
UCLA
Department of Statistics Papers

Title
On the Computation and Application of Prototype Point Patterns

Permalink
https://escholarship.org/uc/item/2j32w7sq

Authors
Katherine Tranbarger
Frederic Paik Schoenberg

Publication Date
2011-10-25

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2j32w7sq
https://escholarship.org
http://www.cdlib.org/

Tranbarger and Schoenberg. Point pattern distances and prototypes. 1

On the Computation and Application

of Prototype Point Patterns

Katherine E. Tranbarger1 and Frederic Paik Schoenberg1

Abstract

This work discusses computational problems related to the implementation of Victor and Purpura’s

spike time distance metric for point processes. Three algorithms for calculation of spike-time distance

are examined as are a number of properties and extensions of the spike-time metric. Extensions include

prototype point patterns that can be used for describing a typical point pattern and various clustering

algorithms that can be applied to point process data through use of spike-time distance and prototype

patterns.

Key words: distance metric, point process, prototype pattern.

1 Department of Statistics, 8125 Math-Science Building, University of California, Los Angeles, 90095-

1554.

Tranbarger and Schoenberg. Point pattern distances and prototypes. 2

1 INTRODUCTION

The problem addressed in this paper is how to define and compute the distance between two observed point

patterns. Methods involving distance metrics for point patterns have received increasing use recently. Such

methods have had particularly important applications in the analysis of collections of neuron spike trains

(Victor and Purpura 1997; Reich et al. 2000). In addition, point pattern distance metrics are required for the

computation of a prototype point pattern, a construct introduced in Schoenberg and Tranbarger (2004) and

shown to be useful in the description of earthquake aftershock sequences. The present paper investigates the

computation and implementation of such distance metrics, especially in the context of their use in prototype

point pattern analysis.

The spike-time distance metric proposed by Victor and Purpura (1997) involves matching points in one

point pattern to the points in another point pattern. The metric is somewhat analogous to several distance

metrics rich with history in mathematics and computer science that are currently in use in computer imaging

and other areas. For instance, the concept of Earth Movier’s Distance (EMD) introduced by Rubner, Tomasi,

and Guibas (1998) evolved from the Hitchcock (1941) solution to the original transportation problem first

discussed by Monge (1781). EMD measures the amount of work required to transform a histogram of the

values in one image into that of the values in another image using basic operations (see Rubner et al., 2000),

and was shown by Levina and Bickel (2004) to be equivalent to Mallows distance on probability distributions

when the two image signatures in question are appropriately weighted by their sizes.

In contrast to EMD, the spike-time distance of Victor and Purpura (1997) focuses on matching the

points of the two processes rather than their summary histograms. In addition, unlike EMD, the spike-time

distance can be used to compare two point patterns of unequal lengths, and no modification involving only

partial matching is required. Indeed, the difference in the number of points is a key ingredient in spike-time

distance.

In Section 2, we review spike-time distance and explore various properties that aid in its computation.

Three different algorithms that can be used to compute spike-time distance are presented here. Prototype

point patterns are described in Section 3 and issues in their computation and approximation are discussed.

Algorithms for clustering collections of observed point patterns based on their spike-time distances and

Tranbarger and Schoenberg. Point pattern distances and prototypes. 3

prototype point patterns are discussed in Section 4. A discussion and suggestions for further research are

presented in Section 5.

2 CALCULATION OF SPIKE-TIME DISTANCE

Let X and Y be temporal point patterns, i.e. each is a collection of points on the real line, and corresponds

to a σ-finite non-negative integer-valued measure on R (see Daley and Vere-Jones 2003). (We refer to such

a collection of points as a point pattern, as distinguished from a point process, which is a random variable

whose outcomes are point patterns.)

The spike-time distance between X and Y is defined as the total cost of transforming X into Y using

a series of basic operations (Victor and Purpura, 1997). For instance, in the standard formulation, points

from X can be deleted at a cost pd, added at a cost of pa, or moved horizontally a distance ∆ at a cost of

pm∆. The minimum sum of costs for the deletion, addition, and moving operations necessary to transform

point pattern X into point pattern Y is the spike-time distance between X and Y . Note that in order for

this to be a distance metric, it must be symmetric and thus the constraint pa = pd must be imposed. While

in some applications it might be desirable for pa and pd to take on different values, this paper focuses on

the case where the spike-time distance is a symmetric distance metric. Hence in what follows we assume

pa = pd.

One algorithm for determining the minimal sequence of deletion, addition and movement operations

needed for transforming one point pattern into another is the Single-Unit (SU) algorithm discussed in Aronov

(2003). This work will briefly review the SU algorithm based on dynamic programming algorithms introduced

by Sellers (1974) and show a modification on this approach that reduces computation run time from O(n2)

to O(n4/3). Also presented here is the Mutual Best Match (MBM) algorithm that is useful for determining

distances between patterns of shorter lengths and which has the ability to extend into multiple dimensions

as will be discussed in section 5.

Tranbarger and Schoenberg. Point pattern distances and prototypes. 4

2.1 Single-Unit algorithm

In general, the minimal sequence of operations required to transform point pattern X into point pattern Y

can be difficult to determine. In the special case where no points of X or Y are added or deleted, however,

the computation is quite trivial in view of the following result that is key in the application of all three

algorithms to be discussed.

Theorem 1. Suppose that temporal point patterns X and Y each consist of exactly n points and that

pm << pa = pd, so that in effect addition and deletion of points are not permitted. Then

d(X, Y) = pm

n∑
i=1

|xi − yi|, (1)

where x1, x2, . . . , xn and y1, y2, . . . , yn are the sorted points of X and Y , respectively.

Proof.

The statement is trivial for n = 1.

Suppose n = 2, and without loss of generality assume x1 ≥ y1.

If also x2 ≥ y2, then

|x1 − y2|+ |x2 − y1| ≥ |x1 − y1 + x2 − y2| = |x1 − y1|+ |x2 − y2|,

since both (x1 − y1) and (x2 − y2) are non-negative.

Alternatively, if x2 < y2, then y2−x1 ≥ y2−x2 > 0, since x1 ≤ x2 < y2. Similarly, 0 ≥ y1−x1 ≥ y1−x2.

Therefore, |y1 − x1| ≤ |y1 − x2| and |y2 − x2| ≤ |y2 − x1|, so |y1 − x1|+ |y2 − x2| ≤ |y1 − x2|+ |y2 − x1|.

Hence the basic operations that move the point x1 to y2 and move the point x2 to y1 have a total penalty

that is at least as large as the penalties for moving x1 to y1 and moving x2 to y2.

