
UC Davis
IDAV Publications

Title
Interactive Computation and Visualization of Level-Set Surfaces: A Streaming Narrow Band
Algorithm

Permalink
https://escholarship.org/uc/item/2j20837k

Author
Lefohn, Aaron

Publication Date
2004

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2j20837k
https://escholarship.org
http://www.cdlib.org/

INTERACTIVE COMPUTATION AND

VISUALIZATION OF LEVEL-SET

SURFACES: A STREAMING

NARROW-BAND

ALGORITHM

by

Aaron Eliot Lefohn

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science

School of Computing

The University of Utah

May 2004

Copyright c© Aaron Eliot Lefohn 2004

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Aaron Eliot Lefohn

This thesis has been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory.

Chair: Ross Whitaker

Charles Hansen

Steven Parker

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the thesis of Aaron Eliot Lefohn in its final form and have
found that (1) its format, citations, and bibliographic style are consistent and acceptable;
(2) its illustrative materials including figures, tables, and charts are in place; and (3) the
final manuscript is satisfactory to the Supervisory Committee and is ready for submission
to The Graduate School.

Date Ross Whitaker
Chair, Supervisory Committee

Approved for the Major Department

Chris Johnson
Chair/Dean

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

Deformable isosurfaces, implemented with level-set methods, have demonstrated a

great potential in visualization and computer graphics for applications such as segmen-

tation, surface processing, and surface reconstruction. Their usefulness has been limited,

however, by two problems. First, three-dimensional level sets are relatively slow to

compute. Second, their formulation usually entails free parameters that can be difficult

to tune correctly for specific applications. The second problem is compounded by the

first. This thesis presents a solution to these challenges by describing graphics processor

unit (GPU) based algorithms for solving and visualizing level-set solutions at interactive

rates for volumes as large as 2563.

Level-set techniques deform isosurfaces by solving partial differential equations (PDEs)

on a voxel grid. Efficient solvers for the equations compute a solution only at those voxels

on or near the isosurface. The active elements in this narrow-band of computation change

as the level-set solution evolves. This thesis demonstrates that such dynamic sparse-grid

computations can be efficiently solved using a streaming architecture platform–a modern

graphics processor. The solution uses a multidimensional virtual memory mapping to

pack the active, three-dimensional voxel data into two-dimensional texture memory on

the GPU. A novel GPU-to-CPU message passing scheme quickly updates this sparse data

structure as the isosurface moves.

The integration of the level-set solver with a real-time volume renderer allows a user to

visualize and steer the deformable level-set surface as it evolves. The resulting isosurface

can also serve as a region-of-interest specifier for the volume renderer. This thesis

demonstrates the capabilities of this technology for interactive volume segmentation and

visualization. This thesis also presents an evaluation of the method with a brain tumor

segmentation user study.

to Karen

CONTENTS

ABSTRACT . iv

LIST OF FIGURES . viii

ACKNOWLEDGMENTS . xi

CHAPTERS

1. INTRODUCTION . 1

1.1 Problem Statement . 1
1.2 Contributions and Results . 3
1.3 Overview . 3

2. TECHNICAL BACKGROUND AND RELATED WORK 5

2.1 The Level-Set Method . 5
2.2 Narrow-Band Level-Set Solvers . 7
2.3 Scientific Computation on Graphics Processors . 8

3. STREAMING NARROW-BAND ALGORITHM 12

3.1 Introduction . 12
3.2 A Virtual Memory Address Scheme

for Sparse Computation . 13
3.2.1 Traditional Virtual Memory Overview . 13
3.2.2 Multidimensional Virtual Memory for GPUs 14
3.2.3 Virtual-to-Physical Address Translation . 17
3.2.4 Bootstrapping the Virtual Memory System . 20

3.3 Streaming Narrow-Band GPU Level-Set Solver . 21
3.3.1 Initialization of Computational Domain . 21
3.3.2 The Distance Transform Computation on the GPU 23
3.3.3 Level-Set Computation . 24
3.3.4 GPU Implementation Details . 24
3.3.5 Update of Computational Domain . 25

3.4 Volume Rendering of Packed Data . 26

4. SEGMENTATION APPLICATION . 30

4.1 Introduction . 30
4.2 Volume Segmentation and Visualization

Application . 30
4.2.1 Level-Set Formulation for Segmentation . 30
4.2.2 Interface and Usage . 32

4.3 Performance Analysis . 39

4.4 Tumor Segmentation User Study . 40
4.4.1 Introduction . 40
4.4.2 Methodology . 41
4.4.3 Results . 42

5. CONCLUSIONS . 48

5.1 Summary . 48
5.2 Future Work . 48

APPENDICES

A. DISCRETIZATION OF THE LEVEL-SET EQUATIONS 51

B. A BRUTE-FORCE, GPU-BASED THREE-DIMENSIONAL

LEVEL-SET SOLVER . 54

C. GPU MEMORY ALLOCATION REQUEST GENERATION 56

D. SOFTWARE DESIGN . 60

REFERENCES . 72

vii

LIST OF FIGURES

2.1 The three fundamental steps in a sparse-grid solver. Step 1 initializes the
sparse computational domain. Step 2 executes the computational kernel on
each element in the domain. Step 3 updates the domain if necessary. Steps
2 and 3 are repeated for each solver iteration. 8

2.2 The modern graphics processor pipeline. 10

3.1 The multidimensional virtual and physical memory spaces used in the paged
virtual address system. The original problem space is V, the virtual address
space. The virtual page space, VP, is a subdivided version of V. Virtual
memory pages are mapped to the physical page space, GP, by the page table.
The inverse page table maps physical pages in GP to virtual pages in VP.
The collection of all elements in GP constitute G, the physical memory of
the hardware. 15

3.2 The virtual-to-physical address translation scheme in the multidimensional
virtual memory system. A three-dimensional virtual address, VA, is first
translated to a virtual page number, VPN. A page table translates the
VPN to a physical page address, PPA. The PPA specifies the origin of
the physical page containing the physical address, PA. The offset is then
computed based from the virtual address and used to obtain the final two-
dimensional physical address, PA. 16

3.3 The substream boundary cases used to statically resolve the conditionals
arising from 3 × 3 × 3 neighbor accesses across memory page boundaries.
The nine substream cases are: interior, four edges, and four corners (a).
The interior case accesses its neighbors from only three memory pages (b).
The edge cases require six pages (c), and the corner cases require 12 memory
pages (d). Note that for reasonably large page sizes, the more cache-friendly
interior case has by far the highest number of data elements. 18

3.4 The level-set solver’s use of the paged virtual memory system. All active
pages (i.e., those that contain nonzero derivatives) in the virtual page space
(a) are mapped to unique pages of physical memory (b). The inactive virtual
pages are mapped to the static inside or outside physical page. Note that
the only data stored on the GPU is that represented by (b). 21

3.5 The level-set embedding, φ, is a clamped distance transform, i.e., |∇φ| is
nonzero near the surface model and zero elsewhere. 22

3.6 The GPU’s creation of a memory allocation/deallocation request. Step A
uses solver-specific data to create two buffers containing the active state
of each data element and its adjacent neighbors. Step B uses automatic
mipmapping to reduce the buffers from size S[G] to the physical page space
size, S[GP]. Step C combines the information from the two down-sampled
state buffers into an eight-bit code for each pixel. This code encapsulates
whether or not each active virtual memory page and its adjacent neighbors
should be enabled. In step D, the CPU reads the bit-code buffer, decodes
it, and allocates/deallocates pages as requested. 26

3.7 Two pass rendering of packed volume data. In step A, a two-dimensional
slice (i) is reconstructed from the physical page (packed) layout, GP. In
step B, one or more intermediate slices between i and i−1 are interpolated,
transformed into optical properties (via the transfer function), lit, and
rendered for the current view. The next iteration begins by reconstructing
slice i + 1, replacing i− 1, and so on. 28

3.8 Reconstruction of a slice for volume rendering the packed level-set model:
(a) When the preferred slicing direction is orthogonal to the virtual memory
page layout, the pages (shown in alternating colors) are draw into a pixel
buffer as quadrilaterals. (b) For slicing directions parallel to the virtual
page layout, the pages are drawn onto a pixel buffer as either vertical or
horizontal lines. 28

4.1 The use of a curvature constraint (speed function) in the level-set compu-
tation to prevent segmentation “leaking.” This example shows one slice
of a three-dimensional MRI segmentation computation: (a) The spherical
initialization. (b) A model expands to fill the tumor but leaks through gaps
and expands into other anatomy. (c) The same scenario with a degree of
curvature prevents unwanted leaking. The level set isosurface is shown in
white. 31

4.2 A speed function based on image intensity causes the model to expand over
regions with greyscale values within the specified range and contract otherwise. 32

4.3 A depiction of the user interface for the volume analysis application. Users
interact via slice views, a three-dimensional rendering, and a control panel. 33

4.4 The actual user interface for the volume analysis application. The top left
window shows the visualization of the speed function. The top right window
shows a slice of the MRI source data with the current level-set solution
in yellow. The lower-left window shows a volume rendering of the MRI
source data (blue), the same data projected onto a clipping plane (grey),
the current level-set surface (brown), and the intersection of the current
level-set solution with the clipping plane (yellow). 33

4.5 Interactive level-set segmentation of a brain tumor from a 256× 256× 198
MRI with volume rendering to give context to the segmented surface. A
clipping plane (bottom) shows the user the source data, the volume render-
ing, and the segmentation simultaneously. The segmentation and volume
rendering parameters are set by the user probing data values on the clipping
plane. 35

ix

4.6 Interactive level-set segmentation of the cerebral cortex from a 256× 256×
198 MRI with volume rendering to give context to the segmented surface.
The MRI data is also projected onto a clipping plane, on which the user can
probe to control the level-set parameters. 36

4.7 The top image shows a volume rendering of a 2563 MRI scan of a mouse
thorax. Note the level set surface which is deformed to segment the liver.
The bottom image shows a volume rendering of the vasculature inside the
liver. Both images are rendered using the same transfer function with the
level-set surface serving as a region-of-interest specifier. 37

4.8 Segmentation and volume rendering of 512 × 512 × 61 three-dimensional
transmission electron tomography data. The picture shows cytoskeletal
membrane extensions and connexins (pink surfaces extracted with the level-
set models) near the gap junction between two cells (volume rendered in cyan). 38

4.9 Sensitivity (the fraction of pixels correctly classified as inside the object
boundary) results from the user study compare the interactive, GPU-based
level-set segmentation tool with expert hand contouring. The results show
that users of the semi-automatic tool produced segmentations that were
within the error bounds of the expert hand contours in most cases. The
tool also showed an overall slightly lower sensitivity, meaning that the size
of the segmentations is slightly smaller. 43

4.10 Specificity (the fraction of pixels correctly classified as outside the object
boundary) results from the user study compare the interactive, GPU-based
level-set segmentation tool with expert hand contouring. The results show
that users of the semiautomatic tool produced segmentations that were
within the error bounds of the expert hand contours in most cases. The
tool also showed an overall slightly higher specificity, meaning that the size
of the segmentations is slightly smaller. 44

4.11 The total fraction of correctly classified pixels (combination of sensitivity
and specificity) for the nine tumor cases segmented by the participating
users. 45

4.12 An expert hand segmentation of a tumor from the Harvard Brigham and
Women’s database shows significant interslice artifacts. 47

4.13 A three-dimensional segmentation of the same tumor from one of the sub-
jects in the user study performed using the interactive segmentation tool
described in this thesis. 47

D.1 The five software layers with which the level-set segmentation application
is built. In the first layer, OpenGL is used to control the GPU, Gutz
defines vector, matrix, and array data structures, and Glew handles OpenGL
extensions. The second layer, Glift, combines OpenGL calls into reusable
object-oriented OpenGL modules. CompGPU is the third layer and encap-
sulates an entire render pass as a forEach function call. The level-set solver,
level-set speed functions and visualization modules are defined in the fourth
layer, and the volume segmentation application comprises the fifth layer. . 61

D.2 Class tree for the Glift, object-oriented OpenGL framework. 65

x

ACKNOWLEDGMENTS

I feel incredibly lucky to have spent the last two years as a graduate student in

the University of Utah computer science department and specifically in the Scientific

Computing and Imaging Institute (SCI). The most outstanding feature of the graphics

and SCI groups at Utah is the overwhelmingly open collaborative environment. I have

witnessed many impromptu discussions between students and/or faculty turn into fruitful

research ideas and papers. The supportive and talented faculty and students, combined

with an open, collaborative, hard-working atmosphere, creates an environment that is

ripe for idea generation. Being a part of this madness for the last two years has truly

changed my career and life.

I want to first specifically thank my advisor, Ross Whitaker. I greatly appreciate

Ross’s attraction to problems that others discount as impossible. His ability to let me

work independently for long periods of time, yet answer detailed questions with little or no

notice was the perfect advisorship. Ross’s ability to point out subtle details, problems, and

solutions was an invaluable resource. Beyond just research advising, he spent a significant

amount of time improving my writing and presentation style as well as offering career

advice. Ross has shown me the ideal role that an academic advisor can play in a graduate

student’s life. It is also worth noting that his rock climbing skills have also progressed

substantially in the last two years.

I also want to thank my committee, Charles Hansen and Steven Parker, for their

support and criticism throughout the project. I especially want to thank Charles Hansen,

whose graphics classes inspired me to change careers, and for his help in making that

career change. Chris Johnson deserves a special thanks for helping make SCI the intense,

fast-moving, and inspiring place that it is. I also want to thank Chris for much career

advice and support. I also recognize all of the talented members of SCI’s administration,

support, and media team for helping create a fantastic research environment.

My time with Peter Shirley has also had a profound impact on me. Pete’s constant

barrage of open-research declarations during his Image Synthesis course was a perpet-

ual source of motivation and stimulation. Although not part of this thesis, my IEEE

Computer Graphics and Applications paper on human iris rendering was inspired by

discussions with Pete. His poignant and creative criticism of my writing ability is also

greatly appreciated.

I can not emphasize strongly enough the contribution of my colleagues to my research.

Joe Kniss has been an integral part of my work since the beginning. Joe began as

my mentor—introducing me to the world of GPU hacking. Joe has made significant

contributions to all parts of this project. He is responsible for convincing me to pursue

the substream idea for fragment conditional resolution. The edge-on volume rendering

reconstruction idea was developed by Joe specifically for this project. He also wrote

nearly all of the volume rendering code discussed in this thesis and created many of the

figures found herein. I cannot thank Joe enough for his friendship, ideas, and hard work

throughout my time in Utah.

Joshua Cates deserves many thanks for helping design, administer, and analyze the

tumor segmentation user study. His expertise in segmentation evaluation methodology

and analysis was an invaluable contribution to the application chapter of this thesis.

Josh also provided the CPU-based level-set solver code to which this GPU-based solver

is compared.

Milan Ikits has also contributed significantly to this work. Milan provided much input

into the design of the Glift OpenGL framework. He also helped me debug much of the

GPU code and was always willing to listen to a “confessional debugging” session and

provide valuable feedback. Milan also contributed to many of the design discussions for

the sparse solver and renderer. His Glew, OpenGL extension handler is also an integral

part of the code discussed herein.

Gordon Kindlmann has a dominating and fatherly presence in the SCI lab. Gor-

don’s rigor and mathematical savvy are regularly used to identify holes in an otherwise

plausible-sounding idea. I thank him for his repeated criticism, skepticism, and brilliance.

His Teem toolkit for manipulating N-dimensional raster data is also an integral part of

this software. His tools have saved me weeks of coding and misery.

Milan, Gordon, and Joe were all integral in the discussions that led to the multidi-

mensional virtual memory abstraction. I again thank the three of them for their time

and insight into the problem.

Despite the fact that I rarely left the lab, I greatly appreciate Miriah Meyer’s tireless

attempts to get me out of the building and into the mountains. I also want to thank

xii

Chris Wyman for sitting through repeated fragment program debugging sessions with

me, and (in no particular order), other members of the graphics and SCI groups: Justin

Polchlopek, Simon Premoze, Kristin Potter, David DeMarle, Xinwei Xue, Won-Ki Jeong,

Shaun Ramsey, Amy Williams, Tim Miller, David Weinstein, Jason Waltman, Helen Hu,

Betty Mohler, Margarita Bratkova, Brian Budge, Erik Reinhard, Suyash Awate, Mike

Stark, Bill Martin, Amy Gooch, and Bruce Gooch for their friendship and help along the

way.

