because of the diversity of coat-
ing materials and thicknesses, each data logger has its 
own—usually unknown—coefficient of conductance. The 
thicker and less conductive the material, the lower the 
sensor’s coefficient of conductance, and the slower it will 
respond to temperature changes.

Because of the inherent variability in organisms (i.e., 
thermoregulatory ability) and in tag design (i.e., mass 
and specific heat of protective coatings), it is difficult—
if not impossible—to provide a blanket statement on the 
effect of sensor coatings on body temperature measure-
ments. Herein, we provide researchers the tools to assess 
whether their sensor is accurately capturing fluctuations 
in their organism’s body temperature and to correct their 
time series if necessary. To illustrate our methodology, 
we use Wildlife Computer’s Mk9 archival tag along with 
observed and simulated body temperature time series.

Methods
Theory
The impact of sensor coatings on body temperature 
measurements can be explored mathematically. Suppose 
at time t = 0, an organism’s temperature (Tb) is at equilib-
rium with a previously constant ambient temperature, T0. 
If the animal were to move rapidly to a new temperature 
Ta (e.g., dive below the thermocline), the change of body 
temperature with time is given by:

This equation indicates that changes in the organism’s 
body temperature result from the difference between 
the organism’s body and ambient temperature and the 
organism’s rate constant kb, assuming a constant kb dur-
ing the time interval 0 to t. The rate constant defines the 
time constant (specifically 1/kb) over which the organism 
cools or warms to the ambient temperature: An increase 

(2)Tb(t) = Ta + (T0 − Ta)e
−kbt

in kb would be accompanied by a faster rate of body tem-
perature change. Thus, higher rates of body temperature 
change occur in organisms with higher rate constants or 
in organisms that encounter a large change in environ-
mental temperature over a short period of time.

Using the same scenario of an organism with a rate 
constant kb experiencing a step-function ambient tem-
perature change, we can calculate the effect of measuring 
the body temperature with a sensor, assuming the sen-
sor is at equilibrium with the ambient temperature T0 at 
t = 0 and has a rate constant ks:

Here we can see that as kb increases relative to ks, 
the influence of ks on the measurements increases. In 
essence, both the animal and the sensor act as filters on 
the changing ambient temperature: The slowest filter (i.e., 
the smallest k) will determine the measured temperature. 
If the ambient temperature were to change again before 
the sensor temperature had equilibrated (i.e., in less than 
1/ks), the sensor will have a lagged response to the body 
temperature changes, effectively averaging fluctuations 
in body temperature (Fig. 1). The sensor’s thermal inertia 
will give the impression of a more stable body tempera-
ture than is actually the case whenever ks < kb.

These derivations show that measurement error 
depends on the relationship between the rate constants 
of the sensor and the organism as well as the temporal 
dynamics of the ambient temperature fluctuations. Thus, 
estimating the sensor’s rate constant is a necessary first 

(3)

Ts(t) = Ta +
ks

(ks − kb)
(T0 − Ta)e

−kbt

+ (T0 − Ta)e
−kst

(

1−
ks

(ks − kb)

)
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Fig. 1 Illustration of the influence of sensor thermal inertia on body 
temperature measurements. Simulation of a sensor with a coefficient 
of conductance of 0.81 min−1 (Ts, black) measuring the body tem-
perature (Tb, red) of a 100 g Atlantic sea raven as it shuttles between 
water temperatures of 10 and 20 °C (Ta, gray) with a duty cycle of 
5 min. The bottom inset shows the error in dashed black line
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step in understanding measurement error associated 
with sensor thermal inertia.

Quantifying and accounting for sensor rate constant
Calibration experiment
Prior to deployment, the temperature sensor must be 
calibrated to calculate its rate constant ks. The calibra-
tion should be completed after the application of protec-
tive coating (e.g., potted in epoxy or coated with a layer 
of epoxy). Calibration data should be collected under the 
following conditions: (1) The ambient temperature Ta 
is known and changes at a faster rate than expected in 
the field, (2) the physical environment is similar to that 
encountered during deployment, and (3) the sensor’s 
sampling rate is faster than the sampling rate used in the 
study.