Now suppose n = k + 1 and that the result in Theorem 1 holds for n = k. Consider any sequence of

elementary operations that includes moving xk+1 to yi and moving xj to yk+1, where i, j < k + 1. By the

n = 2 case proven above, |xk+1 − yi| + |xj − yk+1| ≥ |xj − yi| + |xk+1 − yk+1|. That is, the elementary

operations considered have cost at least as large as those obtained by moving xk+1 to yk+1 and moving xj to

yi. Hence the minimal total cost in aligning X and Y is obtained by the elementary operations that involve

moving xk+1 to yk+1; the cost of aligning the other k points of X with the other k points of Y is given by

(1) with n = k. The result folllows by induction.
2

Tranbarger and Schoenberg. Point pattern distances and prototypes. 5

Utilizing this result, an inductive approach to spike-time distance calculation is possible. The SU al-

gorithm (see Aronov 2003)determines the minimal distance between i = 1, 2..., n points of pattern X and

j = 1, 2..., m points of pattern Y by building on the distance result for points i = 1, 2..., n−1 of X and points

j = 1, 2..., m − 1 of Y . Let Di,j denote the spike-time distance between the first i points of pattern X and

first j points of pattern Y . To determine the minimal distance between patterns X and Y simple calculations

to complete an n by m matrix of Di,j values are necessary. At each step Di,j is the minimum of Di−1,j + pd,

Di,j−1 + pd, and Di−1,j−1 + (pm ∗ |xi − yj |) (corresponding to the options of deletion of xi, deletion of yj ,

and the pairing of xi to yj , respectively). In the trivial cases of i = 0 or j = 0, Di,j = pd ∗max(i, j).

2.2 Modified Single-Unit algorithm

In spike-time distance calculations, no move greater than (pa + pd)/pm may take place since such a move

would be greater in cost than removal and re-insertion of one of the points involved. With this fact in mind,

the patterns X and Y can each be broken into patterns of shorter lengths whenever a gap of greater than

(pa + pd)/pm is present. In this modified SU (MSU) approach, computations involve the sorting of points

x1, x2,xn and points y1, y2, ...ym combined to form one pattern, Z, of length n + m. Instances in which

zk-zk−1 is greater than (pa + pd)/pm are easily identified to determine how X and Y can be partitioned into

patterns of shorter lengths. For example, if such a gap was present at zk=3, pattern X1 would consist of all

points in X less than 3 just as pattern Y1 would consist of all points in Y less than 3. The SU algorithm as

earlier described is then applied to each pair of Xi, Yi patterns formed in the partitioning process and the

final distances for each pair are summed. Advantages of this modification are discussed in Section 2.4.

2.3 Mutual Best Match algorithm

In light of Theorem 1, the problem of determining the best sequence of operations to transform point pattern

X into point pattern Y reduces to the problem of determining whether each point in the point patterns will

be removed (i.e. deleted from one string or equivalently added to the other), or whether it will be kept, i.e.

paired to a point in the other string. Once the points to be kept are determined, the best approach for

matching the kept points in X to those in Y is simply sequential, based on Theorem 1. Evaluation of each

Tranbarger and Schoenberg. Point pattern distances and prototypes. 6

potential set of kept points is thus remarkably straightforward. In fact, each potential distance is simply

the number of points removed summed with the integrated difference between the cumulative functions

associated with the remaining points in the two temporal point patterns (Schoenberg and Tranbarger 2004).

Given two temporal point patterns X and Y whose spike-time distance is sought, the following results

are useful in determining which points will be kept and which will be removed.

Lemma 2. Any point that is more than (pa + pd)/pm = 2pd/pm away from its nearest neighbor in the

alternate point pattern will be removed.

Proof. The proof is immediate: for such a point x in X, it is more costly to move x to a point y in Y than

to delete x and add to X a point at y.
2

Theorem 3. Any pair of points xi and yj such that

|xi − yj | < min
k 6=i

{|xk − yj |} < min
k 6=j

{|xi − yk|} < 2pd/pm (2)

will be kept.

Proof. There are three possible outcomes for points xi and yj satisfying the condition (2). Either both

points are removed, one point is kept while the other is removed, or both points are kept. We will show that

the first two of these outcomes are excluded.

Suppose that both points are removed. Then the distance penalty function includes the penalty 2 ∗ pd

associated with those deletions. Since |xi − yj | < 2 ∗ pd/pm, the penalty could be reduced by keeping both

points and moving them to each other, at a cost of |xi−yj | ∗pm. Therefore, removing both xi and yj cannot

yield the minimum penalty.

Suppose that one point is kept while the other is removed. Assume without loss of generality that xi

is kept while yj is removed. Then xi is paired with some point yk such that yk 6= yj and the spike-time

distance includes both penalty pd for removal of yj and |xi − yk| ∗ pm for the move of point xi to yk. Since

|xi − yk| > |xi − yj | the total spike-time distance penalty could be reduced by removing point yk rather

than point yj and moving xi to yj . Therefore, removing one point while keeping the other cannot yield the

minimum penalty.

The only option that remains is that both xi and yj are kept in the sequence of moves yielding minimal

total cost.
2

Tranbarger and Schoenberg. Point pattern distances and prototypes. 7

The Mutual Best Match (MBM) algorithm, named for the property shown in Theorem 3, uses the three

discussed properties of the optimal sequence of operations in the spike-time distance metric to determine

the distance between point patterns X and Y . With these properties, the problem of determining the

distance between point pattern X and point pattern Y is simplified to identifying points known to be

kept or deleted, then checking the total cost associated with each possible combination of potentially kept

points. Calculating the total cost associated with each potential combination of kept points in the two point

patterns is not computationally time prohibitive, as the sequential ordering prescribed by Theorem 1 makes

this calculation extremely straight-forward.

2.4 Application and penalty selection

It is not uncommon in point process applications to observe a collection of independent realizations of point

processes observed on a common space. An example discussed in Schoenberg and Tranbarger (2004) is the

collection of observed aftershock sequences following global mainshocks in distinct regions, occurring within

a fixed period of time and space of each mainshock. Throughout this work, we refer to such a collection of

point processes simply as a point process dataset.

The number and proximity of points in each point pattern observed in a point process dataset are

important to consider when determining the penalties used in the distance metric. When selecting these

penalties, it is the ratio of the deletion (addition) penalty pd to pm that governs the results. For simplicity,

we suggest setting pa = pd = 1 and determining pm by examining the spread of the points in the data. If

pm is too large, then little movement of points will take place in the computation of distances between point

patterns, as the cost of deletion and addition will be less than most potential moves. Alternatively, if pm is

too small, then moves will be made between points that are not very close at all. With either extreme, the

resulting spike-time distance will measure little more than the sum of, or difference between, the number of

points in the two observed point patterns. That is, the spike-time distances will approach the sum of the two

point pattern lengths for very large values of pm, and will approach the absolute difference between these

lengths for very small pm values.

With these extremes in mind, one option is to set pm to a value such that points closer than the the typical

Tranbarger and Schoenberg. Point pattern distances and prototypes. 8

inter-point distance are paired, and points further than this are removed and reintroduced in calculating the

spike time distance. This leads to selecting penalties such that:

(T/M)pm ≈ 2pd, (3)

where M is the median number of points per observed point pattern and T is the size of the range over

which the points are observed.