John Owens was a great help in clarifying the substream discussion as well as helping

me see the larger context of my work.

Several employees of ATI Technologies Inc. have contributed significant time to this

research. Evan Hart’s deep knowledge and willingness to help was critical to the success

of this work. He and Jason Mitchell have provided advice and support to this project

from its inception. Jeff Royal, Arcot Preetham, and Mark Segal also deserve thanks for

answering questions and donating hardware to the project.

I also want to thank the providers of the volumetric data sets. Steve Lamont and

Gina Sosinsky at the National Center for Microscopy and Imaging Research at UCSD

provided the tomography data. Simon Warfield, Michael Kaus, Ron Kikinis, Peter Black

and Ferenc Jolesz provided the MRI head data. The mouse data was supplied by the

Center for In Vivo Microscopy at Duke University.

The pursuit of this research would not have been possible without the support of the

following grants. The work was funded by grants ACI0089915 and CCR0092065 from the

National Science Foundation, as well as Office of Naval Research grant N000140110033.

I lastly want to thank my family. My parents, Allen and Phyllis continue to be my role

models for pursuing life with creativity, passion, and hard work. To the rest of my family;

Li, Martin, Kevin, Milyn, Denis, Chris, Eileen, Joanne, Philip, Peter, Nancy, Sarah, and

Robbie, I am deeply grateful for your inspiration and support. I especially want to thank

you for being understanding of my absence throughout the duration of this work. By far

the most important acknowledgement, however, goes to my wife, Karen. I owe her my

deepest and most heartfelt thank you for patiently believing that the endless sleepless

nights and seven day work weeks were a worthy sacrifice. I am also deeply appreciative

of the times that she forcibly removed me from the lab and reintroduced me to the magic

of the Southern Utah desert.

xiii

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Surfaces define the objects in the world around us—the rough surface of a granite rock

cliff, the smooth plastic of a child’s toy, the complex surface of a kitchen sponge, and the

dynamic water surface of a stormy sea. Scientific exploration often includes the search for

surfaces that denote important boundaries. Examples include a geologist searching for oil

deposits in the earth’s strata, a neurosurgeon finding the exact extent of a brain tumor,

and a snow avalanche forecaster discovering a dangerously weak layer in a mountain snow

pack.

Just as in the physical world, surfaces are a critical component of computational

science and computer graphics. There are many techniques for representing computa-

tional surface models including vertex meshes, b-spline patches, implicit surfaces, and

others. The deformation of these surface representations, however, presents a number of

challenges. Example applications of deformable surfaces include surface tracking in fluid

simulations, image and volume segmentation, and surface processing (e.g., smoothing,

sharpening, blending).

The deformation of an explicit surface representation (e.g., vertex mesh) involves

updating connectivity and parameterization information. This can be difficult as well

as limit the range of possible deformations to those which do not change topological

genus. Implicit surfaces, on the other hand, can easily change topological genus, split

into multiple entities, and merge multiple surfaces together. The deformation technique

discussed in this thesis, the level-set method, is a promising technique for modeling

deformable implicit surfaces.

Level-set methods model deformable isosurfaces with a set of partial differential equa-

tions (PDEs) that act on an implicit surface voxel grid. The specific PDEs, and thus the

surface deformations, are determined by the level-set application. For physically-based

simulation applications, the simulation results determine the surface movement. For many

2

nonsimulation applications (e.g., surface processing and segmentation), level-set surface

deformation is controlled by a set of free parameters.

While the level-set approach is flexible and powerful, its use can be problematic.

First, level sets are relatively slow to compute. Second, the free parameters used by some

applications to control surface deformation are often difficult to set. The latter problem

is compounded by the first because, in many scenarios, a user must wait minutes or hours

to observe the results of a parameter change.

In response to the need to accelerate level-set computations, researchers have created

a number of optimization strategies. The most successful of these are the sparse-grid and

narrow-band strategies which solve the level-set PDE only on the voxels near the isosurface

(rather than on the entire voxel grid). Although these optimized solvers achieve significant

speedups, they are still far from interactive for all but the smallest three-dimensional

computations. The work in this thesis builds on these optimizations by presenting a

narrow-band algorithm that runs on a modern graphics processor.

The streaming architecture of modern graphics processors provides an attractive

alternate computing platform for computationally demanding problems. These spe-

cialized processors accelerate three-dimensional computer graphics computations with a

combination of dedicated hardware, data-parallel computation, and high-speed memory.

Although level-set algorithms exhibit the required data-parallelism to run on GPUs, the

sparse and dynamic nature of the computation makes mapping them to graphics hardware

difficult.

This thesis presents a solution to the above problems by presenting an efficient map-

ping of the level-set partial differential equations to a commodity graphics processor.

This GPU-based solver runs up to 15 times faster than a highly-optimized sparse-field

implementation running on a modern central processing unit (CPU). By combining the

fast solver with a real-time volume renderer, a user is able to both visualize and easily

control the evolving computation. This thesis presents an interactive volume segmenta-

tion application built with this new solver. The thesis also presents an evaluation user

study in which brain tumors are segmented from MRI data using this new segmentation

tool.

3

1.2 Contributions and Results

This thesis makes contributions in the fields of deformable surface processing, GPU-

based streaming computation, volume visualization, and medical segmentation. The main

contributions are:

• An integrated system demonstrating that level-set computations can be intuitively

controlled by coupling a real-time volume renderer with an interactive solver

• An interactive volume segmentation application built with the new solver, and a

user study that quantifies the effectiveness of the new tool for quickly and accurately

segmenting tumors from MRI data sets

• A GPU-based three-dimensional level-set solver that is approximately 15 times

faster than previous optimized solutions

• A multidimensional virtual memory scheme for GPU texture memory that supports

computation on time-dependent, sparse data domains

• A message passing scheme between the GPU and CPU that uses automatic mipmap

generation to create compact encoded bitcode messages

• Real-time volume rendering directly from a two-dimensional packed, sparse texture

format

• Region of interest specification for the volume renderer

• Efficient computation of a volumetric distance transform on the GPU

1.3 Overview

The following chapter discusses previous work and background for level sets, GPUs and

hardware-accelerated volume rendering. Chapter 3 describes the details of the streaming

narrow-band solver. The first section (Section 3.2) introduces a multidimensional virtual

memory system used to pack the active three-dimensional data into two-dimensional

texture memory. Section 3.3 then describes the details of the streaming level-set solver in

terms of the virtual memory system. That section also explains a new distance transform

computation that runs efficiently on the GPU. Section 3.4 explains how the packed,

two-dimensional data format is volume rendered at interactive rates. Chapter 4 describes

the interactive, three-dimensional segmentation application built using the streaming

4

level-set solver. Section 4.3 discusses the performance of the application, and Section 4.4

presents a brain tumor segmentation an evaluation user study performed with the new

tool. The conclusions in Chapter 5 summarize the work and propose future research

directions in both streaming level-set solvers and graphics hardware.

CHAPTER 2

TECHNICAL BACKGROUND AND

RELATED WORK

2.1 The Level-Set Method

The level-set surface deformation technique is based on an implicit surface representa-

tion. In the level-set approach, an n-dimensional manifold is embedded in a R
n+1 space

(i.e., a manifold with codimension one). A scalar function, φ(x, t), defines the surface

embedding, where x ∈ R
n+1 and t is time. The set of points on the surface at time t, St,

are mapped by φ(x, t) such that

St = {x|φ(x, t) = k}, (2.1)

where k is an arbitrary scalar value (often zero). It can also be said that St is the k level

set of φ(x, t). The discrete representation of φ(x, t) is referred to as the embedding of the

level set k. For instance, the embedding for the kth level set can be created by setting

each point on a uniform grid in S0 to k, all points inside the surface to φ(x, 0) > k and

all grid points outside to φ(x, 0) < k. The signed distance from the k isosurface is often

used for the embedding, φ(x, t), but it is not a requirement of the technique.

The embedding, φ(x, t), evolves with the surface, and the relationship is given by the

first-order, partial differential equation

∂φ(x, t)

∂t
= −∇φ(x, t) · v(x, t), (2.2)

where v(x, t) describes the velocity of the surface at point x at time t. Within this

framework one can implement a wide range of deformations by defining an appropriate

v(x, t). This velocity term is often a combination of several other terms, including data-

dependent terms, geometric terms (e.g., curvature), and others. In many applications,

these velocities introduce free parameters, and the proper tuning of those parameters is

critical to making the level-set model behave in a desirable manner. Equation 2.2 is the

6

general form of the level-set equation, which can be tuned for wide variety of problems

and which motivates the architecture of the new solver.

Although the proposed solver addresses the solution to Equation 2.2, this thesis

restricts the discussion to a special form of Equation 2.2 that is suitable for the seg-

mentation application described in Chapter 4. This special case of Equation 2.2 occurs

when v(x, t) = G(x, t)n(x, t), where n(x, t) is the surface normal and G(x, t) is a scalar

field, which is refereed to as the speed of the level set. In this case Equation 2.2 becomes

∂φ(x, t)

∂t
= −|∇φ(x, t)|G(x, t). (2.3)

Equation 2.3 describes a surface motion in the direction of the surface normal, and

thus the volume enclosed by the surface expands or contracts, depending on the sign

and magnitude of G(x, t). The remainder of this thesis uses an abbreviated notation

by assuming the spatial and temporal variability of φ(x, t), G(x, t), and n(x, t) are

understood. These quantities are thus referred to as φ, G, and n respectively.

The mean curvature of the level sets of φ, H, (hereafter referred simply as curvature)

is commonly used as a level-set speed function (i.e., G). Because applying curvature flow

to a surface minimizes surface area, curvature is often combined with data-based speed

terms to smooth out an otherwise rough or noisy surface solution. A convex surface

under pure curvature flow will converge to the n-sphere and finally a single point [14].

The mean curvature of φ is defined as

H = cn∇ ·
∇φ

|∇φ|
, (2.4)

where, if n is the dimensionality of the surface, cn = 1/(n− 1).

There is a special case of Equation 2.2 in which the surface motion is strictly inward

or outward. In such cases the PDE can be solved somewhat efficiently using the fast

marching method [44] and variations thereof [11]. However, this case covers only a very

small subset of interesting speed functions. In general, this work in this thesis is concerned

with solutions that allow the model to expand and contract as well as include a curvature

term.

The initial estimation of φ is propagated forward in time using finite forward dif-

ferences. The gradient magnitudes are computed with the up-wind scheme [34]. To

guarantee a stable solution, the upwind scheme approximates ∇φ using one-sided deriva-

tives that are always in the up-wind direction of the propagating surface. The largest

7

allowable time step, 4t, is inversely proportional to the maximum speed at a given time,

t. about max value for 4t is used. Given that ∂φ
∂t

is defined by Equation 2.3 and the

general update equation is

φ(x, t +4t) = φ(x, t) +4t
∂φ

∂t
, (2.5)

the level set update equation is

φ(x, t +4t) = φ(x, t) +4tF |∇φ|. (2.6)

The details of estimating ∇φ and H are presented in Appendix A.

2.2 Narrow-Band Level-Set Solvers

Efficient algorithms for solving the more general equation rely on the observation that

at any one time step the only parts of the solution that are important are those adjacent

to the moving surface (near points where φ = 0). This observation places level-set solvers

as part of a larger class of solvers that efficiently operate on time-dependent, sparse

computational domains—i.e., a subset of the original problem domain. However, in order

to take advantage of the sparse nature of level-set solutions, algorithms must maintain a

somewhat consistent level-set density (i.e., ∇φ), which is defined as the number of level

sets per unit volume. If the level-set density becomes too low (spread out) it can become

difficult to efficiently isolate the computation to the desired interface. Alternatively, a

level-set density that becomes too high (close together) can cause aliasing and numerical

problems. To address this, level-set solvers must manage the motion of the level sets, their

density, and the position of the model relative to the desired computational domain.

In general time-dependent, sparse algorithms maintain proper motion and density by

iterating on the three steps shown in Figure 2.1.

Two of the most common CPU-based level-set solver techniques are the narrow-

band [1] and sparse-field [57] methods. Both approaches limit the computation to a nar-

row region near the isosurface yet store the complete computational domain in memory.

The narrow-band approach implements the initialization and update steps in Figure 2.1

(Steps 1 and 3) by updating the embedding, φ, on a band of 10-20 pixels around the model,

using a signed distance transform implemented with the fast marching method [44]. The

band is reinitialized whenever the model (defined as a particular level set) approaches

the edge. In contrast, the sparse-field method traverses the complete domain only during

8

����� �����
	�����

��������� ������� � ����	

� ��� �
���

��� "! � �#

$%�&'�
(

) �
* �+�#

���,���-� �.�+��� � ���
	

� ��� �
���

/

0

1

Figure 2.1. The three fundamental steps in a sparse-grid solver. Step 1 initializes the
sparse computational domain. Step 2 executes the computational kernel on each element
in the domain. Step 3 updates the domain if necessary. Steps 2 and 3 are repeated for
each solver iteration.

the initialization step of the algorithm in Figure 2.1. The sparse-field approach keeps

a linked list of active data elements. The list is incrementally updated via a distance

transform after each iteration. A similar strategy is described in Peng et al. [36]. Even

with this very narrow band of computation, update rates using conventional processors

on typical resolutions (e.g., 2563 voxels) are not interactive. This is the motivation behind

the GPU-based, streaming narrow-band solver presented in this thesis.

2.3 Scientific Computation on Graphics Processors

Graphics processing units have been developed primarily for the computer gaming

industry, but over the last several years researchers have come to recognize them as a low

cost, high performance computing platform. Two important trends in GPU development,

increased programmability and higher precision arithmetic processing, have helped to

foster new nongaming applications.

For many data-parallel computations, graphics processors outperform central pro-

cessing units (CPUs) by more than an order of magnitude because of their parallel

streaming architecture [35] and dedicated high-speed memory. In the streaming model

of computation, arrays of input data are processed identically by the same computation

kernel to produce output data streams. The GPU takes advantage of the data-level

parallelism inherent in the streaming model by having identical processing units execute

the computation in parallel.

Although streaming architectures such as GPUs share a data-parallel design with

9

Cray-like vector computers [41] and massively parallel SIMD computers such as the

Connection Machine system [16], they have several important differences. In contrast

to vector architectures, which compute a single instruction on many data elements; the

computation kernel in a streaming architecture may consist of many (possibly thousands)

of instructions and use temporary registers to hold intermediate values. In contrast to

Connection-Machine-like computers that contain thousands of small processing elements,

each with their own small memory; GPUs use a relatively small number of processing

elements (e.g., 8) that each have access to global memory as well as a small number of local

registers (e.g., 32). Lastly, in addition to these architectural differences, the ubiquity and

low price of GPUs (e.g., less than $500 U.S. dollars for a GPU in contrast to millions of

dollars for a vector super-computer) means that millions of users and programmers have

access to the platform. This large number of users makes the development of GPU-based

algorithms especially warranted at this time.

Currently GPUs must be programmed via graphics APIs such as OpenGL [43] or

DirectX [33]. Therefore all computations must be cast in terms of computer graphics

primitives such as vertices, textures, texture coordinates, etc. Figure 2.2 depicts the

computation pipeline of a typical GPU. Vertices and texture coordinates are first pro-

cessed by the vertex processor. The rasterizer then interpolates across the primitives

defined by the vertices and generates fragments (i.e., pixels). The fragment processor

applies textures and/or performs computations that determine the final pixel value. A

render pass is a set of data passing completely through this pipeline. It can also be

thought of as the complete processing of a stream by a given kernel.

Grid-based computations are solved by first transferring the initial data into texture

memory. The GPU performs the computation by rendering graphics primitives that

access this texture. In the simplest case, a computation is performed on all elements of

a two-dimensional texture by drawing a quadrilateral that covers the same number of

grid points (pixels) as the texture. Memory addresses that identify each fragment’s data

value as well as the location of its neighbors are given as texture coordinates. A fragment

program (the kernel) then uses these addresses to read data from texture memory, perform

the computation, and write the result back to texture memory. A three-dimensional grid

is processed as a sequence of two-dimensional slices. This computation model has been

used by a number of researchers to map a wide variety of computationally demanding

problems to GPUs. Examples include matrix multiplication, finite element methods, and

10

multi-grid solvers [13, 26, 50]. All of these examples demonstrate a homogeneous sequence

of operations over a densely populated grid structure.

