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ABSTRACT

A low-order quasigeostrophic double-gyre ocean model is subjected to an aperiodic forcing that mimics

time dependence dominated by interdecadal variability. This model is used as a prototype of an unstable and

nonlinear dynamical system with time-dependent forcing to explore basic features of climate change in the

presence of natural variability. The study relies on the theoretical framework of nonautonomous dynamical

systems and of their pullback attractors (PBAs), that is, of the time-dependent invariant sets attracting all

trajectories initialized in the remote past. The existence of a global PBA is rigorously demonstrated for this

weakly dissipative nonlinear model. Ensemble simulations are carried out and the convergence to PBAs is

assessed by computing the probability density function (PDF) of localization of the trajectories. A sensitivity

analysis with respect to forcing amplitude shows that the PBAs experience large modifications if the un-

derlying autonomous system is dominated by small-amplitude limit cycles, while less dramatic changes occur

in a regime characterized by large-amplitude relaxation oscillations. The dependence of the attracting sets on

the choice of the ensemble of initial states is then analyzed. Two types of basins of attraction coexist for certain

parameter ranges; they contain chaotic and nonchaotic trajectories, respectively. The statistics of the former

does not depend on the initial states whereas the trajectories in the latter converge to small portions of the

global PBA. This complex scenario requires separate PDFs for chaotic and nonchaotic trajectories. General

implications for climate predictability are finally discussed.

1. Introduction and motivation

Weather and climate predictability have been inves-

tigated for several decades, starting from the pioneering

work of Lorenz (1963), by relying on the concepts and

methods of autonomous dissipative nonlinear dynami-

cal systems (Ghil and Childress 1987, and references

therein). For such systems, any initial volume in phase

space contracts in time, on the average, thus eventually

reducing to a time-invariant set of zero volume called an

attractor. In the autonomous case, an attractor can be a

fixed point, a limit cycle, an invariant torus, or a strange

attractor (Eckmann and Ruelle 1985; Ott 2002; Tél and
Gruiz 2006).

Investigating a system’s attractors, in particular the

strange attractors that describe the statistical properties

of deterministic chaos, is fundamental in this context

(Eckmann and Ruelle 1985) and has helped consider-

ably in the study of multiple weather regimes and of

their predictability on time scales of weeks to months

(Ghil and Robertson 2002, and references therein). On

the other hand, when studying the longer time scales—

interannual, interdecadal, and longer—that are associated

with climate change, it becomes necessary to take into

consideration the time dependence of both anthropogenic
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and natural forcing (Martinson et al. 1995; Mann et al.

1998; Chang et al. 2015). The proper framework for

studying changes in the system’s internal variability, and

not just in its mean properties, when subject to variable

forcing is that of nonautonomous and random dynami-

cal systems (Drótos et al. 2015; Ghil 2015, 2016).

In the latter framework, the natural generalization of

the attractors is provided by pullback attractors (PBAs).

A global PBA is defined in the mathematical literature

as a time-dependent setA(t) in the system’s phase space

X that is invariant under its governing equations—together

with the equally time-dependent, invariant measurem(t)

supported on this set—and to which all trajectories in

X starting in the distant past converge (Arnold 1998;

Rasmussen 2007; Kloeden and Rasmussen 2011; Carvalho

et al. 2012). As we shall see later, such a global PBAmight

include two or more local attractors, which only attract

trajectories from certain subsets of X. These concepts are

clarified and discussed further in the present paper’s ap-

pendix. When the equations or the forcing include sto-

chastic processes, a PBA is called a random attractor. In

the physical literature, Romeiras et al. (1990) introduced

the somewhat vaguer concept of a snapshot attractor.

The concepts and methods of nonautonomous and

random dynamical systems, including pullback attrac-

tion, were introduced into climate dynamics by Ghil

et al. (2008) and Chekroun et al. (2011), and they were

also pursued vigorously by T. Tél and his group (Bódai
et al. 2011; Bódai and Tél 2012; Bódai et al. 2013).

Several recent studies have explored the properties of

PBAs for low-order climate models using ensemble sim-

ulations (Bódai et al. 2011, 2013; Bódai and Tél 2012; De

Saedeleer et al. 2013; Pierini 2014a; Drótos et al. 2015).
Drótos et al. (2015) used the simple conceptual cli-

mate model of Lorenz (1984), forced by a periodic

seasonal component and a linear decrease in the im-

posed equator-to-pole temperature difference. These

authors argued that the PBAs—or snapshot attractors,

using the simpler concept introduced by Romeiras

et al. (1990)—and their natural probability distribu-

tions are the only tools with which mathematically

sound statements can be made at a given point in time

within a changing climate. Their claim was based on the

finding that the time-dependent, chaotic attractor of

the Lorenz (1984) model was independent of the initial

states, or initial data (IDs) for short, within the param-

eter ranges and for the ensembles of IDs they considered.

This claim appears to be fully justified for the Lorenz

(1984)model, which seems to possess a unique global PBA

in those parameter ranges.

The ensemble simulations of a periodically forced

quasigeostrophic ocean model by Pierini (2014a) also

provided evidence of ID independence in chaotic

regimes, but dependence on the IDs did emerge for

particular parameter ranges, for which chaotic basins

of attraction coexist with nonchaotic basins; trajecto-

ries starting in the latter converge onto small subsets

of the PBA. Thus, the fundamental problem of the

dependence of the natural probability distribution

of a changing climate on initial states needs further

investigation.