In simulation studies on point patterns generated from a Poisson process the precise value of the penalties

selected has little influence on the overall distribution of pattern distances. Figure 1 shows the results from

calculating the 4,950 possible pairwise distances between 100 simulated Poisson point patterns. The results

are shown for three different values of pm: the value as determined by (3), 75% of the penalty recommended

in (3), and 125% of the penalty found by (3). In each case, though the mean and standard deviation

of the distances has changed as would be expected, the distribution of distances is approximately normal

for all three. Normal Q-Q plots are provided below each histogram of distances to further illustrate how

closely each follows the normal distribution. Since spike-time distance is useful only for comparisons of

similarity rather than as a raw measurement tool (where specific distance values have meaning out of the

comparison context) the fact that the distribution of distances remains virtually unchanged in the face of

rather substantial alterations to the penalty values suggests that investigations of differences and similarities

of point patterns within a dataset may not be overly sensitive to the choice of penalty values, provided the

penalties are within some reasonable range, at least in so far as the shape of the distribution of the distances

is concerned.

Calculation time is of course a key consideration in selection of which algorithm to use with a particular

data set. The main advantage of the MSU approach is that it will often require significantly less time to

calculate the spike-time distance of interest. This advantage over the standard SU algorithm can be clearly

seen in Figure 2. Here, for lengths n = 2, 3, 4..., 29, 30, 40, 50, 75, 100, 150, 200, distances were calculated

between 1000 pairs of two randomly generated patterns of n points each using both the SU and MSU

algorithms programmed in R. For the modified version, additional results for n = 300, 400, 500 are also shown.

The patterns used were generated by taking a random sample of size n from a uniform[0,10] distribution.

Points in black are the resulting mean CPU times using the standard SU algorithm. The black line included is

Tranbarger and Schoenberg. Point pattern distances and prototypes. 9

the best fit least-squared model using n2 as the only predictor, demonstrating the O(n2) run time achieved

by the SU algorithm. Points in red are fit with a linear model and are the result from using the MSU

algorithm. Though the MSU algorithm should run O(n4/3) due to the sorting calculation (Sedgewick, 1986),

up to n = 500 a linear model fits the simulation results quite well as the sorting represents such a small

part of all computations involved. In all cases, the penalties were fit as recommended above in (3). The

ease of matrix manipulation in R is the main reason R was selected for implementation of the SU and MSU

algorithms.

The run time for calculation of the spike-time distance using the MBM algorithm is approximately

O(2n1+n2), where n1 and n2 are the lengths of the two point patterns. This is because there are on the order

of O(2n1+n2) combinations of points which might be kept, and each of these is examined individually. Green

points in Figure 3 illustrate this for the case n = n1 = n2, in which case the run time increases approximately

as O(4n). In Figure 3, timing simulations using the MBM approach programmed in C are included with a

subset of the same results shown in Figure 2. The overlaid green line corresponds to the best 4n fit. C was

selected for the MBM algorithm because of the looping that takes place in the MBM distance calculation.

All of these computations were performed using a 1.33GHz PowerPC G4.

3 PROTOTYPE POINT PATTERNS

With a distance metric clearly defined, it becomes possible to identify a prototype point pattern that can

be used for describing a typical observation within the point process dataset. We define this prototype to

be the point pattern Y such that the sum

n∑
i=1

d(Xi, Y), (4)

is minimized, where Xi, i = 1...n, are the n observed point patterns in the dataset.

3.1 Basic properties of prototype points

Fortunately, one need not search over all possible point patterns in determining the prototype for a given

point process dataset. A convenient feature making prototypes easy to identify is described in the next

result. Before stating this fact, we first turn to the definition of the median of a sorted list of numbers

Tranbarger and Schoenberg. Point pattern distances and prototypes. 10

z = {z1, z2, . . . , zm}, whose length m is even. Many texts define the median of such a list as the mean of

the two entries zm/2 and zm/2+1. Instead, let us refer to any value M such that zm/2 ≤ M ≤ zm/2+1 as a

median of z.

With this convention in mind, we return to the problem of determining prototypes. Suppose that Y is

the prototype of a point process dataset consisting of n point patterns X1, . . . , Xn. For any point p in the

prototype, consider the collection of points in the point process dataset zp = {z1, z2, . . . , zm} to which p

is paired. That is, each point zi is the point to which p is moved in determining the spike-time distance

between Y and Xj , for some j. Note that m ≤ n, since p might not be kept in the spike-time distance

between the prototype and some of the point patterns in the dataset.

Theorem 4. Any point p in the prototype is a median of zp.

Proof. Fix any prototype point p and the list zp = {z1, . . . , zm} of points in the dataset to which p is paired.

Note that, in order for p to be a point of the prototype, the sum of distances from zi to p must be less than

or equal to the sum of distances from zi to any other point q. Let q be a median of zp, and suppose that p

is not a median of zp. We will show that the sum of distances from zi to q is less than the sum of distances

from from zi to p, contradicting the assumption that p is a point of the prototype.

First suppose that the length m of zp is odd, and without loss of generality assume p < q. The sum of

all m distances from zi to q is:

m∑
i=1

|zi − q| =
(m−1)/2∑

i=1

|zi − q|+
m∑

i=(m+3)/2

|zi − q|+ |z(m+1)/2 − q|

=
(m−1)/2∑

i=1

|zi − q|+
m∑

i=(m+3)/2

|zi − q| (5)

since |z(m+1)/2 − q| = 0. The sum of the m distances from zi to p is:

m∑
i=1

|zi − p| =
(m−1)/2∑

i=1

(|zi − q| − (q − p)) +
m∑

i=(m+3)/2

(|zi − q|+ (q − p)) + (z(m+1)/2 − p)

=
m∑

i=1

|zi − q| − (
m− 1

2
)(q − p) + (

m− 1
2

)(q − p) + (z(m+1)/2 − p)

=
m∑

i=1

|zi − q|+ (z(m+1)/2 − p). (6)

Therefore, the sum of distances from zi to p in (6) is greater than the sum of distances to q, which is a

contradiction.