Strzodka et al. [40] were the first to show that the level-set equations could be solved

using a graphics processor. Their solver implements the two-dimensional level-set method

using a time-invariant speed function for flood-fill-like image segmentation, without the

associated curvature. Their solver did not take advantage of the sparse nature of the

level-set PDEs and therefore performs only marginally better than a highly-optimized

sparse-field CPU implementation. The work in this thesis extends their work to three

dimensions, adds in the second-order curvature computation, and significantly optimizes

the solver by implementing a narrow-band solver on the GPU.

This thesis presents a GPU computational model that supports time-dependent, sparse

grid problems. These problems are difficult to solve efficiently with GPUs for two reasons.

The first is that in order to take advantage of the GPU’s parallelism, the streams being

processed must be large, contiguous blocks of data, and thus grid points near the level-set

surface model must be packed into a small number of textures. The second difficulty is

that the level set moves with each time step, and thus the packed representation must

readily adapt to the changing position of the model. This requirement is in contrast to

the recent sparse matrix solvers [4, 25] and previous work on rendering with compressed

data [3, 24]. In the two sparse-matrix solvers[4, 25], a packed texture scheme is used

to efficiently compute sparse matrix-vector multiplications as well as compute values of

Vertex & Texture
Coordinate data

Vertex Program

Rasterize

Fragment

Program

Texture data

Frame/Pixel Buffer

Figure 2.2. The modern graphics processor pipeline.

11

the sparse matrix elements on the GPU. The scheme is static, however, in the sense

that the nonzero matrix elements must be identified before the computation begins.

Recent work by Sherbondy et al. [47] describes an alternative time-dependent, sparse

GPU computation model which is discussed in Chapter 4.3.

CHAPTER 3

STREAMING NARROW-BAND

ALGORITHM

3.1 Introduction

This chapter describes GPU-based streaming algorithms for computing and visualizing

the solution of the three-dimensional level-set partial differential equations. This new

solver is 10 to 15 times faster than a highly-optimized CPU-based sparse-field implemen-

tation.

The first step toward creating a highly optimized GPU-based level-set solver was to

create a brute force solution [30]. The details of this solver are given in Appendix B.

This solver computes the level-set PDE at all voxels in the volume and is a direct

extension of the two-dimensional work of Strzodka et al. [40]. This basic GPU-based,

three-dimensional level-set solver runs one to two times faster than a highly optimized

sparse-field CPU-based solver [52]. While this is not an impressive speedup, it is worth

nothing that the GPU-based solver performs approximately 10 times more calculations

than the optimized CPU-based one. As such, a narrow-band/sparse-field GPU-based

solver should theoretically be able to achieve a 10–20 times speedup.

The proposed streaming, narrow-band level-set solver realizes these speedups by effi-

ciently leveraging the capabilities of modern GPUs. The algorithm packs the active com-

putational domain into two-dimensional texture memory, solves the three-dimensional,

level-set PDE directly on this packed format, and quickly updates the packed data after

each solver iteration.

The design of the streaming narrow-band algorithm takes into account several com-

putational limitations of modern GPUs as well as the goal of interactive performance.

First, the data-parallel computation model requires homogeneous operations on the entire

computational domain. Second, memory constraints require an efficient algorithm to

process and store only the active domain on the computational processor (i.e., the GPU).

Third, GPUs do not support scatter write operations [38], and lastly, the communica-

13

tion bandwidth between the CPU and GPU is insufficient to allow transmission of any

significant portion of the computational domain.

Section 3.2 describes a multidimensional virtual address scheme that efficiently maps

the time-varying three-dimensional data into a two-dimensional texture. Section 3.3 then

explains the details of the GPU-based level-set solver. In addition to explaining how the

multidimensional virtual memory scheme is used in the solver, the section also introduces

a new distance transform computation that can be efficiently performed on the GPU.

The direct volume rendering of the deforming level-set surface is explained in Section 3.4.

3.2 A Virtual Memory Address Scheme
for Sparse Computation

Remapping the computational domain (a subset of a volume) to take advantage of

the GPU’s capabilities has the unfortunate effect of making the computational kernels

extremely complicated—that is difficult to design, debug, and modify. The kernel pro-

grammer must take the physical memory layout into consideration each time the kernel

addresses memory. Other researchers have successfully remapped computational domains

to efficiently leverage the GPU’s capabilities [4, 13, 25, 38], but they invariably describe

these complex kernels in terms of the physical memory layout. This section presents

a solution to this problem that allows kernel programmers to access memory as if it

were stored in the original (computational) domain—irrespective of its physical layout

on the GPU. The solution is an extension to the virtual memory systems used in modern

operating systems.

3.2.1 Traditional Virtual Memory Overview

Nearly all modern operating systems contain a virtual memory system [48]. The

purpose of virtual memory is to give the programmer the illusion that the application

has access to a contiguous memory address space, while allowing the operating system to

allocate memory for each process on demand, in manageable increments, from whatever

physical resources happen to be available. Note that there are two meanings of virtual

memory. The first is the mapping from a logical address space to a physical address

space. The second is the mechanism for mapping logical memory onto a physical memory

hierarchy (e.g., main memory, disk, etc). For this discussion, virtual memory only refers

to the former definition.

Virtual memory works by adding a level of indirection between physical memory and

14

the memory accessed by an application. Most conventional virtual memory systems

divide physical and virtual memory into equally sized pages. The data addressed by an

application’s contiguous virtual address space will often be stored in many, disconnected

physical memory pages. A page table tracks the mapping from virtual to physical memory

pages. When an application requests memory, the system allocates physical memory

pages and updates the page table.

When an application accesses memory via a virtual address, the system must first per-

form a virtual-to-physical address translation. The virtual address, VA, is first converted

to a virtual page number, VPN. The system uses the page table to convert the VPN to

a physical page address, PPA. The PPA is the physical address of the first element in a

page. Finally, the memory system obtains the physical address, PA, by adding the PPA

to the offset, OFF. The OFF is the linear distance between the virtual address and the

beginning of the virtual page which contains it. The address computation is

VPN ← VA
S[P]

PPA ← PageTable(VPN)
OFF ← mod(VA, S[P])
PA ← PPA + OFF,

(3.1)

where S[P] is the size of a memory page.

3.2.2 Multidimensional Virtual Memory for GPUs

The virtual memory system used in the proposed solver is a multidimensional exten-

sion of the traditional virtual memory system described in Section 3.2.1. This section

begins by defining a general multidimensional virtual memory system and then describes

details specific to the GPU implementation.

Traditional virtual memory systems use one-dimensional virtual and physical address

spaces. While it is possible to generalize the algorithms described in Section 3.2.1 to an

N -dimensional virtual address space and an M -dimensional physical address space, the

practicalities of GPUs and the nature of the level-set problem space dictate the values of

N and M . Specifically, GPUs are optimized to process two-dimensional memory regions

(M = 2), while volumetric level-set computations are defined on a three-dimensional

domain (N = 3). The design also make the simplifying assumption that virtual and

physical pages are identical in dimension and size. Thus, the virtual space is not parti-

tioned equally in all axes: two-dimensional pages must be stacked in three-dimensional

to populate the problem domain as seen in Figure 3.1.

15

Virtual Data (�) Virtual Page (�)

Physical Memory (�) Physical Page (�)

Page
Table

Inverse
Page
Table

Virtual Space

Physical Space

 �

�

Figure 3.1. The multidimensional virtual and physical memory spaces used in the paged
virtual address system. The original problem space is V, the virtual address space. The
virtual page space, VP, is a subdivided version of V. Virtual memory pages are mapped
to the physical page space, GP, by the page table. The inverse page table maps physical
pages in GP to virtual pages in VP. The collection of all elements in GP constitute G,
the physical memory of the hardware.

The discussion of the various address spaces involved in the multidimensional virtual

address scheme requires a concise notation. To begin, the space of K-length vectors of

integers is notated as Z
K . The set of all voxels in the three-dimensional problem domain is

the virtual address space, which is defined as V ⊂ Z
3. Each of the virtual memory pages is

a set of contiguous voxels in V; the space of all virtual pages is VP (Figure 3.1). Similarly,

the physical address space, G ⊂ Z
2, is subdivided into pages to form the physical page

space, GP. The elements within a virtual or physical page are addressed identically using

elements of P ⊂ Z
2. In addition, a size operator is defined for the two-dimensional and

three-dimensional spaces described above. For X in {V, VP, G, GP}, S[X] is a two-vector

or three-vector (according to the dimension of X) giving the number of elements along

each axis of the space X. Note that S[VP] = S[V]/S[P] and S[GP] = S[G]/S[P] (using

component-wise division). The level-set solver system uses pages of size S[P] = (16, 16).

This size represents a good compromise between a tight fit to the narrow computational

domain and the overhead of managing and computing pages. Empirical results validate

this choice.

16

Virtual-to-physical address translation in an N -dimensional virtual memory system

works analogously to the one-dimensional algorithm. Virtual addresses are now three-

dimensional position vectors in V and physical addresses are two-dimensional vectors in G.

The page table is a three-dimensional table that returns two-dimensional physical page

addresses. With these multidimensional definitions in mind, Equation 3.1 still applies

to the vector-valued quantities. Figure 3.2 shows an example multidimensional address

translation.

For the level-set solver in this thesis, the multidimensional virtual memory system

is implemented in part by the CPU and in part by the GPU. The CPU manages the

page table, handles memory allocation/deallocation requests, and translates VPNs to

PPAs. The GPU issues memory allocation/deallocation requests and computes physical

addresses. The design further divides the GPU tasks between the various processors on

the GPU. The fragment processor creates memory allocation/deallocation requests. The

address translation implementation uses the vertex processor and rasterizer to compute

all PAs. Sections 3.2.3 and 3.2.4 describe the architectural and efficiency reasons for

assigning the various virtual memory tasks to specific processors.

��� � ��������� �� � �

Virtual memory space Physical memory space

Page Table

� �
	
�����

�

Figure 3.2. The virtual-to-physical address translation scheme in the multidimensional
virtual memory system. A three-dimensional virtual address, VA, is first translated to a
virtual page number, VPN. A page table translates the VPN to a physical page address,
PPA. The PPA specifies the origin of the physical page containing the physical address,
PA. The offset is then computed based from the virtual address and used to obtain the
final two-dimensional physical address, PA.

17

3.2.3 Virtual-to-Physical Address Translation

This section explains the details of the virtual-to-physical address scheme used in the

GPU-based virtual address system. Because the translation algorithm is executed each

time the kernel accesses memory, its optimization is fundamental to the success of the

method.

The simplest and most general way to implement the virtual-to-physical address trans-

lation for a GPU-based virtual memory system is to directly implement the computation

in Equation 3.1 and store the page table on the GPU as a three-dimensional texture. A

significant benefit of this approach is that it is completely general. Unfortunately, with-

out dedicated memory-management hardware to accelerate the translation, this scheme

suffers from several efficiency problems. First, the page table lookup means that a

dependent texture read is required for each memory access. A dependent texture is

defined as using the result of one texture lookup to index into another. This may cause

a significant loss in performance on current GPUs. Second, storing the page table on the

GPU consumes limited texture memory. The third problem is that a divide, modulus,

and addition operation are required for each memory access. This consumes costly and

limited fragment program instructions. Note that Section 3.2.4 discusses other problems

with storing the page table on the GPU related to the limited capabilities of current GPU

architectures.

The solver avoids the memory and computational inefficiencies that arise from storing

the page table on the GPU by examining the pattern of virtual addresses required by the

application’s fragment program. In the case of the level-set solver, the fragment programs

use virtual addresses within only a 3 × 3 × 3 neighborhood of each active data element.

This means that each active memory page will access only adjacent virtual memory pages

(Figure 3.3). Moreover, the remainder of this section shows that this simplified translation

case makes it possible to lift the entire address translation from the fragment processor

to the vertex processor and rasterizer. The decision to reconstruct virtual neighborhoods

on-the-fly rather than duplicate data lying on page boundaries is an important aspect of

the system. The design choice was made to meet our original goals of minimizing memory

usage, minimizing memory traffic, and maintaining square 16× 16 memory pages.

Once the solver resolves the virtual addresses used by a fragment program, it can

determine which virtual pages each active page will access. With this relative page

information, the GPU can perform the virtual-to-physical address translation without

18

Interior

Edge

Corner

Interior

Edge Corner

�

��� ���

��� ���

�

A B

C D

Figure 3.3. The substream boundary cases used to statically resolve the conditionals
arising from 3 × 3 × 3 neighbor accesses across memory page boundaries. The nine
substream cases are: interior, four edges, and four corners (a). The interior case accesses
its neighbors from only three memory pages (b). The edge cases require six pages (c), and
the corner cases require 12 memory pages (d). Note that for reasonably large page sizes,
the more cache-friendly interior case has by far the highest number of data elements.

a page table in texture memory. The CPU makes this possible by sending the PPAs for

all required pages to the GPU as texture coordinates. The GPU can then use the relative

neighbor offset vectors to decide which adjacent page contains the requested value (see

Figure 3.3(a)).

The GPU’s task of deciding which adjacent page contains a specific neighbor value

unfortunately requires a significant amount of conditional logic. This logic must classify

each data element into one of nine boundary cases: one of the four corners, one of the four

edges, or an interior element (see Figure 3.3). Unfortunately current fragment processors

do not support conditional execution. This logic could alternatively be encoded into a

texture; however, this would again force the use of an expensive dependent texture read.

19

Just as statically resolving virtual addresses allowed the solver to optimize the GPU

computation, all active data elements can be preclassified into the nine boundary cases.

The result is that all memory addresses used in each case will lie on the same pages

relative to each active page (see Figure 3.3). In other words, the memory-page-locating

logic has been statically resolved by preclassifying data elements into their respective

boundary cases. The data elements for these substream cases are generated by drawing

unique geometry for each case. The corner substream cases are represented as points, the

edges as lines, and the interior regions as quadrilaterals.

Kapasi et al. [18] describe an efficient solution to conditional execution in streaming

architectures. Their solution is to route stream elements to different processing elements

based on the code branch. Substreams are merely a static implementation of this data

routing solution to conditional execution. The advantage is that the computation kernel

run on each substream contains no conditional logic and is optimized specifically for that

case. The solution additionally gains from optimized cache behavior for the most common,

interior, case (77% of the data points in a 16×16 page). The interior data elements require

only three memory pages to access all neighbors (Figure 3.3(b)). In comparison, reading

all neighbors for an edge element requires loading six pages (Figure 3.3(c)). The corner

cases require 12 pages from disparate regions of physical memory(Figure 3.3(d)). The

corner cases account for less than 2% of the active data elements.

With the use of substreams, the GPU can additionally optimize the address computa-

tion by computing physical addresses with the vertex processor rather than the fragment

processor. Because all data elements (i.e., fragments) use exactly the same relative mem-

ory addresses, the offset and physical address computation steps of Equation 3.1 can be

generated by interpolating between substream vertex locations. The vertex processor and

rasterizer can thus perform the entire address translation. This optimization distributes

computational load to underutilized processing units and reduces the number of limited

and expensive fragment instructions.

The algorithm described above is a highly optimized address translation scheme for

evaluating neighborhoods of 3 × 3 × 3. Many applications, however, require the use of

larger neighborhoods. The substream and vertex processor optimizations described above

will, to a limited extent, generalize to neighborhoods larger than 3 × 3 × 3. To process

larger neighborhoods, a separate set of substreams would need to be generated for each

layer of grid points adjacent to memory page boundaries. Theoretically, neighborhoods

20

as large as one half of the page size could be processed with the technique, although there

may be a neighborhood size beyond which the cost of splitting the computation into many

small substreams outweighs the benefits. A more general technique, such as performing

the full address computation in the fragment stage (as described at the beginning of this

section), may be more advantageous for processing large neighborhoods.

3.2.4 Bootstrapping the Virtual Memory System

This section describes the steps required to initialize the GPU virtual memory system.

To begin, the application specifies the page size, S[P], the virtual page space size, S[VP],

and the fundamental data type to use (i.e., 32-bit floating point, 16-bit fixed point, etc.).

The virtual memory system then allocates an initial physical memory buffer on the GPU.

