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Abstract 
Several methods exist for detecting genetic relatedness or identity by comparing DNA information. These methods generally require genotype 
calls, either single-nucleotide polymorphisms or short tandem repeats, at the sites used for comparison. For some DNA samples, like those 
obtained from bone fragments or single rootless hairs, there is often not enough DNA present to generate genotype calls that are accurate and 
complete enough for these comparisons. Here, we describe IBDGem, a fast and robust computational procedure for detecting genomic regions 
of identity-by-descent by comparing low-coverage shotgun sequence data against genotype calls from a known query individual. At less than 1× 
genome coverage, IBDGem reliably detects segments of relatedness and can make high-confidence identity detections with as little as 0.01× 
genome coverage.
Key words: DNA identification, genome, identity-by-descent

Introduction
DNA-based identification in forensics is typically accom-
plished via genotyping allele length at a defined set of short 
tandem repeat (STR) loci via PCR (Kimpton et al. 1993). 
These PCR assays are robust, reliable, inexpensive (Jobling 
and Gill 2004), and amenable to samples with microbial 
contamination. Given the multiallelic nature of these loci, 
a small panel of STR markers can provide suitable discrim-
inatory power for personal identification (Gill et al. 1985; 
Jeffreys et al. 1985). Since the markers in STR panels have 
little or no mutual information, i.e. linkage disequilibrium, 
between them, they provide independent information. This 
simplifies match probability calculation for DNA-based 
identity.

Massively parallel sequencing (MPS) technologies and gen-
otype array technologies invite new approaches for DNA-
based identification. Application of these technologies has 
provided catalogs of global human genetic variation at single-
nucleotide polymorphic (SNP) sites and short insertion–de-
letion (INDEL) sites. For example, from the 1000 Genomes 
Project (Genomes Project et al. 2015), we now have a cat-
alog of nearly all human SNP and INDEL variation down to 
1% worldwide frequency. Large-scale population sequencing 

projects that will generate catalogs of segregating variation 
are also underway for many other species (Shaffer et al. 2022).

Genotype files, generated via MPS or genotype arrays, can 
be compared between individuals to find regions that are 
co-inherited or identical-by-descent (IBD) (Gusev et al. 2009; 
Browning and Browning 2013a, 2013b; Kling and Tillmar 
2019; Kling et al. 2021). Finding IBD regions between 2 
samples implies that the samples derived from individuals 
who are genetically related. These comparisons are the basis 
of the relative finder functions in many direct-to-consumer 
genetic testing products (Durand et al. 2014; Ball et al. 2016).

Relatedness estimation from genotype data can be 
performed in 2 general ways. In 1 style of approach, dense, 
genome-wide marker data are explicitly handled as not inde-
pendent between nearby sites. Rather, these methods attempt 
to find genomic regions wherein markers indicate that at least 
one of each sample’s chromosomes are IBD (Purcell et al. 
2007; Gusev et al. 2009; Browning and Browning 2010). In 
this way, it is the aggregate signal from many linked markers 
in a region that signify IBD. The second category compares 
genotype data to measure an overall rate of genetic similarity 
(Conomos et al. 2016; Gorden et al. 2022). An elevated rate 
implies relatedness and can then be used to estimate a kinship 
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coefficient or degree of relatedness. This second approach 
does not attempt to identify which genomic regions are IBD. 
A special case of relative-finding is self-identification. This is 
a trivial comparison of genotype files as self-comparisons will 
be identical across all sites, minus the error rate of the assay.

For many forensic samples, however, the available DNA 
may not be suitable for PCR-based STR amplification 
(Alaeddini et al. 2010), genotype array analysis (de Vries et al. 
2022), or MPS to the depth required for comprehensive, accu-
rate genotype calling (Nielsen et al. 2011). In the case of PCR, 
one of the most common failure modes occurs when DNA is 
too fragmented for amplification. For these samples, it may 
be possible to directly observe the degree of DNA fragmenta-
tion from the decreased amplification efficiency of larger STR 
amplicons from a multiplex STR amplification (Swango et al. 
2006). In the case of severely fragmented samples, where all 
DNA fragments are shorter than the shortest STR amplicon 
length, PCR simply fails with no product.