In this paper, we carry out such an investigation. The

four-variable quasigeostrophic model of the ocean’s

wind-driven, double-gyre circulation formulated by

Pierini (2011) and used in the periodically forced simu-

lations of Pierini (2014a) is studied here via ensemble

simulations subject to a deterministic aperiodic forcing

that mimics time dependence dominated by interdecadal

climate variability. Two reference cases separated by a

tipping point are considered: above the tipping point,

large-amplitude relaxation oscillations shape the be-

havior of the autonomous system, whereas below it

small-amplitude oscillations are dominant. In this sec-

ond range the system is excitable, because an appro-

priate time-dependent forcing can excite the relaxation

oscillations (e.g., Pikovsky and Kurths 1997; Pierini

2011, 2012). Various properties of these two reference

cases are analyzed, such as the time of convergence from

arbitrary IDs to PBAs and the sensitivity of the latter to

forcing amplitude, as well as the dependence of the local

attractors on the choice of the initial ensemble of states.

The paper is organized as follows. In section 2, the

model is described and basic aspects of the autonomous

system’s solutions and of the two reference ensemble

simulations under aperiodic forcing are discussed. In

section 3, the time of convergence from arbitrary IDs to

the PBAs is estimated. In section 4, the sensitivity of

PBAs with respect to the forcing amplitude is in-

vestigated. Section 5 is devoted to the dependence of

PBAs on the choice of the ensemble of IDs: chaotic and

nonchaotic basins of attraction are analyzed in detail. In

section 6, the main results are summarized and dis-

cussed, and an appendix provides the rigorous mathe-

matical background.

2. Model description

a. Model formulation

The mathematical model used in this study was de-

veloped by Pierini (2011) to analyze fundamental dy-

namical features of the decadal variability in the

Kuroshio Extension (Dijkstra and Ghil 2005, and ref-

erences therein). This model is derived through pro-

jection of the governing equations onto an orthonormal

basis and subsequent low-order truncation, following

4186 JOURNAL OF CL IMATE VOLUME 29



the approach of Platzman (1960), Saltzman (1962), Lorenz

(1963), and many others since, such as Lorenz (1982),

Legras and Ghil (1985), Ghil and Childress (1987), Olbers

(2001), and Crucifix (2012). S. Pierini and colleagues had

already investigated this decadal variability with a rela-

tively realistic primitive equation ocean model (Pierini

2006; Pierini et al. 2009; Pierini 2010, 2014b).

The model is derived via a severe truncation of the

spectral representation of the evolution equation of po-

tential vorticity in the quasigeostrophic, reduced-gravity

approximation, in a rectangular domain. The Cartesian

orthonormal basis onto which the streamfunction c(x, t)

is projected is composed of two trigonometric functions

in the zonal and two in themeridional direction; the zonal

ones incorporate, moreover, the exponential factor pro-

posed by Jiang et al. (1995) to account for westward

intensification of midlatitude surface currents. Here x is

the vector of horizontal coordinates and t is time.

The nonlinear coupled ordinary differential equations

for the variables Ci(t), i5 1, . . . , 4 are given by

_C
1
1L

11
C

1
1L

13
C

3
1B

1
(C,C)5W

1
(t),

_C
2
1L

22
C

2
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Here C denotes the vector of expansion coefficients

(C1, C2, C3, C4) of the streamfunction, W will be used

as the vector of forcing terms (W1, W2, W3, W4), and the

bilinear terms Bi are given by
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The analytical expressions of the Jacobian coeffi-

cients Jijk, the linear ones Lij, and the forcing termsWi

were derived by Pierini (2011); moreover, all the pa-

rameter values used here are the same as adopted in

that study and in Pierini (2014a). Pierini (2012) used

the model governed by Eqs. (1) and (2) to systemati-

cally analyze abrupt climate changes seen as noise-induced

transitions in excitable systems, while S. Vannitsem

and colleagues (Vannitsem 2014a,b; Vannitsem and De

Cruz 2014) used it to represent the ocean component in

their low-order ocean–atmosphere coupled models.

Pierini (2014a) applied periodic forcing to model (1)

and explored the PBAs of the forced system. The

present study can thus be seen as the extension of the

latter study to an aperiodic forcing case.

In this study, the forcing W(x, t) is defined as

W(x, t)5 g[11 «f (t)]w(x), f (t)5F
Tf
[z(t)] . (3)

Here w(x) is the double-gyre wind stress curl used in

Pierini (2011), with g its dimensionless intensity, while

z(t) is a fixed realization of an Ornstein–Uhlenbeck

process, normalized to have unit variance and an auto-

correlation time Ta. This fixed realization is smoothed

with the sliding window FTf
of width Tf , and the re-

sulting aperiodic forcing f (t) is weighted by the di-

mensionless parameter «.

b. Model behavior

In the autonomous case, there is no t dependence and

we let «5 0. The bifurcation diagram in this case is

plotted in Fig. 1a. This diagram is obtained by forward

integration of the model, starting from vanishing initial

data and dropping a sufficiently long initial segment of

the trajectories. The time needed for the trajectories to

land on the model’s attractor is discussed in the appendix.

The value g5 0. 96 corresponds to the blue limit cycle

shown in Figs. 1b and 1c, in the planes (C1, C3) and

(C2, C4), respectively. This limit cycle lies above the

supercritical Hopf bifurcation that occurs at g ’ 0. 348

(cf. Pierini 2011) and resembles a linear, harmonic

oscillation.

The value g5 1. 1, however, corresponds to a much

larger and more complex limit cycle, plotted in red in

Figs. 1b and 1c. This limit cycle is associated with a re-

laxation oscillation that can be excited by an appropriate

noise or deterministic time-dependent forcing when

the system lies below a homoclinic bifurcation (e.g.,

Simonnet et al. 2005; Pierini 2011). The sudden growth

in the size and complexity of the closed, periodic trajectory

at g5 1. 0 corresponds to such a global bifurcation.