It also creates a page table, an inverse page table, a geometry engine, and a stack of

free pages on the CPU. The decision to place the aforementioned data structures on

the CPU is based on the efficiency concerns described in Section 3.2.3 as well as GPU

architectural restrictions. These restrictions include: the GPU’s lack of random write

access to memory, lack of writable three-dimensional textures, lack of dynamically sized

output buffers, and limited GPU memory.

The page table is defined to store a MemoryPage object that contains the vertices and

texture coordinates required by the GPU to access the physical memory page. The inverse

page table is designed to store a VPN vector for each active physical page. Figure 3.2

shows these mappings. Note that the page table and inverse page table were referred to

as the unpacked map and packed map respectively in Lefohn et al. [29].

The vertices and texture coordinates stored in the MemoryPage object are actually

pointers into the geometry engine. The geometry engine has the capability of quickly

rendering (i.e., processing) any portion of the physical memory domain. Thus the ge-

ometry engine must generate the substreams for the set of active physical pages. The

last initialization step is the creation of the free-page stack. The virtual memory system

simply pushes all physical pages (i.e., pointers to MemoryPage objects) defined by the

geometry engine onto a stack.

The application issues GPU physical memory allocation and deallocation requests to

the virtual memory system. Upon receiving a virtual page request, the system pops a

physical page from the free-page stack, updates the page tables, and returns a MemoryPage

pointer to the application. The reverse process occurs when the application deallocates

a virtual memory page.

21

The level-set solver generates memory page allocation and deallocation requests after

each solver iteration based on the form of the current solution. Section 3.3.5 describes

how the solver uses the GPU to efficiently create these memory requests.

3.3 Streaming Narrow-Band GPU Level-Set Solver

This section explains how the GPU level-set solver implementation uses the virtual

memory system described in Section 3.2 to create an efficient streaming narrow-band

solver. The full details of the level-set equations are not given here, but are instead found

in Appendix A.

3.3.1 Initialization of Computational Domain

The solver begins by initializing the sparse computational domain (Step 1 in Fig-

ure 2.1). An initial level-set volume is passed to the level-set solver by the level-set

application. The sparse domain initialization involves identifying active memory pages in

the input volume, allocating GPU memory for each active page, then sending the initial

data to the GPU (Figure 3.4).

The solver identifies active virtual pages by checking each data element for a nonzero

derivative value in any of the six cardinal directions. If any element in a page contains

nonzero derivatives, the entire page is activated. The initialization code then requests a

���������
	���������

� ����� 	���� ������� 	�� ������� ��!����"���

#$� %&�'���(*)+��)+,-%/.0�������� 1�2 .
��� ���(3)+��)+,�%&.4��������56

Figure 3.4. The level-set solver’s use of the paged virtual memory system. All active
pages (i.e., those that contain nonzero derivatives) in the virtual page space (a) are
mapped to unique pages of physical memory (b). The inactive virtual pages are mapped
to the static inside or outside physical page. Note that the only data stored on the GPU
is that represented by (b).

22

GPU memory page from the virtual memory system for each active page. The level-set

data is then drawn into GPU memory using the vertex locations in each MemoryPage

object.

This scheme is effective only because the input level-set volume is assumed to be a

clamped distance transform—meaning that regions on or near the isosurface have nonzero

gradients while regions outside or inside the surface have gradients of zero (see Figure 3.5).

The outside voxels have a value of zero (black) and the inside ones have a value of one

(white). The algorithm described in Section 3.3.2 describes how the clamped distance

transform is maintained during the level-set computation.

The inactive virtual pages do not need to be represented in physical memory. If an

active data element queries an inactive value, however, an appropriate value needs to be

returned. Because all inactive regions are either uniformly black or white, the system

handles this boundary condition problem by defining a special, inactive page state. A

virtual page in this state is mapped to one of two static physical pages. One of these static

pages is black, representing regions outside of the level-set surface. The other static page

is white and represents regions inside the level-set surface. The page table contains these

many-to-one mappings, but the inverse page table does not store a valid entry for the

static pages. Note that this boundary problem could have alternatively been solved using

single pixels instead of entire pages; however, this lack of uniformity in memory page

sizes would have complicated the page table representations. Alternatively, the problem

Outside

Inside

φ

Distance from Isosurface

Active

0

Figure 3.5. The level-set embedding, φ, is a clamped distance transform, i.e., |∇φ| is
nonzero near the surface model and zero elsewhere.

23

could have been solved by creating substreams for the active elements on the boundary

of the active set; however, this would have unnecessarily added a number of additional

substream render passes to the computation.

3.3.2 The Distance Transform Computation on the GPU

The GPU-based level-set solver borrows ideas from both the narrow-band and sparse-

field algorithms, but implements a new solution that conforms to the architectural re-

strictions of GPUs. Both of these previous, CPU-based, methods maintain a distance-

transform embedding (i.e., manage level-set density) by a series of heterogeneous opera-

tions that are not particularly efficient on the GPU. In order to solve this problem, the

streaming level-set method maintains a distance-transform embedding by introducing an

additional speed term Gr into the level-set PDE Equation 2.3. This additional speed term

pushes the level sets of φ, either closer together or farther apart, so that they resemble

an appropriately scaled clamped distance transform (CDT). The CDT has a constant

level-set density within a predefined band and ensures that voxels near the isosurface

have finite derivatives while those farther away have gradient magnitudes of zero. As

described in the proceeding section, the identification of zero-derivative regions is critical

for an efficient solver implementation. This rescaling speed term, Gr, is computed as

Gr = φgφ − φ|∇φ|, (3.2)

where gφ is the target gradient magnitude within the computational domain. This target

parameter is set based on the numerical precision of the level-set data. By setting gφ

sufficiently high, numerical errors caused by underflow can easily be avoided. It is

important to note that Gr is strictly a numerical construct; it does not affect the movement

of the zero level set, i.e., the surface model. This embedding-rescaling computation is

similar to the technique discussed in Fedkiw et al. [12].

In conclusion, Equation 3.2 has the following three properties. First Gr is proportional

to φ (i.e., Gr approaches zero as φ approaches zero), and therefore adding Gr to the speed

terms in the level-set computation will not move the level-set surface (assuming k = 0).

Second, because the up-wind scheme [34] maintains monotonicity in the embedding, no

new extrema will be created. As such, the clamping properties of the original embedding

will be maintained. Lastly the fixed point of Gr is the distance transform scaled by gφ.

24

3.3.3 Level-Set Computation

The GPU next computes the level-set computation (Step 2 of the sparse algorithm,

Figure 2.1). The details of the level-set discretization used by the level-set solver are

given in Appendix A. This section gives a high-level overview of the computation. The

level-set update proceeds in the following steps:

A Compute 1st and 2nd partial derivatives.

B Compute N level-set speed terms.

C Update level-set PDE.

The derivative passes in Step A above use the substream-based, virtual-to-physical ad-

dress scheme described in Section 3.2.3. The derivatives are computed in nine substream

passes, each of which outputs to the same four buffers. The speed function computations

in Step B are application-dependent. Example speed terms include the curvature compu-

tation described in Equation 2.4, the rescaling term described in Equation 3.2, and the

data-dependent term described in Equation 4.1. There will be zero or more render passes

for each speed function. The level-set update (Step C) is simply the up-wind scheme

described in Appendix A, which is computed in a single pass. Note that additional GPU

memory must be allocated to store the intermediate results accumulated in Steps A and

B before they are consumed in Step C. The solver also performs register allocation of

temporary buffers to minimize GPU memory usage.

3.3.4 GPU Implementation Details

The level-set solver and volume renderer are implemented in programmable graphics

hardware using vertex and fragment programs on the ATI Radeon 9800 GPU. The

programs are written in the OpenGL ARB vertex program and ARB fragment program

assembly languages.

Several details related to render pass output buffers are critical to the performance of

the level-set solver. First is the ability to output multiple, high-precision 4-tuple results

from a fragment program. Writing 16 scalar outputs from a single render pass enables the

solver to perform the expensive three-dimensional neighborhood reconstruction only once

and use the gathered data to compute the derivatives in a single pass. Second, the solver

avoids the expensive change between render targets [23] (i.e., pixel buffers) by allocating

a single pixel buffer with many render surfaces (front, back, aux0, etc.) and using each

surface as a separate output buffer.

25

Lastly, there is a subtle speed-versus-memory trade-off that must be carefully consid-

ered. Because the physical-memory texture can be as large as 20482, storing intermediate

results (e.g., derivatives, speed values, etc.) during the computation can require a large

amount of GPU memory. This memory requirement can be minimized by performing the

level-set computation in subregions. The intermediate buffers must then be only the size

of the subregion. This partitioning does reduce computational efficiency; however, and

so the subregions are made as large as possible. The solver currently use 5122 subregions

when the level-set texture is 20482 and use a single region when it is smaller.

3.3.5 Update of Computational Domain

After each level-set update, the solver determines which virtual pages need to be

added-to or removed-from the active domain. The solver accomplishes this by aggregating

gradient information from all elements in each active page. The GPU must compute this

information because the level-set solution exists only in physical memory. The active set

must be updated by the CPU, however, because the page table and geometry engine exist

in CPU main memory. In addition, the amount of information passed from the GPU to

the CPU must be kept to a minimum because of the limited bandwidth between the

two processors. This section gives an overview of an algorithm that works within these

constraints. Appendix B explains the full details of the algorithm.

The GPU creates a memory allocation/deallocation request by producing a small

image (of size S[GP]) with a single-byte pixel per physical page. The value of each pixel

is a bit code that encapsulates the activation or deactivation state of each page and its six

adjacent neighbors (in VP). The CPU reads this small (< 64kB) message, decodes it, and

submits the allocation/deallocation requests to the virtual memory system (Figure 3.6).

The GPU creates the bit-code image by first computing two, four-component neighbor

information buffers of size S[G] (Step A of Figure 3.6). This computation uses the

previously-computed, one-sided derivatives of φ to identify the required active pages. A

page must be activated if it contains elements with nonzero gradient magnitudes. The

automatic mipmapping GPU feature is used to down-sample the resulting buffers (i.e.,

aggregate data samples) to the page-space image (Step B in Figure 3.6). The final GPU

operation combines the active page information into the bit code (Step C in Figure 3.6). A

fragment program performs this step by emulating a bit-wise OR operation via conditional

addition of powers of two. Finally, in step D of Figure 3.6, the CPU reads this message

26

��������	�
������������ ��������� �	� �	� � � ��� ��������� �	� �	��� ���� �	��!

"#�	$��
��%$ � � �&� �'� ���� �&��!
� � ��� �)(*� � +��&
�� ���,� %� � ��!-/.10

2 3

-
4

5�687

95�6:7

Figure 3.6. The GPU’s creation of a memory allocation/deallocation request. Step A
uses solver-specific data to create two buffers containing the active state of each data
element and its adjacent neighbors. Step B uses automatic mipmapping to reduce the
buffers from size S[G] to the physical page space size, S[GP]. Step C combines the
information from the two down-sampled state buffers into an eight-bit code for each
pixel. This code encapsulates whether or not each active virtual memory page and its
adjacent neighbors should be enabled. In step D, the CPU reads the bit-code buffer,
decodes it, and allocates/deallocates pages as requested.

from the GPU.

Note that the use of automatic mipmapping places some restrictions on the maximum

tile size due to quantization rounding errors that arise when down-sampling 8-bit values.

This limitation can be relaxed by using a 16-bit fixed-point data type. Alternatively,

floating-point values can be used if the down-sampling is performed with fragment pro-

gram passes instead of automatic mipmapping.

3.4 Volume Rendering of Packed Data

The direct visualization of the level set evolution is important for a variety of level-set

applications. For instance, in the context of segmentation, direct visualization allows

a user to immediately assess the quality and accuracy of the pending segmentation

and steer the evolution toward the desired result. Volume rendering [10, 31, 42] is a

natural choice for visualizing the level-set surface model, because it does not require an

intermediate geometric extraction, which might limit interactivity. If one were to use

27

marching cubes, for instance, a distinct triangle mesh would need to be created (and

rendered) for each iteration of the level-set solver. The implemented solver, therefore,

includes a volume renderer, which produces a full three-dimensional (transfer-function

based) volume rendering of the evolving level set on the GPU [22].

For rendering the evolving level-set model, the new renderer use a variant of tradi-

tional two-dimensional texture based volume rendering [6]. The renderer modifies the

conventional approach to render the level-set solution directly from the packed physical

memory layout, which is physically stored in a single two-dimensional texture. Because

the level-set data and physical page configurations are dynamic, it would be inefficient

to precompute and store the three separate versions of the data, sliced along cardinal

views, as is typically done with two-dimensional texture approaches. Instead the renderer

reconstructs these views each time the volume is rendered. Note that this new technique

also enables volume rendering from a dataset stored in a single set of two-dimensional

slices.

The volume rendering algorithm utilizes a two pass approach for reconstruction and

rendering. Figure 3.7 illustrates the steps involved. An additional off-screen buffer

caches two reconstructed neighboring slices containing the level set solution and its

gradient (Figure 3.7 A). During the rendering phase arbitrary slices along the preferred

slice direction are interpolated from these neighboring slices (Figure 3.7 B). Once all

interpolated slices between slice i and i − 1 are rendered and composited, the next slice

(i + 1) is reconstructed. This newly reconstructed slice replaces the cached slice, i − 1.

The GPU then renders and composites the interpolated slices (i.e., those between slice

i+1 and i). This pattern continues until all slices have been reconstructed and rendered.

When the preferred slice axis, based on the viewing angle, is orthogonal to the virtual

memory page layout, the renderer reconstructs two-dimensional slices of the level set

solution and its gradient using a textured quadrilateral for each page, as shown in

Figure 3.8 A. On the other hand, if the preferred slice direction is parallel to the virtual

page layout, the algorithm renders a row or column from each page using textured line

primitives, as in Figure 3.8 B. In both cases, slices are reconstructed into a pixel buffer

which is bound as a texture in the rendering pass. These slices are reconstructed at the

same resolution as level set solution. For efficiency, the renderer reuses data wherever

possible. For instance, lighting for the level-set surface, evaluated in the rendering phase,

uses gradient vectors computed during the level-set update stage.

28

Level Set DataA
B

Transfer Function
& LightingReconstructed

slices (Φ, Φ)
∆

Color
& opacity�

�����

Slice
direction

Figure 3.7. Two pass rendering of packed volume data. In step A, a two-dimensional
slice (i) is reconstructed from the physical page (packed) layout, GP. In step B, one or
more intermediate slices between i and i − 1 are interpolated, transformed into optical
properties (via the transfer function), lit, and rendered for the current view. The next
iteration begins by reconstructing slice i + 1, replacing i− 1, and so on.

A

B
Pixel Buffers

Level Set Data

Figure 3.8. Reconstruction of a slice for volume rendering the packed level-set model:
(a) When the preferred slicing direction is orthogonal to the virtual memory page layout,
the pages (shown in alternating colors) are draw into a pixel buffer as quadrilaterals. (b)
For slicing directions parallel to the virtual page layout, the pages are drawn onto a pixel
buffer as either vertical or horizontal lines.

29

In the rendering phase, the algorithm leverages the hardware’s bilinear filtering for

in-plane interpolation of the reconstructed level set slice. Trilinear interpolation of an

arbitrary slice between two adjacent reconstructed slices is accomplished by combining

them, i.e. performing linear interpolation along the preferred slice direction, in the

fragment program. This same fragment program also evaluates the transfer function

and lighting for the interpolated data.

CHAPTER 4

SEGMENTATION APPLICATION

4.1 Introduction

Segmentation is an important part of volume visualization and analysis. In the

IEEE Visualization 2002 panel entitled “Volume Rendering in Medical Applications”, Bill

Lorensen of General Electric Research and Development made an important observation

about volume rendering: “Its time to move beyond pretty pictures and move more toward

image analysis.” With the rising importance of quantitative volume analysis, will come

an increased role for tools that utilize visualization to achieve better quantitative results.

This chapter describes such a tool; an interactive volume segmentation and visu-

alization application that uses the GPU-based level-set solver and volume rendering

techniques described in Chapter 3. Section 4.2 describes the details of the application,

while Section 4.3 presents a performance analysis of the system. Section 4.4 presents a

user study uses that evaluates the effectiveness of the interactive segmentation tool for

medical segmentation.

