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Abstract15

A firm photovoltaic (PV) plant differs from a conventional unconstrained PV plant in terms of its ability to satisfy load16

demand on a 24/365 basis. Amongst various firm power enablers, overbuilding & proactive curtailment is the most17

counter-intuitive yet indispensable one. Although the cost-effectiveness of firm PV plants has been studied numer-18

ous times, few studies have evaluated the utilization of curtailed energy. To that end, this work advocates using the19

curtailed energy for hydrogen production, which is not impacted by the intermittency and variability of the curtailed20

power. A new mathematical optimization model that minimizes the firm kWh premium of the PV–battery–hydrogen21

hybrid system is put forth. Instead of using just generic modeling for the energy components (i.e., PV, battery, and22

electrolyzer), refined modeling, which could introduce bilinearity and nonlinearity, is herein considered. To address23

such optimization difficulty, a new algorithm, which hybridizes the particle swarm optimization and the branch-and-24

bound method, is proposed. The analysis reveals that the additional inclusion of a hydrogen production system within25

a firm PV plant is techno-economically attractive, and can lower the curtailment rate by 36%, and the overall firm26

kWh premium by almost 7%. What this implies is that, under the current market economics, the hydrogen production27

system becomes entirely free when used with firm PV plants.28

29

Highlights30

• A firm photovoltaic–battery–hydrogen hybrid system is proposed.31

• The hybrid system is able to meet demand 24/365 with 100% certainty.32

• A hybrid algorithm is proposed for the nonlinear optimization problem.33

• Power curtailment is necessary to achieve the lowest system cost.34
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Nomenclature

Indices
b Quantities related to battery storage
comp Quantities related to a compressor
d Index of the dimensions of the PSO algorithm
elec Quantities related to an electrolyzer
i ∈ I Charging measurements of battery storage
l ∈ L Line segment in the piecewise linear fitting
m Index of the particles of the PSO algorithm
o ∈ O Discharging measurements of battery storage
s Quantities related to the solar power
t ∈ T Time stamps, which index the 8760 hours in a year
tank Quantities related to hydrogen tank
y ∈ Y Energy components configured in the hybrid system
Constants
al Slope of the lth line segment, kg/kWh
A Cross-sectional area of an electrolyte cell, m2

bl Intercept of the lth line segment, kg/h
Bn Beam normal irradiance, W/m2

c Unit investment cost, $/kW or $/kWh or $/m3

c1 Individual learning factor, dimensionless
c2 Social learning factor, dimensionless
d Number of variables solved by the PSO algorithm, dimensionless
Dh Diffuse horizontal irradiance, W/m2

DH Hydrogen diffusivity coefficient under the operating temperature (T0), m2/s
eA Anodic current collector thickness, m
eC Cathodic current collector thickness, m
eM Average membrane thickness, m
F Faraday constant, C/mol
fgbest Optimal fitness value of all particles before jth iteration, $
f j
m Fitness value of each particle, $

fm, pbest Optimal fitness value of mth particle before jth iteration, $
fPV PV derating factor, dimensionless
Gc Global tilted irradiance, W/m2

G′c Effective irradiance, W/m2

Gh Global horizontal irradiance, W/m2

i Current density of an electrolyte cell, A/m2

ĩ Rated value of i, A/m2

i0A Anodic exchange current density, A/m2

I Current flowing through the electrolyte cell, A
Ĩ Rated value of I, A
Iloss Loss current of an electrolyte cell, A
Hh Hydrogen high heating value, kWh/kg
j Maximum iteration number, dimensionless
k Average electrolyte conductivity, S/m
l Equivalent annual operation and maintenance factor, dimensionless
m Number of particles, dimensionless
Nb Maximum value allowed for Nb, dimensionless
p Parameter of the empirical Sandia Array Performance Model, dimensionless
Pac AC power output of the inverter, W
P̃ac Rated output power of the inverter, W
P̂ch, i Measurement value of Pch, t , kWh
Pdc DC power output of PV modules, W
P̂dis, o Measurement value of Pdis, t , kWh
Pelec Upper limit value of the rated power of the electrolyzer, kW
P0

elec, l Left endpoint of the lth line segment, kW
P0

elec, l+1 Right endpoint of the lth line segment, kW
pgbest Position of the particle with the population optimum before jth iteration, kW or dimensionless
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PGF Panel generation factor, dimensionless
P̂in, i Measurement value of Pin, t , kWh
Pload, t Load demand at time t, kW
pm, pbest Position of the mth particle with the individual optimum before jth iteration, kW or dimensionless
P̂out, o Measurement value of Pout, t , kWh
Ppv AC power output of the PV system, W
Ppv, t Output power of the unconstrained PV plant at time t, kW
P̃s Rated power of the PV plant, W
q Parameter of the empirical Sandia Array Performance Model, dimensionless
r1/r2 Random numbers generated following a uniform distribution between 0 and 1, dimensionless
R Ideal gas constant, J/(mol·K)
R0 Ohmic resistance of an electrolyte cell, Ω
Rd Diffuse transposition factor, dimensionless
Rr Transposition factor due to ground reflection, dimensionless
S Tilt angle of the PV array, ◦

S b, ref Rated capacity of the testing battery from which the charging and discharging measurements were acquired, kWh
ŜoCch, i Measurement value of SoCt when the battery is charging, dimensionless
ŜoCdis, o Measurement value of SoCt when the battery is discharging, dimensionless
S H Hydrogen solubility coefficient under the operating temperature (T0), mol/(pa·m3)
T Lifetime of the corresponding component, year
T0 Operating temperature of the electrolyzer, K
Tamb Ambient temperature, ◦C
Tcell Cell temperature, ◦C
Tmod Module temperature, ◦C
T NOCT

mod Nominal operating cell temperature of PV modules, ◦C
UA Anodic over-potential, V
UC Cathodic over-potential, V
Ucell Operating cell voltage, V
Ũcell Rated value of Ucell, V
Urev Reversible cell voltage, V
V Wind speed at a height of 10 meters, m/s
vd Maximum particle velocity, kW or dimensionless
v d Minimum particle velocity, kW or dimensionless
v j

m, d Velocity of each particle, kW or dimensionless
w Maximum inertia weight, dimensionless
w Minimum inertia weight, dimensionless
x j

m, d Position of each particle, kW or dimensionless
Xs Upper limit of the PV oversizing ratio, dimensionless
z Stoichiometric coefficient, dimensionless
Z Solar zenith angle, ◦

∆P Pressure difference across the electrolyzer membrane, pa
∆t Time interval, which is equal to 1 h, h
∆T Parameter of the empirical Sandia Array Performance Model, ◦C
Variables
Bch, t Binary variables indicating the battery charging state, dimensionless
Bdis, t Binary variables indicating the battery discharging state, dimensionless
Belec, l, t Binary variable representing the status of the lth line segment, dimensionless
Delec, t Hydrogen production rate of the electrolyzer, kg/h
DH, t Volume of hydrogen for sale at time t, kg
Eb, t Electrical energy stored in the battery storage, kWh
Nb Number of batteries configured in the hybrid system, which is relaxed to a positive real number, dimensionless
N∗b Optimal number of battery storage, which is acquired by the hybrid algorithm, dimensionless
Pch, t Charging power of battery storage, kW
P̃comp Rated power of the compressor, kW
pref

comp Reference hourly energy consumption of the compressor when compressing 1 kg of hydrogen, kWh/kg
Pcomp, t Input power of the compressor, kW
Pcur, t PV power curtailment, kW
Pdir, t Par of the power output of the PV plant, which is used to directly fulfill the load demand, kW
Pdis, t Discharging power of battery storage, kW
P̃elec Rated power of the electrolyzer, kW
P∗elec Optimal rated power of the electrolyzer, which is acquired by the hybrid algorithm, kW
Pelec, t Input power of the electrolyzer, kW
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Pelec, l, t Input power corresponding to the lth line segment at time t, kW
Pin, t Power that enters battery storage at time t before the battery efficiency have been considered, kW
Pout, t Power that leaves battery storage at time t after the battery efficiency have been considered, kW
S b Rated capacity of battery storage, kWh
SoCt State of charge of battery storage, dimensionless
S̃ tank Rated capacity of the tank, m3

S tank, t Volume of hydrogen stored in the tank at time t, m3

xi, t Weight associated with the ith battery charging measurement point, dimensionless
xo, t Weight associated with the oth battery discharging measurement point, dimensionless
Xs Oversizing ratio of the PV plant, dimensionless
ηch, t Time-varying battery charging efficiency, dimensionless
ηdis, t Time-varying battery discharging efficiency, dimensionless
Greek letters
α Solar azimuth angle, ◦

αA Charge transfer coefficient at the anodic side, dimensionless
γA Anodic rugosity factor, dimensionless
γmod Temperature coefficient of the PV module, %/◦C
ηcell Efficiency of an electrolyte cell , %
ηref

ch Charging efficiency of battery storage, %
ηref

dis Discharging efficiency of battery storage, %
ηelec Time-varying hydrogen production efficiency of the electrolyzer, %
ηref

elec Reference hydrogen production efficiency of the electrolyzer, %
ηI Current efficiency of an electrolyte cell ,%
ηU Voltage efficiency of an electrolyte cell ,%
ηinv Time-varying inverter efficiency, %
ηnorm

inv Nominal efficiency of the inverter, %
θ Incidence angle, ◦

ϑ0 Standard atmospheric pressure, bar
ϑcomp Normal working pressure of the compressor, bar
ϑref

comp Standard working pressure of the compressor, bar
λH Hydrogen sale price, $/kg
ξ Capital recovery factor, dimensionless
ρ Foreground albedo, dimensionless
ρld Load ratio of the electrolyzer, dimensionless
σA Conductivity of the anodic current collector, S/m
σb Self-discharge rate, %
σC Conductivity of the cathodic current collector, S/m
τ0 Discount rate, %
τb Relative transmittance adjusted for beam radiation, dimensionless
τd Relative transmittance adjusted for sky diffuse radiation, dimensionless
τg Relative transmittance adjusted for ground-reflected radiation, dimensionless
υH Mass volume fraction of hydrogen under the pressure of ϑcomp, kg/m3
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1. Introduction36

One of the greatest challenges faced by today’s energy transition, from an energy mix heavily relying on fossil37

fuels to one that is predominated by renewables, is taming the variability and uncertainty of wind and solar power38

generation [1]. On this point, it has been defined that if an energy system can, from a planned capacity viewpoint, fulfill39

load demand on a 24/365 basis with 100% certainty, that energy system is said to be firm [2]. Traditional coal-fired40

thermal power plants are firm, because they could, after proper unit commitment and generation scheduling, deliver41

the set amount of power, provided that the load demand level does not fall too far below their nominal capacity. As42

such, those plants are regarded as dispatchable. The question of concern, therefore, is how to firm up the variable and43

uncertain wind and solar power generation and make it dispatchable.44

There have already been several well-known strategies that can help realize the novel idea of “dispatchable so-45

lar/wind.” First and foremost is energy storage, which stores the excess energy during production peaks and re-46

leases the stored energy during times of energy deficits [3]. Another strategy is performing the coordinated opera-47

tion/aggregation of spatially distributed renewable energy systems (e.g., virtual power plants), such that the variability48

of their joint output is milder than that of individual systems—an effect known as geographical smoothing and/or49

generation blending [4]. Thirdly, demand response of various kinds could help shift the load peaks to valleys, thereby50

obtaining a flatter load profile that is easier to manage [5]. These technologies, including energy storage, geographical51

smoothing, and demand response, could be collectively gathered under the umbrella term of firm power enablers [6].52

Just very recently, a new yet counter-intuitive firm power enabler has been formally proposed, namely, overbuild-53

ing & proactive curtailment [2]. The core idea of overbuilding & proactive curtailment is to strategically expand the54

installed capacity of solar/wind power plants, such that the generation profile is sufficiently elevated for the smaller55

generation dips due to resource fluctuations to still exceed the load profile. This idea is certainly attractive if cost is not56

a concern—excessive generation often implies curtailment, which has hitherto been regarded as a sign of inefficiency57

and energy wastage [7]. Hence, the underlying problem is one of optimization: How much overbuilding is needed,58

and how to optimally combine overbuilding & proactive curtailment with other firm power enablers such that the59

overall cost-effectiveness of the multi-energy system is the highest?60

Since the initial conception of such an optimization problem was put forth, the idea rapidly gained traction, and has61

led to a series of works investigating the solutions, under a variety of market settings and renewable resource regimes,62

including the United States [8], Italy [9], and Northern China [10]. In fact, most of these works were conducted with63

the International Energy Agency (IEA) Photovoltaic Power Systems Programme Task 16, which centers on the crucial64

aspect of firm power generation for transitioning grid-connected solar power from a marginal role to a dominant and65

economically core source. Interest readers are referred to the corresponding IEA report [11], as well as the recent66

review paper prepared by the task members [12]. The consensus of all previous studies is two-fold: (1) no single firm67

power enabler is able to achieve by itself firm generation cost-effectively, and (2) overbuilding & proactive curtailment68

plays a key role in minimizing the firm generation cost. A technical term that gauges the cost-effectiveness of firm69

power generation is firm kWh premium, which is the cost multiplier to achieve firm generation with respect to the70

cost of unconstrained renewable generation. (By “unconstrained,” it refers to the current way of injecting power from71

renewables into the grid without factoring the various firm power enablers.)72

Although overbuilding & proactive curtailment is, now, confirmed to be able to help achieve the lowest-cost firm73

generation, there has not been much formal argument or thought put into the utilization of the curtailed part of energy.74