Pierini (2011, 2012, 2014a) did, in fact, study already

the present model in the presence of both stochastic and

deterministically periodic forcing, and found that such a

homoclinic bifurcation does occur in it and that this bi-

furcation gives rise to what is currently termed a tipping

1 JUNE 2016 P I ER IN I ET AL . 4187



point by the climate community (e.g., Lenton et al.

2008). Such a dynamical mechanism is a typical par-

adigm of abrupt climate change associated with an

intrinsically nonlinear mode of variability (Lorenz

1963; Ghil and Childress 1987; Crucifix 2012), and it is

sometimes called coherence resonance (Pikovsky and

Kurths 1997). When coherence resonance does occur,

the system displays strong dependence on forcing

amplitude, as we will see in section 4.

In the nonautonomous case, « 6¼ 0 in Eq. (3), and we

use the fixed aperiodic forcing f (t) obtained with auto-

correlation timeTa and a sliding window FTf
of widthTf .

Figure 2a shows a realization with Ta 5Tf 5 15 yr and

«5 0. 2. This choice provides an idealized aperiodic

forcing that mimics North Pacific multidecadal vari-

ability (Chao et al. 2000; Chang et al. 2015) for the

minimal representation of the Kuroshio Extension

provided by (1). On the other hand, the relaxation

FIG. 1. Bifurcation diagram of our idealized ocean model (1) in the autonomous case, i.e., with «5 0 in Eq. (3). (a) The range of the

variableC1 is plotted vs the wind stress intensity g. (b),(c) The limit cycles corresponding to the blue and red vertical segments in (a) are

shown here projected onto the planes (C1, C3) and (C2, C4), respectively.

FIG. 2. Ensemble behavior of forced solutions of the double-gyre ocean model. (a) Time dependence of the total forcing 11 «f (t), for

«5 0:2. (b),(c) Evolution of 644 initial states emanating from the subset G in the (C1, C3) plane for (b) g5 0:96 and (c) g5 1:1. (d),(e)

Corresponding time series of PC3
. The set G is given by f270 # C1 # 150g3 f2150 # C3 # 120g.

4188 JOURNAL OF CL IMATE VOLUME 29



oscillations of the autonomous model display decadal

variability as well, in agreement with the oceanic phe-

nomenon that inspired this simple model. The dimen-

sional time variable used throughout this paper refers to

this multidecadal interpretation, although the present

model’s properties are likely to be shared by a wide class

of systems of climate relevance.

Apart from this oceanographic interpretation, the

forcing in Eq. (3) extends the analysis of Pierini (2014a)

from purely periodic to deterministically aperiodic. This

choice disrupts the cyclostationarity and cycloergodicity

properties of PBAs and makes the forced model’s be-

havior more realistic.

The evolution of the model solutions subject to the

forcing of Fig. 2a is shown in Figs. 2b and 2c for two

reference cases, g 5 0:96 and g 5 1:1, respectively; the

solutions of the corresponding autonomous system (i.e.,

with «5 0) are plotted in Figs. 1b and 1c. In the present

figure, N trajectories Ck(t) emanate from N IDs uni-

formly distributed at time t0 5 0 on a reference subset

G of the (C1, C3) plane, which is shown in Figs. 2b and

2c here, while the (C2, C4) coordinates of the initial

states (not shown) are chosen the same way as in

Pierini (2014a).

Figures 2b and 2c provide a first representation of

the sets that approximate the corresponding PBAs;

the small number of trajectories is in fact chosen

for the sake of graphical clarity. The correct identifi-

cation and characterization of the PBAs requires,

however, an analysis of the PDFs that evolve along the

trajectories and of the convergence to the appropriate

invariant time-dependent sets. This convergence is in-

vestigated in the next section.

3. Convergence to PBAs

As mentioned in the introduction, PBAs are the ex-

tension of the attractors of dissipative autonomous dy-

namical systems to the nonautonomous case. When

time-dependent forcing is present, the trajectories

originating from the set G5 (270 # C1 # 150,

2150 # C3 # 120) of IDs at time t tend to a subset

A(t, t) of phase space at time t. t, but while A(t)

depends on t in general, in the limit of t/2‘ this

dependence vanishes.

The limit t/2‘ is the pullback limit and it provides

the natural generalization of the forward asymptotics

associated with autonomous systems (Arnold 1998;

Rasmussen 2007; Kloeden and Rasmussen 2011; Carvalho

et al. 2012; Ghil et al. 2008; Chekroun et al. 2011); see the

appendix herein. In practical terms, though, a question

arises: How large should jtj be for A(t, t) to be virtually

independent of t?

An effective way to answer this question is to compute

the PDF of the localization of the trajectories that em-

anate from G. To obtain a function that provides a clear

graphical representation of the invariant measure on the

attracting set, the following parameter is computed:

P
C3

5 log
10
(1000p

C3
) , (4)

where pC3
(t) is the PDF of localization of the C3 vari-

able using theN5 644 trajectories shown in Figs. 2b and

2c. To make pC3
independent of the length Ttot 5 tfin 2 t

of the signal (this is important tomake the panels of Fig. 3

comparable; see below), Ttot is decomposed into n cells

and pC3
is scaled in such a way that its integral over

each cell equals 1. In our case Ttot 5 400 yr and n5 300.

In Figs. 2d and 2e, we plot PC3
(t) for the trajectories

shown in Figs. 2b and 2c, respectively. The variability in

PC3
induced by the forcing of Fig. 2a is impressive when

compared with Figs. 4a and 4f, which are discussed in

section 4 and were obtained with «5 0. Of particular

interest is the remarkable reduction of the range of

variability of PC3
found at t ’ 1702 185 yr and at t ’

2952 310 yr. This variability reduction ismost evident in

the case with g , 1 (Fig. 2d) and it corresponds to a

partial synchronization of the trajectories. As wewill see

in section 4, both synchronization episodes occur when

the total forcing g[11 «f (t)] decreases well below unity.