4.2 Volume Segmentation and Visualization
Application

4.2.1 Level-Set Formulation for Segmentation

For segmenting volume data with level sets, the speed usually consists of a combination

of two terms [32, 56]

∂φ

∂t
= |∇φ|

[

αD(x̄) + (1− α)∇ ·
∇φ

|∇φ|

]

, (4.1)

where D is a data term that forces the model to expand or contract toward desirable

features in the input data (which is also called the source data), the term ∇ · (∇φ/|∇φ|)

is the mean curvature H of the surface, which forces the surface to have less area (and

remain smooth), and α ∈ [0, 1] is a free parameter that controls the degree of smoothness

in the solution.

31

This combination of a data-fitting speed function with the curvature term is critical

to the application of level sets to volume segmentation. Most level-set data terms D from

the segmentation literature are equivalent to well-known algorithms such as isosurfaces,

flood fill, or edge detection when used without the smoothing term (i.e., α = 1). The

smoothing term alleviates the effects of noise and small imperfections in the data, and

can prevent the model from leaking into unwanted areas (Figure 4.1). In the context of

volume analysis, the level-set surface models provide several capabilities that complement

volume rendering: local, user-defined control; smooth surface normals for better rendering

of noisy data; and a closed surface model, which can be used in subsequent processing or

for quantitative shape analysis.

For the work in this thesis the segmentation application uses a simple speed function

to demonstrate the effectiveness of interactivity and real-time visualization in level-set

solvers. The speed function created for this work depends solely on the greyscale value

input data I at the point x̄:

D(I) = ε− |I − T |, (4.2)

where T controls the brightness of the region to be segmented and ε controls the range of

greyscale values around T that could be considered inside the object. In this way a model

situated on voxels with greyscale values in the interval T ± ε will expand to enclose that

voxel, whereas a model situated on greyscale values outside that interval will contract to

exclude that voxel. The speed term is gradual, as shown in Figure 4.2, and thus the effects

of the D diminish as the model approaches the boundaries of regions with greyscale levels

within the T ±ε range, and the effects of the curvature term will be relatively larger. This

(a) (b) (c)

Figure 4.1. The use of a curvature constraint (speed function) in the level-set
computation to prevent segmentation “leaking.” This example shows one slice of a
three-dimensional MRI segmentation computation: (a) The spherical initialization. (b) A
model expands to fill the tumor but leaks through gaps and expands into other anatomy.
(c) The same scenario with a degree of curvature prevents unwanted leaking. The level
set isosurface is shown in white.

32

D(I)

Model
Expands

T

D = 0

T-ε T+ε

I

Model
Contracts

Model
Contracts

Figure 4.2. A speed function based on image intensity causes the model to expand over
regions with greyscale values within the specified range and contract otherwise.

choice of D corresponds to a simple, one-dimensional statistical classifier on the volume

intensity [28].

To control the model a user specifies three free parameters, T , ε, and α, as well as an

initialization. The user generally draws a spherical initialization inside the region to be

segmented. Note that the user can alternatively initialize the solver with a preprocessed

(thresholded, flood filled, etc.) version of the source data.

4.2.2 Interface and Usage

The application in this thesis consists of a graphical user interface (GUI) that presents

the user with two slice viewing windows, a volume renderer, and a control panel (Fig-

ures 4.3 and 4.4). Many of the controls are duplicated throughout the windows to allow

the user to interact with the data and solver through these various views. Two and

three-dimensional representations of the level-set surface are displayed in real time as it

evolves.

The first two-dimensional window displays the current segmentation as a yellow line

overlaid on top of the source data. The second two-dimensional window displays a

visualization of the level-set speed function that clearly delineates the positive (blue) and

negative (black) regions. The first window can be probed with the mouse to accomplish

three tasks: set the level set speed function, set the volume rendering transfer function,

and draw three-dimensional spherical initializations for the level-set solver. The first two

33

Figure 4.3. A depiction of the user interface for the volume analysis application. Users
interact via slice views, a three-dimensional rendering, and a control panel.

Figure 4.4. The actual user interface for the volume analysis application. The top left
window shows the visualization of the speed function. The top right window shows a
slice of the MRI source data with the current level-set solution in yellow. The lower-left
window shows a volume rendering of the MRI source data (blue), the same data projected
onto a clipping plane (grey), the current level-set surface (brown), and the intersection
of the current level-set solution with the clipping plane (yellow).

34

are accomplished by accumulating an average and variance for values probed with the

cursor. In the case of the speed function, the T is set to the average and ε is set to

the standard deviation. Users can modify these values, via the GUI, while the level set

deforms. The spherical drawing tool is used to initialize and/or edit the level-set surface.

The user can place either white (model on) or black (model off) spheres into the system.

The volume renderer displays a three-dimensional reconstruction of the current level-

set isosurface (see Chapter 3.4) as well as the input data. In addition, an arbitrary clipping

plane, with texture-mapped source data, can be enabled via the GUI (Figure 4.4). Just

as in the slice viewer, the speed function, transfer function, and level-set initialization

can be set through probing on this clipping plane. The crossing of the level-set isosurface

with the clipping plane is also shown in bright yellow.

The volume renderer uses a two-dimensional transfer function to render the level set

surface and a three-dimensional transfer function to render the source data. The level-set

transfer function axes are intensity and distance from the clipping plane (if enabled). The

transfer function for rendering the original data is based on the source data value, gradient

magnitude, and the level-set data value. The latter is included so that the level set model

can function as a region-of-interest specifier. All of the transfer functions are evaluated

on-the-fly in fragment programs rather than in lookup tables. This approach permits

the use of arbitrarily high-dimensional transfer functions, allows run-time flexibility, and

reduces memory requirements [23]. The GUI has additional controls for starting/stopping

the solver, enabling a region-of-interest volume rendering mode, setting opacity of the

volume and clipping plane, and saving the three-dimensional segmentation to file.

The interactive level-set solver and volume rendering system is demonstrated with the

following three data sets: a brain tumor MRI (Figure 4.5, 4.6), an MRI scan of a mouse

(Figure 4.7), and transmission electron tomography data of a gap junction (Figure 4.8).

In all of these examples a user interactively controls the level-set surface evolution and

volume rendering via the multiview interface. The initializations for the tumor and

mouse were drawn via the user interface while the gap junction solution was seeded with

a thresholded version of the source data.

35

Figure 4.5. Interactive level-set segmentation of a brain tumor from a 256× 256× 198
MRI with volume rendering to give context to the segmented surface. A clipping plane
(bottom) shows the user the source data, the volume rendering, and the segmentation
simultaneously. The segmentation and volume rendering parameters are set by the user
probing data values on the clipping plane.

36

Figure 4.6. Interactive level-set segmentation of the cerebral cortex from a 256×256×198
MRI with volume rendering to give context to the segmented surface. The MRI data is
also projected onto a clipping plane, on which the user can probe to control the level-set
parameters.

37

Figure 4.7. The top image shows a volume rendering of a 2563 MRI scan of a
mouse thorax. Note the level set surface which is deformed to segment the liver. The
bottom image shows a volume rendering of the vasculature inside the liver. Both images
are rendered using the same transfer function with the level-set surface serving as a
region-of-interest specifier.

38

Figure 4.8. Segmentation and volume rendering of 512 × 512 × 61 three-dimensional
transmission electron tomography data. The picture shows cytoskeletal membrane
extensions and connexins (pink surfaces extracted with the level-set models) near the
gap junction between two cells (volume rendered in cyan).

39

4.3 Performance Analysis

The GPU-based level-set solver achieves a speedup of 10–15 times over a highly-

optimized, sparse-field, CPU-based implementation [52]. The user study presented in

Section 4.4 demonstrates that the new solver runs interactive rates for the tumor seg-

mentations performed in the study. Interactivity is defined here as being fast enough

that the segmentation times are almost entirely based on user time rather than solver

time. Alternatively, users generally regard a solver running at rates greater than steps

per second as interactive.

All benchmarks were run on an Intel Xeon 1.7 GHz processor with 1 GB of RAM

and an ATI Radeon 9800 Pro GPU. All timings include the complete computation, i.e.,

both the virtual memory system update and the level-set computation are included. For

a 256 × 256 × 175 volume, the level-set solver runs at rates varying from 70 steps per

second for the tumor segmentation to 3.5 steps per second for the final stages of the cortex

segmentation (Figure 4.5). In contrast, the CPU-based, sparse field implementation ran

at 7 steps per second for the tumor and 0.25 steps per second for the cortex segmentation.

The speed of the solver is approximately 80% dependent on the core clock rate of the

GPU, 15% dependent on the GPU’s memory speed and only 5% dependent on the speed

of the AGP bus. These dependency measures were obtained by measuring the solver’s

computation rate while changing the GPU’s core and memory clock speeds [51] and by

changing the speed of the AGP bus. These and other profiling techniques are described

by NVIDIA [9]. Note that the 80% dependence on core clock speed and 15% dependence

on memory speed indicate that the speed of the solver will continue to improve as GPUs

increase in speed and/or add additional computational elements.

The speed of the solver is bound almost entirely by the fragment stage of the GPU.

In addition, the speed of the solver scales linearly with the number of active voxels in

the computation. Creation of the bit vector message consumes approximately 15% of the

GPU arithmetic and texture instructions, but for most applications the speedup over a

dense GPU-based implementation far eclipses this additional overhead.

The amount of texture memory required for the level-set computation is proportional

to the surface area of the level-set surface—i.e., the number of active pages. Tests have

shown that for many applications, only 10%-30% of the volume is active. To take full

advantage of this savings, the total size of physical memory, S[G], must increase when the

number of allocated pages grows beyond the capacity of the currently allocated physical

40

memory. The current implementation performs only static allocation of the maximum

physical memory space, but future versions could easily realize the above memory savings.

Chapter 5 discusses changes to GPU display drivers that will facilitate the implementation

of this feature.

In comparison to the depth-culling-based sparse volume computation presented by

Sherbondy et al. [47], the packing scheme presented herein guarantees that very few

wasted fragments are generated by the rasterization stage. This is especially important for

sparse computations on large volumes—where the rasterization and culling of unused frag-

ments could consume a significant portion of the execution time. In addition, the packing

strategy can process the entire active data set simultaneously, rather than slice-by-slice.

This improves the computationally efficiency by taking advantage of the GPU’s deep

pipelines and parallel execution. The packing algorithm should also be able to process

larger volumes, due to the memory savings discussed above. The packing algorithm,

however, does incur overhead associated with maintaining the packed tiles, and more

experimentation is necessary to understand the circumstances under which each approach

is advantageous. Furthermore, they are not mutually exclusive, and Chapter 5 discusses

the possibility of using depth culling in combination with the packed representation.

4.4 Tumor Segmentation User Study

4.4.1 Introduction

This section presents a evaluation study of the GPU-based level-set segmentation

application [7, 27]. More than simply evaluating the GPU-based tool with respect to CPU-

based applications, the study shows that the combination of interactivity, visualization,

and level-set computation creates a tool that is more general and faster than previously

existing options.

The purpose of the user study was to determine if the new level-set solver system can

produce volumetric delineations of brain tumor boundaries comparable to those done by

experts (e.g., radiologists or neurosurgeons) using traditional hand-contouring. The GPU-

based segmentation application is applied to the problem of brain tumor segmentation

using data from the Brain Tumor Segmentation Database, which is made available by

the Harvard Medical School at the Brigham and Women’s Hospital (HBW) [19, 54]. The

HBW database consists of 10 three-dimensional 1.5T MRI brain tumor patient datasets

selected by a neurosurgeon as a representative sampling of a larger clinical database. For

41

each of the 10 cases, there are also four independent expert hand segmentations of one

randomly selected two-dimensional slice in the region of the tumor.

The user study consists of nine tumor cases: three meningioma (cases 1-3) and six low

grade glioma (4-6, 8-10). One case, number 7, was omitted because a quick inspection

showed it that its intensity structure was too complicated to be segmented by the proposed

tool—such a problem remains as future work. The data used in the study was not

preprocessed, and there are no hidden segmentation parameters—all system parameters

were set by the users in real time, as they interacted with the data and the models.

Five users were selected from among University of Utah staff and students and trained

briefly to use the software. Each user was asked to delineate the full, three-dimensional

boundaries of the tumor in each of the nine selected cases. The users were given no

time limit and their time to complete each tumor segmentation was recorded. None of

the participating users were experts in reading radiological data. The goal of the study

was not to test for tumor recognition (tissue classification), but rather to test whether

parameters could be selected for the segmentation algorithm to produce a segmentation

which mimics those done by the experts. To control for tumor recognition, we allowed

each user to refer to a single slice from an expert segmentation. Users were told to treat

this hand segmentation slice as a guide for understanding the difference between tumor

and nontumor tissue. The underlying assumption is that an expert would not need such

an example.

4.4.2 Methodology

The study considers three factors in evaluating the new segmentation tool [53]: validity

of the results (accuracy), reproducibility of the results (precision), and efficiency of the

method (time). To quantify accuracy a ground truth is established from the expert seg-

mented slices using the STAPLE method [55]. This method is essentially a sophisticated

averaging scheme that accounts for systematic biases in the behavior of experts in order

to generate a fuzzy ground truth (W) for each case. The ground truth segmentation

values for each case are represented as an image of values between zero and one that

indicates the probability of each pixel being in the tumor. The STAPLE method also

gives sensitivity and specificity parameters (p and q respectively) for each expert and

each case. Sensitivity is the fraction of pixels correctly classified as lying inside the object

boundary, and specificity is the fraction of pixels correctly classified as lying outside the

42

object boundary. Each subject generates a binary segmentation which, compared against

the ground truth, gives values to obtain p and q for that subject. A third metric is also

considered for the analysis, total correct fraction which is the total number of correctly

classified pixels (weighted by W) as a percentage of the total size of the image.

To assess interoperator precision in segmentations, the study uses the metric proposed

by [53], which consists of pairwise comparisons of the cardinality of the intersection of the

positive classifications divided by the cardinality of the union of positive classifications.

To analyze efficiency, the study calculates the average total time (user time plus processing

time) taken for a segmentation.

4.4.3 Results

For a typical segmentation of a tumor using the new tool a user scrolls through slices

until they find the location of the tumor. With a mouse, the user queries intensity values

in the tumor and sets initial values for the parameters T and ε based on those intensity

values. They initialize a sphere near or within the tumor and initiate deformation of

that spherical model. As the model deforms the user scrolls through slices, observing

its behavior and modifying parameters. Using the immediate feedback they get on the

behavior of the model, they continue modifying parameters until the model boundaries

appear to align with those of the tumor. In a typical 5-minute session, a user will modify

the model parameters between 10 and 30 times.

Figures 4.9, 4.10, and 4.11 show graphs of average p, q, and c values for the experts

and the users in the study. Error bars represent the standard deviations of the associated

values for the experts and the users in the study.

The performance of the experts and the users varies case by case, but in almost all

cases the performance of the users was within the range of performances of the experts.

The average correct fraction of the users was better than the experts in 4 out of 9

cases. A general trend is that the participating users tended to underestimate the tumor

relative to the experts, as indicated by lower values of p. This is consistent with other

experiences with hand segmentations and level-set models—with hand contouring users

tend to overestimate structures, and with level sets the curvature term tends to reduce

the size of convex structures [8].

43

Sensitivity by Case

0.75

0.8

0.85

0.9

0.95

1

1.05
Experts Subjects

 1 2 6 9 10

Figure 4.9. Sensitivity (the fraction of pixels correctly classified as inside the object
boundary) results from the user study compare the interactive, GPU-based level-set
segmentation tool with expert hand contouring. The results show that users of the
semi-automatic tool produced segmentations that were within the error bounds of the
expert hand contours in most cases. The tool also showed an overall slightly lower
sensitivity, meaning that the size of the segmentations is slightly smaller.

44

Specificity by Case

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

Experts Subjects

 1 2 6 9 10

Figure 4.10. Specificity (the fraction of pixels correctly classified as outside the object
boundary) results from the user study compare the interactive, GPU-based level-set
segmentation tool with expert hand contouring. The results show that users of the
semiautomatic tool produced segmentations that were within the error bounds of the
expert hand contours in most cases. The tool also showed an overall slightly higher
specificity, meaning that the size of the segmentations is slightly smaller.

45

Total Correct Fraction by Case

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1
Experts Subjects

 1 2 6 9 1

Figure 4.11. The total fraction of correctly classified pixels (combination of sensitivity
and specificity) for the nine tumor cases segmented by the participating users.

46

The segmentations in the user study show a much higher degree of precision than

the expert hand segmentations. Mean precision [53] across all users and cases was

94.04%±0.04% while the mean precision across all experts and cases was 82.65%±0.07%.