Clearly, reasonable utilization of such energy would be further boost the energy economics of the system. However,75

because the curtailed power is highly variable and intermittent, of which the severity almost surely exceeds that of76

the unconstrained power from renewables, such power is unsuitable for every task that demands electricity. It is clear77

that a prerequisite to use the curtailed power is that the task of interest does not require a constant power supply, and78

can start up and shut down frequently. Therefore, this work advocates harnessing curtailed electricity for hydrogen79

production at the plant level. Although the majority of the previous investigations regarding firm solar power, with the80

exception of [10], are conducted on the system scale, undertaking the analysis at the plant level also holds fascination,81

which may be the case of meeting the off-shore load on an isolated island. Other potential applications of curtailed82

electricity include irrigation, pumped hydro storage, and many others, but they are not conceptually different from83

hydrogen production. This work is therefore generalizable to other applications.84

As mentioned earlier, configuring a firm generation energy system requires mathematical optimization. Put it85

simply, given a load profile, one is tasked to optimize the sizing of solar/wind plants, the installed capacity of energy86
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storage, as well as the hour-by-hour actions of these system constituents such that the load can be entirely satisfied. On87

this point, if hydrogen production is to be incorporated into the system, it necessarily implies a new formulation of the88

optimization problem, which is what this work is primarily concerned about. It must be noted that the configuration of89

the hydrogen production system in this work differs from most of the previous works [e.g., 13–15]. In most previous90

works, the objective function often involves just the economics of the hydrogen production system itself, such as the91

capital expenditure (CapEx) and operating expense (OpEx) of the system, the hydrogen and electricity sales revenue,92

or the environmental benefits. In this work, the objective is in regard to the joint cost and revenue structure of the firm93

power plant, which is more complex. The same can be said for constraints. To summarize, the first contribution of94

this work is to propose an optimization model that can jointly handle the configuration of a firm power plant and a95

hydrogen production system.96

In fact, the difficulty of a mathematical optimization problem perpetually lies largely on whether the formulation97

can be solved using techniques that already exist. Stated differently, developing new mathematical optimization can98

be demanding and is often seen as a topic beyond the skill set of power system engineers; therefore, a vast majority99

of works involving the configuration of energy systems rely on existing solvers, such as Cplex [e.g., 16] or Gurobi100

[e.g., 17]. To make optimization problems compatible with existing solvers, it is commonplace to make assumptions101

and/or employ simplifications of various sorts during the problem setup, which makes the designed systems deviate102

from reality. On the other hand, it has also been frequently shown that realistic modeling of energy components, such103

as that for the photovoltaic (PV) system [18], battery storage [19], or hydrogen system [20], can introduce bilinear104

and nonlinear terms (see Section 2 for details). Hence, if such realistic models are to be used, new algorithms for105

solving such optimization problems are needed, which constitutes the second main contribution of this work—the106

refined modeling of the system’s main components is introduced and a new algorithm that combines particle swarm107

optimization (PSO) and the branch-and-bound method is proposed.108

The remaining part of the paper is organized as follows. Section 2 details the modeling of constituents of a109

PV–battery–hydrogen hybrid system. For each main constituent, that is, the PV system, battery storage, and the110

electrolyzer, two models are presented, one conventional (i.e., simplified) and the other refined; this aims at studying111

the implications on the final configuration when using better modeling techniques. Section 3 outlines the optimization112

model itself, which contains both the objective function and various operating & power balance constraints. Given113

the fact that the problem at hand is no longer a mixed integer linear program (MILP), standard solutions cannot be114

applied, a PSO–branch-and-bound hybrid algorithm that can efficiently handle the targeted optimization is proposed115

in the same section. Section 4 leads into the empirical part of the paper, in that, it first introduces the dataset supporting116

the demonstration, which contains both the electric load information and the corresponding weather information from117

the typical meteorological year (TMY). Various parameters and specifications required by the optimization are also118

solicited and set, after searching the latest reference and information from credible sources. Section 5 presents the119

result and discussion on four accounts: (1) differences between generic versus refined modeling, (2) cost benefits120

of using overbuilding & proactive curtailment, (3) sensitivity analysis on PV and battery costs, and (4) sensitivity121

analysis on electrolyzer costs. Conclusions follow at the end. In summary, Figure 1 provides a graphical depiction of122

the methodological framework of this work.123

2. Modeling of the PV–battery–hydrogen hybrid system124

This section proceeds with a general overview of the structure of the PV–battery–hydrogen (PBH) hybrid system.125

After that, the modeling of the operations of the system’s main constituents is detailed. As mentioned in the intro-126

duction, one of the main aims of this work is to evaluate the implications of model realism on the eventual system127

configuration. As such, each of the main constituents, which include the PV array, battery storage, and electrolyzer,128

is modeled in two ways, one generic and one refined.129

2.1. Structure of the PV–battery–hydrogen hybrid system130

Figure 2 depicts the schematic diagram of the PBH system of concern, in which the PV plant and the battery131

storage jointly provide the electricity required by the hydrogen production system and the electric load. First, it132

should be noted that, differing from conventional/unconstrained PV plants, firm PV plants must be deployed together133

with battery storage, as well as a flexible control system, which controls the charging and discharging of the battery134
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Section 2－Modeling of the PV–

battery–hydrogen hybrid system
Section 3－Model formulation and solution algorithm

Section 4－Data and parameters

Section 4－Result and discussion

Modeling of PV plant

Modeling of  battery storage

Modeling of  electrolyzer

Measure: Firm kWh premium

Objective function

Constraints

Model algorithm

NSRDB & OpenEI

Refined modeling vs generic modeling

Benefits of PV overbuilding and

hydrogen system installation

Effect of PV and battery costs on the

firm kWh premium

Sensitivity to electrolyzer cost

System structure

One is refined, the other is generic

•Operation constraints of electrolyzer

•Operation constraints of PV plant

•Operation constraints of battery storage

•Operation constraints of compressor

•Operation constraints of hydrogen tank

•Power balance constraints 
Case A: branch-and-bound method

•Equivalent annual cost of hydrogen system

•Equivalent annual cost of battery storage

•Equivalent annual cost of PV plant

•Annual revenue from the sale of hydrogen

Case B: PSO–branch-and-bound method hybrid algorithm

Two datasets: Parameters: parameters of the optimization model, component parameters, parameters of the algorithm 

Section 5－Conclusion

Fig. 1. The structure of this work.

storage. Battery storage preserves the excess solar energy during periods with high PV output and releases the stored135

energy to make up for the energy deficit during periods with low or no PV output. The coordinated scheduling of firm136

PV plants ensures that load demand can be met with 100% certainty. Another important trait of firm PV plants is PV137

oversizing, which is also absolutely necessary, because the overall cost-effectiveness of firm PV plants can only be138

maximized with PV oversizing, even if PV oversizing necessitates curtailment. All these ideas have been delivered139

and justified several times in previous works on firm power, as well as in the introduction of this work.140

What separates the current work from the previous ones is that the hybrid system herein also includes a hydrogen141

production system. The hydrogen production system converts electricity to hydrogen. As such, it can utilize the142

curtailed electricity from the firm PV plant, thereby further elevating the energy economics of the hybrid system.143

Stated differently, the configuration of the hydrogen production system introduces a new source of revenue through144

the sale of hydrogen. On the other hand, hydrogen may also be perceived as a seasonal storage, facilitating the145

production of e-fuels through the process of electricity–hydrogen–electricity conversion, which is essential for the146

transition towards a 100% renewable energy system led by solar energy. Specifically, these e-fuels can be fed into147

the thermoelectric generators to generate electricity during periods when PV power falls below the requirement of148

load. Although the cost-effective advantages of harnessing hydrogen as seasonal storage have been substantiated, this149

aspect is not taken into consideration herein for two reasons: (1) The firm PV plant already satisfies electric demand150

at all times, and (2) the conversion efficiency of electricity–hydrogen–electricity conversion is low. Therefore, the151

hydrogen production system is tasked to provide an intermediate product and raw material for the chemical industry,152

encompassing the synthesis of ammonia, methanol, or hydrogenation reactions in petroleum refining processes; the153

purpose of this work is to assess whether hydrogen production presents an economic benefit.154

Within the hydrogen production system there are three components, namely, the electrolyzer, compressor, and155

hydrogen tank, among which the electrolyzer requires the most attention for its working mechanism is the most156

complex. The low-pressure hydrogen, which is produced by the electrolyzer with the input of the nearly zero-cost157

curtailed electricity from the firm PV plant, is compressed into high-pressure hydrogen, which is then stored in the158

hydrogen tank. In this work, it is assumed that the hydrogen in the tank is sold to local hydrogen wholesalers at 12:00159

midnight each day. In the following three subsections, the modeling of the PV plant, battery storage, and electrolyzer160

are formulated in two ways.161

2.2. Modeling of PV plant162

In what follows, the generic PV plant model is referred to as model A, and the refined PV plant model as model163

B.164
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PV to hydrogen 

system

Firm 

PV plant

Electrolyzer

Hydrogen system

Hydrogen tank

Compressor

 

Residential zone

Commercial zone

Electric load

Battery storage

Charge

Discharge

PV to load

Curtailment

Electricity

Industrial zone

Hydrogen

Chemical industry

Fig. 2. A firm PV plant equipped with battery storage and hydrogen production system.

2.2.1. Generic PV plant model A165

For new or planned PV plants where long-term PV measurements are absent, one is still able to estimate its power166

output through simulation [21]; this is in fact a necessary step in solar resource assessment and bankability analysis167

[22, 23]. Modeling a PV plant requires two groups of information. One of those is a set of meteorological variables,168

including global horizontal irradiance (GHI), ambient temperature, wind speed, or sometimes, the ground albedo.169

These variables should span, or be able to represent, a long enough time period, such that they can typify the local170

weather regime. The other set of information is related to the design parameters of the plant, which include but are171

not limited to panel orientation, panel model, panel layout, and inverter model. Conventionally, since PV generation172

plays just a marginal role in the whole energy mix, power system engineers usually employ simplified PV modeling173

to estimate PV power output.174

Indeed, the conventional (i.e., generic) PV plant model is very simple, as it only requires three equations [14]:

Gc = Bn cos θ + Dh
1 + cos S

2
+ ρGh

1 − cos S
2

, (1)

Tcell = Tamb +
(
T NOCT

mod − 20◦C
) Gc

800 W/m2 , (2)

Ppv =
[
1 + γmod (Tcell − 25◦C)

] ηnorm
inv P̃sGc

1000 W/m2 . (3)

Equation (1) is known as the isotropic transposition equation, which converts the horizontal irradiance components175

to that on the tilted surface, while assuming isotropic sky- and ground-view factors. In Eq. (1), Gc, Bn, Dh, and176

Gh are global tilted irradiance (GTI), beam normal irradiance (BNI), diffuse horizontal irradiance (DHI), and GHI,177

respectively; S is the tilt angle of the PV array; θ is the incidence angle, which can be calculated via solar positioning;178

and ρ is the foreground albedo, which may be assumed to be 0.2 for non-bright surfaces. Equation (2) converts the GTI179

(Gc) and ambient temperature (Tamb) into cell temperature (Tcell). In this equation, T NOCT
mod is the nominal operating180

cell temperature of PV modules, which is usually known. Lastly, Eq. (3) uses the information attained thus far to181

model the AC power output of the PV system (Ppv). In Eq. (3), P̃s is the rated power of the PV plant; γmod is the182

temperature coefficient of the PV module, which is known from the manufacturer; and ηnorm
inv is the nominal efficiency183

of the inverter. It is worth mentioning that Eqs. (1–3) can be applied to compute the PV output during any time t, thus184

the subscript t is omitted here for notation brevity, and likewise for the subsequent PV model B.185

2.2.2. Refined PV plant model B186

Conventional PV model A is overly idealistic owing to its crude modeling of the conversion process, which may187

result in large deviations between the simulated and actual PV output [24]. Therefore, the refined PV modeling188
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strategy, which is known as model chain, is now being increasingly valued. Model chain utilizes a collection of189

energy meteorology models in cascade, where the output of a preceding model is used as the input of the succeeding190

one. A typical model chain is shown in Fig. 3. It should be highlighted that the complexity of a “full” model chain191

goes beyond that depicted in Fig. 3, and the reader is referred to Chapter 11 of the book by Yang and Kleissl [25] for a192

complete tutorial. Nonetheless, the model chain in Fig. 3 is already sufficient for most applications. In the following,193

the basic principle of each component model in the chain, according to Fig. 3, is briefly described.194

Cell temperature model

Solar positioning

Separation model

Transposition model

PVWatts loss model

Reflection loss model

PV module model

Inverter model

Component models of the model chain

Output: PV output power

Input: Location, time, weather variables, 

design parameters,...

Fig. 3. Illustration of a typical model chain, which includes eight component models.