Ideally, Ta should vary as a step function between the 
minimum and maximum temperatures expected in the 
field. This can be achieved by cycling the sensor through 
two different temperature-controlled treatments (e.g., 
water baths), noting the time at each transfer. Sensors 
should be allowed to equilibrate to each ambient tem-
perature. Because the physical environment can change 
an object’s coefficient of conductance by an order of mag-
nitude [30], it is essential to test the sensor in the same 
medium (e.g., air or water) it will encounter in the field. If 
the sensor will be deployed in the peritoneal cavity of an 
organism, a calibration experiment in salt water should 
suffice.

With a sampling interval �ts, the sampling rate 1/�ts 
defines the maximum detectable value of ks. Intuitively, 
if ks  >  1/�ts, then the sensor temperature Ts should 
approach the ambient temperature Ta within the time 
between measurements, �ts, leaving little to no informa-
tion for evaluating ks (see Eq.  2). As ks is unknown and 
the in situ sampling interval determines the rate at which 
ks would be detected in the study, to resolve ks it is imper-
ative that the calibration be conducted using sampling 
rates that are faster than the planned in  situ sampling 
rate.

Calculating sensor rate constant
To calculate the sensor’s rate constant (ks, min−1), we 
make a numerical approximation of Eq. 1 using the Euler 
method:

This equation models the temperature sensor’s rate of 
change as dependent on the present temperature (Ts(t), 
°C), its temperature at the previous time (Ts(t −�ts),  
°C), the present ambient temperature (Ta(t), °C) and 
the sensor’s rate constant (ks, min−1). Equation  4 gives 

(4)
Ts(t)− Ts(t −�t)

�t
= ks[Ta(t)− Ts(t −�t)]

a first-order solution. The errors associated with this 
approximation are directly proportional to the time 
between measurements (the sampling interval, �ts).

Equation 4 was reformulated to:

where A is a vector of the sensor temperature’s rate of 
change and B is a vector of the temperature differences 
between the current ambient temperature and the sensor 
temperature at a previous time step:

where i = {2, 3, . . . ,N } and N is the number of points in a 
particular window of data. To minimize noise in our esti-
mates of ks, it is important to only include data from the 
periods when A and B are not equal to 0 (i.e., from the 
time when the sensor was placed into the water bath to 
the time when the sensor approaches equilibrium with 
the water bath’s temperature).

Solutions to Eq.  5 can be obtained for each cooling 
or warming period, to generate one estimate for ks per 
water bath transfer. Each ks can then be used to correct 
the sensor data (see “Correcting time series” section) 
from all cooling and warming periods throughout the 
calibration experiment. Although the data from these 
cooling and warming periods could be used collectively 
to generate one estimate of ks, separate estimates of ks 
allow the researcher to test the validity of the model 
using data that was excluded from the original estima-
tion of ks. The final ks is defined as the estimate that 
minimizes the root-mean-square error between the cor-
rected temperature time series (Tcorr, see “Correcting 
time series” section Eq. 9) and the water bath tempera-
ture time series (Ta):

where N is the length of the time series.

Correcting time series
Having obtained a value for ks, it is possible to remove the 
effects of the sensor’s protective coating from the Ts time 
series and reconstruct the ambient temperature time 
series Ta. Because the ambient temperature in this step is 
unknown, Eq. 4 is rearranged to solve for Ta which is now 
renamed Tcorr, to denote the corrected sensor time series:

(5)A = Bks

(6)A =

[

(Ts(ti)− Ts(ti −�ts))

�ts

]

(7)B = [Ta(ti)− Ts(ti −�ts)]

(8)RMSEks =

√

∑

N

t=1 (Ta(t)− Tcorr(t))
2

N

(9)Tcorr(t) =
1

ks�t
[Ts(t)− Ts(t −�t)]+ Ts(t −�t)
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This correction unavoidably enhances the sensor’s digi-
tization error. To minimize the sensor’s digitization error, 
the sensor time series Ts should be smoothed over five 
data points prior to correction using a moving average. 
To minimize signal loss, any smoothing that results in a 
change greater than the sensor’s digitization error should 
be reverted back to the raw data.