Regarding efficiency, the average time to complete a segmentation (all users, all cases)

was 6 ± 3minutes. Only 5% − 10% of this time is spent processing the level-set surface.

This compares favorably with the 3-5 hours required for a typical three-dimensional

segmentation done by hand.

The accuracy and precision of subjects using the new tool compares well with the

automated brain tumor segmentation results of Kaus, et al. [19], who use a superset of the

same data used in the study. They report an average correct volume fraction of 99.68%±

0.29%, while the average correct volume fraction obtained by the participating users was

99.78%±0.13%. Their method required similar average operator times (5-10 minutes), but

unlike the proposed method their classification approach required subsequent processing

times of approximately 75 minutes. That method, like many other segmentation methods

discussed in the literature, includes a number of hidden parameters, which were not part

of their analysis of timing or performance.

These quantitative comparisons with experts pertain to a only single two-dimensional

slice that was extracted from the three-dimensional segmentations. This is a limitation

due to the scarcity of expert data. Experience shows that computer-aided segmentation

tools perform relatively better for three-dimensional segmentations because the hand con-

tours typically show signs of interslice inconsistencies and fatigue. Figures 4.12 and 4.13

respectively show a segmentation by an expert with hand contouring and a segmentation

done by one of the users of the GPU-based level-set segmentation tool.

47

Figure 4.12. An expert hand segmentation of a tumor from the Harvard Brigham and
Women’s database shows significant interslice artifacts.

Figure 4.13. A three-dimensional segmentation of the same tumor from one of the
subjects in the user study performed using the interactive segmentation tool described in
this thesis.

CHAPTER 5

CONCLUSIONS

5.1 Summary

This thesis demonstrates a new tool for interactive volume exploration and analysis

that combines the quantitative capabilities of deformable isosurfaces with the qualitative

power of volume rendering. By efficiently leveraging programmable graphics hardware,

the level-set solver operates approximately 15 times faster than previous solutions and

is therefore interactive for moderately sized volumes (e.g., 1283–2563). This mapping

relies on an efficient multidimensional virtual memory system to implement a time-

dependent, sparse computation scheme. The memory mappings are updated via a novel

GPU-to-CPU message passing algorithm. The GPU renders the level-set surface model

directly from this packed texture format. This new rendering technique also enables full

volume rendering from volume data stored as a single set of two-dimensional slices. The

interactive segmentation tool is evaluated by means of a brain tumor segmentation user

study. The study shows that, when compared to the segmentations produced by expert

hand contouring, users of the new tool are able to quickly produce more precise and

equivalently accurate segmentations.

5.2 Future Work

Future extensions and applications of the level-set solver include the processing of

multivariate data as well as the application of the solver to other level-set problems.

Examples include surface reconstruction, surface processing, and surface tracking in

computational fluid dynamics simulations. Many of these extensions involve changing

only the speed functions. Additions to the user interface, such as three-dimensional paint

operations into the parameter volumes, may also enable an additional level of control

over the computation. Additionally, the system described in this thesis enforces memory

coherence at the granularity of a 16×16 memory page. This property might be interesting

to apply to CPU-based sparse computations. The local memory access patterns, lack of

49

conditionals, and absence of pointer dereferences might result in a CPU-based solution

that outperforms current sparse-field methods.

There are multiple improvements that could be made to the memory and computa-

tional efficiency of the solver. First, it may be worth achieving an even narrower band of

computation around the level-set model. This is possible by using depth culling to avoid

computation on inactive elements within each active page [47]. Implementing this depth

culling requires a GPU memory model in which an arbitrary number of data buffers can

access a single depth buffer. The second optimization is to allow the total amount of

available physical memory to change at run time and grow to the limits of GPU memory.

This requires spreading physical memory across multiple two-dimensional textures (i.e.,

creating a three-dimensional physical memory space). The proposed super buffer [37]

OpenGL extension supports both of these proposed optimizations.

The GPU virtual memory abstraction also indicate promising future research. I am

currently beginning work on a more general virtual memory implementation that fully

abstracts N -dimensional GPU memory. The goal is to provide an API that allows a

GPU application programmer to specify an optimal physical and virtual memory layout

for their problem, then write the computational kernels irrespective of the physical layout.

The kernels will specify memory accesses via abstract memory access interfaces, and an

operating-system-like layer will replace these memory access calls with the appropriate

address translation code. This layer should also optimize computational kernels by

automatically mapping portions of the kernel to the vertex processor and rasterizer,

generate substreams where appropriate, and perform other optimizations.

This thesis presents an effective solution for solving time-dependent narrow-band

partial differential equations on the GPU. As the emerging field of general purpose

computation on GPUs (GPGPU) moves forward, one of the most challenging questions is,

“How general should the programming model become?” It is inevitable and desirable that

the programming model for GPUs be lifted to a higher level. It is also critical, however,

that the forthcoming abstractions not hinder effective use of the underlying hardware.

For example, the fully general multidimensional virtual memory scheme proposed above

may already be too general to guarantee efficient program execution. It is possible that

the best high-level GPU programming solution will be domain-specific infrastructures

(e.g., a framework for solving discrete partial differential equations). It is also possible,

however, that a highly-optimizing programming language or framework for GPUs can be

50

defined by precisely defining the inherent restrictions required for efficient computation

on streaming architectures.

APPENDIX A

DISCRETIZATION OF THE LEVEL-SET

EQUATIONS

A.1 Introduction

This appendix describes the discretization of equation 2.3 and the curvature com-

putation. Equation 2.3 is discretized using the up-wind scheme [34] and compute the

curvature of the level-set surface using the difference of normals method [58].

A.2 Level-Set Discretization

To begin Equation A.1 describes the finite difference derivatives required for the

level-set update and curvature computation. The neighborhood, u, from which these

derivatives are computed is specified with the numbering scheme

6 7 8

3 4 5

0 1 2

. (A.1)

Note that 4 denotes the center pixel, and u±z
i represents the ith sample on the slice above

or below the current one. The derivatives of the level-set embedding, φ, are then defined

as
Dx = (u5 − u3)/2
Dy = (u7 − u1)/2
Dz = (u+z

4 − u−z
4)/2

D+
x = u5 − u4

D+
y = u7 − u4

D+
z = u+z

4 − u4

D−
x = u4 − u3

D−
y = u4 − u1

D−
z = u4 − u−z

4

D+y
x = (u8 − u6)/2

D−y
x = (u2 − u0)/2

D+z
x = (u+z

5 − u+z
3)/2

D−z
x = (u−z

5 − u−z
3)/2

D+x
y = (u8 − u2)/2

D−x
y = (u6 − u0)/2

D+z
y = (u+z

7 − u+z
1)/2

D−z
y = (u−z

7 − u−z
1)/2

D+x
z = (u+z

5 − u−z
5)/2

D−x
z = (u+z

3 − u−z
3)/2

D+y
z = (u+z

7 − u−z
7)/2

D−y
z = (u+z

1 − u−z
1)/2.

(A.2)

Curvature is then computed using the above derivatives. The two normals, n+ and

n−, are computed by

52

n+ =

D+
x

s

(D+
x)2+

„

D
+x
y +Dy

2

«2

+

„

D
+x
z +Dz

2

«2

D+
y

s

(D+
y)2+

„

D
+y
x +Dx

2

«2

+

„

D
+y
z +Dz

2

«2

D+
z

s

(D+
z)2+

„

D
+z
x +Dx

2

«2

+

„

D
+z
y +Dy

2

«2

(A.3)

and

n− =

D−

x
s

(D−

x)2+

„

D
−x
y +Dy

2

«2

+

„

D
−x
z +Dz

2

«2

D−

y
s

(D−

y)2+

„

D
−y
x +Dx

2

«2

+

„

D
−y
z +Dz

2

«2

D−

z
s

(D−

z)2+

„

D
−z
x +Dx

2

«2

+

„

D
−z
y +Dy

2

«2

(A.4)

respectively. The components of the divergence from equation 2.4 are then computed as

∂nx

∂x
= n+

x − n−

x , (A.5)

∂ny

∂y
= n+

y − n−

y , (A.6)

and
∂nz

∂z
= n+

z − n−

z , (A.7)

Finally, Equation A.8 estimates H:

H =
1

2
(
∂nx

∂x
+

∂ny

∂y
+

∂nz

∂z
). (A.8)

The upwind approximation to ∇φ is then computed using D+
x , D+

y , D+
z , D−

x , D−
y ,

and D−
z . To begin,

∇φmax =

√

max(D+
x , 0)2 + max(−D−

x , 0)2

√

max(D+
y , 0)2 + max(−D−

y , 0)2

√

max(D+
z , 0)2 + max(−D−

z , 0)2

(A.9)

53

is computed followed by

∇φmin =

√

min(D+
x , 0)2 + min(−D−

x , 0)2

√

min(D+
y , 0)2 + min(−D−

y , 0)2

√

min(D+
z , 0)2 + min(−D−

z , 0)2

. (A.10)

The final choice of ∇φ is defined by

∇φ =

{

‖∇φmax‖2 if F > 0
‖∇φmin‖2 otherwise

, (A.11)

where F is the linear combination of all speed functions (e.g. mean curvature, the rescaling

term Gr, etc). Section 4.2.1 describes the speed terms used in the level-set segmentation

application.

The last step in the upwind scheme computes φ(t +4t) by

φ(t +4t) = φ(t) +4tF |∇φ|. (A.12)

APPENDIX B

A BRUTE-FORCE, GPU-BASED

THREE-DIMENSIONAL

LEVEL-SET SOLVER

B.1 Design

This appendix covers the design of a brute-force, GPU-based three-dimensional level-

set solver designed for the ATI Radeon 8500 GPU. The solver computes the level-set

PDE (see Appendix A at each voxel, i.e., it is not a narrow-band solver. The solver also

includes segmentation speed functions described in Section 4.2, including the second-order

curvature term.

The level-set volume is stored in a set of two-dimensional slices (i.e., pbuffer tex-

tures). This memory arrangement is dictated by the fact that GPUs support only

two-dimensional output buffers. As such, the PDE computation is performed on a

slice-by-slice basis. Memory usage is slightly optimized by packing the scalar slices into

the RGB channels of the RGBA pbuffers. In addition to saving texture memory, this also

reduces the number of costly render target swaps by a factor of three.

B.1.1 Computation Overview

The three-dimensional solver requires seven render passes per slab to compute the

mean curvature, and a total of 16 render passes per slab to compute an entire time step

update. For a 256x256x175 data set, this means that 2800 render passes are required to

update the entire volume a single PDE time step. Pseudocode for the solver is shown

below, using function-call-like syntax to represent render passes. The partitioning of the

computation into render passes is dictated by the number of available texture inputs,

temporary registers, and fragment program instructions.

for(int t=0; t < numSteps; t++) {

for(int z=0; z < numSlabs; z++) {

55

// Compute two sets of 4-vec derivatives

Tex2D d1 = deriv1(phi[z]); // 1

Tex2D d2 = deriv2(phi[mz], phi[pz]); // 2

// Compute Curvature

Tex2D d3 = deriv3(phi[mz], phi[z], phi[pz]); // 3

Tex2D d4 = deriv4(phi[mz], phi[z], phi[pz]); // 4

Tex2D d5 = deriv5(phi[mz], phi[z], phi[pz]); // 5

Tex2D d6 = deriv6(phi[mz], phi[z], phi[pz]); // 6

Tex2D cx = curvX(d1, d3, d4, normalizeLUT); // 7

Tex2D cxy = curvY(d1, d3, d5, cx, normlalizeLUT); // 8

Tex2D curv = curvZ(d1, d2, d6, cxy, normalizeLUT); // 9

// Sum the speed functions

Tex2D speed = sumSpeed(curv, G); // 10

// Upwind Computation

Tex2D minG1 = minGrad1(d1, d2); // 11

Tex2D minG2 = minGrad2(minG1, d1, d2); // 12

Tex2D maxG = maxGrad(d1, d2); // 13

Tex2D gMag1 = gradMag1(minG2, maxG, speed, // 14

phi[z], l2NormLUT);

Tex2D gMag2 = gradMag2(gMag1); // 15

// Do PDE timestep update

Tex2D phi[z] = phiUp(gMag2, multScaleLUT); // 16

}

}

As discussed in Chapter 3, this full-volume solver is only one to two times faster

than a sparse-field CPU-based implementation [52]. The GPU-based solver, however, is

performing approximately 10 times more computations.

APPENDIX C

GPU MEMORY ALLOCATION REQUEST

GENERATION

C.1 Introduction

This appendix describes the details of the GPU memory allocation/deallocation re-

quest scheme used by the GPU virtual memory system. The algorithm is described first

in terms of an abstract client solver. Section C.1.2 presents the client-specific details in

terms of the level-set solver client.

C.1.1 General Allocation Request Algorithm

The allocation request algorithm consists of the following steps:

A GPU computes VPN of requested active pages

B GPU compresses active-page request

C CPU reads compressed request image

D CPU decodes active-page request

a Issues memory allocation/deallocation requests

b Updates page tables and geometry engine

c Calls client’s ReleasePage function

d Calls client’s InitNewPage function

Steps A and B create the set of requested active virtual pages. This set serves as the

memory allocation/deallocation request to the CPU. The CPU then calls the client’s

ReleasePage function for each newly deallocated page before deallocating the page.

Similarly, the CPU calls the client’s InitNewPage function for each newly activated page.

In Step A, the GPU uses client-specific data to create two auxiliary RGBA (i.e. 4-

tuple) buffers that hold eight true or false (e.g., 255 or 0) values for each active data

element (Figure 3.6). The first six values represent whether or not the virtual page in

each of the six cardinal directions should be active for the next pass. The seventh value

indicates if the active page itself should be active, and the eighth value is free to be used

by the client. The level-set solver client uses the eighth value to determine if a newly

57

deactivated memory page is inside or outside the level-set surface. This eight-dimensional,

active-page information vector, J, is thus J = (+x,−x, +y,−y, +z,−z, self, clientSpecific),

where the first six elements refer to relative neighbor offsets in the virtual page space,

VP.

The eight-value code, J, is computed in eight substream passes followed by a sin-

gle standard (i.e., entire memory page) pass. The substream passes compute whether

the in-plane adjacent memory pages needs to be active (i.e., the edge-adjacent pages

(+x,−x, +y,−y)). Each substream pass computes the value of a client-specified function,

IsNeighborActive, across the page boundary orthogonal to the page edge being rendered

and writes the boolean result to the corresponding output component of J. The second

computation calls IsNeighborActive for the pages above and below the active one.

Note, however, that because the neighboring pages are face-adjacent, this computation is

performed at all data elements in the page instead of just the edges. The computation

also writes a true value to the J component representing the active page itself if the

client’s IsSelfActive function returns true. The value of the eighth bit is filled by the

result of the client’s IsEighthBitTrue function.

Step B of the allocation-request algorithm is to compress the two, J buffers into

a small (≤ 64kB) active-page message. This compressed message serves as the memory

allocation/deallocation request that is sent to the CPU. The compression is accomplished

by rendering a quadrilateral of size S[GP] with the automatic mipmapping option enabled

on the neighbor-information buffers. The render pass also uses a fragment program

designed to create a bit code at each pixel value. Each pixel in the resulting small image

corresponds to a physical memory page. The value of each pixel contains an eight-bit

code of the same form as the eight-value code produced in step A (i.e., the J vector). This

eight-bit code completely determines if the memory page and/or any of its six cardinal

neighbors in virtual page space are to be active on the next pass.

The automatic mipmapping performs a box-filter averaging of the values written in

Step A. The result is that if any data element in the memory page set a value to true

(i.e., 255) in Step A, the down-sampled value will also be true (i.e., nonzero). The

fragment program inspects these down-sampled values. It sets the corresponding bit in

the output value to true for each nonzero input. The bits are set via an emulated bitwise

OR operation. Current fragment processors do not support bitwise operations, but an

OR is emulated by conditionally adding power-of-two values to the output value.

58

In Step C, the CPU reads the bit-code message from the GPU. Step D begins by the

CPU wrapping the message buffer with a bit-vector accessor. The resulting bit vector

is a linear representation of the physical page space, GP, where each byte represents the

information for a page. Two auxiliary bit-vectors are allocated—each a bit-addressed,

linear representation of the virtual memory page space, VP. The first is the newActiveSet

bit vector, and the second is the client-specific eighthBitSet bit vector. After the

allocation message is decoded, a true bit in the newActiveSet bit vector will denote

an active virtual page.