To fully describe the position of the sun, as observed from the titled PV panel surface, three angles, namely, the195

solar azimuth angle (α), solar zenith angle (Z), and incidence angle (θ), are required. These angles can be computed196

via solar positioning, as long as the location and time are known. Solar position algorithms have performance conflicts197

in terms of accuracy and computation time [26]. For the current simulation, time is not a main concern. Therefore,198

the algorithm developed by Reda and Andreas [27], which has the highest accuracy, is herein selected.199

With a separation model, DHI and BNI can be obtained from GHI. Inherently, these three components adhere to
the closure relationship, that is:

Gh = Bn cos Z + Dh. (4)

In the literature, a multitude of separation models exist, each diverging from one another in terms of model perfor-200

mance and formulation [see 28, 29, for reviews]. Since the meteorological data of a particular location, which can be201

acquired from the National Solar Radiation Database (NSRDB) [30, 31], already encompasses BNI, DHI, and GHI,202

the need for separation modeling is circumvented in this work. However, what is worth noting is that the NSRDB uses203

the DISC separation model [32] to split DHI and BNI from GHI under cloudy skies, and uses the REST2 clear-sky204

model to [33] directly compute all three irradiance components under clear skies.205

The function of a transposition model, as mentioned earlier, is to convert BNI, DHI, and GHI into GTI via [34]:

Gc = Bn cos θ + RdDh + ρRrGh, (5)

where Rd is the sky-view factor or the diffuse transposition factor; Rr = (1 − cos S ) /2 is the ground-view factor or206

transposition factor due to ground reflection, which is usually assumed to be isotropic. Therefore, only Rd is unknown207

and needs to be modeled. Indeed, the modeling of Rd is the sole element distinguishing various transposition models.208

When the sky is assumed to be isotropic, Rd = (1 + cos S ) /2, in which case Eq. (5) is reduced to Eq. (1). In this209

work, the quasi-universal Perez model [35] is utilized to determine the value of Rd, due to its well-tested accuracy and210

reliability in comparison with other alternatives [see 34, for a comparison study].211

Though the GTI holds the foremost influence over PV output, the next important factor is the cell temperature. In
most occasions, the cell temperature is governed by GTI, wind speed (V), and ambient temperature. Similar to the
case of separation and transposition models, many options are available for estimating the cell temperature. Here, the
empirical Sandia Array Performance Model (SAPM), as documented in [36], is considered without loss of generality,
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and it takes the form:

Tmod = Gc exp(p + qV) + Tamb, (6)

Tcell = Tmod +
Gc

1000W/m2∆T, (7)

where Tmod is the module temperature; p, q, and ∆T are model parameters having to do with the encapsulation and212

mounting of the modules, which can be solicited from a look-up table. It should be emphasized that the unit of Gc in213

Eq. (6) is W/m2, and V represents the wind speed with a unit of m/s at a height of 10 m.214

When light strikes the glass or other encapsulation materials, it results in a reflection loss, which lowers the PV
output. Three relative transmittances (τb, τd, and τg) are usually adopted to account for the respective losses in the
three components of GTI. Upon incorporating reflection losses, the GTI is transformed into the effective irradiance
(G′c), which can be denoted by the following equation:

G′c = τbBn cos θ + τdRdDh + τgρRrGh. (8)

Again, numerous reflection loss models have been proposed to estimate τb, τd, and τg. In this work, the value of τb215

is determined using the Fresnel equation [37], whereas the values of τd and τg are determined based on the analytical216

expressions derived by Xie et al. [38].217

DC models, or PV models, as the name suggests, calculate the DC power (Pdc); they can be broadly grouped into
two categories: empirical models and equivalent-circuit-based physical models. The latter is capable of acquiring the
entire I–V curve of the PV plant, but detailed design parameters of the system, such as the panel layout or connection,
are necessary. In contrast, empirical models demand only a few fundamental parameters to be known. In this work,
the widely-used empirical PVWatts model [39] is leveraged to estimate the DC power, which is formulated as follows:

Pdc =
[
1 + γmod (Tcell − 25◦C)

] P̃sG′c
1000 W/m2 . (9)

To fulfill the load demand, DC power must be passed through some power electronics to become AC power (Pac);
this process may be represented in a surrogate fashion by an inverter model. The DC–AC conversion follows the
PVWatts inverter model [39], which accounts for inverter clipping; it is:

ηinv =
ηnorm

inv

0.9637

−0.0162
Pdcη

norm
inv

P̃ac
− 0.0059

P̃ac

Pdcη
norm
inv
+ 0.9858

 , (10)

Pac = min
(
ηinvPdc, P̃ac

)
, (11)

where P̃ac is the rated output power of the inverter, ηinv is the time-varying inverter efficiency.218

Through the component models mentioned thus far, the AC power under various meteorological conditions can219

already be estimated to a fairly accurate degree. However, for a more realistic simulation of the PV output, it is crucial220

to account for additional losses, such as wiring loss or soiling loss. Accurate modeling of the losses also needs detailed221

information about the PV plant, which is more often than not unknown. To that end, the PVWatts loss model [39],222

which simply considers various losses in percentage forms, is selected to roughly estimate these losses.223

2.3. Modeling of battery storage224

PV plants output no or little power under overcast skies and at night, and the PBH hybrid system must rely upon225

energy stored during the day to satisfy the energy demand during those periods. Similar to the case of PV, two battery226

models are outlined in this subsection, one generic battery model (or model A) and one refined battery model (or227

model B).228
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2.3.1. Generic battery model A229

Because the energy available in batteries over the next hour depends on the state of power of the current hour, as
well as the charging/discharging operation, the main governing equations of battery models must contain a notion of
time. The generic battery model, which is widely employed by the energy sector [40], is as follows:

Eb, t+1 = (1 − σb)Eb, t + ∆t
ηref

ch Pch, t −
Pdis, t

ηref
dis

 , (12)

where Eb, 1, Eb, t, and Eb, t+1 represent the electrical energy stored in the battery storage at time t = 1, t, and t + 1,230

respectively; ∆t is the time interval, which is 1 h in this work; Pch, t and Pdis, t indicate the charging power and231

discharging power of battery storage at time t, respectively; σb is the self-discharge rate; ηref
ch and ηref

dis are charging and232

discharging efficiencies.233

Although Eq. (12) is self-explanatory, one has to note that several constraints ought to be met to reflect the reality.
The basic ones are:

0 ≤ Pch, t ≤ Bch, tP̃ch, (13)

0 ≤ Pdis, t ≤ Bdis, tP̃dis, (14)
Bch, t + Bdis, t ≤ 1, (15)
0 ≤ Eb, t ≤ S b, (16)
Eb, 1 = 0.8S b. (17)

Constraints (13) and (14) suggest that the charging and discharging powers cannot exceed their physical limits, which234

are narrated by the pre-defined upper limits of the charging (P̃ch) and discharging (P̃dis) powers. Additionally, these235

upper limits should be multiplied with Bch, t and Bdis, t, which are binary variables indicating the battery charging and236

discharging states. Constraint (15) prevents simultaneous charging and discharging of battery storage over the same237

time period. Constraint (16) states that the energy stored at any time t should neither exceed the rated capacity (S b)238

nor fall below 0. The initial (i.e., t = 1) energy available in the battery storage is set to be 0.8 times the rated capacity,239

see Eq. (17).240

2.3.2. Refined battery model B241

The generic battery model A treats the charging/discharging efficiencies and the upper limits of the charging/discharging242

power of battery storage as constants, implying their independence from the state of charge (SoC) of battery storage243

[41, 42]. Since the decoupling among the SoC, efficiencies, and upper power limits of battery storage fails to provide244

an accurate representation of the actual operating mechanism of batteries, the real operational behaviors of battery245

storage may deviate from the scheduling plan. Accordingly, a measurement-based battery model, which was devel-246

oped by Gonzalez-Castellanos et al. [19], is used in this work to describe the interaction among these three variables.247

Prior to elaborating further on this refined battery model, it is thought appropriate to elaborate first on the meaning248

of some symbols. Pin, t and Pout, t are the power that enters/leaves battery storage at time t before/after the battery249

efficiencies have been considered, respectively; SoCt is the SoC of battery storage at time t; the set I and vector250 (
ŜoCch, i, P̂ch, i, P̂in, i

)
, i ∈ I are respectively the battery charging measurement set and its ith 3-dimensional charging251

measurement point; the set O and vector
(
ŜoCdis, o, P̂dis, o, P̂out, o

)
, o ∈ O are respectively the battery discharging mea-252

surement set and its oth 3-dimensional discharging measurement point. The core concept of this battery model revolves253

around the use of the two measurement sets, namely, I and O, to define the feasibility region of battery operations. To254

put it simply, any battery discharging point
(
SoCt, Pdis, t, Pout, t

)
can be expressed as a convex combination of battery255

discharging measurements, as demonstrated in Fig. 4; similarly, any battery charging point
(
SoCt, Pch, t, Pin, t

)
can be256

mathematically written as a convex combination of battery charging measurements.257
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Fig. 4. The feasibility region (light blue area) for battery discharging points, which is written as a convex combination of 14 battery discharging
measurement points (black dots). These measurements were acquired from battery storage with a rated capacity of 5.32 kWh [19].

The measurement-based (i.e., refined) battery model, which includes Eqs. (16) and (17), can be formulated as

Eb, t+1 = Eb, t + Pin, t∆t − Pout, t∆t, (18)

Pin, t =
∑
i∈I

xi, tNbP̂in, i, (19)

Pch, t =
∑
i∈I

xi, tNbP̂ch, i, (20)

SoCt =
∑
i∈I

xi, tŜoCch, i +
∑
o∈O

xo, tŜoCdis, o, (21)∑
i∈I

xi, t = 1, 0 ≤ xi, t ≤ 1, (22)

Pout, t =
∑
o∈O

xo, tNbP̂out, o, (23)

Pdis, t =
∑
o∈O

xo, tNbP̂dis, o, (24)∑
o∈O

xo, t = 1, 0 ≤ xo, t ≤ 1, (25)

Eb, t = SoCtS b, (26)
S b = NbS b, ref, (27)

0 ≤ Nb ≤ Nb, (28)

where xi, t is the weight associated with the ith battery charging measurement point; xo, t is the weight associated258

with the oth battery discharging measurement point; S b, ref is the rated capacity of the testing battery from which259

the charging and discharging measurements were acquired; Nb commonly denotes the integer number of batteries260

configured in the hybrid system; Nb is the maximum value allowed for Nb. It should be emphasized that when S b, ref261

is sufficiently small, relaxing the integer variable Nb to a real variable only introduces negligible errors [43]. Hence,262

to improve the computational efficiency of the optimization model embedded with this battery model, the value of Nb263

should be relaxed as far as possible to be a positive real number. In fact, the technique of variable relaxation is utilized264

in this work.265

The hidden information in the battery charging and discharging measurements can be captured and exploited to266

constrain the working patterns of battery storage, which are the main features that distinguish this refined battery267

model B from the generic battery model A. Specifically, Eqs. (19)–(25) use the battery charging/discharging mea-268

surements to limit the values of the battery charging/discharging points, which reflects the interdependence of the269

SoC and charging/discharging power of battery storage. Furthermore, the time-varying battery charging efficiency270

(ηch, t) and discharging efficiency (ηdis, t) are implicitly considered, as there exist definitions of ηch, t = Pin, t/Pch, t and271
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ηdis, t = Pdis, t/Pout, t. Next, the description of the remaining constraints on this model is presented. As shown in272

Eq. (18), the available energy of battery storage at time t + 1 is strictly equal to the stored energy at time t minus273

the power fed into the battery times the time interval, while the power output from the battery times the time interval274

is added. Constraint (26) reveals the relation between the SoC and the available energy of battery storage during275

each time. The energy storage configured in the hybrid system can be perceived as composed of Nb test batteries, as276

indicated by Eq. (27). Constraint (28) denotes that the value of Nb is confined by its bounds.277

2.4. Modeling of electrolyzer278

This subsection again consists of two parts, which describe the generic electrolyzer model (or model A) and the279

refined electrolyzer model (or model B).280

2.4.1. Generic electrolyzer model A281

With the curtailed electricity from the firm PV plant as power input, water is electrolyzed into hydrogen following
an electrochemical reaction process. The generic model of an electrolyzer is simplistic, as it contains only one equation
with one constraint [44]:

Delec, t =
ηref

elecPelec, t

Hh
, (29)

0 ≤ Pelec, t ≤ P̃elec, (30)

where Delec, t and Pelec, t are the hydrogen production rate, with a unit of kg/h, and input power of the electrolyzer282

at time t, respectively; ηref
elec is the reference hydrogen production efficiency of the electrolyzer; Hh is the hydrogen283

high heating value, with a unit of kWh/kg; P̃elec is the rated power of the electrolyzer. Equation (29) states that the284

hydrogen production rate of the electrolyzer depends upon the production efficiency and input power. Constraint (30)285

envelopes the input power between the rated value and zero.286

2.4.2. Refined electrolyzer model B287

The generic electrolyzer model A assumes that the hydrogen production efficiency is constant. However, in prac-288

tice, the load ratio of an electrolyzer, which is defined as the ratio of the input power to the rated power, impacts its289

hydrogen production efficiency. Neglecting the dynamic characteristics of the hydrogen production efficiency under-290

mines the accuracy of modeling, thus a refined electrolyzer model B proposed by Jiang et al. [20], which incorporates291

the interplay between the load ratio of the electrolyzer and the hydrogen production efficiency, is considered in this292

work. The remainder of this subsection details the process of constructing this electrolyzer model, along with its293

transformation into a tractable model using the piecewise linear approach. Note that the subscript t has been removed294

from the variables here, as in Section 2.2, for notation brevity.295

Since the electrolyte cell is the basic unit where the electrochemical reaction takes place within electrolyzers, the
cell efficiency (ηcell), which is the product of the current efficiency (ηI) and voltage efficiency (ηU) of an electrolyte
cell, may be used as a proxy for the time-varying hydrogen production efficiency of the electrolyzer (ηelec) [45], as
specified below:

ηelec ≈ ηcell = ηIηU . (31)

The current efficiency of an electrolyte cell is commonly defined as [46]:

ηI = 1 −
Iloss

I
= 1 −

Iloss

iA
, (32)

where i and I are respectively the current density and current flowing through the electrolyte cell; A is the cross-
sectional area of an electrolyte cell; and Iloss is the loss current. According to Fick’s law and Faraday’s law, the loss
current of an electrolyte cell can be computed as [47, 48]:

Iloss = 2 A F DH S H∆P/eM , (33)
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where F is the Faraday constant; DH and S H are the hydrogen diffusivity coefficient and hydrogen solubility coefficient296

under the operating temperature (T0); ∆P is the pressure difference across the electrolyzer membrane, and eM is the297

average membrane thickness. In general, the membrane thickness gradually thins due to the physical or chemical298

aging of an electrolyzer. From a simplified viewpoint, the membrane thickness at the half-life of an electrolyzer is299

chosen in this work as a representation of the average membrane thickness.300

The definition of the voltage efficiency (ηU) of an electrolyte cell—-note that the computation of ηU in the refined
electrolyzer model proposed by Jiang et al. [20] is erroneous and necessitates correction in accordance with [46]—is
given by the ratio of the reversible cell voltage to the operating cell voltage:

ηU =
Urev

Ucell
=

Urev

Urev + UA + UC + IR0
≈

Urev

Urev + UA + IR0
, (34)

with

Urev = 1.5184 − 1.5452 × 10−3 × T0 + 9.523 × 10−5 × T0 × ln (T ) + 9.84 × 10−8 × T 2
0 , (35)

where Urev denotes the reversible cell voltage, which represents the minimum cell voltage necessary for the electrolytic301

dissociation of one water molecule; Ucell is the operating cell voltage at the reaction temperature T0, which is equal302

to the voltage across an electrolytic cell; UA is the anodic over-potential; UC is the cathodic over-potential, which is303

disregarded in this work due to its negligible magnitude [49]; R0 is the ohmic resistance of an electrolyte cell. From304

Eq. (34), it is found that the operating cell voltage may be approximated as the sum of Urev, UA, and the potential due305

to ohmic loss, i.e., IR0. The formulas for calculating the anodic over-potential and ohmic resistance of an electrolyte306

cell can be written as [49, 50]307

UA =
RT0

αAzF
ln

(
i

i0AγA

)
, (36)

R0 =
eM

Ak
+

eA

AσA
+

eC

AσC
, (37)

where R is the ideal gas constant; αA is the charge transfer coefficient at the anodic side; z is the stoichiometric308

coefficient representing the number of exchanged electrons in the water electrolysis reaction; i0A and γA are the anodic309

exchange current density and the anodic rugosity factor; eA and σA are the anodic current collector thickness and the310

conductivity of the anodic current collector; eC andσC are the cathodic current collector thickness and the conductivity311

of the cathodic current collector; k is the average electrolyte conductivity. Similar to the average membrane thickness,312

the value of k pertains to the electrolyte conductivity at the half-life of the electrolyzer.313

Combining Eqs. (31)–(37) yields:

ηelec =

(
1 −

2FDHS H∆P
ieM

) 
Utn

Utn +
RT0

αAzF
ln

(
i

i0AγA

)
+ i

(
eM

k
+

eA

σA
+

eC

σC

)
 . (38)

It is apparent from Eq. (38) that the hydrogen production efficiency of the electrolyzer is closely related to the current
density flowing through the electrolyzer. Nevertheless, in practical operations, the load ratio emerges as a more readily
available and universally applicable parameter than the current density. The load ratio (ρld) can be calculated as:

ρld =
UcellI

Ũcell Ĩ
=

Ucelli

Ũcell̃i
, (39)

where the tilde above a quantity denotes the rated value of that quantity. As can be seen from Eqs. (38) and (39),314

both the hydrogen production efficiency and load ratio show variations with respect to the current density. In other315

words, when provided with a dataset of current density values that span uniformly between 0 and ĩ, it becomes316

feasible to acquire two distinct sets of data representing the corresponding hydrogen production efficiency and load317
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ratio, respectively. Moreover, by multiplying the load ratio and rated power, the electrolyzer input power can be318

determined; the hydrogen production rate of the electrolyzer can then be calculated based on Eq. (29) with the known319

hydrogen production efficiency and input power of the electrolyzer.320

There is but one issue with integrating the above refined electrolyzer model B into the optimization model elabo-321

rated in Section 3, that is, the optimization model simultaneously depends on both Delec, t and Pelec, t, yet, the nonlinear322

relationship between the two quantities prevents the execution of the convex optimization routine. Fortunately, both323

Delec, t and Pelec, t are related to the current density i. As such, by enumerating a sequence of discrete i values, a one-324

to-one mapping between discrete Delec, t and discrete Pelec, t may be derived. Be that as it may, the optimization routine325

requires Delec, t and Pelec, t to be continuous variables. As such, a piecewise linear fitting must be carried out, as to326

convert the discrete pairs of Delec, t and Pelec, t into a continuous curve, portraying the relationship between continuous327

Delec, t and continuous Pelec, t. This entire fitting process is illustrated in Fig. 5.328
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Fig. 5. An illustration of the curve fitting procedure for mapping the hydrogen production rate of the electrolyzer as a function of the input power.

More specifically, once the datasets for the hydrogen production rate and input power of the electrolyzer are
obtained from the i sequence, the pwlf-python package [51] is used to calculate the slope, intercept, and endpoint
locations of each line segment for a specified rated power and a given number of line segments. At this stage, Eq. (29)
can be re-expressed as:

Delec, t =
∑
l∈L

(
alPelec, l, t + blBelec, l, t

)
, (40)

Pelec, t =
∑
l∈L

Pelec, l, t, (41)∑
l∈L

Belec, l, t = 1, (42)

Belec, l, tP0
elec, l ≤ Pelec, l, t ≤ Belec, l, tP0

elec, l+1, (43)

where l indexes the line segments; L is the set of positive integers within the specified number of line segments; al, bl,329

P0
elec, l, and P0

elec, l+1 denote the slope, intercept, left endpoint, and right endpoint of the lth line segment, respectively;330

Pelec, l, t is the input power corresponding to the lth line segment at time t; Belec, l, t is a binary variable representing the331

status of the lth line segment, with a value of 1 when the input power falls within that specific line segment, and 0332

otherwise. Using the piecewise linear approach, Eqs. (40) and (41) estimate the hydrogen production rate and input333

power of the electrolyzer. As suggested by Eq. (42), the input power during each time can only lie within one line334

segment. The line segment, within which the input power of the electrolyzer at time t is located, is identified by335

constraint (43).336
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3. Model formulation and solution algorithm337

In this section, the measure for quantifying the effective dispatchable cost of PV generation is introduced, and the338

optimization model, which includes an objective function and numerous constraints, is formulated, so as to achieve339

the lowest-cost firm PV generation. Because the optimization model cannot be solved using off-the-shelf solvers (see340

below for more details), a new hybrid algorithm is proposed, which comprises an outer meta-heuristic loop and an341

inner branch-and-bound solver.342

3.1. Measure of cost-effectiveness of firm PV generation343

In all studies concerning the configuration of multi-energy systems, a quantifier is needed to assess the economic
viability of the configured system; the present PBH hybrid system is no exception. Insofar as firm generation is
concerned, the overarching measure employed in this work is known as the “firm kWh premium,” which was first and
formally conceptualized by Perez et al. [6]. The firm kWh premium is the ratio of the costs of firm and unconstrained
PV. Because the levelized cost of electricity (LCOE) is the dominant quantifier for electricity, the firm kWh premium
is based upon it, i.e.,

Firm kWh premium =
Firm PV LCOE

Unconstrained PV LCOE
, (44)

where

LCOE =
Equivalent annual cost of generation

Annual electricity production
. (45)

It must be highlighted that the choice of using firm kWh premium instead of using LCOE directly is because the344

value of the PV LCOE varies across different markets and radiation regimes. Stated differently, a cost multiplier345

rather than an absolute cost is able to relieve the market or radiation-regime dependency, and thus should be preferred.346

As demonstrated by Eq. (45), the calculation of the PV LCOE involves the equivalent annual cost of generation—347

the word “equivalent” suggests the conversion of the total cost of each component to a one-year equivalent value348

considering the component lifetime, see Eq. (47)—and the annual electricity production.349

Note that there are several caveats when using Eq. (45). The equivalent annual cost of unconstrained PV only350

includes the equivalent annual investment cost, or the “CapEx,” and the equivalent annual operation and maintenance351

(O&M) cost, or the “OpEx,” of that unconstrained PV plant. However, for firm PV, its cost also embeds the CapEx352

and OpEx of the firm power enablers, such as battery storage or the overbuilt part of PV. In addition, considering353

the present PBH hybrid system, the annual hydrogen sale revenue, as well as the CapEx and OpEx of the hydrogen354

system, should also be incorporated into the objective function. Regarding the annual electricity production, in the355

case of unconstrained PV plants, it refers to the annual energy yield. Nonetheless, because firm PV is tasked to, and356

in fact can, satisfy the load demand with 100% certainty, its generation must be equal to the load demand. Based on357

Eqs. (44) and (45), the firm kWh premium involves four LOCE terms, and three of them are constants for a given358

set of data (i.e., load condition, weather condition, and unconstrained PV system design), with the only adjustable359

component being the equivalent annual cost of a PBH hybrid system, which is therefore used as the objective function360

of the optimization model.361

3.2. Objective function362

The objective function of the optimization model can be described as

argmin
S b, Pch, t , Xs, P̃elec, P̃comp, S̃ tank,Dt

H

cbS b

ξb + lb
∑
t∈T

Pch, t

S b

 + csXsP̃s (ξs + ls)

+ celecP̃elec (ξelec + lelec) + ccompP̃comp

(
ξcomp + lcomp

)
+ ctankS̃ tank (ξtank + ltank) −

∑
t∈T

∆tλH DH, t

 , (46)
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with

ξy =
τ0(1 + τ0)Ty

(1 + τ0)Ty − 1
, y ∈ Y =

{
b, s, elec, comp, tank

}
, (47)

where y indexes the energy components configured in the hybrid system; T and Y are the sets of time stamps and363

energy components; subscripts b, s, elec, comp, and tank stand for the quantities related to the battery storage, solar364

PV, electrolyzer, compressor, and hydrogen tank, respectively; parameters c, ξ, l, and T are the unit investment cost,365

capital recovery factor, OpEx factor, and lifetime of the corresponding component, respectively; Xs is the oversizing366

ratio of the PV plant; P̃comp is the rated power of the compressor; S̃ tank is the rated capacity of the tank; λH is the367

hydrogen sale price in $/kg; DH, t is the volume of hydrogen for sale at time t; and τ0 is the discount rate.368

The first five terms of the objective function signify, in order, the equivalent annual cost of battery storage, PV,369

electrolyzer, compressor, and hydrogen tank, whereas the last term represents the annual revenue from the sale of370

hydrogen. Particularly, the factor method [52] is utilized to determine the OpEx of the PV plant, electrolyzer, com-371

pressor, and hydrogen tank, and the OpEx of battery storage is estimated from its discharging power following the372

common practice [53]. As for Eq. (47), it indicates that the capital recovery factor of each component can be computed373

based on the discount rate and the lifetime of the corresponding component.374

3.3. Constraints375

During operation, neither the operation constraints of each component nor the power balance constraint should376

be violated. The operation constraints for battery storage are given in constraints (12)–(17) or constraints (16)–(28),377

depending on whether the generic or refined battery model is selected; the operation constraints of the electrolyzer378

are given in constraints (29)–(30) or constraints (40)–(43), depending on whether the generic or refined electrolyzer379

model is selected. Besides these, other necessary constraints are elaborated next.380

3.3.1. Operation constraints of compressor381

The function of a compressor is to reduce the volume of hydrogen by turning low-pressure hydrogen into high-
pressure hydrogen for easy storage in the hydrogen tank, which is often subject to space restrictions. The operation
constraints of a compressor are expressed as follows [54]:

Pcomp, t = pref
compDelec, t

ln
(
ϑcomp/ϑ0

)
ln

(
ϑref

comp/ϑ0

) , (48)

0 ≤ Pcomp, t ≤ P̃comp, (49)

where Pcomp, t is the input power of the compressor at time t; pref
comp represents the hourly energy consumption of the382

compressor when compressing 1 kg of hydrogen under the standard working pressure of the compressor (ϑref
comp); ϑ0383

is the standard atmospheric pressure in bar units; and ϑcomp is the normal working pressure of the compressor. As384

revealed by Eq. (48), the input power of the compressor has a linear relation with the quantity of hydrogen compressed.385

Constraint (49) guarantees that the input power must be within its rated power.386