Here, we present a fast and straightforward computa-
tional approach for comparison of genotype data from one 
or more known individuals to limited amounts of DNA 
sequence data from an unknown sample. This approach, 
called IBDGem, does not attempt to call genotypes from 
the sequence data. Rather, IBDGem evaluates the likelihood 
of observing the sequence data if a test individual, whose 
genotype is known, was the source versus the likelihood 
of observing that same data if an unrelated individual was 
the source. We find that this approach can reliably identify 
samples with as little as 0.01× depth of coverage from the 
questioned sample. Consequently, IBDGem enables forensic 
identity using samples such as bone and single rootless hairs 
that typically yield sub-nanogram quantities of fragmented 
DNA and otherwise may not be amenable to DNA-based 
forensic analysis (Turner et al. 2022).

Material studied, methods, techniques
Data presented here are from: 1) The 1000 Genomes Project 
Phase 3 deep sequencing (Byrska-Bishop et al. 2022) and 2) 
a panel of 8 human volunteers from whom we derived DNA 
from a saliva sample and cut hairs (hair panel) under UCSC 
IRB protocol HS3382.

For each anonymous study participant, we collected 
saliva DNA using the OGR-500 collection device, head 
hair, and pubic hair. We extracted DNA from the saliva 
and submitted 1 µg to AKESOgen for genotype array 
processing using the Illumina Multi-Ethnic Global Array 
(MEGA). For each participant, we extracted DNA from 5 
head and 3 pubic hairs and prepared single-stranded DNA 
Illumina sequencing libraries (Kapp et al. 2021) from the 2 
highest concentration head and pubic hair extractions. We 
performed shotgun DNA sequencing of the libraries pre-
pared from the hair extractions on an Illumina NovaSeq 
6000 at UCSF. See the supplement for a detailed descrip-
tion of the wet lab methods.

IBDGem is a computer program implemented in C that 
compares genotype data (generated via genotype array or 
DNA sequence data) from a known individual to aligned se-
quence data from an unknown individual. For each variable 
site, it calculates the likelihood of the observed sequence data 
under 3 models of relatedness: 1) the compared samples share 
2 chromosomes identical-by-descent, IBD2, 2) the compared 

samples share 1 chromosome identical-by-descent, IBD1, or 
3) the compared samples share no chromosomes identical-
by-descent, IBD0. Note that these 3 relationships are the only 
possible ways that 2 samples can be related to one another at 
a particular region in the genome. For the analyses presented 
here, the variable sites are all biallelic SNP sites from the 1000 
Genomes panel or all biallelic sites from the Illumina Multi-
Ethnic Global Array.

The likelihoods of the data under these 3 models can 
then be compared with find which best explains the data or 
to generate a log-likelihood ratio (LLR) between models. If 
the distances between variable sites are sufficiently large, i.e. 
longer than the length of a sequence read, then the observed 
alleles at each site can be treated as independent observations 
of the likelihood of each IBD state across a genomic region. 
Thus, we can aggregate these likelihoods across multiple sites 
to increase the discriminatory power between any 2 models. 
Additionally, to account for linkage disequilibrium among 
alleles in the calculation of the background model (IBD0), 
IBDGem uses genotypes from a panel of reference individuals. 
We calculate the likelihood of the data against each of these 
unrelated individuals and take the average to be likelihood of 
the data under the IBD0 model (Fig. 1).

In the special case of determining whether the sequence 
data derives from the same individual as the genotype data 
versus the model of it coming from an unrelated individual, 
which is analogous to the hypotheses tested in STR identifi-
cation, we simply generate LLRs between the IBD2 and IBD0 
models. Note that in the case that an individual in the refer-
ence panel has cryptic relatedness to the subject individual, 
the IBD0 model will be inflated, reducing the LLR (IBD2/
IBD0). In this case, the genetic identity test is conservative. 
The calculations of likelihoods are described in detail in the 
Supplementary Note: IBDGem algorithm.