To estimate the rate of converge to the PBA, five

cases are considered in Fig. 3, for both g5 0:96 and

g5 1:1. The trajectories emanate from the same distri-

bution of IDs but at the different initial times

t5 t01, . . . , t05 5 200, 150, 100, 50, 0 yr. Comparison of

PC3
(t; t0i) with PC3

(t; t0i11) shows that the two distribu-

tions coincide when t in the former is greater than

t ’ t0i 1 15 yr. We can therefore conclude that the set to

which the trajectories converge approximates well the

PBA after roughly 15 yr from the beginning of the in-

tegration, and that this important result holds at any time

during the nonstationary process.

4. Sensitivity of PBAs to the amplitude of the
forcing

Model robustness is important in making any infer-

ences about the role of time-dependent forcing (Ghil

2015, and references therein). We thus proceed to ana-

lyze in this section the sensitivity of the present model’s

PBAs with respect to the amplitude « of the time-

dependent component of the forcing, while in the next

section dependence on IDs will be analyzed.

Figure 4 shows the dependence of PC3
(t) on «, with

this amplitude increasing from «5 0 (i.e., the autono-

mous case) in the top two panels to «5 0:2 (the value
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FIG. 3. Evolution in time of PC3
as a function of the initial time tinit, for (left) g5 0:96 and (right)

g5 1:1, for different initial times but with the same distribution of IDs.
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FIG. 4. Evolution in time of PC3
as a function of the amplitude « of the time-dependent part of the

forcing, «f (t), for (left) g5 0:96 and (right) g5 1:1. The amplitudes are (a),(f) «5 0, (b),(g) «5 0:01,

(c),(h) «5 0:05, (d),(i) «5 0:1, and (e),( j) «5 0:2. The total forcing amplitude g(t)5g[11 «f (t)] is

reported at the bottom of each panel (the black areas correspond to g. 1).
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used in Fig. 2) in the bottom two panels, while the

overall intensity g of the total wind stress equals 0.96 in

the left column and 1.1 in the right column, as in Figs. 2

and 3. The PBAs corresponding to the blue and red limit

cycles visible in Fig. 1b are shown here in Figs. 4a and 4f.

It is interesting to notice that, for «5 0, any point of G
evolves toward the same limit cycle, while the phase of

each orbit on its limit cycle does depend on the IDs.

Note that the limit cycles in Figs. 1b and 1c were ob-

tained, like the bifurcation diagram in Fig. 1a, from

vanishing initial data, fCi(0)5 0: i5 1, 2, 3, 4g.
Inspecting the panels of the left column, which cor-

respond to g , 1, from top to bottom, shows a dramatic

transition from the small limit cycles, in the top two

rows, to the highly variable ones of the bottom two rows.

To better understand this behavior, the total time-

dependent forcing amplitude g 5 g[11 «f (t)] is plot-

ted at the bottom of each panel. Each transition from

small- to large-amplitude oscillations is preceded by an

increase of g above the critical level g 5 1; consider, for

instance, the one already noticed in Figs. 2d and 4e.

More generally, coherence resonance is activated when

g . 1, provided this has occurred at least 10–30 yr in

advance; note that even very small positive excursions

above g 5 1 yield the same behavior, as shown for ex-

ample in Fig. 4c.

This result agrees with Pierini (2012), who noticed

that model (1), when subjected to stochastic forcing,

behaves approximately like an adiabatically changing

autonomous dynamical system, as far as coherence res-

onance is concerned. Likewise, when g decreases well

below unity, the system tends to produce small-amplitude

limit cycles, according to the bifurcation diagramofFig. 1a:

this corresponds to the synchronization events already

discussed.

The same behavior is found for g . 1, in the right

column of Fig. 4, but now the relaxation oscillations are

typically present, since they are self-sustained and since

g . 1 is the norm. The consequence of the fluctuations

of g on PC3
(t) can again be easily interpreted by taking

into account the diagram of Fig. 1a. Three synchroni-

zation events are present for «5 0:2 (Fig. 4j), after in-

tervals during which g , 1. In general, if g . 1, the

changes in the PBA are less dramatic.

5. PBA dependence on the choice of initial
ensemble

In section 3, we have investigated the evolution of the

same set of IDs starting from different initial times t;

here we study the evolution of different initial states

starting from the same initial time t5 0. This second

analysis is fundamental in a climate perspective, as it

concerns the dynamical origin of the PBAs and of the

invariant measures supported on them, as well as the

dependence of predictability on IDs.

In the periodic-forcing case, Pierini (2014a) provided

numerical evidence that the present ocean model’s PBA

can be obtained from any set of IDs, provided its evo-

lution is chaotic; see Figs. 3e and 3f therein. Drótos et al.
(2015) have recently stressed that the chaotic PBAs of

the Lorenz (1984) atmospheric model are independent

of IDs and have suggested that this is likely to be the

typical situation in climate models.

PBA dependence on IDs may, however, be more

complex. In his systematic study of the present model’s

PBAs as a function of the forcing period, Pierini (2014a)

identifiedperiods for which a chaotic basin of attraction—

which converges onto the global PBA—coexists with

nonchaotic basins. Thus, for example, a chaotic basin

can coexist with another basin whose phase-space flow

converges onto a single periodic trajectory lying on the

global PBA; see, for example Figs. 6a–c of Pierini

(2014a). It is therefore natural to investigate whether a

similar behavior may be present also in the aperiodic-

forcing case studied in the present paper. In the fol-

lowing, we use two complementary mathematical tools

to explore this possibility.

a. Finite-time Lyapunov exponents

The typical approach to the investigation of chaotic

versus nonchaotic behavior is to evaluate the finite-time

Lyapunov exponents (FTLEs) of the system (Nese

1989). FTLEs have been widely used in physical

oceanography to help identify localized coherent struc-

tures and material surfaces (Haller 2001; D’Ovidio

et al. 2009).