3.3.2. Operation constraints of hydrogen tank387

Constructing a network of pipelines for the real-time transportation of compressed hydrogen is not likely to be a
practical option at present, due to the high initial investment cost associated with such scale of infrastructure. Instead,
the gaseous high-pressure hydrogen can be transported to the hydrogen market at set times of the day by tube trailers—
tube trailers are assumed to be provided by hydrogen wholesalers, so its CapEx and OpEx are hence ignored. From
this viewpoint, a hydrogen tank is needed to store the hydrogen generated. The operation constraints of the tank,
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which share high similarities with those of battery storage, are:

υHS tank, t+1 = υHS tank, t + ∆t
(
Delec, t − DH, t

)
, (50)

0 ≤ S tank, t ≤ S̃ tank, (51)
S tank, 1 = 0, (52)

DH, t =

S tank, t, if t mod 24 = 0,
0, otherwise,

(53)

where S tank, 1, S tank, t, and S tank, t+1 denote the respective volumes of hydrogen stored in the tank at time t = 1, t, and388

t+1; υH represents the mass volume fraction of hydrogen under the pressure of ϑcomp; the symbol “mod” is the modulo389

operator. The hydrogen balance in the tank is realized by Eq. (50), which relates the volume of stored hydrogen to390

the hydrogen production rate of the electrolyzer and the volume of hydrogen for sale. Constraint (51) ensures that the391

volume of the stored hydrogen is restricted by its limiting value. The initial volume of hydrogen in the tank is set to392

be zero, as stated in Eq. (52). Constraint (53) assumes that wholesalers clear out the hydrogen from the tank at 12:00393

midnight, resulting in a complete depletion of the stored hydrogen at that time. From Eq. (53), it also shows that the394

hydrogen demand is therefore not a constant but a variable, and is nonzero for only one hour of a day.395

3.3.3. Operation constraints of PV plant396

PV, which serves as the sole energy producer in the hybrid system, is able to take (a combination of) the following
actions during any arbitrary hour: (1) sending power directly to fulfill the load demand, (2) charging the battery
storage, (3) sending power to the hydrogen production system (powering both the electrolyzer and compressor), (4)
being curtailed. (This can be also seen in Fig. 2, in which four arrows leave the PV plant.) Denoting the power
corresponding to these five actions by Pdir, t, Pch, t, Pelec, t, Pcomp, t, and Pcur, t, the power balance constraint writes:

Pdir, t + Pch, t + Pelec, t + Pcomp, t + Pcur, t = XsPpv, t, (54)

where Ppv, t is the output power of the unconstrained PV plant at time t, and with the PV oversizing ratio Xs, the
right-hand-side of Eq. (54) gives the overall PV power output. Besides the equality constraint, one has to be aware of
the inequality bounding the overbuilding factor, that is,

1 ≤ Xs ≤ Xs, (55)

where Xs is the upper limit of the PV oversizing ratio. In practice, this upper limit may be set according to possible397

environmental restrictions such as a limited area for building the PV plant(s).398

3.3.4. Power balance constraint399

The load demand is to be jointly satisfied by PV and battery storage, which may be expressed mathematically as:

Pload, t = Pdir, t + Pdis, t, (56)

where Pload, t denotes the load demand at time t. Setting constraint (56) ensures that the PBH hybrid system can meet400

the load on a 24/365 basis without load shedding.401

3.4. Model algorithm402

To demonstrate the implications of using refined modeling for three main energy components in terms of capacity403

optimization and performance evaluation, two cases, denoted as Case A and Case B, are considered, which correspond404

to the generic modeling and the refined modeling introduced in Section 2.405

• Case A: The core components, including PV, battery storage, and electrolyzer, are modeled with traditional/generic406

approaches. That is, the generic PV plant model A, the generic battery model A, and the generic electrolyzer407

model A are jointly considered in this case.408
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• Case B: The power output of PV is simulated using the model chain; the battery charging and discharging pat-409

terns are constrained by a measurement-based battery model; and the dynamic hydrogen production efficiency410

of the electrolyzer is incorporated into the operation modeling of the electrolyzer. In other words, the refined411

PV plant model B, the refined battery model B, and the refined electrolyzer model B are simultaneously adopted412

in this case.413

On the one hand, the mathematical model under Case A is an MILP, for which an exact solution can be obtained414

through the well-established branch-and-bound method. The branch-and-bound method is implemented in most off-415

the-shelf solvers. Here, the Gurobi optimizer [55] as available on the Python-Spyder platform is used. On the other416

hand, the utilization of a piecewise linear function in Case B, which aims to represent the relation between the input417

power and hydrogen production rate of the electrolyzer, unavoidably introduces a complication during the optimiza-418

tion. More specifically, the rated power of the electrolyzer, as a variable within the optimization model, is positioned419

in the denominator, cf. Eq. (39), thereby resulting in a non-convex optimization model. As such, the aforementioned420

solver can no longer be adopted to attain the solution of the mathematical model under Case B.421

However, upon scrutinizing the optimization model of Case B, one may notice that the model can be reduced to422

an MILP, if the number of battery storage and the rated power of the electrolyzer are fixed. In view of that, this work423

proposes using a hybrid algorithm that integrates a meta-heuristic technique such as PSO with the branch-and-bound424

method, for the purpose of obtaining a solution for Case B. The pseudo-code of the hybrid algorithm is presented in425

Algorithm 1. One should note that, insofar as meta-heuristic optimization is concerned, the exact solution cannot be426

guaranteed. Nevertheless, given the otherwise insoluble model, one ought to regard the meta-heuristic optimization as427

admissible. The focus here should rather be on the design of the meta-heuristic optimization, to ensure its maximum428

utility.429

Algorithm 1 The proposed algorithm that combines particle swarm optimization and branch-and-bound method

Input: number of particles (m), number of variables to solve (d), maximum iteration number ( j), individual learning
factor (c1), social learning factor (c2), maximum inertia weight (w), minimum inertia weight (w), Pelec, Nb,
maximum particle velocity

(
vd, d ∈ {1, 2, . . . , d}

)
, and minimum particle velocity

(
v d

)
.

Output: N∗b and P∗elec

1: Initialize the velocity
(
v1

m, d,m ∈ {1, 2, . . . ,m}
)

and position
(
x1

m, d

)
of each particle

2: for j = 1, 2, . . . , j do
3: Invoke the Gurobi solver to obtain the fitness value of each particle

(
f j
m

)
4: Denote the individual optimum as fm, pbest and their corresponding positions as pm, pbest

5: if f j
m < fm, pbest then

6: fm, pbest ← f j
m, pm, pbest ← x j

m
7: end if
8: Denote the population optimum as fgbest and its corresponding position as pgbest
9: if fm, pbest < fgbest then

10: fgbest ← fm, pbest, pgbest ← pm, pbest
11: end if
12: Update the velocity of each particle—r1 and r2 are random numbers generated following a uniform distribution

between 0 and 1
13: v j+1

m, d = wv j
m, d + c1r1

(
pm, pbest − x j

m, d

)
+ c2r2

(
pgbest − x j

m, d

)
14: Update the position of each particle
15: x j+1

m, d = x j
m, d + v j+1

m, d
16: Update the inertia weight of the algorithm
17: w = w −

(
w − w

)
× j/ j

18: end for

The hybrid algorithm requires several input parameters, including the hyperparameters of the PSO (such as number430

of particles, number of variables to solve, or maximum iteration number), an upper limit value on the rated power of431

the electrolyzer
(
Pelec

)
, and an upper limit value on the number of battery storage

(
Nb

)
. Regarding the variables to432
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solve, i.e., the output variables, there are two: the optimal number of battery storage
(
N∗b

)
and the optimal rated power433

of the electrolyzer
(
P∗elec

)
. The algorithm typically begins with a randomly generated velocity and position for each434

particle, as shown in line 1—the position of each particle denotes a possible scenario for the values of P̃elec and Nb.435

Subsequently, based on that particular position information, the Gurobi solver is invoked to get the objective function436

value of that particle. Stated differently, this step, see line 3, involves the operation of obtaining the fitness value437

of each particle. In particular, when the model is unsolvable under a given particle, the fitness value of that particle438

would be assigned with a sufficiently large value. Furthermore, lines 4–11 record the optimal fitness values for each439

particle and all particles, along with their respective positions, for the jth iteration. Lines 12–17 update the velocity440

and position of each particle, as well as the inertia weight of the algorithm. The algorithm terminates once the number441

of iterations reaches a preset value. It should be mentioned that the hybrid algorithm only outputs the values of N∗b442

and P∗elec, whereas the optimal configuration of the PBH hybrid system and the operation strategy of each component443

can be acquired by calling the solver, with respect to the found N∗b and P∗elec.444

4. Data and parameters445

This section first introduces the two datasets used in the empirical part of the work, and, in the second part, the446

selection of model parameters is comprehensively documented, with the sources of parameters referenced.447

4.1. Dataset description448

Before the two datasets of concern are introduced, the concept of TMY, as to its making, ought to be first clarified.449

A TMY dataset encompasses hourly weather data over a full year, which is specifically constructed to represent the450

typical (i.e., median) conditions over multiple years. A TMY dataset is constructed on a month-by-month basis, and451

for each month, the one that best characterizes the median weather condition over multiple years is selected. For that452

reason, a TMY is usually composed of monthly data from different years. TMY can be used for modeling building453

load calculations and modeling renewable energy conversion system production. In this work, the first of the two454

datasets employed herein is simulated from the TMY that was generated using a combination of 1991–2005 NSRDB455

data and, if available, 1961–1990 NSRDB data for some specific locations [56], whereas the second one is created456

from 1998–2020 NSRDB data [57]. Obviously, the TMY would be different even for the same location when different457

multiyear data are used. Nevertheless, the potential impact of the time inconsistencies in the two datasets is expected458

to be small, due to the fact that TMY represents the typical conditions, which are stable if the period considered is459

long enough.460

The first dataset used in this work is part of the Open Energy Information (OpEI) initiative, which is a community-461

driven data platform containing information relevant to a wide variety of energy-related topics. In particular, the462

dataset named “Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States”463

[58], as released by the United States Department of Energy, is considered. This dataset contains load profiles for464

936 locations, which are distributed fairly evenly over most of the United States. For each location, 16 sets of465

commercial load profiles and one set of residential load profiles are provided. In addition, the electric load, heating466

load, and cooling load with 8760 timestamps are all provided for each set of load profiles. In this work, the Winslow467

Municipal Airport (35.03◦ N, 110.72◦ W) in Arizona, United States, with a site number of 723740, is selected as the468

modeling location without loss of generality. More specifically, the load data consists of the electric load demand of469

400 residential buildings with an hourly maximum of 2.73 MW. It should be noted that readers can select any other470

location of preference to replicate the experiment due to the generalizability of the present optimization model.471

The second dataset used in this work is sourced from the NSRDB [30], which offers satellite-derived irradiance472

data across most of the Americas with a latitude range of −20◦ and 60◦ for more than 25 years. NSRDB is produced473

using the so-called “Physical Solar Model,” which is a physical retrieval algorithm that leverages a rich collection of474

remote-sensing, geography, and reanalysis databases. Although the latest version of NSRDB has a temporal resolution475

of 5 min and a spatial resolution of 2 km, its temporal coverage is insufficient as this version of data is available only476

from 2019 onward [59]. Therefore, the preceding and arguably more stable version of NSRDB is herein used, which477

has a 30-min–4-km resolution. (To get the irradiance that corresponds to the “average” condition over an hour, the478

XX:30 time stamps are retained, and the XX:00 ones are removed.) NSRDB data can be accessed via the API, and the479
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routine is available in both the Python pvlib package [60] and the R SolarData package [61]. The NSRDB TMY480

data that collocates with the aforementioned load location is downloaded.481

4.2. Model parameters482

On the basis of a comprehensive review of the literature and adequate market research, this subsection provides483

in order the values of the parameters as appeared in Sections 2.2–2.4 and 3.2–3.4, along with their sources. At this484

stage, one must note that the value range of a certain parameter may be quite large [62]. For instance, Glenk and485

Reichelstein [63] noted in their 2019 paper that the unit investment cost of the electrolyzer could vary between a486

minimum of 385 $/kW and a maximum of 2068 $/kW. The unstructured, heterogeneous, and autonomous nature of487

the parameter values typically results from differences in industrial-development level and economic policy across488

countries [64–66]. Accordingly, reasonable adjustment of parameter values is herein carried out to tailor the optimal489

configuration to the present situation.490

For the PV plant itself, there are two distinct approaches for simulation. The first is to simulate the PV power491

output for any given rated power, and the other is to simulate the PV power output for a per unit plant and then use a492

multiplier to elevate the output in accord with the rated power. When the simulation needs to be conducted multiple493

times, e.g., with different load conditions, the second approach is preferred and thus used in this paper. A 1 MW494

PV plant is set as the per unit case. The basic design parameters of the per unit PV plant are listed in Table 1. The495

main components of the per unit PV plant comprise PV modules from Yingli Solar (model: YL 250P-29b) [67] and496

inverter from TMEIC (model: PVL-L0833GR) [68]. To calculate the output of the unconstrained PV plant, as stated in497

Section 2.2, TMY meteorological parameters, including wind speed, ambient temperature, surface albedo, BNI, DHI,498

and GHI, are obtained from NSRDB. The daily power outputs of the per unit PV plant, simulated with the generic499

PV plant model A and the refined PV plant model B, are respectively shown in Fig. 6(a) and (b) for visualization.500

The pvlib-python package is leveraged for the simulation of PV power. As can be seen from Fig. 6, the PV power501

generated from model B is slightly lower than that from model A. More specifically, the average daily PV power502

simulated from model B is 6.55% lower compared to that obtained from model A. This is attributed to the fact that503

the physical PV model chain enables a more realistic description of the irradiance-to-power conversion, thus resulting504

in more power loss with respect to overly optimistic generic PV modeling.505

Table 1: Technical specifications of the per unit PV plant.