The CPU then decodes the bit-vector message. For each 8-bit sequence, the current

linear index is converted to a physical page number (PPN). The inverse page table then

converts the PPN to a VPN. Because each bit in the bit-code message represents an

offset direction from the current virtual page, the decoder can easily reconstruct the

VPN for each neighbor of each active page. The decoder then reads the seven spatial

page bits. It then computes the VPN for the page represented by each true bit and sets

the corresponding bit in the newActiveSet bit vector to true. If the eighth bit is true,

the eighthBitSet is set to true for the corresponding virtual page.

The virtual memory system next determines which virtual memory pages to deallocate

and which to allocate. The set of newly deactivated pages is constructed by performing

a set-subtraction of the newActiveSet from the oldActiveSet. The set of pages that

need to be allocated for the next pass is created by computing the opposite set difference.

Each deallocated memory page is pushed onto a stack of free memory pages. The page

table are updated based on the client’s implementation of ReleasePage function. Each

newly activated page is mapped to a physical memory location by popping a page from

the free page stack. The physical page is mapped in the page tables and the geometry

engine is appropriately updated. The new physical memory is then initialized via the

client’s InitNewPage implementation.

C.1.2 Level-Set Solver Implementation Details

For Step A of the update algorithm described in section C.1.1, the level-set solver de-

fines the functions IsNeighborActive and IsSelfActive. The IsNeighborActive reads

the previously computed, one-side derivative that crosses a page boundary onto a specific

neighbor. The function returns true if the derivative is nonzero. The IsSelfActive

function returns true if any of the six, cardinal, one-sided derivatives are nonzero. The

59

level-set solver simply writes the value of the level-set embedding to the eighth data

value. This is used to determine if a newly deactivated page is inside or outside of the

level-set surface. The IsEigthBitTrue function used by the fragment program in Step B

returns true if the eighth data value is greater than zero. If a page becomes inactive, it

is guaranteed to be either all black or all white. The down-sampled level-set embedding

for the page will thus be either pure black or pure white.

The eighthBitSet used in the bit-code message decoding stage (Step D) is used to

determine if a newly deactivated memory page is inside or outside the level-set surface.

If the bit for the page is true, then the page is inside the surface. Otherwise it is outside.

This information is used by the solver’s ReleasePage function to map deactivated pages

to the correct static physical page (white or black). These static mappings ensure that

derivatives across boundaries of the active domain are correct.

The solver’s InitNewPage function initializes newly allocated physical memory. The

memory is initialized to either white or black depending on the inside/outside setting

in the page table entry. Note that no level-set data are transferred to accomplish the

update. The entire level-set solution resides only on the GPU for the duration of the

computation. The current implementation also has to send pre-computed speed pages to

the GPU when new pages are added. This could be optimized for many speed functions,

however, by computing the function on the GPU.

APPENDIX D

SOFTWARE DESIGN

D.1 Introduction

This appendix describes the software infrastructure on which the GPU-based level-set

solver and visualization system is built. The first section gives an overview of the layered

structure of the code. The proceeding sections give detailed documentation for each of

these layers.

D.2 Design Overview

The GPU-based level-set solver and visualization system are built using five separate

software layers. Figure D.1 shows these five layers and the libraries within each layer. The

lowest layer includes low-level data structures and the OpenGL interface for controlling

the GPU. The second layer provides object-oriented abstractions for GPU-specific oper-

ations, while the third layer encapsulates the operations necessary to execute an entire

render pass. The fourth layer includes the level-set solver code and visualization modules

described in Chapter 3. Lastly the fifth layer encompasses the volume segmentation

application described in Chapter 4.

The first layer is comprised of three software libraries: The OpenGL three-dimensional

graphics API [43], a utility library called Gutz, and an OpenGL management utility called

Glew [17]. The OpenGL routines issue commands to the GPU and pass data between

the CPU and GPU. The Gutz library contains core utilities such as vectors, arrays, and

matrices. Milan Ikits’ Glew library greatly simplifies the handling of the various OpenGL

versions and extensions.

The second layer is an object-oriented abstraction around OpenGL called Glift. Glift

uses OpenGL and Gutz to provide a framework for writing modular, re-usable OpenGL

code.

The third layer, CompGPU, uses Glift objects to abstract a GPU render pass as a

function-object (functor). CompGPU enables programmers to write render passes

61

 Glift

 CompGPU

SolverRLS SpeedRLS Visualization

GlewOpenGLGutz

Segmentation Application

Figure D.1. The five software layers with which the level-set segmentation application is
built. In the first layer, OpenGL is used to control the GPU, Gutz defines vector, matrix,
and array data structures, and Glew handles OpenGL extensions. The second layer, Glift,
combines OpenGL calls into reusable object-oriented OpenGL modules. CompGPU is
the third layer and encapsulates an entire render pass as a forEach function call. The
level-set solver, level-set speed functions and visualization modules are defined in the
fourth layer, and the volume segmentation application comprises the fifth layer.

62

using function-call-like syntax. The fourth software layer contains the level-set solver

and visualization modules. Both of these libraries make extensive use of Gutz, Glift, and

CompGPU objects. The solver and visualization objects communicate with each other

via several predefined interfaces.

The fifth and final layer is the interactive level-set segmentation application. This layer

creates an instance of the level-set solver and configures it for volume segmentation. The

segmentation application also instantiates the visualization modules. The application

specifies the graphical user interface (GUI) using Glut [20] and Glui [39]. Note that

the fourth and fifth layers make extensive use of Gordon Kindlmann’s Nrrd library [21]

for raster data manipulation. This includes file I/O, data resampling, resizing, slicing,

cropping, tiling, etc.

D.3 The First Layer

D.3.1 OpenGL

The system uses the OpenGL graphics API to control the graphics processor. The

details of the API are described in other sources [43] and will not be repeated here.

OpenGL calls set the state of the graphics board and display drivers. This low-level of

programming is error-prone and leads to non-reusable code. This is the motivation for

the Glift abstraction layer.

D.3.2 Glew

The Glew library [17] (OpenGL Extension Wrangler) greatly simplifies the many

versions of OpenGL and the large number of OpenGL extensions. It also unifies the use

of all OpenGL features across multiple computational platforms. Glew was created and is

maintained by Milan Ikits and will not be discussed in detail in this thesis. In brief sum-

mary, using Glew entails simply replacing all OpenGL-related header includes (including

vendor-specific extensions) with glew.h and wglew.h. The function glewInit() is then

called once in the application to initialize all OpenGL API calls (including all extensions).

Glew can then be queried at run-time to determine the availability of specific OpenGL

features.

D.3.3 Gutz

The Gutz library contains ubiquitous primitives for graphics-related programming

such as vectors, matrices, and arrays. This library is a combination of code written by

63

Joe Kniss, Milan Ikits, and myself. All of the Gutz classes are template-based, lightweight

abstractions on top of raw data. The classes are carefully designed to have a run-time

representation that consists only of the desired data (i.e., no virtual function pointers,

etc.). The result is that complex data structures can be created (e.g., multidimensional

arrays of vectors) that have a C-like, contiguous underlying memory representation. This

representation is critical for both performance and interfacing with low-level API’s such

as OpenGL that require contiguously allocated data.

The vector classes consist of templated classes for 1D to 4D vectors, while the matrices

consist of templated classes for 2 × 2 to 4 × 4 matrices. Pre-defined typedefs exist for

many of the common instantiations of these objects. The typdefs are named in a similar

fashion to OpenGL type specifications. For example, a three-vector of floats is a vec3f,

a 4× 4 matrix of integers is a mat4i.

The array classes are templated by element type and separate classes exist for 1D to 5D

arrays. There are two types of arrays: arrayOwn and arrayWrap. These differ by memory

ownership policy. Creating an arrayOwn object allocates memory for the array. Likewise,

deleting an arrayOwn frees the memory. In contrast, an arrayWrap object does not

allocate or free the underlying memory. The purpose of the arrayWrap classes is to provide

convenient multidimensional accessors around raw data. They also allow the programmer

to “cast” array data to different dimensionalities. This design is again motivated by

the requirement to communicate blocks of data to/from low-level APIs. Note that the

arrayWrap class for each dimension of array is a subclass of the corresponding arrayOwn.

As such, arrayWrap objects can be passed as function arguments where the parameter

specification is an arrayOwn. Also note that an arrayBase class exists that is dimension-

agnostic and can thus be used to pass arbitrary dimensioned arrays.

D.4 The Second Layer: Glift

The second layer is an object-oriented abstraction around OpenGL called Glift. Glift

uses OpenGL, Gutz, and Glew to provide a framework for writing modular, re-usable

OpenGL code. Unlike other object-oriented OpenGL encapsulations such as GLT[49]

and OpenInventor[45], the Glift framework is designed for low-level OpenGL developers

rather than high-level graphics programmers. Glift’s object structure is designed only to

enforce semantically correct OpenGL programming but avoid making assumptions about

how OpenGL will be used. Glift also does not encapsulate any windowing-related calls

64

other than the handling of pbuffers. It is expected that a windowing utility such as

Glut [20] will be used.

The Glift framework defines a set of reusable and extensible modules that can be

composited into higher-level objects. The multi-level approach is very flexible in that

a programmer can choose to work at various levels within the same application. The

possible coding levels include raw OpenGL, basic Glift objects, and various levels of

composited Glift objects. These composite Glift objects may be as simple as a multi-

texture object or as complex as an entire render pass. Another goal of the library is to

isolate all GPU-vendor-specific OpenGL code into pluggable modules to facilitate writing

applications that support multiple GPU architectures. A class tree of Glift is shown in

figure D.2.

The Glift design supports two types of OpenGL calls: those that set/unset GPU

pipeline state (the StateGLI tree) and those that initiate processing of data through

the pipeline (the DrawableGLI and RenderableGLI trees). A third type of call, pipeline

status queries, are not currently supported but could be added later. All OpenGL calls

that set/unset state are encapsulated by the class tree based on the StateGLI inter-

face. This interface specifies a bind() and release() public virtual method. OpenGL

calls that move data through the pipeline are encapsulated by the class tree based on

the DrawableGLI interface. DrawableGLI simply specifies a public draw() method. A

third class tree based on the RenderableGLI interface combines all the StateGLI and

DrawableGLI objects that specify an entire render pass.

In addition, all Glift objects support a compile() method that attempts to compile

the OpenGL commands encapsulated by the object into a display list. Note that this

feature provides a way to “compile away” the abstraction penalty that might otherwise be

caused by the extensive use of virtual functions. In practice, however, the GPU consumes

most of the execution time in many Glift applications and so the abstraction layers do

not affect the execution speed. The Glift compile() feature is currently only partially

implemented. It is supported throughout the framework, but only works correctly when

all of the reachable OpenGL calls can legally be compiled into display lists. Future work

will add the correct handling of OpenGL calls that cannot be compiled (e.g., wgl calls,

vertex array pointer calls, etc.).

Glift is designed to provide a minimal amount of preencapsulated OpenGL state and

have obvious extension points for adding more functionality as desired. As Glift matures,

65

BorderTex

Compilable

CoordGenTex

CoreTex

DrawableGLI

DrawAlgArr

DrawAlgImm

DrawAlgorithm

EdgeModeTex

EmptyTex

FilterTex

FragProgARB

FragProgATI9K

FuncTex

GenState

LineLoopGL

LinesGL

LineStripGL

MipMapTex

MultiPrim

MultiTex

MultiTexOState

MultiTexUState

NrrdTexData

PBuffGlift

PixelShader

PixelShaderATI8K

PlanarQuadPlanarQuadZ

PointsGL

PolygonGLPrimGL

PriorityTex

ProgShader

QuadsGL

QuadStripGL

RawPrim

RenderableGLI RenderPass

ShadedPrim

Shader

SinglePrim

SingleTex

StateGLI

SubdivPlanarQuadM

SubdivPlanarQuadS

SubTex

Tex1D

Tex2D

Tex3D

TexCube

TexData TexDataArr1

TexDataArr2

TexObjState

TexState

Texture

TexUnitState

TriangleFanGL

TrianglesGL

TriangleStripGL

VertexProgARBVertexShader

WrappedPrim

Figure D.2. Class tree for the Glift, object-oriented OpenGL framework.

66

more functionality will come predefined by the library. The following is a list of current

extension points:

Class Name Purpose

GenState Defining any bind/release state that is not already defined.
PixelShader Defining interfaces to hardware-specific fragment shaders
VertexShader Defining interfaces to hardware-specific vertex shaders
WrappedPrim Defining high-level drawables containing a single

PrimGL object
MultiPrim Defining high-level drawables containing multiple

PrimGL objects
RenderPass Defining a render pass with functionality different than

has been provided
DrawAlgorithm Defining a drawing algorithm other than the standard

(glBegin(. . .)/glEnd(. . .) or vertex array method
TexCoordGen Defining texture coordinate generation algorithms

To begin compositing a render pass, the StateGLI objects are first composited into

a Shader object. The Shader thus contains the specification of the textures and any

other OpenGL pipeline state required by the pass. The DrawableGLI objects are then

defined and put into a MultiPrim object. The Shader object and the Multiprim (or

any other RawPrim) are combined into a ShadedPrim object. This ShadedPrim object (or

any Drawable) is combined optionally with a texture and/or pbuffer destination into a

RenderPass.

The use of the texture objects (the Texture class tree) require some additional expla-

nation. To create a texture object, the user first creates an instance of MultiTexOState

to specify the texture object state. If texture data is to be downloaded to the texture

object, the user also creates an appropriate TexData object. The constructor of the

desired texture object then takes a pointer to the MultiTexOState object and optionally

the TexData object. In addition, the texture constructors also accept an optional pointer

to a pbuffer object (PbuffGlift).

Glift is by no means a completed project. The first issue is to complete the compile()

implementation to support non-compilable API calls. The second future project is to

add a PrimWrap object to the DrawableGLI tree that does not own its vertex and

attribute data. It instead should only hold pointers to the application-owned data.

This is important for adoption of Glift into existing applications. It may be possible

to implement this by adding C++ template policies [2] to the current objects. The third

future-work issue is adding smart-pointers (i.e., reference counting pointers) throughout

67

Glift for automatic memory management. The last, and most ambitious, future direction

for Glift is to rework the core objects such that Glift can interchangeably use Microsoft’s

DirectX or OpenGL as an underlying API. An important goal for Glift design is that the

framework have a clearly defined layer that remains below that of a scene graph (i.e., a

scene graph could be built using Glift objects). It may be advantageous to remove the

Glift objects that are above this abstraction level in order to facilitate its adoption.

In addition to its use in the level-set solver described in this thesis, Glift is now being

used by Joe Kniss in his Simian volume renderer [22]. An early version of Glift was also

used to build the front-end of the real-time ray tracing demo, Star-Ray, shown at the SGI

Siggraph 2002 exhibition booth [46].

D.5 The Third Layer: CompGPU

The third software layer, CompGPU, uses Glift objects to abstract a GPU render pass

as a function-object (functor). The function-call abstracted by CompGPU is essentially

a forEach loop over data stored in texture memory. The specification of which data

elements to include in the computation is specified by the rasterization of two-dimensional

geometry. The computation performed on each element is specified by the vertex and

fragment programs, and the results of the forEach call are written to the specified output

buffer(s). While the level-set solver was successfully built using CompGPU objects, the

design has proven to be cumbersome and problematic. This software layer should be

re-designed before future projects adopt it. As such, this section describes both the

successes and failures of the design.

The CompGPU layer consists of only a single class, ComputeSlab. All clients of

CompGPU subclass ComputeSlab to create a specific render pass. The computation (i.e.,

render pass) is initiated by calling the compute() virtual function with the appropriate

parameters.

The design decision to use ComputeSlab as a base class is a severe problem with

CompGPU. Although the design does maximize code reuse, the fact that each com-

putation must be a separate class definition leads to an explosion in code size. A

policy-based CompGPU layer appears to be a much better solution. Mark Harris’s SlabOp

class [15] is a much better starting point than CompGPU. SlabOp, however, is missing a

function-call-like syntax. This last features is difficult to support in a general fashion, yet

is an important abstraction for writing general-purpose GPU computation applications.