If two nearby points—whose distance according to

Eulerian metrics in phase space is d0 at time t5 0 and dt
at time t—diverge exponentially in time, the Lyapunov

exponent

l
t
5

1

t
ln

d
t

d
0

(5)

is independent of t and it is positive; if, on the contrary,

the trajectories converge exponentially, then lt is still

independent of t and it is negative. In the presence of a

bound on the region of phase space occupied by all

possible model trajectories, divergence of trajectories

indicates that the behavior is chaotic (e.g., Ghil and

Childress 1987).

To test whether chaotic behavior may coexist with

nonchaotic trajectories, we computed maps of lt 5
l(C1, C3, t) for trajectories that originate from a ho-

mogeneous distribution of d0 at times t5 20, 40, and
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60 yr. These maps are plotted in Fig. 5 for both g5 0. 96

and g5 1. 1.

The first thing to note in all six panels is the exis-

tence of extensive regions in which lt . 0 that coexist

with regions where lt , 0, so the chaotic nature of the

flow is far from being independent on IDs for the

model (1), subject to the aperiodic forcing of Fig. 2a.

Another notable feature is that lt exhibits strong time

dependence, for both g, 1 (upper panels) and g. 1

(lower panels).

The remarkable decrease of the range of lt as t in-

creases from t5 20 yr to t5 60 yr, both in Figs. 5a–c and

Figs. 5d–f, is to be expected, due to the saturation of the

exponential behavior, but the spatial distribution de-

pends strongly on time as well. This dependence clearly

indicates that complex temporal behavior lies behind

these maps, which cannot, therefore, provide an un-

ambiguous indication of the flow’s chaoticity depending

on (C1, C3). (Such complexities are further discussed in

connection with Fig. 8 below.)

b. Mean normalized distance

Amore robust identification of chaotic and nonchaotic

regions within the set G of initial states can be obtained by

introducing and evaluating the metric s, defined by

s(C
1
,C

3
)5 hd

n
i
Ttot

, (6)

where the normalized distance dn, given by dn 5 dt/d0, is

averaged over the whole forward time integration

Ttot 5 tfin 2 tinit of the available trajectories. The maps of

s in Fig. 6 reveal large chaotic regions where dn � 1 on

average (warm colors) but also nonchaotic regions

where s# 1 (blue) and thus initially close trajectories do

remain close on average.

To check the character of the two types of evolution,

we plot in Fig. 7 many trajectories that leave two small

subsets of G for which s � 1—namely the sets A and C

in Fig. 6, for g5 0. 96 and g5 1. 1, respectively—to

compare with those that leave the sets B and D of Fig. 6,

for which s# 1.

Figures 7a and 7c confirm the extreme sensitivity to IDs

that lie in boxes A and C: a comparison of these two

panels with Figs. 2b and 2c, respectively, shows that the

attracting sets to which trajectories started in A and B

converge are dense in the PBAsobtainedby starting from

the whole G. The corresponding PDFs, as represented by

PC3
(not shown) coincide in fact with those of Figs. 2d and

2e and the same result is obtained by starting from any

small region of G for which s � 1. Figures 7b and 7d also

confirm that the trajectories leaving from boxes B and D

FIG. 5. Maps of FTLEs for the present model. Maps of l(C1, C3, t) at (a),(d) t5 20 yr, (b),(e) t5 40 yr, and (c),(f) t5 60 yr, for (top)

g5 0. 96 and (bottom) g5 1. 1. In the color bars to the right, warm colors indicate instability, i.e., lt . 0, and cool colors the opposite, while

heavy black lines in the panels correspond to l5 0.
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converge to time-dependent sets in the (C1, C3) plane

whosemeasure ismuch smaller than that of eitherB orD.

c. Discussion

It is worth exploring in greater detail the evolution of

some of the trajectories plotted in Fig. 7. We display in

the top graphs of Figs. 8a–d the C3 time series of two

initially nearby trajectories selected among those of

Figs. 7a–d, respectively; each pair of trajectories has lines,

one in blue and one in red, both drawn from the same

panel of Fig. 7. The corresponding normalized distances

dn(t) are shown in the bottom graphs of Figs. 8a–d

marked with a prime.

In the chaotic cases, represented by both graphs in

Figs. 8a, and 8c, the values of dn(t) range from dn(t) ’ 1

to dn(t) � 1, up to order 102; the former very small

values occur over the same time intervals—already ap-

parent in Figs. 2b0 and 2c0—in which synchronization

sets in. In the nonchaotic cases, like those of Figs. 8b, 8d,

the values of dn lie typically below unity, although an

initial divergence is noticeable in Fig. 8d0; this slow di-

vergence may be due to a transient growth of poly-

nomial rather than exponential nature.

Inspection of the bottom graphs in Figs. 8a–d

confirms the validity of the mean normalized dis-

tance s of Eq. (6) as a sharper diagnostic tool than

the FTLEs. Longer integrations (not shown) simply

extend in time the ensemble of trajectories shown in

Figs. 7a and 7b, but the chaotic versus nonchaotic

character of the trajectories—as diagnosed by s—is

preserved.