Parameters Meanings Values Sources
p SAPM model parameter −3.56 [36]
P̃ac Rated output power of the inverter 833,000 W [14]
q SAPM model parameter −0.075 [36]
S Tilt angle of the PV array 35.03◦ –
T NOCT

mod Nominal operating cell temperature of the PV module 46◦C [67]
γmod Temperature coefficient of the PV module −0.42 %/◦C [67]
ηnorm

inv Nominal efficiency of the inverter 98.5% [68]
∆T SAPM model parameter 3◦C [36]

As outlined in Section 2.3, battery charging/discharging measurements are needed to accurately capture the op-506

erating characteristics of the battery storage. In this work, these measurements consist of 20 charging sample points507

and 14 discharging sample points, measured on a testing battery with a rated capacity
(
S b, ref

)
of 5.32 kWh [69]. The508

remaining technical parameters as demanded by the model in Section 2.3 can be found in Table 2.509

Table 2: Some technical parameters of battery storage.

Parameters Meanings Values Sources
Nb Maximum value allowed for Nb 60,000 –
P̃ch Upper limit value of the charging power 0.25×S b [18]
P̃dis Upper limit value of the discharging power 0.25×S b [18]
S b, ref Rated capacity of the testing battery 5.32 kWh [69]
ηref

ch Charging efficiency of battery storage 95% [14]
ηref

dis Discharging efficiency of battery storage 95% [14]
σb Self-discharge rate 0.01% [14]
∆t Time interval 1 h –
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Fig. 6. The daily power output of the per unit PV plant, with a rated power of 1 megawatt, simulated by (a) generic PV modeling and (b) physical
PV model chain. The plant is assumed to be situated at Winslow Municipal Airport (35.03◦ N, 110.72◦ W), in Arizona, United States. Subplot (c)
represents the daily load demand of a residential building cluster situated around the same location, which should be fulfilled with 100% certainty.

Proton exchange membrane (PEM) electrolyzers, or simply electrolyzers hereafter, have the ability to accommo-510

date fluctuations in PV power output, and are thus selected for the production of hydrogen using curtailed solar energy.511

The related technical parameters are summarised in Table 3. As depicted in Fig. 5 and described in Section 2.4, the512

rated power of the electrolyzer, as well as the number of line segments of the piecewise linear function, needs to513

be specified before using the refined electrolyzer model B. Moreover, the left endpoint, right endpoint, slope, and514

intercept of each line segment are determined by the differential evolution algorithm as available in the Python pwlf515

package [51]. In this work, the number of line segments is taken to be 5. As an illustration, Fig. 7 shows the hydrogen516

production efficiency, real hydrogen production rate, and fitted hydrogen production rate of a 200-kW electrolyzer517

with different power inputs. The figure evidently indicates that the piecewise linear function provides an excellent fit518

to the “input power–hydrogen production rate” curve of the electrolyzer.519
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Fig. 7. Relationship between input power, hydrogen production efficiency, real hydrogen production rate, and linearly fitted hydrogen production
rate for a 200-kW electrolyzer.
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Table 3: Some technical parameters of the electrolyzer.

Parameters Meanings Values Sources
DH Hydrogen diffusivity coefficient 4.9706 × 10−10 m2/s [20]
eA Anodic current collector thickness 1.4 × 10−3 m [49]
eC Cathodic current collector thickness 2.35 × 10−4 m [49]
eM Average membrane thicknes 9.04 × 10−5 m [20]
F Faraday constant 9.6485 × 104 C/mol [50]
ĩ Rated value of the current density 2 × 104 A/m2 [20]
i0A Anodic exchange current density 4.1367 × 10−5 A/m2 [20]
k Average electrolyte conductivity 2.9693 S/m [20]
∆P Pressure difference across the electrolyzer membrane 3 × 106 pa [47]
R Ideal gas constant 8.3144 J/(mol·K) [50]
S H Hydrogen solubility coefficient 2.7807 × 105 mol/(pa·m3) [47]
T0 Operating temperature 333 K [46]
z Stoichiometric coefficient 2 [49]
αA Charge transfer coefficient at the anodic side 0.65 [49]
γA Anodic rugosity factor 150 [49]
σA Conductivity of the anodic current collector 1.37 × 104 S/m [49]
σC Conductivity of the cathodic current collector 46 S/m [49]

The load demand that needs to be satisfied by the PBH hybrid system on a 24/365 basis is displayed in Fig. 6(c).
The load data is extracted from the OpEI dataset, as discussed in Section 4.1. Although the power output of the
per unit PV plant has been acquired, one still has to design an unconstrained PV plant that can match/meet the load
demand. The rated power

(
P̃s

)
of the unconstrained PV plant can be estimated by the following equations [70]:

P̃s =
Daily load demand

PGF × ∆t
, (57)

PGF =
fPV × Global daily horizontal irradiance

1000 W/m2 , (58)

where PGF is the panel generation factor; fPV is the PV derating factor, which is assumed to be 0.621 in this work520

[71]. According to Eqs. (57) and (58), the value of P̃s is computed to be 5.93 MW.521

Finally, the input parameters required by the optimization model, as discussed in Section 3.2–3.3, are provided in522

Table 4. As for the PSO–Gurobi hybrid algorithm, as elaborated in Section 3.4, its hyperparameters are detailed in523

Table 5. It is noted that most of the hyperparameters are set according to personal experience, since the optimization524

problem at hand is entirely new, and the existing parameter setting used in the literature has little advisory effect.525

5. Result and discussion526

Overall, Section 5.1 highlights the implications of the refined modeling for the system’s main constituents on the527

cost of firm solar power delivery, especially in comparison to the generic model. Afterward, the influence of PV528

overbuilding and the hydrogen system on the firm kWh premium is investigated in Section 5.2. Further, Section 5.3529

reveals the response of the firm kWh premium to different PV and battery costs. Lastly, Section 5.4 assesses the530

sensitivity of the main component ratings and firm kWh premium of the PBH hybrid system concerning variations in531

the electrolyzer cost.532

5.1. Result comparison between generic and refined component modeling533

The optimization models of Case A and Case B are solved using the algorithms outlined in Section 3.4, and the534

component sizes of the PBH hybrid system, as shown in Table 6, are obtained for both cases. The results show that535

all components have been configured in both cases, despite that the component sizes are quite different. For example,536

the rated power of the firm PV plant under Case A is 10.48 MW, whereas that of 12.12 MW under Case B represents537

a 16% increase. Additionally, the rated capacity of battery storage under Case B is 11% lower than that under Case A.538

Undoubtedly, the disparity in component capacity has implications on the economics of the PBH hybrid system.539

Table 7 showcases the firm kWh premium and a detailed breakdown of the equivalent annual cost of generation under540

both cases. As seen from Table 7, the equivalent annual cost of the hydrogen system, the equivalent annual cost of PV,541

and the annual hydrogen sale revenue under Case B are about 47%, 16%, and 50% higher than those under Case A,542
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Table 4: Main input parameters of the optimization model.

Parameters Meanings Values Sources
cb Unit investment cost of battery storage 137 $/kWh [10]
ccomp Unit investment cost of compressor 730 $/kW [14]
celec Unit investment cost of electrolyzer 1027.5 $/kW [43]
cs Unit investment cost of PV 833 $/kW [10]
ctank Unit investment cost of hydrogen tank 9292.5 $/m3 [14]
Hh Hydrogen high heating value 39 kWh/kg [14]
lb OpEx factor of battery storage 0.02% [53]
lcomp OpEx factor of compressor 1% [14]
lelec OpEx factor of electrolyzer 5% [14]
ls OpEx factor of PV 1% [10]
ltank OpEx factor of hydrogen tank 1% [14]
pref

comp Standard hourly energy consumption of the compressor 2.1 kWh/(kg·h) [52]
Tb Lifetime of battery storage 15 yr. [10]
Tcomp Lifetime of compressor 20 yr. [14]
Telec Lifetime of electrolyzer 10 yr. [43]
Ts Lifetime of PV 30 yr. [10]
Ttank Lifetime of hydrogen tank 20 yr. [14]
Xs Upper limit of the PV oversizing ratio 10 –
λH Hydrogen sale price 5 $/kg [43]
υH Mass volume fraction of hydrogen under the pressure of ϑcomp 30 kg/m3 [72]
ηref

elec Reference hydrogen production efficiency of the electrolyzer 67% [73]
ϑ0 Standard atmospheric pressure 1 bar [52]
ϑcomp Normal working pressure of the compressor 200 bar [52]
ϑref

comp Standard working pressure of the compressor 350 bar [52]
τ0 Discount rate 8% [18]

Table 5: Parameters of the particle swarm optimization–Gurobi hybrid algorithm designed to get the solution for Case B.

Parameters Meanings Values Sources
c1 Individual learning factor 1.5 [74]
c2 Social learning factor 1.5 [74]
d Number of variables to solve 2 –
j Maximum iteration number 50 –
m Number of particles 20 –
Pelec Upper limit value on the rated power of the electrolyzer P̃s –
v1 Maximum particle velocity for P̃elec 10% × Pelec –
v 1 Minimum particle velocity for P̃elec −10% × Pelec –
v2 Maximum particle velocity forNb 10% × Nb –
v 2 Minimum particle velocity for Nb −10% × Nb –
w Maximum inertia weight 0.8 [74]
w Minimum inertia weight 0.4 [74]

Table 6: Optimal component capacities of the PV–battery–hydrogen hybrid system under Case A and Case B. The error percentage is computed by
dividing the difference in rated values between both cases by the rated value of Case A.

Case A Case B Error percentage
Rated power of firm PV plant 10.48 MW 12.12 MW 15.65%
Rated capacity of battery storage 72.89 MWh 64.90 MWh −10.96%
Rated power of electrolyzer 2.23 MW 3.27 MW 46.64%
Rated power of compressor 0.07 MW 0.12 MW 71.43%
Rated capacity of hydrogen tank 10.49 kg 20.86 kg 98.86%

respectively. The reason for this discrepancy can be attributed to the installation of a higher-capacity electrolyzer,543

a larger hydrogen tank, and a larger PV plant in Case B, as compared to Case A (cf. Table 6). However, given544

the deployment of battery storage with a smaller rated capacity under Case B, the equivalent annual cost of battery545

storage is 10% lower than that of Case A. On this point, the equivalent annual cost of generation for the PBH hybrid546

system can be calculated based on Eq. (46), and the firm kWh premium is computed using Eqs. (44)–(45). The547

equivalent annual cost of generation amounts to 1913×103 $ under Case B, compared to 2019×103 $ under Case A,548

indicating approximately a 5% reduction. Besides, the firm kWh premium under Case B exhibits an 11% decrease549

when compared to Case A.550

As shown in Table 7, the use of generic component modeling for the main components overestimates the equivalent551

annual cost of generation or firm kWh premium for the PBH hybrid system. Considering that the difference between552
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Table 7: Comparison of the economics of the PV–battery–hydrogen hybrid system under Case A and Case B. The error percentage is computed by
dividing the difference in economic values between both cases by the respective value of Case A.

Case A Case B Error percentage
Equivalent annual cost of hydrogen system (103$) 476.41 699.03 46.73%
Equivalent annual cost of PV (103$) 862.58 997.64 15.66%
Equivalent annual cost of battery storage (103$) 1332.65 1193.40 −10.45%
Annual hydrogen sale revenue (103$) 652.29 977.52 49.86%
Equivalent annual cost of generation (103$) 2019.35 1912.55 −5.29%
Firm kWh premium (dimensionless) 6.53 5.78 −11.49%

Case A and Case B only lies in the main component modeling, it can be concluded that the modeling of component553

operation in a more refined/realistic fashion is crucial for the economics of the PBH hybrid system. Particularly, this554

conclusion is provided at a holistic level because the modeling techniques for the three main components in the two555

cases differ. Stated differently, determining the influence of refined modeling for a single component on the firm kWh556

premium is challenging. To complement the comparative analysis of individual component-wise model replacement,557

Appendix A offers a detailed discussion. The general finding is that employing a generic model for any of the main558

components can lead to an overestimation of the firm kWh premium, albeit to varying degrees.559

Notwithstanding, though this case study reveals a reduction in the cost of stabilized PV power generation when560

the refined component models are utilized, other cases might increase the cost, which depends on the parameter561

assumptions of the generic component models; the analysis has to be done on a case-by-case basis. Certainly, the562

above result aligns with existing research. For instance, Yang et al. [14] confirmed that the physical PV model chain563

can elevate the annual profit of a PV–hydrogen hybrid system in comparison to generic PV modeling. Mu et al. [75]564

indicated that incorporating the variable energy conversion efficiencies into the optimal configuration model, instead565

of relying on fixed efficiency assumptions, has the potential to shorten the payback period of the system. Similarly,566

Ma et al. [43] denoted that the overall profitability of the offshore wind–hydrogen–battery system is enhanced once567

the non-linear efficiencies of the battery storage and hydrogen plant are jointly considered in the co-optimization of568

the component sizing and energy management.569

5.2. Benefits of PV overbuilding and hydrogen system installation570

As mentioned in Section 5.1, the cost of firm PV generation can be accurately obtained by employing refined571

component modeling, that is, the granularity of modeling ought to be ensured as much as possible when developing572

an optimization for the lowest firm solar power delivery. Nevertheless, it should be noted that when applying the573