Tranbarger and Schoenberg. Point pattern distances and prototypes. 11

If m is even, then without loss of generality assume that p < zm/2. The sum of all m distances from zi

to q is:

m∑
i=1

|zi − q| =
(m/2)−1∑

i=1

(|zi − z(m/2)|+ (q − z(m/2))) +
(m/2)+1∑
i=(m/2)

(|zi − q|)

+
m∑

i=(m/2)+2

(|zi − z(m/2)+1|+ (z(m/2)+1 − q))

=
(m/2)−1∑

i=1

(|zi − z(m/2)|) + (z(m/2)+1 − zm/2) +
m∑

i=(m/2)+2

(|zi − z(m/2)+1|)

+ (
m

2
) ∗ (z(m/2)+1 − zm/2) (7)

and the sum of distances from zi to p is:

m∑
i=1

|zi − p| =
(m/2)−1∑

i=1

(|zi − z(m/2)| − (zm/2 − p)) +
(m/2)+1∑
i=(m/2)

(|zi − p|)

+
m∑

i=(m/2)+2

(|zi − z(m/2)+1|+ (z(m/2)+1 − p))

=
(m/2)−1∑

i=1

(|zi − z(m/2)|) + (z(m/2)+1 − zm/2) + (zm/2 − p) +
m∑

i=(m/2)+2

(|zi − z(m/2)+1|)

+ (
m

2
− 1) ∗ (z(m/2)+1 − zm/2)

=
m∑

i=1

|zi − q|+ (zm/2 − p), (8)

which again contradicts the assumption that p is a point of the prototype.
2

A consequence of Theorem 4 is that, for any point process dataset, there exists a prototype made up

entirely of points observed in the dataset. That is, in searching for a prototype, one may limit one’s search

to all possible combinations of entries in the dataset.

3.2 Prototype determination

Theorem 4 may be useful in determining the prototype of a point process dataset. In addition, note that

each point of the prototype must be within (pa + pd)/pm of a fraction pa/(pa + pd) of the dataset’s point

patterns, as discussed in Schoenberg and Tranbarger (2004). Let n be the number of point patterns in the

dataset. Then each point z in the dataset for which at least npa/[2(pa +pd)] other points from distinct point

patterns in the dataset are in the range [z− (pa + pd)/pm, z] and at least npa/[2(pa + pd)] other points from

Tranbarger and Schoenberg. Point pattern distances and prototypes. 12

distinct point patterns in the dataset fall in the range [z, z +(pa + pd)/pm] is a candidate for inclusion in the

prototype. For the case where pa = pd, this is simply n/4 points from distinct point patterns in the dataset

occurring on either side of z, within a distance 2 ∗ pd/pm. In practice, this observation may significantly

decrease the number of candidates to be considered as potential points in the prototype.

3.2.1 Direct algorithms for prototype determination

With a finite number ncp of candidate prototype points to consider, one may compute the sum in equation

(4) for each possible prototype, i.e. each possible collection of points that are potentially in the prototype.

For sufficiently small pm, the prototype will generally have length equal to the median length M of the n

point patterns, so one may limit one’s search to the
(
ncp

M

)
collections of length M only, as candidates for the

prototype. Depending on the size of the dataset of interest, this may be a reasonable task to undertake.

Alternatively, if pm is not small enough to allow for a prototype of length M , then the best prototype of

length k can be iteratively sought for k = 1, 2, . . . ,M .

In this case, the prototype may be found by considering the optimal prototype candidate of length k = 1

and progressively increasing k, ending the search once the sum in (4) for length k + 1 is greater than the

sum (4) for the best prototype of length k.

3.2.2 Forward and reverse stepwise approximation

Finding the prototype of a set of point patterns as prescribed in Section 3.2.1 may prove to be prohibitively

tedious for large datasets. In this case, stepwise methods can be implemented to attain an approximate

prototype solution.

A reverse stepwise approach can be implemented by first finding the optimal prototype of median length

M . Possible prototypes of shorter length can then be found by eliminating points from the length M

prototype one at a time. This strategy continues until the optimal prototype of length k − 1 has a larger

sum of distances (4) than the best prototype candidate of length k.

While the reverse stepwise approach will entail fewer computations than finding the prototype directly,

even the reverse stepwise approximation can prove prohibitively cumbersome due to the long length of the

Tranbarger and Schoenberg. Point pattern distances and prototypes. 13

prototype computed in the first stage. An alternative is to use a forward stepwise approach, which can

further reduce computation time by beginning with a short prototype candidate and progressively expanding

it by one point at each step. In each iteration, the sum of pattern-prototype distances (4) for the prototype

candidate of length k is compared with the sum for the prototype candidate of length k − 1.

Figure 4 illustrates the speed of the forward stepwise prototype approximation approach using the MBM

algorithm for distance calculations, again using a 1.33GHz PowerPC G4 processor. Here, N = 5, 10, ..., 50

Poisson processes of mean length n = 1, 2, ...10 were simulated and the prototypes of the N patterns were

determined using the forward stepwise algorithm. Mean CPU times were recorded after 100 repetitions at

each level of N and n. As seen in Figure 4, the number of point patterns in a dataset and the average length

of those patterns have quite different effects on the calculation time required for prototype determination.

While the large perspective plot of Figure 4 shows these two factors together, the two smaller plots to the

right illustrate the factors’ effects on time separately by averaging the results first over the N levels of

number of point patterns and secondly for the n levels of pattern mean length. These marginal plots show

that while the mean pattern length has a relationship to run time very similar to that seen in Figure 3 for

the time required in distance calculation by the MBM algorithm, the relationship between the number of

point patterns and run time is nearly linear. This result is not surprising in light of the fact that collections

of longer point patterns will have a prototype longer in length than collections of point patterns that are

shorter in length. Longer prototypes require additional steps in the stepwise algorithm and the CPU time

required for each step increases rapidly as the algorithm continues.

3.3 Penalty selection considerations

Penalties selected for pm, pa, and pd play a significant role in prototype determination. As discussed in

Schoenberg and Tranbarger (2004), a point at time t can only be part of the prototype if at least pa/(pa +pd)

of the point patterns in the dataset contain a point within the interval [t − 2pa/pm, t + 2pa/pm]. Selection

of moving penalties that are too large will lead to prototypes that seem unusually short, since the range

t± 2pa/pm will be quite small.

When the primary purpose of the prototype pattern is to serve as an example of a typical point pattern,

Tranbarger and Schoenberg. Point pattern distances and prototypes. 14

it is useful to set pm to be quite small compared to what might be advisable for distance calculations. Setting

pm to a small positive value when pa = pd enables the prototype to take on the median number of points

in the dataset. Because each prototype point must be matched to points within at least pa/(pa + pd) of the

observed point patterns, it is typically not possible to achieve a prototype of greater than median length

while maintaining the pa = pd restriction.

Figure 5 illustrates how the length of the prototype is related to the relative size of the selected pm and

pa = pd values. For the first plot on the left, prototypes were calculated for 100 simulated datasets, each

consisting of 20 stationary Poisson processes of rate 1 on [0, T], using the forward stepwise algorithm and

100 different pm values ranging from 0.001 to 2.0. In all cases, pa = pd = 1. The mean prototype length

for each penalty value is seen along the y-axis and is plotted against the corresponding movement penalty

value. As expected, smaller values of pm correspond to longer prototype lengths, with a leveling off across

very small pm values where the maximum prototype length (the median) has been achieved.