IBDGem software is available for noncommercial use via 
github: https://github.com/Paleogenomics/IBDGem

Results
IBDGem analyzes regions of the genome for which there is 
genotype data from a known sample and some amount of 
sequence data from an unknown sample. It implements 2 
procedures. The first is a test of whether the sequence data 
(from a forensic sample, e.g.) is more likely if it is from an 
individual who is genetically identical to the known sample 
or if it is from an unrelated person. This result is expressed 
as an LLR. The second procedure is used to identify segments 
of relatedness, if any, between the samples. This second pro-
cedure calculates the likelihood of the 2 samples if related by 
0, 1, or 2 shared chromosomes (IBD) regionally across the 
genome. Because humans are diploids, we carry 2 copies of 
each autosomal genomic locus. Thus, these 3 models (IBD0, 
IBD1, and IBD2) are the only ways that 2 individuals can 
be related at a particular autosomal genomic region. More 
closely related individuals have more IBD1 regions (genome 
segments inherited from common ancestors) than less closely 
related individuals.

Comparisons between unrelated individuals will be IBD0, 
i.e. not share either chromosomal region from a recent 
common ancestor, across all or nearly all regions of the ge-
nome. Conversely, comparisons between the same person will 
necessarily be IBD2 across every region of the genome. For 
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closely related individuals, some regions will be IBD1, where 
a segment of a chromosome is co-inherited from a recent 
common ancestor. Parent–offspring relatives are IBD1 across 
all chromosomes. Full siblings are roughly 25% IBD0, 50% 
IBD1, and 25% IBD2.

To test the ability of IBDGem to reliably compare samples, 
we first used data from the high-coverage 1000 Genomes 
panel (Byrska-Bishop et al. 2022). This panel provides both 
genotype calls and aligned DNA sequence data for each indi-
vidual. In this analysis, self-versus-self comparisons represent 
positive controls wherein all segments of all chromosomes 
should be identifiable as IBD2. Further, self-versus-non-self 
comparisons represent negative controls wherein all segments 
of all chromosomes should be identifiable as IBD0, except in 
cases of cryptic relatedness.

We first analyzed the genotype and sequence data in the 
GBR (British) and LWK (Luhya) panels from the 1000 
Genomes. We used all available genotypes at biallelic SNP 
sites for these comparisons. In this way, this experiment 
approximates the situation of having high-coverage DNA 
from 1 comparison individual with which to generate full 
genotype information for the known sample. After excluding 
known relatives from the panels, there are 91 and 94 samples 
in the GBR and LWK panels, respectively. We performed 1 self 
and 1 non-self comparison for each sample from each panel. 
In other words, we compared the genotype of each individual 
against either their own aligned sequence data (self compar-
ison) or the sequence data of a different, random individual 
within the same panel (non-self comparison) that we down-
sampled to specific target depths to simulate actual data from 
lower-coverage sequencing. Specifically,  we down-sampled 
the sequence reads so that the final coverage is approximately 
2×, 1×, 0.5×, 0.1×, and 0.01×. The SNP sites used for analysis 
are those where data are available after this down-sampling 
step, and as such the number of sites varies for each pairwise 
comparison.

We aggregated the likelihood results into nonoverlapping 
regions/bins containing 200 SNPs across the genome. Within 
each region, the LLRs between models IBD2 and IBD0 for 

self comparisons were strongly identifiable from non-self 
comparisons (Supplementary Figs. S1 and S2). Overall, this 
experiment demonstrates that IBDGem can make accurate 
genetic identifications for all individuals in the GBR and 
LWK panels even at the ultra-low coverage of 0.01× (Fig. 2, 
Supplementary Figs. S3 and S4, and Supplementary Table S1). 
Because the likelihood calculations are straightforward and 
use a fixed panel of genotypes, IBDGem executes quickly, 
taking about 90 s per chromosome on a 2 socket Intel Xeon 
Silver 4216 CPU server.