Case study
Because the impact of the sensor thermal inertia on 
measurements is dependent on the relative values of the 
rate constants of the organism and the sensor (Eq. 3), the 
significance of the sensor’s rate constant will vary by sen-
sor and across and among species. To illustrate this, we 
estimate the rate constant for two temperature sensors 
on one model of tag and use these sensors to measure 
juvenile North Pacific albacore (Thunnus alalunga) body 
and water temperature and to simulate measurements of 
several ectotherms across a range of sizes.

Tag model
We calibrated and calculated the rate constants for 41 
Mk9 archival tags (Mk9 Wildlife Computers). This model 
has been deployed on a variety of taxa (e.g., tunas: [31]; 
turtles: [32]; elephant seals: [33]; penguins: [34]). Mk9s 
are equipped with two temperature sensors: an internal 
sensor located within an epoxy housing and an external 
sensor located at the end of the tag stalk (Fig. 2).

The protective coatings on Mk9 sensors are applied by 
the manufacturer, rather than the individual researcher; 
thus, the sensor’s rate constant should be similar across 
tags. The tag is capable of measuring temperature every 
second and storing data for up to years at a time (depend-
ent on sampling rate). The resolution of both tempera-
ture sensors is 0.05 °C.

During the calibration experiment of the Mk9s, the 
sensors were set to sample every 30  s and were trans-
ferred between two saltwater tanks of 11 and 22 °C, for a 
rate of change in Ta of ~11 °C s−1. Ambient temperature 

was measured with a thermometer situated in each tank 
and recorded throughout the experiment.

Body temperature data
In situ measurements The T. alalunga data used in this 
study were collected by the Albacore Archival Tagging Pro-
gram, a collaborative tagging project between the NOAA 
Southwest Fisheries Science Center and the American 
Fishermen’s Research Foundation [35]. The Mk9 tag was 
set to sample every 60 s and surgically implanted into the 
peritoneal cavity of the tuna such that the internal tem-
perature sensor measured the peritoneal cavity tempera-
ture, while the external sensor measured the surrounding 
water temperature. The albacore used in the present study 
was tagged off the coast of Oregon on August 4, 2011. At 
the time of tagging, the albacore was considered a juvenile 
with a measured fork length of 64.5 cm [36] and a weight 
of 5.5 kg (estimated using published length to weight cri-
terion: [37]) at the time of tagging. The tagged fish was at 
liberty for over a year. The effect of sensor thermal iner-
tia was removed from the in situ temperature time series 
using the algorithm presented above (Eq. 9) to generate a 
corrected temperature time series.

Simulated measurements Empirically derived, species-
specific relationships between size and rate constant (kb) 
coefficients of conductance were used to simulate body 
temperature cooling curves of different sized organisms 
under an ambient temperature change from 20 to 10 °C. 
Organismal coefficients of conductance (kb, min−1) have 
been derived in laboratory settings for a variety of taxa 
and different sized individuals using the following equa-
tion:

where Te (°C) is the steady-state body temperature at the 
experimental ambient temperature, T0 (°C) is the initial 
body temperature, and Tb (°C) is the body temperature at 
t minutes into the experiment [18]. These data have been 
used in the literature to relate kb and organism size using 
variants of the following equation:

where a and b are empirically derived constants (Table 1, 
[5, 18, 38, 39]). Equation  2 was used to simulate body 
temperature using the organism-specific kb with T0 of 
20 °C and Te of 10 °C.