68

One of the largest challenges is the specification of arguments to the compute() func-

tion. In practice, many of the input arguments (textures, fragment programs, geometry,

etc.) remain constant each time a computation is performed. There are instances,

however, when some of these arguments do change. An argument caching mechanism

is thus needed so that the programmer can dynamically select which parameters need to

be updated.

The current mechanism for handling arguments is to pass static arguments via the

subclass constructor, and pass dynamic arguments to the compute() function. This is an

effective solution, but leads to a large number of compute() versions in the base class.

A policy-based implementation may be the solution to this—where the interface of the

compute() call is defined by a policy. Note that Mark Harris’s SlabOp handles this

problem by requiring the programmer to set the state of the SlabOp object before calling

the analogue of compute() with no arguments. The problem with this approach is that

it leads to difficult-to-read code that does not have the appearance of function (forEach)

calls. Implementing a C++ function call on top of each SlabOp call may be a reasonable

solution.

D.6 The Fourth Layer

The fourth software layer contains the level-set solver and visualization modules. Both

of these libraries make extensive use of Gutz, Glift, and CompGPU objects. The solver

and visualization objects communicate with each other via several predefined interfaces.

D.6.1 Level-Set Solver

The GPU-based level-set solver uses CompGPU, Glift, and Gutz objects to build

a flexible solver framework. This framework includes the full specification of various

level-set solvers and the speed function modules used by the solvers. The current design

also includes two-dimensional visualization tools, but these should be removed—just as

the volume rendering module is entirely separate from the solver. Although the design

includes level-set-specific functionality, the framework lays the groundwork for a more

general solver infrastructure in the future. Much of the infrastructure described herein

could and should be handled by a compiler. The design of this framework, however, does

outline a set of required features for future streaming languages/APIs for general purpose

GPU computation.

69

The core solver class is SolverRLS. The specific solvers are subclasses of SolverRLS.

The various solvers include versions for different GPU architectures, separate two-dimensional

and three-dimensional versions, and sparse and dense computation versions. In addition,

a parallel class tree, SpeedRLS, specifies the speed function modules. The solvers take

SpeedRLS objects as constructor inputs.

The SolverRLS class tree is an example of the Strategy object-oriented design pattern.

The base class provides the functionality that is common to all solvers and specifies

abstract interfaces for functionality that is required, but specific to the specific solvers

(implemented as subclasses). SolverRLS provides memory management services, user

interface (UI) hooks, as well as speed function management.

The solver subclasses own their specific computation. They create the CompGPU

objects for each pass, specify the order of the passes, and integrate the speed function

modules into the computation. Each subclass reports the number of live temporary

buffers at each program point (where each program point specifies a render pass) to the

base class. The base class then uses this information to allocate an appropriate number of

temporary pbuffers/textures and perform register allocation to resolve conflicts between

the buffers. The subclass then receives a set of pbuffer/texture pointers to use for each

program point that minimizes memory usage and guarantees that no data conflicts will

occur.

The solver infrastructure is designed to allow for fully modular speed functions that

can be arbitrarily added to appropriate solvers without having to change the solver. The

solvers interact with the speed functions by informing the base class of DataPacks that

are available and for which program points these DataPacks are valid. A DataPack is a

set of level-set-specific temporary values that are currently held in texture memory. The

elements of a DataPack are called SolverSIDs (solver service IDs). These DataPacks

are used by the base class to schedule the execution of speed function modules into the

computation.

The speed function modules encapsulate an entire level-set speed function computa-

tion. They are implemented as subclasses of SpeedRLS. The computation of the speed

function may include zero to many render passes. Just like the solver modules, the

speed function module owns its own CompGPU objects and specifies the order of the

computation. The speed functions receive input data from the solver by subscribing to

DataPacks provided by the solver. Speed function modules also report the number of

70

temporary buffers required for the speed computation. The SolverRLS class analyzes

the DataPack and temporary buffer requests to schedule the execution of the speed

module and allocate pbuffers and textures appropriately. As mentioned above, much

of this functionality would be much more concisely expressed in language form—either

specifically for level-sets or for general streaming GPU computation. The Brook [5]

streaming language is a start in this direction.

The naming scheme for the solvers requires some additional explanation. The names

of the subclasses all begin with SolverRLS . The next three characters describe attributes

of the solver. The first character is either D or S and denotes if the solver users a dense

(i.e., full) or sparse memory representation, respectively. The second character is also

either D or S and denotes if the solver uses dense or sparse computation, irrespective of

the memory representation. The last character represents the dimensionality of the solver

and is thus either 2 or 3. The last part of the solver name denotes the GPU architecture

for which the solver is designed. Currently the two options are A8 and A9, which stand

for ATI Radeon 8500 and ATI Radeon 9x00 GPUs, respectively. Note that the A9

classification is for GPUs with a model number of 9600 or higher. As such, the streaming

narrow-band solver described throughout the thesis is named SolverRLS SS3 A9.

D.6.2 Visualization Modules

The three-dimensional volume rendering module described in this thesis is an entirely

separate library. The majority of this code was written by Joe Kniss and leverages his

Simian [22] volume rendering library. The level-set-solver-specific code is in a module

called lsetRen. This is not implemented as a class, but should be. It specifies an

initialization call (essentially a constructor), a function to set the level-set input data

texture, and a function used to update the virtual-to-physical page table mapping. This

update function is called by the SolverRLS SS3 A9 module when a visualization update

is requested. The module also specifies hooks for the three-dimensional user-interface

features (three-dimensional manipulations, clipping plane operations, etc.).

The two-dimensional visualization modules are currently owned by the solver modules.

They should, however, be entirely separate and communicate with the solvers similar to

the communication scheme used by the volume renderer.

71

D.7 The Fifth Layer:
Level-Set Segmentation Application

The fifth and final layer is the interactive level-set segmentation application. This

layer creates an instance of the level-set solver and configures it for volume segmentation

by creating appropriate speed functions. The segmentation application also instantiates

the volume visualization module. This software level has received the least amount of

development time and effort of the entire application and should be viewed as a minimal

implementation with much room for improvement.

The application specifies the graphical user interface (GUI) using Glut [20] and Glui [39].

All file i/o and raster-data manipulation is performed using Gordon Kindlmann’s nrrd

library [21]. The main routine for the application is contained in the file, “base.cpp.”

REFERENCES

[1] Adalsteinson, D., and Sethian, J. A. A fast level set method for propagating
interfaces. Journal of Computational Physics (1995), 269–277.

[2] Alexandrescu, A. Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley, 2001.

[3] Beers, A. C., Agrawala, M., and Chaddha, N. Rendering from compressed
textures. In Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques (1996), ACM Press, pp. 373–378.

[4] Bolz, J., Farmer, I., Grinspun, E., and Schröder, P. Sparse matrix solvers
on the GPU: Conjugate gradients and multigrid. In ACM Transactions on Graphics
(July 2003), vol. 22, pp. 917–924. (Proceedings of ACM Siggraph 2003).

[5] Buck, I., Foley, T., Horn, D., Sugerman, J., Hanrahan, P., Houston, M.,

and Fatahalian, K. BrookGPU. http://graphics.stanford.edu/projects/

brookgpu/, 2004.

[6] Cabral, B., Cam, N., and Foran, J. Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware. In ACM Symposium
On Volume Visualization (1994).

[7] Cates, J., Lefohn, A. E., and Whitaker, R. GIST: An interactive, GPU-based
level-set segmentation tool for 3D medical images. Under review at Medical Image
Analysis.

[8] Cates, J., Whitaker, R., and Jones, G. Case study: An evaluation of
user-assisted hierarchical watershed segmentation. Under review at Medical Image
Analysis, 2004.

[9] Cebenoyan, C., and Wloka, M. Optimizing the graphics pipeline. Game
Developer’s Conference 2003, http://developer.nvidia.com/, 2003.

[10] Drebin, R. A., Carpenter, L., and Hanrahan, P. Volume rendering. In ACM
Computer Graphics (SIGGRAPH ’88 Proceedings) (August 1988), pp. 65–74.

[11] Droske, M., Meyer, B., Rumpf, M., and Schaller, C. An adaptive level
set method for medical image segmentation. In Proc. of the Annual Symposium on
Information Processing in Medical Imaging (2001), R. Leahy and M. Insana, Eds.,
Springer, Lecture Notes Computer Science.

[12] Fedkiw, R., Aslam, T., Merriman, B., and Osher, S. A non-oscillatory
Eulerian approach to interfaces in multimaterial flows (the ghost fluid method).
Journal of Computational Physics 152 (1999), 457–492.

73

[13] Goodnight, N., Woolley, C., Lewin, G., Luebke, D., and Humphreys,

G. A multigrid solver for boundary value problems using programmable graphics
hardware. In Graphics Hardware 2003 (July 2003), pp. 102–111.

[14] Grayson, M. A short note on the evolution of surfaces via mean curvatures.
Journal of Differential Geometry 58 (1989), 555.

[15] Harris, M., and Lefohn, A. E. Slabop research noteblog. http://www.cs.unc.
edu/~harrism/noteblog/archive/2003_01_26_archive.html%, 2003.

[16] Hillis, W. D. The Connection Machine. MIT Press, 1985.

[17] Ikits, M. Glew, the OpenGL Extension Wrangler. http://glew.sourceforge.

net, 2002.

[18] Kapasi, U., Dally, W. J., Rixner, S., P. R. Mattson, J. D. O., and

Khailany, B. Efficient conditional operations for data-parallel architectures.
In Proceedings of the 33rd Annual International Symposium on Microarchitecture
(2000), pp. 159–170.

[19] Kaus, M., Warfield, S. K., Nabavi, A., Black, P. M., Jolesz, F. A., and

Kikinis, R. Automated segmentation of MRI of brain tumors. Radiology 218
(2001), 586–591.

[20] Kilgard, M. Glut, the OpenGL utility toolkit. http://www.opengl.org/

developers/documentation/glut/index.html, 1997.

[21] Kindlmann, G. Teem. http://teem.sourceforge.net, 2003.

[22] Kniss, J., Kindlmann, G., and Hansen, C. Multi-dimensional transfer functions
for interactive volume rendering. IEEE Transactions on Visualization and Computer
Graphics 8, 3 (July-September 2002), 270–285.

[23] Kniss, J., Premoze, S., Hansen, C., Shirley, P., and McPherson, A. A
model for volume lighting and modeling. IEEE Transactions on Visualization and
Computer Graphics 9 (April-June 2003), 150–162.

[24] Kraus, M., and Ertl, T. Adaptive texture maps. In Graphics Hardware 2002
(Sept. 2002), pp. 7–16.

[25] Krüger, J., and Westermann, R. Linear algebra operators for GPU imple-
mentation of numerical algorithms. In ACM Transactions on Graphics (July 2003),
vol. 22, pp. 908–916. (Proceedings of ACM SIGGRAPH 2003).

[26] Larsen, E. S., and McAllister, D. Fast matrix multiplies using graphics
hardware. In Super Computing 2001 (Nov. 2001), ACM SIGARCH/IEEE.

[27] Lefohn, A. E., Cates, J., and Whitaker, R. Interactive, GPU-based level
sets for 3D segmentation. In Medical Image Computing and Computer Assisted
Intervention (2003), pp. 564–572.

[28] Lefohn, A. E., Kniss, J., Hansen, C., and Whitaker, R. Interactive defor-
mation and visualization of level set surfaces using graphics hardware. In IEEE
Visualization (October 2003), pp. 497–504.

74

[29] Lefohn, A. E., Kniss, J., Hansen, C., and Whitaker, R. A streaming
narrow-band algorithm: Interactive deformation and visualization of level sets. IEEE
Transactions on Visualization and Computer Graphics (2004), To Appear.

[30] Lefohn, A. E., and Whitaker, R. A GPU-based, three-dimensional level set
solver with curvature flow. University of Utah technical report UUCS-02-017,
December 2002.

[31] Levoy, M. Display of surfaces from volume data. IEEE Computer Graphics &
Applications 8, 5 (1988), 29–37.

[32] Malladi, R., Sethian, J. A., and Vemuri, B. C. Shape modeling with front
propagation: A level set approach. IEEE Transactions on Pattern Analysis and
Machine Intelligence 17, 2 (1995), 158–175.

[33] Microsoft Corporation. Direct3D. http://www.microsoft.com/directx,
2002.

[34] Osher, S., and Sethian, J. Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton-Jacobi formulations. Journal of Computational
Physics 79 (1988), 12–49.

[35] Owens, J. D. Computer Graphics on a Stream Architecture. PhD thesis, Stanford
University, Nov. 2002.

[36] Peng, D., Merriman, B., Osher, S., Zhao, H., and Kang, M. A PDE-based
fast local level set method. J. Comput. Phys. 155 (1999), 410–438.

[37] Percy, J., and Mace, R. OpenGL extensions: Siggraph 2003. http://mirror.

ati.com/developer/techpapers.html, 2003.

[38] Purcell, T. J., Buck, I., Mark, W. R., and Hanrahan, P. Ray tracing on
programmable graphics hardware. ACM Transactions on Graphics 21, 3 (July 2002),
703–712. ISSN 0730-0301 (Proceedings of ACM SIGGRAPH 2002).

[39] Rademacher, P. Glui, the OpenGL user interface library. http://www.cs.unc.

edu/~rademach/glui/, 1999.

[40] Rumpf, M., and Strzodka, R. Level set segmentation in graphics hardware. In
International Conference on Image Processing (2001), pp. 1103–1106.

[41] Russell, R. M. The cray-1 processor system. Communications of the ACM 21, 1
(1978), 63–72.

[42] Sabella, P. A rendering algorithm for visualizing 3D scalar fields. In ACM
Computer Graphics (SIGGRAPH ’88 Proceedings) (August 1988), pp. 51–58.

[43] Segal, M., and Akeley, K. The OpenGL graphics system: A specification
(version 1.4). http://www.opengl.org, 2003.

[44] Sethian, J. A. Level Set Methods and Fast Marching Methods Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials
Science. Cambridge University Press, 1999.

75

[45] SGI. Open inventor. http://oss.sgi.com/projects/inventor/, 2003.

[46] SGI, and Scientific Computing and Imaging Institute at the University

of Utah. Star-ray interactive ray tracer demo at Siggraph 2002. http://www.sci.
utah.edu/stories/2002/sum_star-ray.html, 2002.

[47] Sherbondy, A., Houston, M., and Nepal, S. Fast volume segmentation
with simultaneous visualization using programmable graphics hardware. In IEEE
Visualization (October 2003), pp. 171–196.

[48] Silberschatz, A., and Galvin, P. Operating System Concepts. Addison-Wesley,
1998.

[49] Stewart, N. Glt OpenGL C++ Toolkit. http://www.nigels.com/glt/, 2002.

[50] Strzodka, R., and Rumpf, M. Using graphics cards for quantized FEM com-
putations. In Proceedings VIIP Conference on Visualization and Image Processing
(2001).

[51] Taiwan, E. Powerstrip. http://www.entechtaiwan.net/ps.htm.

[52] The Insight Toolkit. http://www.itk.org, 2003.

[53] Udupa, J., LeBlanc, V., Schmidt, H., Imielinska, C., Saha, P., Grevera,

G., Zhuge, Y., Currie, L., Molholt, P., and Jin, Y. A methodology for
evaluating image segmentation algorithms. In Proceedings of SPIE Vol. 4684 (2002),
SPIE, pp. 266–277.

[54] Warfield, S. K., Kaus, M., Jolesz, F. A., and Kikinis, R. Adaptive, template
moderated, spatially varying statistical classification. Medical Image Analysis 4, 1
(2000), 43–45.

[55] Warfield, S. K., Zou, K. H., and Wells, W. M. Validation of image segmen-
tation and expert quality with an expectation-maximization algorithm. In MICCAI
2002: Fifth International Conference on Medical Image Computing and Computer-
Assisted Intervention (Heidelberg, Germany, 2002), Springer-Verlag, pp. 298–306.

[56] Whitaker, R. T. Volumetric deformable models: Active blobs. In Visualization
In Biomedical Computing 1994 (Mayo Clinic, Rochester, Minnesota, 1994), R. A.
Robb, Ed., SPIE, pp. 122–134.

[57] Whitaker, R. T. A level-set approach to 3D reconstruction from range data.
International Journal of Computer Vision 29, 3 (1998), 203–231.

[58] Xue, X., and Whitaker, R. Variable-conductance, level-set curvature for image
denoising. In IEEE International Conference on Image Processing (October 2001),
pp. 142–145.