The plot at right of Figure 5 shows the 100 prototypes calculated for one randomly selected simulated

dataset used for the illustration at left. Of particular interest is the observation that while the number of

points in the prototype decreases with increases in pm, the actual location of many of the prototype points

remains essentially constant across a wide range of penalty values. This suggests that for any particular

dataset, the locations of the points in the prototype will be rather robust to choices of pm and pa = pd.

Small changes in the ratio pm/pa appear to have surprisingly little effect on either the prototype pattern or

the overall distribution of distances as seen earlier in Figure 1.

4 CLASSIFICATION THROUGH CLUSTERING

Using the spike-time distance metric and prototype, various clustering algorithms established for standard

multivariate data can be modified for use in point process applications. This Section describes how three such

methods can be adapted and discusses issues in the selection of penalties when these clustering algorithms

are used.

Tranbarger and Schoenberg. Point pattern distances and prototypes. 15

4.1 HMEANS, KMEANS and Agglomerative clustering

HMEANS and KMEANS clustering are two closely related iterative techniques useful for clustering multi-

variate data. Both HMEANS and KMEANS clustering begin by randomly assigning each observation to

one of c clusters and finding the center of each cluster. While cluster centers are conventionally defined

as centroids in standard HMEANS and KMEANS clustering of multivariate data (Spaeth 1980, Anderberg

1973, Bock 1970, Howard 1966), in the case of a point process dataset one may instead use the prototype as

the definition of the center of a cluster of point patterns.

A third option is an agglomerative approach that assigns each observed point pattern to its own cluster

and then systematically combines clusters. This approach is especially useful in cases where HMEANS and

KMEANS fail to converge after numerous iterations.

With each observed point pattern assigned to a cluster of its own, each cluster’s prototype is simply the

member pattern. The pairwise distances between each cluster prototype can be found and the nearest two

clusters joined to form one larger two-pattern cluster. From here, the new cluster prototype is determined,

and the new pairwise distances between prototypes are calculated. The process repeats until only c desired

clusters remain. If the amount of data makes computing all pairwise distances unfeasible, a similar ap-

proach is to consider pairwise distances for only one point pattern at a time in either a randomly assigned

order, or in order of length from the longest pattern to the shortest. Our investigations suggest that this

procedure of ordering the point patterns from longest to shortest and then progressively merging the point

patterns minimizes problems that can occur if the pa, pd, and pm penalties are set such that pattern length

overshadows other features in the distance measures.

4.2 Penalty choice considerations

While setting pm to a small value is useful in determining prototypes, very small pm values are not desirable

in clustering applications. As discussed in Section 2.4, small penalties for movement of points will lead to

distances that approach the absolute difference in pattern lengths, while large movement penalties lead to

distance calculations that approach the sum of point pattern lengths. In clustering, either extreme will lead

to clusters assigned by grouping patterns of similar lengths rather than patterns with similarly placed points.

Tranbarger and Schoenberg. Point pattern distances and prototypes. 16

For the simulation presented in Figure 6, ten point patterns were created for each of two different methods.

Ten realizations of a rate 1 Poisson process on [0,6] while another ten point patterns were each created by

sampling n points independently from a normal random variable with mean 3.0 and standard deviation 0.25,

where n is a Poisson random variable with mean 6.0. Patterns of length zero were excluded. Plotted in

Figure 6 is the mean failure rate for HMEANS in correctly identifying the two different types of patterns

over 125 simulations. The mean rate of failure is shown for twenty different pm values ranging from 5% to

200% of the penalty recommended in (3) for distance calculations. It is clear in these results that extremely

small values of pm are less successful at clustering than values similar to that advised in (3) for distance

measurements.

5 MULTI-DIMENSIONAL EXTENSIONS AND DISCUSSION

The spike-time distance metric as examined in this work, and as originally proposed by Victor and Pupura

(1997), has thus far been applied primarily to temporal point patterns as defined in Section 2. As explored

in Schoenberg and Tranbarger (2004), the spike-time metric, the related prototype pattern technique, and

related clustering algorithms can be extended to point process data with points occurring in Rd.

In the extension of the definition of the spike-time distance metric to Rd, points can be added with

penalty pa, deleted with penalty pd, or moved along the ith axis a distance of ∆ at a cost of p
(i)
m ∆. Moving

penalties p
(1)
m , p

(2)
m , ...p

(d)
m may be set independently for movement along each of the d axes as in (3) for

distance calculations and clustering application settings. As with the one-dimensional case, smaller values

for movement penalties are again useful for prototype determination to enable longer length prototype point

patterns. While the ratio of pa and pd to moving penalty pm was of primary importance for temporal

point process work, the relative values of the d movement penalties must also be considered when multiple

dimensions are involved. These ratios must be considered so as to avoid (or allow) inter-point distances

along one or more dimensions being more heavily weighted in distance calculations.

As might be expected, spike-time distance calculations are far more cumbersome in Rd, as the result

of Theorem 1 does not hold. Without the result of Theorem 1, neither the SU nor MSU approaches can

be implemented. Also, using MBM, multiple pairing arrangements must be considered for each possible set

Tranbarger and Schoenberg. Point pattern distances and prototypes. 17

of kept points. The process to determine which points will be kept and which will be removed under the

MBM algorithm remains unchanged as Lemma 2 and Theorem 3 (and their results) extend immediately to

multiple dimensions.

For prototype pattern determination, a modified version of Theorem 4 applies to the multi-dimensional

setting. With more than one dimension, rather than each prototype point p being a median of the points

(z1, z2, ..., zm) it is paired with, each coordinate of prototype point p will be a median of the corresponding

coordinate of the points (z1, z2, ..., zm). Therefore, while the prototype may not contain points in the

dataset, there exists a prototype made entirely of points such that each coordinate of each prototype point

is a coordinate in one of the points in the dataset.

Clustering algorithms discussed in Section 4 can be applied to multi-dimensional point pattern data

without modification. For some datasets, the computation time involved in prototype determination impedes

the use of the clustering algorithms as described in Section 4 and slight modifications can be made, such as

considering only one of the d dimensions at a time in each step of the prototype and/or distance calculation.

Such a monothetic approach is used in Schoenberg and Tranbarger (2004) for clustering earthquake aftershock

activity considering the time, magnitude, and location of each aftershock.

While the spike-time distance metric is only one of countless distance metrics for point pattern data [see

Victor and Purpura (1997) for others], the concept of a prototype sequence is one that exists independently of

distance metric specifics. Therefore, though many of the results presented here apply solely to the spike-time

metric, the approaches to determining prototypes and clusters derived from the ability to measure distances

between point patterns should remain useful in conjunction with other point pattern distance metrics.

6 ACKNOWLEDGEMENTS

We thank Chuck Woody for introducing us to the work of Victor and Purpura, and we thank Pepe Segundo

for introducing us to Chuck Woody. This material is based upon work supported by the National Science

Foundation under Grant No. 0306526. Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily reflect the views of the National Science

Foundation.