PSO–Gurobi hybrid algorithm proposed in Section 3.4 to solve the non-convex mathematical model embedded with574

refined component modeling, the execution time of the algorithm program can be as long as 6 hours, in comparison575

to the 1-minute run time of using generic modeling. Besides, the results might be trapped in a local optimum owing576

to the involvement of PSO. Bearing this in mind, the analysis conducted in the following subsections relies on the577

solution process of Case A, as discussed in Section 3.4.578

This subsection first outlines the superiority of PV overbuilding in reducing the firm kWh premium, followed by579

the advantages of installing a hydrogen system in a PV–battery hybrid system. In a previous study by Yang et al.580

[14], a PV–battery hybrid system built to meet a yearly constant load was analyzed to reveal the effect of different581

PV oversizing ratios (Xs) on the firm kWh premium. That study was performed by fixing a range of Xs values and582

subsequently optimizing the installed capacity of battery storage together with the resultant firm kWh premium for583

each Xs value. Similarly, the Xs values in this paper are drawn from the set of {1, 1.01, · · · , 8} in steps of 0.01, and584

the PV–battery hybrid system is built to meet the actual load profile. The firm kWh premiums at these Xs values are585

illustrated in Fig. 8(a). Consistent with the findings in [14], Fig. 8(a) shows that the firm kWh premium reaches its586

peak value when the PV-firming strategy contains battery storage alone, see point A; the firm kWh premium drops587

rapidly to its lowest point (point B) when the overbuilt PV and battery storage are placed with optimized capacities; as588

the value of Xs rises further, the firm kWh premium represents a quasi-linear growth trend. As for Fig. 8(c), it shows589

the variations in the contributions for PV and battery costs to the firm kWh premium in relation to the PV oversizing590

ratios ranging from 1.3 to 6. More specifically, the PV cost contribution increases but the battery cost contribution591

declines when the PV oversizing ratio goes up. These results imply that it is vital to enlarge the installed capacity of592

the PV plant owing to the high cost of firm PV power achieved by a battery-only solution. The explanation for this593
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Fig. 8. Firm kWh premiums versus the PV oversizing ratios spanning from 1 to 8 with an interval step of 0.01 for a PV–battery hybrid system (a)
without and (b) with a hydrogen system. Points A and C in each subplot represent scenarios where the PV oversizing ratio is set to be 1 and 7,
respectively, whereas point B denotes the scenario where the optimal firm kWh premium is achieved. Subplots (c) and (d) correspond to the light
blue areas of subplots (a) and (b), and present a breakdown of the firm kWh premium.

phenomenon is as follows: Before Xs exceeds the minimum value (point B), the cost saved by reducing excess battery594

storage is adequate to offset the additional cost incurred by PV overbuilding. More details can be found in [14].595

In general, the practice of PV overbuilding is accompanied by an elevation in the PV curtailment rate. For example,596

the PV curtailment rates at points A, B, and C in Fig. 8(a) are 20%, 60%, and 90%, respectively.1 It is evident that PV597

overbuilding conflicts with the conventional principle of mitigating PV curtailment. Considering the nearly negligible598

cost of curtailed solar power, the intermittent and free curtailed electricity can be effectively utilized to electrolyze599

water and generate hydrogen for commercial purposes, thereby further cutting down the firm kWh premium of the600

PBH hybrid system—recall that this is one of the innovations in this work. The firm kWh premiums of the PV–battery601

hybrid system equipped with a hydrogen system, as well as the composition of the firm kWh premium over a range602

of Xs values, are depicted in Fig. 8(b) and (d).603

From these two subplots, one can observe that the pattern of change in the costs of the PV plant and battery storage604

with respect to the PV oversizing ratio in the PBH hybrid system is the same as in the PV–battery hybrid system. The605

costs associated with the hydrogen system, as well as the revenues generated from hydrogen sales, both rise as Xs606

increases. However, it is evident that the revenues from hydrogen sales consistently surpass the costs of the hydrogen607

1It is noteworthy that the term “oversizing ratio” in this work is different from that introduced by Perez et al. [6]. The former pertains to the
multiplier applied to the unconstrained PV capacity, whereas the latter refers to the inverse of the curtailed PV fraction. Stated differently, even
if there is no overbuilding in this work, i.e., Xs = 1, the optimization can still curtail some power from the unconstrained PV plant, resulting in a
non-zero value of the PV curtailment rate at point A in Fig. 8(a).
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system at all Xs values. On this account, installing a hydrogen system in the PV–battery hybrid system always lowers608

the cost of a firm solar kWh. As shown in Fig. 8, the optimal firm kWh premium of a PV–battery hybrid system is609

6.99, whereas the minimum firm kWh premium of the PBH hybrid system is 6.53, indicating that the installation of610

a hydrogen system reduces the firm kWh premium by up to 6.58%. Moreover, the deployment of a hydrogen system611

also contributes to the decrease in the PV curtailment rate. This can be seen from the PV curtailment rates at points612

A, B, and C in Fig. 8(b), which are recorded as 0%, 24%, and 26%, respectively. It is noteworthy to highlight that613

the utilization of curtailed renewable energy has been receiving growing attention in academia. Alkhalidi et al. [76]614

exploited the curtailed wind energy in Jordan to charge local electric vehicles, demonstrating that this strategy can615

turn the wind energy oversupply into profit and mitigate the wastage of resources. Park et al. [77] put forward an616

optimization model to determine the optimal sizes of hydrogen plants and assess the economic viability of hydrogen617

production through the utilization of curtailed wind and solar energy.618

5.3. Effect of PV and battery costs on the firm kWh premium619

As demonstrated in Fig. 2, the concurrent installation of both a PV plant and battery storage is crucial within620

a PBH hybrid system. This is because the PV plant serves as the sole energy producer, while the battery storage621

plays a pivotal role in guaranteeing the firm power supply 100% of the time, particularly during periods of low or622

zero PV power availability, such as rainy days or nighttime. According to the optimization results under Case-B,623

as listed in Table 7, the equivalent annual costs of the PV plant and battery storage, which are largely dominated624

by their respective unit investment costs, accounting for 64% and 59% of the equivalent annual cost of generation,625

respectively—the sum of the two exceeds 100% due to the profit from the hydrogen production system. This suggests626

that the unit investment costs of the PV plant and battery storage have a notable impact on the firm kWh premium of627

the PBH hybrid system. To that end, a sensitivity analysis of the firm kWh premium relative to unit PV and battery628

costs is performed in this subsection. To be more specific, the unit investment cost of the PV plant (cs) is taken from629

the set of {300, 320, · · · , 1000} with an interval step of 20 $/kW, whereas the unit investment cost of battery storage630

(cb) is selected from the set of {30, 40, · · · , 180} with an interval step of 10 $/kWh. This assumption guarantees631

that “all” future PV and battery cost combinations can be covered to the greatest extent possible. Furthermore, the632

decision not to decrease cs below 300 $/kW is to avoid a scenario where it becomes financially feasible to establish633

a PV plant solely for hydrogen production, disregarding other energy generation objectives. In such a scenario, the634

PV plant would be constructed with an oversizing ratio that reaches the predefined limit, which falls outside the scope635

of this study and is not a reasonable assumption considering the existing state of hydrogen production technology636

[78]. Fig. 9 depicts the contour plots of the main component ratings and economics of the PBH hybrid system across637

different combinations of unit PV and battery costs.638

As shown in Fig. 9(a) and (b), the rated capacity of battery storage and the rated power of the PV plant exhibit639

a strong correlation with the unit PV and battery costs. Specifically, when the value of cs increases relative to the640

value of cb, the hybrid system tends to configure battery storage with a larger rated capacity. Conversely, when the641

value of cs decreases in comparison to cb, increasing the PV oversizing ratio becomes the preferred option. It is642

worth noting that there are large areas of identical color in Fig. 9(a) and (b), which can be explained as follows: The643

objective of building a PBH hybrid system is to fulfill the 24/365 load demand at all times with 100% certainty at644

the lowest cost, which indicates that battery storage and PV plant with adequate capacities should be installed as a645

first priority to maintain power balance within the system, that is, variations in unit PV and battery costs may not646

work in certain cases. Since the electrolyzer is leveraged for hydrogen production through curtailed solar energy, its647

rated power is approximately proportional to the rated power of the PV plant, as depicted in Fig. 9(b) and (c). On648

the other hand, Fig. 9(d) displays that a decrease in either cs or cb reduces the equivalent annual cost of generation649

of the hybrid system. As specified by Eq. (45), the LCOE of firm PV is defined as the ratio of the equivalent annual650

cost of generation to the annual load demand. Given the fixed load demand, the LCOE of firm PV follows a similar651

pattern of variation as the equivalent annual cost of generation, as illustrated in Fig. 9(d) and (f). Nevertheless, the652

firm kWh premium reaches its lowest value when the unit PV cost is highest and the unit battery cost is lowest, see the653

bottom-right corner of Fig. 9(e). This is governed by the concept of firm kWh premium: When the PV cost is more654

expensive compared to the battery cost, the cost of firm solar power relative to unconstrained PV power decreases.655

Currently, in certain countries like China, unconstrained PV power has been declared to have achieved grid parity656

[81], yet this is not entirely true, as the power grid needs additional costs to deploy excess backup to eliminate the657

volatility of unconstrained PV. For instance, in the case of the PBH hybrid system analyzed in this study, the optimal658
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Fig. 9. The rated capacity of battery storage (a), rated power of firm PV plant (b), rated power of electrolyzer (c), equivalent annual cost of
generation (d), firm kWh premium (e), and levelized cost of electricity of firm PV (f) for the PV–battery–hydrogen hybrid system across different
combinations of unit PV and battery costs. The red dot within each subplot signifies the scenario where the unit PV cost is 883 $/kW and the unit
battery cost is 137 $/kWh, which corresponds to Case A as described in Section 5.1. In addition, the red line in the bottom-left corner of subplot
(f) indicates the current average feed-in tariff in China [79, 80].

firm kWh premium under Case A is 26.65 ¢/kWh, which is 5.23 times higher than the current average feed-in tariff659

in China (5.10 ¢/kWh) [79, 80]. As shown in Fig. 9(f), to achieve true grid parity of PV, the values of cb (unit battery660

cost) and cs (unit PV cost) should be below 30 $/kWh and 300 $/kW, respectively. Measures employed to reduce661

unit PV and battery costs encompass technological innovation and policy incentives. These values are in line with662

those calculated in the study by Yang et al. [14], who denoted that when the unit costs of battery and PV decline to663

40 $/kWh and 250 $/kW, the LCOE of firm PV employed to supply a flat base load could drop below 5.10 ¢/kWh.664

5.4. Sensitivity to electrolyzer cost665

In the preceding analysis, the unit investment cost (celec) of the electrolyzer, a critical component in the PBH666

hybrid system, is treated as a fixed parameter. Nonetheless, as highlighted by Glenk and Reichelstein [63], the celec667

value differs considerably from one country to another due to varying economic development and government support.668

Besides, with the advancement of technology and the maturation of the market, the celec value is expected to be further669

reduced in future. From this perspective, this subsection perturbs the value of celec, so as to investigate the potential of670

a hydrogen system in reducing the cost of delivering firm solar generation. Similar to the reason that the value of cs in671

Section 5.3 is not less than 300 $/kW, the celec values are chosen from the set of {550, 560, · · · , 1100} with a step size672

of 10 $/kW. The main component ratings and firm kWh premium under different unit electrolyzer costs are presented673

in Fig. 10.674

As illustrated in Fig. 10(a), the configured rated power of the electrolyzer increases with decreasing celec. This675

phenomenon can be attributed to the relationship between electrolyzer cost reduction and increased profitability from676
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Fig. 10. The rated power of electrolyzer (a), rated capacity of battery storage (b), rated power of firm PV plant (c), and firm kWh premium (d) of
the PV–battery–hydrogen hybrid system as a function of the unit electrolyzer cost. The red dot within each subplot shows the optimization results
under the current electrolyzer cost, that is, celec = 1027.5 $/kW, see Case A in Section 5.1 for more details.

hydrogen sales, leading to the preference for higher-capacity electrolyzers. With no surprise, a decrease in celec677

correlates with an increase in the rated power of the PV plant, see Fig. 10(c). This variation can be explained by the678

ability of the PV plant to generate a greater amount of electricity, enabling higher hydrogen production in response to679

the reduced electrolyzer cost. A similar trend can be observed in the power ratings of the electrolyzer and PV plant,680

as depicted in Fig. 10(a) and (c). This trend demonstrates an approximate correspondence between the two variables,681

as also evident in Fig. 9(b) and (c). With an increase in the rated power of the PV plant, the duration of direct supply682

from the PV plant itself extends, leading to a decrease in the required rated capacity of battery storage. Therefore,683

Fig. 10(b) demonstrates a pattern where the rated capacity of battery storage decreases as the value of celec declines.684

However, similar to the observations in Fig. 9(a) and (b), a range can be identified in both Fig. 10(b) and (c) where the685

ratings of the components are not significantly influenced by the value of celec. As for the firm kWh premium of the686