Sensor measurements of the generated body tempera-
tures were simulated by using two different ks values (cor-
responding to the mean coefficient of conductance of the 
internal and external sensors) and replacing Ta with Tb in 
Eq. 4 (Fig. 3a). We used a sampling interval of 1 s, and our 

(10)kb = −
1

t
ln

[

(Te − Tb)

(Te − T0)

]

(11)kb = aW
−b

   External 
Temperature Sensor   Internal 

Temperature Sensor

Fig. 2 Photograph of Wildlife Computers’ Mk9 archival tag model
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simulated sensor had no digitization error. The cooling 
period was defined as the time from when the ambient 
temperature changed to 10 °C to the time when the body 
temperature cooled to 10.1  °C. These analyses were car-
ried out for organisms ranging in mass from 10 to 1000 g 
for each species listed in Table 1.

Testing significance
In both the measured and simulated body temperature 
treatments, the effect of sensor coatings on measurements 
was determined by looking at (1) overall significance and 
the instantaneous errors between the body temperature 
and the sensor temperature time series and (2) the differ-
ences in known and estimated kb for the simulated body 
temperatures. Overall significance was determined using 
a Student’s t test (P < 0.05). This was done over the entire 
year for the albacore tuna and over the cooling period for 
the simulated body temperatures. For the measured alba-
core body temperatures, the error caused by sensor rate 
constant (E) was calculated as the difference between the 
smoothed (to reduce digitization error, see above) and 
corrected sensor temperature time series at time t:

In the case of the simulated body temperatures, Tcorr 
was replaced with the known body temperature Tb, and 
the mean error Ē between the two time series during the 
cooling period is reported for each species size (Fig. 3b).

Additionally, because the kb in the simulated experi-
ments is known, it was possible to compare an apparent 
rate constant estimated from the sensor measurements 
(kb-est, min−1) to the known kb. The apparent rate con-
stant was estimated from the sensor cooling curve using 
Eq. 10 replacing Tb with Ts. This estimation from the sim-
ulated sensor data was then compared to the known rate 
constant, kb.

Results
Mk9 sensor rate constant
Analysis of the calibration data of the Mk9 archival tags 
gave mean (±SD) rate constants, ks, of 1.79 ±  0.06 and 
0.81 ± 0.07 min−1 for the external and internal sensors, 
respectively (Fig. 4). Using ks to correct the sensor meas-
urements significantly reduced the root-mean-squared 
error between the sensor measurements and the ambient 
temperature, RMSEks (Eq. 8, Table 2; t test: p < 1e−25 and 
p < 1e−38 for external and internal sensors, respectively).

Effect of sensor rate constants
In situ measurements
The external sensor ks was greater than the in situ sam-
pling rate (Δts

−1), and thus (due to aliasing) the external 

(12)E(t) = Ts(t)− Tcorr(t)

Table 1 Species-specific relationships (kb = aW
−b) 

between  mass (W, g) and  the specific rate of  body tem-
perature change (kb, min−1) where a and b are empirically 
derived constants

Number of organisms used in the experiments is denoted by n

Species n a b Range in mass (g) Reference

Atlantic sea raven
Hemitripterus  

americanus

24 3.3 0.54 12–3178 [18]

Alligator snapping 
turtle

Macroclemys  
temminckii

5 25.0 0.77 700–26,000 [5]

Australian varanid 
lizards

Varanus spp.

12 4.6 0.39 16–4408 [38]

Sucker
Catostomus  

commersoni
Maxostoma  

macrolepidotum

229 3.7 0.57 6–1194 [39]
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Fig. 3 Example of a simulation of an organism’s cooling curve and 
corresponding sensor measurements. a A simulation of a 100-g 
Atlantic sea raven’s body temperature (Hemitripterus americanus, °C, 
red line) measured by a sensor with a ks of 0.81 min−1 (black line) as 
it responds to a 10 °C decrease in the ambient temperature (°C, gray 
dashed line). b The error observed between the sensor temperature 
and the body temperature. The mean error (Ē) during the cooling 
period is reported. In both plots, a double arrow specifies the cooling 
period
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sensor’s thermal inertia was not detectable in the alba-
core in situ time series. Therefore, only the internal sen-
sor measurements were corrected. This correction was 
done using the internal sensor ks derived from the cali-
bration data.

