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In a recent communication [1], Breskin, Cole and Hudgens aimed to demonstrate “how
single-world intervention graphs can supplement traditional causal diagrams”. The example
used in their demonstration involved selection bias due to attrition, namely, subjects drop-
ping out from a randomized trial before the outcome is observed. Here we use the same
example to demonstrate the opposite conclusion; the derivation presented by Breskin et al.
is in fact longer and more complicated than the standard, three-step derivation facilitated
by traditional causal diagrams. We further show that more natural solutions to attrition
problems are obtained when viewed as missing-data problems encoded in causal diagrams.

The trial example of Breskin et al. is shown in the causal diagram of Figure 1a. The
task is to estimate the average causal effect E[Y |do(A = a)] in the general population,
given complete data on A (vaccine assignment) and W (injection site pain), while data on
Y (disease outcome) is available only for those subjects who did not drop out of the study
(S = 0). U stands for unmeasured health status, and participants with poor health (U = 1)
are assumed to be both more likely to experience pain and get the disease.

The standard strategy of causal diagrams is to convert the query expression, E[Y |do(A =
a)], into an equivalent expression that can be estimated from the available data [2, 3]. The
derivation goes as follows:

E[Y |do(A = a)] = E[Y |A = a] (1)

=
∑
w

E[Y |A = a,W = w]P (W = w|A = a) (2)

=
∑
w

E[Y |A = a,W = w, S = 0]P (W = w|A = a) (3)
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(a) (b)

Figure 1: (a) Causal diagram of the vaccine trial used in [1]. (b) The graphical representation
of the vaccine trial when viewed as a missing data problem.

The first equality is licensed by randomization (or null backdoor condition), the second
by the law of total probability, and the latter by d-separation; i.e., Y⊥⊥S|{A,W}. All
components of the final expression can be estimated from the available data; the first factor
from units who remained in the study (S = 0), and the second from all units entering the
trial. As noted in Breskin et al., the same derivation holds if the arrows A→ S and W → Y
are added to the diagram.

The extreme simplicity and transparency of this derivation, vis-a-vis the elaborate deriva-
tion introduced by Breskin et al, is an illustative example of the utility of traditional causal
diagrams in modeling attrition, censoring, selection bias and missing data problems.1 A wide
variety of selection bias and cross population problems can be solved by the same query-
conversion strategy that we described above, operating on traditional causal diagrams [2, 3].
General conditions for identifying causal effects under both confounding and selection bias
are presented in [4].

As a final remark, we note that the example presented by Breskin et al. may be better
formulated as a missing data problem. Such formulation would allow us to specify explicitly
which variables are still measured for every subject who drops out of the study. For instance,
in the current example, missingness only occurs in the outcome variable Y , a fact that is not
represented in the diagram of Figure 1a. Missingness graphs [5], on the other hand, allow
us to formally encode this distinction, as shown in Figure 1b.

Here the variable Ry replaces S and represents the “missingness mechanism” of the
outcome variable Y , which is not observed directly. Instead, the variable Y ∗ stands for what
we can observe of Y , such that Y ∗ = Y when Ry = 0, and Y ∗ = missing when Ry = 1. In
this case, the derivation would proceed as before, but this formalism has some benefits: (i) it
explicitly tells us that the two factors in Eq. 3 can be estimated from the same study; and, (ii)
more complicated missingness mechanisms can be easily accommodated. A comprehensive
review of graphical methods for missing data can be found in [6].
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