Tranbarger and Schoenberg. Point pattern distances and prototypes. 18

7 REFERENCES

Aronov, D. (2003). Fast algorithm for the metric-space analysis of simultaneous responses of

multiple single neurons. Journal of Neuroscience Methods 124, 175-179.

Daley, D., and Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes,

Volume 1: Elementary Theory and Methods, 2nd ed. Springer-Verlag, New York.

Hitchcock, F.L. (1941). The distribution of a product from several sources to numerous

localities. Journal of Mathematical Physics, 20, 224–230.

Levina, E. and Bickel, P.J. (2001). The Earth Mover’s Distance is the Mallows Distance:

Some Insights from Statistics. Proceedings of ICCV 2001, Vancouver, Canada, 251-256.

Monge, G. (1781). Mémoire sur la Théorie des Déblais et des Remblais. Histoire de l’Académie

Royale des Sciences, Paris.

Reich D., Mechler, F., Purpura, K., and Victor, J. (2000). Interspike intervals, receptive fields,

and information encoding in primary visual cortex. Journal of Neuroscience 20(5), 1964-1974.

Rubner, Y., Tomasi, C., and Guibas, L. (1998). A Metric for Distributions with Applications to

Image Databases. IEEE International Conference on Computer Vision, 59-66.

Rubner, Y., Tomasi, C., and Guibas, L. (2000). The Earth Mover’s Distance as a Metric for

Image Retrieval. International Journal of Computer Vision 40(2), 99-121.

Schoenberg, F.P. and Tranbarger, K.E. (2004). Description of earthquake aftershock sequences

using prototype point processes. In Review

Sedgewick, R. (1986). A new upper bound for Shell sort. Journal of Algorithms 7, 159-173.

Späth, Helmuth (1980). Cluster Analysis Algorithms for Data Reduction and Classification

of Objects. E. Horwood, Chichester and Halsted Press, New York.

Victor, J. and Purpura, K. (1997). Metric-space analysis of spike trains: theory, algorithms and

application. Network: Computation in Neural Systems 8, 127–164.

Tranbarger and Schoenberg. Point pattern distances and prototypes. 19

Figure 1

recommended movement penalty

distance

De
ns

ity

2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

75% of recommended movement penalty

distance

De
ns

ity

2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

0.
20

125% of recommended movement penalty

distance

De
ns

ity

2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●●●

●

●

●

●
●●

●
●

●●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●●
●●

●●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●●

●

●

●●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●
●

●●●

●

●

●
●●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●
●

●

●●

●●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●
●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●

●
●

●

●

●
●●

●

●

●

●
●

●

●●●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●●

●

●●●

●

●
●

●

●

●●●

●●

●
●

●●●●
●●

●
●

●

●

●

●

●●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●
● ●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●
●●●

●

●

●

●
●

●●

●

●●

●

●

●

●
●

●

●
●●●

●●●
●

●
●

●

●●

●
●●

●

●
●●

●●

●

●●
●

●
●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●
●

●
●

●

●

●
●

●●●●●●

●
●

●

●

●

●●

●●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●●
●●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●
●

●●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●
●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

●

●

●
●●●

●

●●
●

●
●

●

●
●

●●●●

●

●

●
●

●

●

●
●

●
●●

●●

●●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●●●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●●

●●●
●

●

●
●

●

●●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●●●

●
●●

●●●●

●
●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●
●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●
●

●●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●
●

●●

●

●●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●●

●

●●●●
●

●

●

●●

●

●
●

●●
●

●

●
●

●

●●●

●
●

●
●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●
●●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●●●

●

●●

●
●

●●
●

●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●
●

●●●

●
●

●
●●

●●●

●

●

●

●
●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●
●

●

●●●
●

●●

●

●
●

●

●
●●●

●●
●●

●

●

●
●

●●●
●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●
●●

●

●

●
●

●
●

●

●

●
●●●

●

●●●
●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●●

●●
●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●
●●

●●

●

●

●

●

●
●

●
●

●
●

●

●●
●

●

●
●●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●●●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●●●
●

●

●●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●●
●

●
●

●
●

●
●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●
●

●
●

●●

●

●●
●

●

●

●●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●
●●

●●
●

●●

●

●●●●

●●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●
●

●

●

●

●●

●●
●

●

●●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●
●

●
●

●

●
●●

●

●

●●
●

●●

●

●

●
●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●●
●

●

●
●

●

●

●●
●

●

●

●

●●●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

● ●
●

●
●

●●●●● ●

●●

● ●

●●

●●

●

●●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●
●●●

●

●

●●●
●●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

● ●

●

●●
●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●●●

●

●
●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●●
●

●
●●

●
●

●●
●

●

●●●●
●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●●

●

●

●●

●
●

●

●
●

●●

●

●

●

●
●

●●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●●

●

●

●
●

●
●

●●●
●

●

●
●

●
●

●

●

●

●

●
●●

●
●

●

●●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●●
●

●

●
●●

●
●

●

●

●

●

●●

●
●

●

●
●

●●
●●

●

●●
●

●

●●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●●

●

●

●

● ●
●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●●●●

●

●

●

●
●

●

●
●

●●
●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●
●

●
●

●

●

●
●

●●●
●

●●●●

●
●

●

●
●

●●
●

●

●

●
●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●
●●

●

●
●●●

●
●

●

●

●

●●
●

●
●

●

●
●

●

●●
●

●●
●

●

●
●●

●

●
●

●

●●

●●
●

●

●

●
●

●

●
●

●

●

●

●●
●●

●
●

●

●●●

●

●

●

●●
●

●●

●
●

●

●

●●●

●●

●

●●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●●●

●
●

●●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

● ●

●
●●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●●●

●

●

●
●

●

●●●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●●
●●●●

●

●
●

●

●

●
●

●

●

●
●

●

●
●●

●●●●

●

●●

●

●
●

●
●

●

●

●
●

●●

●
●

●

●

●●

●●

●

●●●

●

●●●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●
●●

●

●

●

●●
●●●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●● ●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●
●●●

●

●

●

●●●●

●

●

●

●
●

●
●

●

●

●●
●

●●
●

●

●

●
●

●

●

●

●●●
●

●
●

●

●
●●●●

●
●

●

●

●
●

●●
●

●●●

●
●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●●
●●

●●

●

●
●

●●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●●
●●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●
●●

●●

●

●●

●

●
●

●

●●

●
●

●●

●

●●

●

●●

●
●

●

●
●

●

●

●●
●

●

●●

●

●

●
●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●
●●

●

●

● ●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●●
●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●