Comparison of a year of raw to corrected in situ alba-
core body temperature data from the internal sensor 
showed no significant difference (t test, p = 0.92). Abso-
lute differences between the raw and corrected body 

temperatures were within 0.1  °C for 92.4  % of the time 
series. The remaining 7.6  % (approximately 28  days of 
measurements) corresponded to periods when the abso-
lute rates of body temperature change were on aver-
age an order of magnitude greater than those observed 
in the rest of the time series, 0.20 and 0.017  °C min−1, 
respectively. The maximum error observed during these 
periods of high rates of body temperature change was 
0.2  °C. These errors are minute compared to the overall 
signal and variability of the juvenile’s body temperature, 
and therefore, the sensor’s rate constant does not signifi-
cantly influence measurements of this albacore’s body 
temperature.

Simulated measurements
The level of error associated with sensor coatings differed 
as a function of both sensor and organism. The external 
and internal sensor measurements were significantly dif-
ferent from the simulated body temperatures for all the 
species tested (Student’s t test; p  <  0.001). The level of 
error varied between sensors and across species and sizes 
of organisms, with error due to the sensor’s rate constant 
increasing as size decreased across species (Fig.  5a, b). 
Mean error during the cooling period exceeded 1 °C for 
all species for the internal and external sensors, respec-
tively. When using the internal sensor, mean error 
dropped below 1 °C at 60 g (H. americanus and C. comm-
ersoni), 230 g (M. temminckii) and 590 g (Varanus spp.). 
The external sensor resulted in less error with mean error 
dropping below 1 °C at 20 g (H. americanus and C. com-
mersoni) and 80  g (Varanus spp. and M. temminckii). 
Using uncorrected measurements from either sensor 
resulted in an underestimation of the organisms’ rate 
constants, with greater differences between the estimate 
and the true value as kb increased (body size decreased, 
Fig. 6).

Discussion
Sensor thermal inertia has the potential to confound 
measurements of body temperature, thus impacting our 
understanding of an organism’s thermoregulatory abil-
ity. We have shown that the effect of sensor coatings on 
measurements depends on (1) the sensor’s rate constant, 
(2) the organism’s rate constant and (3) the rate of change 
of environmental temperature. The methods presented 
here allow researchers to calculate and correct for a sen-
sor’s rate constant and to determine whether the sensor 
significantly influences body temperature measurements 
(the MATLAB code for all the analytical methods pre-
sented here is available by request).

All objects have thermal inertia which (in the absence 
of radiation) can be quantified by a rate constant. As a 
sensor’s rate constant (ks) decreases relative to that of an 
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the analytical solutions for the mean internal and external sensor 
coefficients of conductance, respectively (Eq. 2). b Histogram of the 
coefficients of conductance ks calculated for both the internal (gray) 
and external sensors (black); n = 41 tags

Table 2 Mk9 internal and  external sensor coefficients 
of conductance

The mean (±SD) coefficients of conductance and the RMSE between the 
sensor temperature measurements (pre- and post-correction) and the 
ambient temperature during the heating and cooling curves of the calibration 
experiment

Temperature 
sensor

Coefficient  
of conductance  
(ks, min−1)

RMSEks (°C)

Pre- 
correction

Post- 
correction

Internal 0.81 ± 0.07 2.14 ± 0.2 0.52 ± 0.1

External 1.79 ± 0.06 0.38 ± 0.1 0.18 ± 0.1



Page 7 of 9Snyder and Franks  Anim Biotelemetry  (2016) 4:8 

organism’s (kb), the sensor will heat or cool more slowly 
than the organism, thus giving less accurate estimates of 
the actual body temperatures. We have shown here that 
in one model of archival tag (Wildlife Computer’s Mk9) 
the two temperature sensors had different rate constants: 
1.79 ± 0.06 and 0.80 ± 0.07 min−1 for the external and 
internal sensors, respectively. The differences in these 
coefficients of conductance arise from the mass and 
specific heat of the materials used to coat the sensors. 
The relatively high rate constant of the external sensor 
resulted in more accurate estimates of temperatures than 
observed using the internal sensor.