To further analyze the structure of the model’s PBAs,

the intersection of many trajectories with the (C1, C3)

plane at a reference time t5 330 yr is shown in Figs. 9a

and 9b for g5 0. 96 and g5 1. 1, respectively. The gray

dots in both panels arise from 15 000 IDs evenly dis-

tributed in G and are associated with the filamentary

patterns that characterize chaotic attractors (e.g.,

Chekroun et al. 2011; Drótos et al. 2015).
The red dots arise from the small boxes A and C that

are located in the chaotic regions of Figs. 6a and 6b,

respectively. These red dots, too, are distributed all over

the corresponding attractors in the two panels, as ex-

pected from the previous analysis; in fact, only the 420

red dots that correspond to the trajectories of Figs. 7a

and 7c have been plotted here, to avoid complete

overlapping with the gray dots.

On the contrary, the cyan dots that arise from the

large nonchaotic boxes 1, 2, 3, and 4 of Figs. 6a and 6b

converge onto small subsets of the PBAs. This con-

vergence onto a smaller-dimensional set is very similar

to what Pierini (2014a) found for some forcing periods

that yielded periodic PBAs; for example, see Figs. 6a–c

therein.

For g. 1 in Fig. 9b, the similarity with the result of

Pierini (2014a) is striking because all the trajectories

originating from boxes 3 and 4 of Fig. 6b converge to-

ward two distinct points. It is worth noting that the blue

boxes 3 and 4 of Fig. 6b are separated by a chaotic ridge

that apparently acts as a barrier separating two distinct

basins of attraction, each converging to a single point. In

this case the asymptotic evolution is independent of

FIG. 6.Mean normalized distances(C1, C3) for 15 000 trajectories starting in the initial setG: (a) g5 0. 96 and (b) g5 1. 1. The boxesA–D

and 1–4 indicate subdomains of G from which IDs are taken for our analysis (see text).
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initial data. On the other hand, for g, 1 (Fig. 9a) the

attracting cyan sets are small segments, so the evolution

of the nonchaotic trajectories does depend, although

very weakly, on IDs.

Graphs like those of Fig. 9 cannot provide quantita-

tive information on the probability of localization of

trajectories on the model’s global PBA. Such in-

formation can be obtained, though, from the three-

dimensional PDFs plotted in Fig. 10.

For the subcritical case g, 1 in the left column of the

figure, the distribution is highly inhomogeneous and

concentrates in two areas labeled 1 and 2 in Fig. 10a;

these concentrations extend over very small portions of

the filament and result from large contributions of both

chaotic (Fig. 10c) and nonchaotic (Fig. 10e) trajecto-

ries, with a larger contribution from the latter. In the

supercritical case g. 1 (right column), the same situ-

ation holds, with two peaks contained in the small area

labeled 3.

In summary, in the small regions of phase space in

which the invariant sample measure on our model’s

global PBA peaks in a filamentary pattern, both chaotic

and nonchaotic trajectories coexist. The PDF peaks in

Figs. 10a and 10b are clearly an indication of enhanced

overall predictability, and recall those observed in

Figs. 6 and 7 of Chekroun et al. (2011) for a highly ide-

alized model of El Niño–Southern Oscillation with

seasonal forcing.

6. Summary and conclusions

In this study, a low-order quasigeostrophic model of

the wind-driven ocean circulation has been used as a

prototype of an unstable, nonlinear, nonautonomous

dynamical system of climatic relevance. We have studied

this double-gyre model’s PBAs (i.e., those time-

dependent invariant sets that attract all trajectories ini-

tialized in the remote past) along with the invariant

sample measures that live on these sets. PBAs (Arnold

1998; Ghil et al. 2008; Chekroun et al. 2011) and their

close cousins, snapshot attractors (Romeiras et al. 1990;

Bódai et al. 2011, 2013; Bódai and Tél 2012; Drótos et al.
2015), have only recently been recognized as the natural

tools for investigating basic features of a changing non-

equilibrium climate, and the theory of nonautonomous

dynamical systems as the proper mathematical frame-

work for such investigations.

We chose here an aperiodic forcing dominated by

interdecadal variability to mimic the effects of multi-

decadal climate changes (Chang et al. 2015) on the

FIG. 7. Evolution of ensembles of 420 trajectories each that emanate from small subsets of G: (a),(b) g5 0:96 and IDs in boxes A and B of

Fig. 6a, respectively, and (c),(d) g5 1:1 and IDs in boxes C and D of Fig. 6b, respectively.
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midlatitude double-gyre circulation; see section 2. The

present study generalizes therewith a set of results

previously obtained in the presence of periodic forcing

(Pierini 2014a). We recall that, in the absence of time-

dependent forcing [i.e., when «5 0 in Eq. (3)], a tip-

ping point at g5 1 separates small-amplitude, nearly

harmonic oscillations from large-amplitude relaxation

oscillations.

In section 3, the convergence of ensembles of tra-

jectories to PBAs was assessed in order to estimate

the time required to identify the PBAs. To do so, we

considered—in addition to projections of the trajecto-

ries from the full, four-dimensional phase space onto a

plane spanned by theC1 andC3 variables—the suitably

scaled, time-dependent statistic PC3
(t); see Eq. (4) and

Fig. 2. A key result of this section is that a period of

about 15 years suffices for trajectories to converge to

the PBA.

The sensitivity of PBAs with respect to the amplitude

« of the time-dependent portion of the forcing was

studied in section 4. Below the tipping point g5 1, the

range of variability within the PBA increases dramati-

cally as « increases, and so does the intermittency; see

left column of Fig. 4. For g. 1, the changes in both

range and intermittency are less striking (cf. right col-

umn of Fig. 4). The difference in behavior is clearly as-

sociated with the solutions of the autonomous system:

a small-amplitude limit cycle for g, 1 versus a higher-

amplitude, more complex and self-sustained relaxation

oscillation for g. 1.