●●

●

●
●●●

●

●

●

●

●●
●

●

●

●

●
● ●

●
●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●

●

●

●●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●●

●

●
●

●●

●●

●●

●

●

●
●

●
●

●●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●

●
●

●●

●

●

●

●
●

●

●

●

●●●●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

−4 −2 0 2 4

2
4

6
8

10

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

●●

●●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●
●●

●
●

●

●
●●

●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●●

●●
●●

●

●

●
● ●

●

●
●

●

●

●
●

●
●

●

●
●●

●●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●
●●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●
●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●●●

●

●

●
●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●
●

●

●
●

●

●

●●
●

●●

●
●

●●●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●●●
●

●

●●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●

●

●●●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●●

●

●

●●

●
●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●●

●●●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●●●
●

●

●

●●
●

●

●

●●

●

●

●

●●

●

●
●●●

●
●●

●

●
●

●

●●

●
●●

●

●
●●

●●
●

●●

●

●
●

●
●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●
●

●●

●
●

●

●

●●

●●●
●

●●

●

●

●

●
●

●●

●

●

●

●

●●
●●

●
●

●

●

●
●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●

●●

●●
●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●
●●

●●

●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●●●

●
●●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●●
●

●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

●
●

●

●

●
●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●●●

●●

●
●

●

●
●

●

●●

●

●
●

●
●●

●
●

●

●
●

●

●

●
●●

●
●●●

●
●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●● ●●

●

●

●
●

●●

●

●●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●
●●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●
●

●●●
●

●

●

●●

●

●
●

●

●

●
●

●●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●
●●●

●

●

●

●●

●

●●

●
●

●
●

●
●

●

●
●

●
●

●

●●
●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●●
●●

●

●

●

●
●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●
●●

●

●

●

●●
●

●

●
●

●

●

●

●
●●

●●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●●

●
●

●
●

●
●

●

●
●

●●
●

●

●

●●●
●

●
●

●●
●

●

●
●

●●
●

●
●

●

●

●

●●

●
●

●

●

●

●●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●●●
●

●

●

●
●

●
●

●

●

●

●●
●

●

●●●

●

●

●●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●●●

●

●
●

●

●●

●
●●

●

●
●

●
●

●

●
●

●●

●

●

●●

●

●

●

●
●

●
●●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●●

●

●

●
●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●
●

●
●

●

●

●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●●

●
●

●

●●

●
●

●

●
●

●

●

●

●●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●
●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●
●

●

●●

●

●●●●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●●
●

●

●

●

●
●

●
●

●

●

●●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●●
●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

● ●

●
●

●●
●

●

●

●

●

●
●●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●
●

●●

●

●
●

●

●●●●

●●
●

●
●

●
●

●

●

●●

●●
●

●●

●●

●●

●
●

●
●

●

●●

●
●

●

●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●●

●
●

●

●
●

●

●
●

●

●●●
●●

●

●

●●
●●●●●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●●●
●●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●
●

●●●

●●

●●

●●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●●
●●

●
●

●

●● ●●
●●

●

●●●

●

●●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●
●●

●

●

●

● ●

●

●
●

●●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●
●

●

●

●

●●●

●

●
●●●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●●
●

●
●

●

●●

●●
●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●●

●

●●

●

●●

●
●

●

●

●

●●

●

●●
●

●

●
●

●
●

●
●

●
●

●
●●

●

●

●

●●

●

●●

●

●

●
●

●●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●●●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●
●

●

●
●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

● ●●

●

●

●
●

●

●●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

● ●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●●

●●
●●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●
●

●●●
●

●

●
●

●

●●●●

●

●
●

●

●
●

●

●●

●

●●
●

●

●●●●

●

●●
●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●
●●●

●

●

●
●

●●●
●●

●●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●
●

●●

●

●

●
● ●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●●

●●●

●

●

●●
●

●

●

●
●●●

●●

●

●
●●

●●

●
●●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●●
●●

●

●
●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●
●

●

●

●●

●
●

●

●

●●
●

●
●

●●

●

●

●

●●●

●
●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●●

●

●●●

●
●

●

●
●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●
●

●
●

●

●
●●●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●●

●

●

●●

●●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●●●

●
●

●
●

●

●

●●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●
●

●

●
●●

●

●

●

●●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●
●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

−4 −2 0 2 4

2
4

6
8

10

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●●

●
●●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●●

●

●●●

●

●

●

●
●●

●●

●●

●

●
●

●
●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●●
●●
●

●

●
●

●

●●

●

●

●

●

●
●●

●

●●●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●●

●
●

●

●●

●

●●
●

●

●

●

●

●●●
●

●
●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●

●●●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●
●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●●●

●●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●●●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●●●
●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●●
●●

●

●

●

●●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●●

●
●

●
●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●●●●

●
●

●
●

●
●

●

●●

●

●●
●

●●
●

●●

●
●●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●
●●●

●

●

●●

●
●●●

●●

●

●●
●

●

●
●

●●

●

●●

●

●
●

● ●

●

●

●

●
●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●
●●●

●●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●●

●

●

●●
●

●

●

●●
●

●

●

●

●
●●

●

●
●●

●

●

●
●

●
●

●

●●

●

●
●

●

●
●

●●●●

●

●

●
●

●

●

●●
●●●

●●

●●

●
●

●

●

●

●●
●●●●

●
●

●

●

●
●

●

●

●
●

●
●●

●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●●●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●●
●

●

●

●

●

●

●

●
●●

●●●
●

●

●

●
●

●●

●

●

●
●●●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●●

●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●
●●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

● ●

●

●

●●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

● ●

●
●

●

●
●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●●

●
●●●

●

●●

●
●

●

●

●

●

●

●
●

●●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●
●

●

●
●

●

●
●

●
●

●●

●

●●●
●

●

●

●

●●

●

●

●

●●●
●

●●

●

●●
●

●●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●●

●
●●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●

●

●

●

●
●

●
●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●●
●●●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●
●

●
●●

●
●●

●

●
●

●
●

●●●
●●

●●

●

●
●

●
●●●

●
●

●
●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●
●

●●

●

●

●

●
●●●

●

●●●
●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●●
●

●

●
●

●●
●

●

●

●
●

●

●
●

●

●

●

●●●
●●
●

●

●

●

●

●

●
●

●●

●

●
●

●
●●●

●●
●

●
●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●

●●
●

●

●

●
●●●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●
●

●

●●
●●

●

●
●

●

●●
●

●

●
●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●●

●●

●
●

●●

●

●

●
●

●
●●

●

●

●
●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●●●

●

●●

●
●

●●

●

●●●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●●

●

●

●

●●

●●
●

●

●

●

●

●●

●
●

●

●●

●
●●●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●●
●●

●

●

●

● ●

●●●

●

●●
●

●●

●

●
●

●

●
●●

●

●

●

●

●●●●

●

●
●

●

●

●

●●

●

●●

●
●

●

●

●
●

●●

●

●

●

●
●●

●

●

●●
●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●

●
●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●●●
●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●
●●