PBH hybrid system, it gradually decreases with decreasing celec, which can be seen in Fig. 10(d). More specifically,687

the firm kWh premium drops from 6.62 to 4.78 when the value of celec decreases from 1100 $/kW to 550 $/kW, which688

demonstrates the great potential of a hydrogen system to lower the cost of achieving firm PV generation.689

In contrast to the generic electrolyzer model that assumes a fixed hydrogen production efficiency, this study in-690

troduces a refined electrolyzer model that incorporates dynamic hydrogen production efficiency (see Section 2.4),691

accounting for variations in input power. As illustrated in Fig. 7, when the refined electrolyzer model is employed,692

the hydrogen production efficiency peaks in the low input power range, whereas the hydrogen production rate reaches693

its zenith at the rated power. Thus, it is necessary to analyze how the electrolyzer could strike a balance between694

minimizing electricity consumption and maximizing hydrogen production. Furthermore, what the impact of changes695

in celec would bring should also be explored under this circumstance. Note that the Case-B model is again used herein696

and is solved by the PSO–branch-and-bound hybrid algorithm. Figure 11 provides the distribution of input power697

(greater than zero) for the electrolyzer with different values of celec. It shows that the electrolyzer tends to operate698

close to its rated power, irrespective of its rated power value. This behavior is driven by the objective of maximizing699

hydrogen production. Nevertheless, when the value of celec drops, which means that the rated power increases—a700

one-to-one mapping can be found between the unit electrolyzer cost and its power rating in Fig. 10(a)—the number of701

operating points located in the low input power range rises, so as to reduce electricity consumption. Consequently, a702

reduction in the value of celec increases the probability of partial load operation for the electrolyzer, thereby promoting703

energy savings. Undoubtedly, as the value of celec is expected to continue declining in the future, the advantages of704

integrating a hydrogen system into the PV–battery hybrid system for energy conservation and consumption reduction705
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will become increasingly apparent.706
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Fig. 11. The distribution of the input power (greater than zero) of the electrolyzer throughout all 8760 hours of a year with optimization conducted
under different unit electrolyzer costs. The density function of each distribution is estimated using the density function in the stats-R package.
The Gaussian function with a bandwidth of 0.1 is selected as the kernel function.

6. Conclusion707

The concept of firm generation was proposed by Perez et al. [6] in 2019 to tackle the grid impacts due to the708

variability and intermittency associated with the unconstrained PV. The aim of firm generation is to completely elim-709

inate discrepancies between solar generation and load demand by optimizing a mix of different firm power enablers,710

mainly including battery storage, geographical smoothing, demand response, and most importantly overbuilding &711

proactive curtailment. The measure that guides the optimization is known as the firm kWh premium. This measure, as712

defined in Eq. (44), quantifies the overall cost-effectiveness of firm PV power. On top of the firm generation concept,713

this work introduces a hydrogen system that consists of an electrolyzer, a compressor, and a hydrogen tank. The714

purpose of this system is to utilize the curtailed PV power, which is neither stored in the battery storage nor directly715

supplied to the load, for hydrogen production. This approach is motivated by the near-zero cost associated with the716

curtailed PV power. By incorporating the hydrogen system into the PV–battery hybrid system, a new revenue stream717

is revealed, which can further reduce the firm kWh premium. Besides the newly included hydrogen system, the effects718

of modeling granularity (i.e., generic versus refined) on the cost of firming up PV power are elucidated.719

Using the PV–battery–hydrogen (PBH) hybrid system virtually situated at a mid-latitude site in the United States720

as a case study, it is observed that the level of modeling granularity for the main constituents significantly affects721

the ratings of the configured system equipment as well as the economics of the system. For instance, the difference722

in the rated power of firm PV plant between the two versions of modeling reaches 16%, while refined component723

modeling reduces the firm kWh premium by up to 11%, as compared to that of generic component modeling. This724

can be attributed to the inclusion of more detailed information in the refined main component modeling, resulting725

in optimized component sizes that better align with actual conditions. On this account, this work advocates the726

abandonment of simplified modeling of energy components, whenever possible, during the planning stage of the PBH727

hybrid system. Instead, it is preferable to employ refined component modeling that accurately captures the dynamic728

operating efficiencies.729

Furthermore, the optimization results under Case A indicate that integrating a hydrogen system into the PV–battery730

hybrid system not only lowers the PV curtailment rate but also reduces the firm kWh premium. In the absence of a731

hydrogen system installation, the PV curtailment rate is 60% and the associated firm kWh premium is 6.99 at the732

optimal PV oversizing ratio; with the inclusion of a hydrogen system, the PV curtailment rate is reduced to 24%,733

accompanied by a firm kWh premium of 6.53. This observation can be attributed to the usage of the hydrogen system,734

which effectively consumes the surplus PV energy that would otherwise be curtailed and left unused by the load.735

When the generic component modeling is adopted, the sensitivity analysis of various parameters yields the fol-736

lowing findings : (1) With increasing PV oversizing ratio, the firm kWh premium decreases rapidly until reaching a737
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minimum point, after which it rises quasi-linearly. (2) The firm kWh premium tends to decrease as the unit PV cost738

becomes greater relative to the unit battery cost. Nevertheless, a reduction in either unit PV cost or unit battery cost739

leads to a decrease in the LCOE of firm PV. Specifically, under the current parameter settings, the true grid parity of740

PV is attained when the unit PV cost is below 300 $/kW and the unit battery cost is below 30 $/kWh. (3) The firm741

kWh premium is closely related to the unit electrolyzer cost. As an example, once the unit electrolyzer cost is reduced742

by half, from 1100 $/kW to 550 $/kW, the firm kWh premium can be reduced by 28%. As shown in Fig. 11, the unit743

electrolyzer cost also affects the distribution of the electrolyzer input power. Precisely, a decrease in the unit elec-744

trolyzer cost leads to a rise in the rated power of the electrolyzer configured in the PBH hybrid system, see Fig. 10(a).745

In such a scenario, the decreased unit electrolyzer cost extends the duration in which the electrolyzer operates in the746

low input power range while maintaining high hydrogen production efficiency.747

In the next phase, at least two directions can be considered for further investigation. Given that hydrogen will748

likely still be used for certain extant chemical syntheses in the future but its use for conventional fuel refining will749

likely end in tandem with the sunset of the fossil fuel era [82], the first is to replace hydrogen production with other750

electricity-consuming applications, such as irrigation, e-fuel production, or pumped hydro, as to explore whether751

the curtailed electricity of the PBH system could serve other purposes with quantifiable economic benefits. In other752

words, it would be great to add other electricity-consuming pathways into the current modeling architecture. This753

avenue is thought straightforward, so long as the models for those electricity-consuming applications are available.754

The second is to consider a cluster of PBH systems in a power system setting, where the areal load is jointly satisfied755

by those PBH systems. Compared to balancing power supply and demand in each region independently, energy756

sharing among the PBH-system cluster—the power deficit in one subarea is fulfilled by leveraging the PV output757

and battery discharging power from another subarea through connection transmission lines—can reduce both capital758

and operational expenditure. Therefore, determining the optimal component sizes for each PBH hybrid system and759

implementing power distribution and cost/revenue settlement between different systems deserves an in-depth analysis.760

Appendix A. Comparative analysis: Substituting a generic model with component-by-component refined one761

In Section 5.1, a result comparison is carried out, which contrasts the scenario where all system components are762

simulated using generic models (Case A) with that in which the main constituents, such as the PV, battery or elec-763

trolyzer, are all simulated using refined models (Case B). This comparison facilitates a comprehensive evaluation of764

whether adopting generic device models overestimates or underestimates the firm kWh premium of the PBH hybrid765

system, but what is the impact resulting from the utilization of a single generic component model remains undis-766

closed. From this point, this appendix endeavors to investigate the substitution of a generic model with a refined767

one on a component-by-component basis with the possibility of analyzing the effluence of each simplification. More768

specifically, three additional cases, denoted as Case C, Case D, and Case E, are introduced. Case C refers to the769

optimization model based on refined PV model B, generic battery model A, and generic electrolyzer model A. Case770

D refers to the optimization model based on generic PV model A, refined battery model B, and generic electrolyzer771

model A. Case E refers to the optimization model based on generic PV model A, generic battery model A, and re-772

fined electrolyzer model B. It can be observed that all three cases need to alter the modeling technique for a specific773

component compared to Case A.774

Similar to Case A, the optimization model in Case C is an MILP, and the optimal solution can be directly obtained775

by invoking the Gurobi solver. Since there exist the bilinear terms in Eqs. (19)–(20), (23)–(24) and (26), the opti-776

mization problem of Case D is a bilinear programming. Here, the bisection-LP hybrid algorithm proposed by Yang777

et al. [10] is utilized to solve this model. As for Case E, its mathematical model is non-convex due to the presence778

of a variable situated in the denominator, cf. Eq. (39). Therefore, the PSO–Gurobi hybrid algorithm delineated in779

Section 3.4 is employed to get one acceptable solution. The optimal ratings of the components and economics of the780

PBH hybrid system under Cases A and C–E are shown in Table A.8.781

It is evident from Table A.8 that the rated power of the firm PV plant in Case C is 7% lower than that in Case A. This782

is due to the fact that refined PV modeling simulates PV power in a more realistic fashion, as opposed to conventional783

PV modeling, which leads to a low power output, see Fig. 6. That said, the PV plant exhibiting a lower annual energy784

yield would be configured with a reduced rated value owing to its lower price-to-value ratio. Furthermore, when785

the power rating of PV decreases, the rated capacity of battery storage increases, but the nameplate value of each786

component in the hydrogen system declines. The former is attributed to the necessity of the PBH hybrid system to787
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Table A.8: Optimal configuration and economics of the PV–battery–hydrogen hybrid system under Cases A and C–E.

Case A Case C Case D Case E
Rated power of firm PV plant 10.48 MW 9.73 MW 10.11 MW 14.77 MW
Rated capacity of battery storage 72.89 MWh 76.41 MWh 68.79 MWh 61.11 MWh
Rated power of electrolyzer 2.23 MW 1.57 MW 2.26 MW 4.88 MW
Rated power of compressor 0.07 MW 0.05 MW 0.07 MW 0.17 MW
Rated capacity of hydrogen tank 10.49 kg 9.94 kg 14.63 kg 31.91 kg
Equivalent annual cost of hydrogen system (103$) 476.41 334.57 483.90 1044.40
Equivalent annual cost of PV (103$) 862.58 801.37 832.62 1215.71
Equivalent annual cost of battery storage (103$) 1332.65 1389.30 1252.43 1148.20
Annual hydrogen sale revenue (103$) 652.29 451.50 661.89 1472.68
Equivalent annual cost of generation (103$) 2019.35 2073.73 1907.06 1935.62
Firm kWh premium (dimensionless) 6.53 6.27 6.17 6.26

firmly meet the load demand, whereas the latter is a consequence of the reduced curtailed PV output. There is no788

doubt that variations in equipment specifications influence the economics of the PBH hybrid system. The equivalent789

annual cost of generation in Case C is 2073.73 ×103 $, which is 3% higher than that in Case A. Nevertheless, the firm790

kWh premium of Case C is 4% lower than that of Case A. Note that when the premiums of Case A and Case C are791

computed using Eqs. (44)–(45), two of the four component involved in the premium calculation differ, including the792

equivalent annual cost of generation and the annual energy yield of unconstrained PV.793

Table A.8 additionally illustrates that the use of a refined battery model (Case D) results in a reduction of the rated794

values for both PV plant and battery storage. The reason for this is that the measurement-based battery model allows795

the battery to operate with charging and discharging efficiencies close to unity, which can mitigate energy wastage796

and consequently reduce the requisite device capacity—further details can be seen in [10]. On the other hand, there797

exists a minimal disparity between the optimal component capacities of the hydrogen system in Case A and Case D.798

Overall, when the refined battery model is employed instead of the generic battery model, the equivalent annual cost799

of generation and firm kWh premium can be decreased by both 6%.800

According to Table A.8, the rated power of the electrolyzer under Case E is nearly 2.5 times that of Case A. This801

could be explained by the tendency of the refined electrolyzer model to opt for a larger-capacity electrolyzer, which can802

fully exploit its high efficiency within the low input power range, see Fig.7. To align with the intentionally augmented803

rated power of the electrolyzer, the ratings of the PV plant, compressor, and hydrogen tank are correspondingly804

elevated. At this stage, the rated capacity of battery storage can be diminished owing to the notable advantage of PV805

overbuilding in reducing the cost of firm solar power delivery, as discussed in Section 5.2. Regarding the economics806

of the PBH hybrid system, which is predominantly influenced by the component ratings, one can observe that the807

equivalent annual cost of generation and firm kWh premium of Case E are both 4% lower than those of Case A.808

In summary, the degree of modeling granularity applied to the PV, battery, and electrolyzer holds implications for809

the optimal component ratings and economics of the PBH hybrid system, thereby changing the value of the firm kWh810

premium. As shown in Table A.8, the premium for converting a variable solar kWh into a firm one is overestimated811

when relying solely on the generic model, be it for each of the main components. Precisely, the battery has the most812

substantial impact, followed by the electrolyzer, and the PV demonstrates the least influence. Moreover, when all813

three main components are modeled in a refined way, as in Case B, the firm kWh premium experiences the most814

significant decrease, which can be evidenced in Table 7. Accordingly, when the configuration of the PBH hybrid815

system is optimized, selecting refined component models emerges as the preferred choice in all circumstances.816
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