Finally, the dependence of the attracting sets on the

choice of the ensemble of initial states is investigated in

FIG. 8. Superposition of two time series ofC3(t) starting from nearby IDs in G. The initial points for g5 0:96 are

(a) (16, 36) and (b) (112, 2132), while for g5 1:1 they are (c) (29, 51) and (d) (95, 255). The lower graphs in

(a)–(d)marked with a prime are the corresponding normalized distances dn(t). The two nearby trajectories of (a)–(d)

are included in those of Figs. 7a–d, respectively. The horizontal black lines mark the value dn 5 1.
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section 5. Our investigation relies, on the one hand, on

the classical FTLEs to measure the rate of divergence

of trajectories, but it introduces also a novel metric,

namely the time mean s of the normalized distance dn
between two initially nearby trajectories. The use of dn
and s [cf. Eq. (6)] is required by the extreme com-

plexity of the evolution of the distance between the

trajectories: this evolution is far from purely expo-

nential and it involves large variations over different

time scales and episodes of synchronization induced by

the forcing, as seen in Fig. 8.

In our model, the statistics of an ensemble of tra-

jectories in a chaotic regime does depend on the en-

semble of states chosen in the remote past. Figures 6, 7,

and 9, in particular, illustrate very well that the model’s

global PBA—whose existence is rigorously proven in

the appendix—contains both chaotic and nonchaotic

trajectories.

Both of these types of trajectories have attractor ba-

sins that seem to be separated by fractal boundaries: the

former fill the global PBA, while the latter form small

and smooth subsets of the PBA. This complex, in-

terwoven pattern of rapidly divergent and nondivergent

trajectories shows that a time-independent PDF, as of-

ten used in predictability studies, is not sufficient to

describe the model’s long-term behavior or to charac-

terize its predictability.

These intriguing results have been obtained with a high-

ly idealized nonlinear model subject to deterministic

aperiodic forcing. As usual in this kind of approach, they

raise as many questions as they answer about the broader

issues of climatemodeling and climate predictability. The

two most urgent questions for the climate sciences are

these:

d To which extent is this simple model’s behavior char-

acteristic of a wide class of nonautonomous dynamical

systems, whether deterministic or stochastic?
d How relevant is this class to climate modeling and

climate predictability studies?

Again as usual, these questions require one to climb

the rungs of a hierarchy of successively more complex

and detailed climate models (Ghil 2001; Dijkstra and

Ghil 2005; Ghil 2015, and references therein). Natu-

rally, introducing noise in the forcing may sub-

stantially modify the system’s behavior: a random

dynamical system extension of the present study is in

progress.
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APPENDIX

Existence of a Global Pullback Attractor

We present in this appendix rigorous mathematical

results on the existence of pullback attractors

(PBAs) in ordinary differential equation (ODE)

models—like the one given by Eqs. (1) and (2) here—

and, in particular, the conditions on the forcing term

W5 (W1, . . . , W4) for such an existence to be guar-

anteed. General results are known from the special-

ized literature on the existence of pullback attractors

or related invariant manifolds (Kloeden and

Rasmussen 2011; Carvalho et al. 2012; Chekroun

et al. 2015a,b). For the sake of conciseness and clar-

ity, however, we provide below the main elements of

such an existence theory, while emphasizing the en-

ergy estimates involved; see also Kondrashov et al.

(2015, Theorem 3.1 and Corollary 3.2).

In particular, these existence results are shown to

apply to Eqs. (1) and (2) considered in the main text.

We mention also that the approach presented below

can be adapted to the infinite-dimensional setting and

thus to the original two-dimensional quasigeostrophic

partial differential equation model, by working in the

appropriate function spaces to define the correspond-

ing solutions.

The less mathematically inclined reader can skip

appendix section a and proceed directly to section b.

a. Rigorous mathematical background

In what follows X denotes the Euclidean space R
d

(d$ 1), endowedwith its natural inner product h�, �i, and

FIG. 10. PDF of localization of the 15 000 trajectories of Figs. 6 and 9 projected onto the (C1, C3) plane at t5 330 yr, for (a),(c),

(e) g5 0. 96 and (b),(d),(f) g5 1. 1. The PDF is computed in (a) and (b) from all 15 000 trajectories emanating from G; in (c) and (d) only

the chaotic trajectories emanating fromboxesA andC, respectively, are used; and in (e) and (f) only the nonchaotic trajectories emanating

from boxes 1–2 and 3–4, respectively, are used (cf. Fig. 9).
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B [0, r(t)] denotes the closed ball in X centered at zero,

with time-dependent radius r(t). 0.

Theorem 1

Consider the following evolution equation forC 2 X ,

dC

dt
1LC1B(C,C)5W(t) , (A1)

for which the initial value problem with C(0)5C0

possesses a unique global solution for any C0 2 X.

Assume that the bilinear term B is energy preserving,

that is,

hB(C,C),Ci5 0, for all C 2 X , (A2)

and that there exists a. 0 such that, for all C 2 X,

hLC,Ci $ akCk2 . (A3)

Suppose furthermore thatW belongs toL2
loc(R, X)—the

space of X-valued, locally square-integrable functions—

and that

ðt
2‘

esskW(s)k2 ds , ‘, for all t 2 R , (A4)

with

s5 2(a2 «) , (A5)

for some «. 0 such that a. «.

Then the propagatorU associatedwith (A1) possesses a

unique pullback attractor that pullback attracts any time-

dependent set D (t) such that D (t) � B [0, rs(t)], with

rs(t) that satisfies the growth condition

lim
t/2‘

estr2s(t)5 0: (A6)

REMARK 1

Inequality (A3) states that the linear terms in Eq. (1)

include dissipative effects.