●●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●

●

●●
●

●●●

●
●●

●●

●
●

●●●
●

●

●●

●●

●

●

●

●

●

●

●
●

●●

●

●●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●●

●

●

●●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●
●

●
●●

●

●

●
●●

●
●●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

●

●●
●

●

●

●

●
●●

●
●

●●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●
●●●

●

●

●

●
●●

●
●

●

●
●

●
●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●●

●●

●
●

●●●
●●●

●

●●●
●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●
●

●●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●●
●●●

●
●

●

●
●

●

●

●

●

●

●●
●

●●

●

●●

●

●

●●

●●
●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●
●●●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●●

●

●●

●

●

●●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●
●

●●

●

●●

●
●●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
●●●

●

●
●

●
●

●
●

●●●●

●

●

●

●●

●
●

●
●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●
●●

●
●

●
●●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●●
●

●

●
●●

●

●
●

●

●●

●
●●

●

●

●

●

●

●
●

●

●

●

●●
●●

●
●

●

●●●

●

●

●

●
●●

●●

●●

●

●

●●●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●

●
●

●

●●●
●

●

●
●

●

●

●

●

●

●●●

●
●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●
●●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●●
●●●

●

●

●
●

●

●● ●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●●●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●

●

●●●

●●

●

●

●●
●

●
●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●●

●
●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●
●●

●●●●●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●●
●

●

●

●●
●

●
●

●
●

●

●

●●
●●

●
●

●

●

●
●

●●

●

●●●●

●●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●●
●

●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●

●

●

●
●●

●

●
●

●

●

●

●
●

●
●●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●
●●●

●

●

●

●●
●●

●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●●●

●

●
●

●

●

●
●

●
●●

●●●

●
●

●
●

●
●●

●

●
●

●

●
●●

●

●

●

●

●

●●

●

●

●●
●●

●●

●

●
●

●
●

●

●

●
●

●

●●

●

●●●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●●

●

●●
●

●●

●

●
●

●
●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●
●●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●●
●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●
●●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●●●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●
●

●
●

●

●
●

●●

●
●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

●
●

●

●●
●

●●●

●●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●●
●

●

●

●●

●
●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

●

●●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

−4 −2 0 2 4

2
4

6
8

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

Figure 1: Pairwise distances for 100 simulated Poisson point patterns using three different penalty values.

Of note is the observation that the general shape of the distribution of distances remains normal for all three

penalty values.

Tranbarger and Schoenberg. Point pattern distances and prototypes. 20

Figure 2

0 100 200 300 400 500

0
1

2
3

4

pattern length

C
P

U
 ti

m
e

(s
ec

)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ●

Figure 2: Mean calculation time in R for spike-time distance as pattern length increases. The SU algorithm

(in black) is shown with the best-fit n2 curve, and the MSU algorithm (in red) is shown with a linear fit.

Tranbarger and Schoenberg. Point pattern distances and prototypes. 21

Figure 3

● ● ● ● ● ● ● ● ●
● ●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

5 10 15 20 25 30

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

pattern length

C
P

U
 t
im

e
 (

se
c)

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

Figure 3: Mean calculation time for spike-time distance as pattern length increases. The MBM distance

algorithm (in C) shown in green proves to compute distances more quickly than both the SU and MSU

algorithms (in R) in cases where the mean pattern length is less than 16 points (when both MBM and SU

are coded in C, MBM performs better for any pattern length less than 9). For patterns of longer lengths, the

MSU algorithm is shown to calculate distances most efficiently. In general, the MBM algorithm simulations

follow a 4n curve, the SU algorithm (shown in black) follows a n2 curve, and the MSU algorithm (in red) is

linear with increases in pattern length.

Tranbarger and Schoenberg. Point pattern distances and prototypes. 22

Figure 4

mean patte
rn le

ngth

2

4
6

8
10

number of patterns 10

20
30

40
50

C
P

U
 tim

e (sec)

5

10

15

20

25

30

● ● ● ● ● ● ●
●

●

●

2 4 6 8 10

0
2

4
6

8
10

mean pattern length

C
P

U
 ti

m
e

(s
ec

)

● ●
●

● ●

●

●
●

●

●

10 20 30 40 50

0
1

2
3

4
5

number of patterns

C
P

U
 ti

m
e

(s
ec

)

Figure 4: CPU time for forward stepwise prototype approximation of simulated Poisson point patterns

of varying length and number. Distances within the prototype algorithm were computed using the MBM

algorithm.

Tranbarger and Schoenberg. Point pattern distances and prototypes. 23

Figure 5

●●
●●●●●●●●●●●●

●●●●
●
●●●

●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●
●●●●●●●

0.0 0.5 1.0 1.5 2.0

6.
0

7.
0

8.
0

movement penalty

av
er

ag
e

pr
ot

ot
yp

e
le

ng
th

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

prototype point value

m
ov

em
en

t p
en

al
ty

● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ● ●● ● ●● ●● ● ●● ● ●● ●● ● ●● ● ●● ●● ● ●● ● ●● ●● ● ●● ● ●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ●●● ● ●● ● ●●● ● ●● ● ●●● ● ●● ● ●●● ● ●● ● ●●● ● ●● ● ●●● ● ●● ● ●●● ● ●● ● ●●● ● ●● ● ●●● ● ●● ● ●●● ● ●● ● ●●● ● ●● ● ●●● ● ●● ● ●●● ● ●● ● ●●● ● ●● ● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ● ●● ●● ●● ● ●● ●● ●● ● ●● ●● ●● ● ●● ●● ●● ● ●● ●● ● ●● ●● ●● ● ●● ●● ●● ● ●● ●● ●● ● ●●

Figure 5: On the left it is seen that as movement penalty values increase, the resulting prototype pattern

decreases in length. The graph at right shows Changes in the movement penalty have little influence over

location of prototype points. While length decreases with increasing movement penalties, the general location

of prototype points is largely consistent across all reasonable penalty values. Plotted are the prototype

points for a simulated dataset of 20 Poisson patterns of rate 1 ranging in time from 0 to 10 computed using

pa = pd = 1 and 0.01 ≤ pm ≤ 2 as plotted on the y-axis.

Tranbarger and Schoenberg. Point pattern distances and prototypes. 24

Figure 6

●

●

●

●

●
●

●
●

● ●

●

●

●
●

● ●

●

● ●

●

50 100 150 200

0
.2

0
0

.2
5

0
.3

0
0

.3
5

percent of recommended penalty

p
e

rc
e

n
t

o
f

p
a

tt
e

rn
s

m
is

cl
a

ss
ifi

e
d

Figure 6: For this simulation (repeated 125 times) ten patterns were created following a Poisson process

model of rate 1 with a mean length of six points and ten patterns were created by randomly sampling from

a Normal(3, .25) distribution of a size determined by a Poisson(6) random variable. As shown, extremely

small penalty values cause HMEANS to incorrectly classify patterns more frequently than penalty values

closer to that recommended in (3) of Section 2.4.