Variability in the sensors’ accuracy depended on differ-
ences in the rates of body temperature change, which is 

largely a result of the organism’s rate constant (Eqs. 1, 2) 
and rates of ambient temperature change (Fig. 1). Organ-
ism size plays a role, as this parameter often influences 
the organisms’ rate constant (Eq.  11). In our simula-
tions, measurement error and error in estimation of kb 
decreased exponentially with size. Furthermore, the juve-
nile albacore, the largest organism in our study, had the 
smallest measurement errors. The smaller kb of larger 
organisms lessens the influence of ambient temperature 
fluctuations on body temperature, resulting in a steady or 
slowly changing body temperature. As steady or slowly 
changing body temperatures are less susceptible to error 
from sensor thermal inertia, measurements of tempera-
tures of larger bodied organisms are expected to be less 
impacted by sensor thermal inertia than those of smaller 
organisms.

In our observations of the albacore as well as the mod-
eled organisms, measurement error due to sensor rate 
constants increased with higher rates of body tempera-
ture change. For the albacore, periods of rapid diving 
between cold (deep) and warm (surface) environments 
had the greatest magnitude of error. In our simulations, 
measurement error was inversely correlated with size, 
i.e., sensor rate constants had a greater impact on body 
temperature measurements of smaller organisms. These 
observations follow from the general theory of thermal 
inertia with rate constants (Eq. 3).

To illustrate the effects of sensor coatings, we used a 
fixed kb dictated by a species-specific dependence on 
size. However, organisms have been shown to change 
their thermal conductance by orders of magnitude in the 
field [40, 41]. This variability, combined with uncertainty 
in the rates of ambient temperature change, creates the 
potential for sensor coatings to affect measures of body 
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temperature and estimates biologically relevant rates of 
heating and cooling in the field, resulting in an overesti-
mation of thermoregulatory ability.

Conclusions
With today’s technology, researchers are able to tag spe-
cies ranging in size from bumble bees [42] to blue whales 
[43]. Our ability to measure body temperatures of small 
organisms (e.g., nanologger: [44]) must be met with an 
understanding of how sensor coatings influence those 
measurements. Though a sensor’s rate constant may have 
little effect on average body temperature estimates, it can 
affect our understanding of the dynamics of body tem-
perature responses to fluctuations in ambient tempera-
ture, as well as our understanding of body temperature 
ranges (Fig.  1). As demonstrated in Eq.  3, the ability of 
the sensor to accurately capture the fluctuations of the 
organism’s body temperature depends largely on the rela-
tive relationship between the organism’s and the sensor’s 
rate constant. Given a sensor with the same rate con-
stant, small organisms encountering a dynamic thermal 
environment have a greater potential for measurement 
error than a large organism in a stable thermal environ-
ment. Our simulations indicate that thermal inertia alters 
observed rates of body temperature change in a system-
atic manner and can generate errors an order of magni-
tude greater than digitization error. Accounting for these 
errors is therefore just as important as other experimen-
tal considerations, such as sensor placement [15].

Due to the inherent uncertainty surrounding rates of 
body temperature change and sensor thermal rate con-
stants, we recommend that researchers quantify and assess 
the potential impact of their sensor’s rate constant for their 
organism of interest. Our results indicate that the external 
and internal sensor of Mk9 tags can accurately capture the 
water and body temperature fluctuations of similar sized 
(or larger) albacore tuna. In studies with other organisms 
or tags, sensor thermal inertia and its associated errors 
must be quantified, with the exception of cases where 
(1) the organism does not experience changes in thermal 
habitat or (2) the researcher is only interested in average 
temperatures. Sensor thermal inertia is directly related to 
the mass and specific heat of the protective coating. There-
fore, sensor thermal inertia will vary across tags. Research-
ers can minimize error by applying thinner layers of more 
thermally conductive materials to reduce the amount of 
sensor thermal inertia (increase the rate constant, ks) and 
therefore its effect on body temperature measurements.
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