REMARK 2

(i) We recall that a propagator onX is a two-parameter

family of continuous mappings U(t, t):X/X ,

such that U(t, t) is the identity operator in X,

U(t, t)x5 x, and that the ‘‘multiplication rule’’

U(t, t)5U(t, s)U(s, t) for all t # s # t (A7)

applies. It is trivial to show that when a nonauton-

omous ODE system, such as Eq. (A1), possesses a

unique global solution for any C0 2 X, then a

propagator U is well defined and is actually given

by U(t, t)C0 :5 C(t, t;C0), where C(t, t;C0) de-

notes the solution at time t of Eq. (A1) that emanates

from C0 at time t# t.

(ii) A time-dependent set A(t) is said to pullback

attract the time-dependent set D (t) if

lim
t/2‘

dist
X
½U(t, t)D (t),A(t)�5 0, for all t ,

(A8)

where distX denotes the Hausdorff semidistance in

X (Carvalho et al. 2012; Chekroun et al. 2011).

Proof

Let us multiply Eq. (A1) by C. Energy conservation

by the quadratic term [cf. Eq. (A2)] then yields

1

2

dkCk2
dt

1 hLC,Ci5 hW,Ci. (A9)

By using the dissipativity condition of Eq. (A3) on

hLC, Ci and Young’s inequality [Brézis 2010, ch. 2; see
Eq. (2) therein and footnote onp. 92] on hW, Ci, we obtain
that, for all «. 0, there exists a constant C« . 0 such that

dkCk2
dt

1 2(a2 «)kCk2 # C
«
kWk2 . (A10)

Now by choosing « sufficiently small for s5
2(a2 «). 0 to hold, we obtain, after integration over

[t, t],

kC(t)k2 # e2s(t2t)kC(t)k2 1C
«
e2st

ðt
t

esskW(s)k2 ds .
(A11)

If C(t) 2 D (t) � B [0, rs(t)] with rs that satisfies the

slow-growth condition of Eq. (A6), then the first term on

the right-hand side converges to zero as t/2‘, en-
suring thus the existence of a dissipation time t0(t) such

that, for all t# t0(t),

kC(t)k2 # 2C
«
e2st

ðt
2‘

esskW(s)k2 ds[R(t) . (A12)

We have thus proved that U(t, t)D (t) � B [0, R(t)]

for t # t0(t), ensuring in turn the desired pullback dis-

sipation. The existence and uniqueness proceed then

from this dissipation property and the theory of pullback

attractors [e.g., Carvalho et al. (2012)]. ∎

b. Interpretation

We provide here some interpretations of the appli-

cation of theorem 1 in the context of our idealized
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climate model governed by Eqs. (1) and (2). First, the

dissipativity parameter a of condition (A3) above is

given here by

a5 min
l2s(L)

½Re(l)� , (A13)

where s(L) denotes the spectrum of the linear operator

L. For the parameter regime presented in the main text,

we find a5 1. 14873 1025.

The result of theorem 1 states thus that, for any

forcingW for which s defined in (A5) is strictly positive,

the double-gyre ocean model of Eq. (1) possesses a

pullback attractor in the sense of theorem 1. The con-

stant s in Eq. (A11) is a measure of the rate of pullback

dissipation. This constant is very small, on the order of

1025, which helps explain, as we shall see, the complexity

of the model’s phase portrait.

The identity (A8) means that A(t) attracts—with

respect to the Hausdorff semidistance and in a pull-

back sense—any time-dependent set D (t) of initial

states at time t, as they evolve with the action of the

propagator U(t, t) forward in the time t and as the

pullback time t is sent further and further away into

the past.

However, the Hausdorff semidistance is not a distance

in the classical sense. For instance, distXðE , F Þ5 0 im-

plies that the set E is included in the set F , but does not

guarantee the converse. So if the global attractor A(t)

turns out to be the union of a strange part and of some

topologically simpler parts, such as fixed points or peri-

odic orbits, it is definitely possible to have pullback at-

traction toward the global PBA A(t), while single

trajectories land in different regions of A(t) that are ei-

ther chaotic or not. We are then back, in a pullback set-

ting, to the notion of local attractors that compose the

global attractor and that can be of topologically very

different natures. In the autonomous context, such co-

existence of topologically distinct local attractors is well

known in the climate sciences (Ghil and Childress 1987;

Dijkstra and Ghil 2005; Simonnet et al. 2005, 2009, and

references therein), while it is also observed in the nu-

merical results of Figs. 5 and 6 herein for the present

ocean model.

As shown in these figures, the boundaries between the

corresponding local basins of attractions, as measured

with the metrics of section 5, are seemingly intricate and

strongly suggest that these objects have fractal features.

An attractor basin of chaotic solutions being separated

by a fractal boundary from the attractor basin of a fixed

point has been documented in a quadratic autonomous

model governed by four ODEs that arises in population

dynamics; see Fig. 5a in Roques and Chekroun (2011).

In that ecological model, however, no abutting of

two different attractor basins of chaotic regions on the

global attractor is present. A key difference between

the ocean model studied herein and the population

dynamics model of Roques and Chekroun (2011) lies

in the quadratic terms here being energy preserving

[cf. Eq. (A2)], while this is not the case in population

dynamics.

There is, therefore, a Hamiltonian skeleton here

that may help explain the difference between the two

phase portraits: The pullback dissipation being very

small argues for the asymptotic trajectories—in spite

of the dissipative nature of the dynamics—lying quite

close to this skeleton. It is thus not surprising to re-

cover interleaved chaotic islands, as shown in Fig. 6. In

the autonomous context, the effects of small dissipa-

tion have been studied by Ghil and Wolansky (1992),

Feudel and Grebogi (1997), and Seoane et al. (2007),

among others.
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