The LLR for self comparisons (positive controls) showed 
an interesting behavior at the lowest coverages, particu-
larly at 0.01× and 0.1×. The mean LLR (IBD2/IBD0) were 
higher at these lower coverages than at higher coverages. 
We speculated that this may be due to the fact that the ge-
nomic regions spanned within each 200 SNP bin is necessarily 
longer at lower coverages since fewer variable sites will have 
sampled data. Wider regions might reduce IBD0 aggregate 
likelihood values since they will be less prone to fluctuations 
in the degree of cryptic or distant relatedness. Consistent with 
our prediction, at 0.01× the peak of the IBD0 likelihood dis-
tribution is more negative than that of the same distribution 
at 1× (Supplementary Fig. S5A). On the other hand, the IBD2 
likelihood distribution at 1× is more negative than at 0.01×, 
suggesting that at this higher coverage, the higher number of 
observations per site leads to a necessary decrease in the like-
lihood of IBD2. We note that as the coverage of the sequence 
data increases beyond 1×, the LLRs increase again. Despite 
the effects, all positive and negative controls were correctly 
and strongly identified at all depths of sequencing coverage 
from 0.01× to 2×.

The probability model for IBD0 relies on comparisons to 
a reference panel of unrelated individuals to model the like-
lihood of the observed sequence data under the scenario that 
it derives from an unrelated individual. Human populations, 
in general, have low cross-population F

st values (Rosenberg 
et al. 2002). Thus, one might expect that the background 
population used to define IBD0 has little impact on the IBD0 
calculation. However, population differences in haplotype 

Fig. 1. IBDGem schematic. Comparisons are made between the known genotype of a subject person (Person of Interest; second band from top) and 
low-coverage sequence data from a DNA sample (third band from top). The probability of the observed data can be calculated under the model that 
the subject person carries the same 2 chromosomes as the person from whom the DNA sample is collected, i.e. is IBD2 (top). The probability of the 
observed data under the model that the subject person is genetically unrelated (IBD0; bottom) is the average aggregated likelihood that the unknown 
sample might have originated from a reference panel of individuals..
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frequencies or other phenomena may cause mis-specification 
of the background population to impact the power to deter-
mine self versus non-self using IBDGem.

To test the sensitivity of IBDGem to the background 
reference panel, we reran the previous comparisons at 1× 
average genome coverage on individuals in the GBR and 
LWK panels. For this experiment, we did not use the most 
general model, i.e. using all unrelated individuals from 1000 
Genomes as our reference panel. Instead, we used individuals 
from specific continental or subcontinental subsets (Fig. 3, 
Supplementary Figs. S6 and S7, and Supplementary Table 
S2). In each case, the comparisons correctly identified data 
from the same individual, regardless of the population used 
as the background, IBD0 model. For example, the genotypes 
of all GBR individuals were identifiable from 1× random 
genome coverage with LLR means of greater than 50 across 
genomic regions even when the background population was 
the SAS (South Asian) or AFR (African) superpopulations 
in the 1000 Genomes data. Non-self comparisons were 
similarly identifiable as such, despite using a population to 
which the individual does not belong to model the back-
ground population.

IBDGem with genotype array data
The 1000 Genomes project pipeline calls variants from shotgun 
sequencing data across the genome. Each individual has geno-
type calls at nearly all sites that are found to be variable in the 
panel. Therefore, for each IBDGem analysis, the number of sites 
available for comparison is limited chiefly by the data available 
from the questioned sample. High-coverage genomic data can 
be used to generate nearly complete call sets at all of the sites 

known to be variable within humans in, for example, the 1000 
Genomes panel. Thus, the genotype call set will include tens of 
millions of sites, although any specific individual will be homo-
zygous for the reference allele at most of these sites.

In contrast, commercially available genotype arrays pro-
vide highly accurate genotype calls at about 1 million sites of 
known variation—those on the array—but no information at 
other sites. Genotype arrays are an accurate and less expensive 
approach for generating genotype data. To test the sensitivity 
of IBDGem when limited to genotype array sites for the subject 
individual, we specified the program to perform comparisons 
on only biallelic sites found on the Illumina Global Screening 
Array (GSA). In both the GBR and LWK panels we found that 
for all self comparisons the IBD2/IBD0 LLRs remain higher 
than 100 and for all non-self comparisons, these ratios are typi-
cally less than −100 (Fig. 4). That is, IBDGem can compare data 
at only GSA array sites against 1× genome coverage DNA data 
and confidently discriminate self from non-self comparisons. 
Note that LLRs for self comparisons at GSA-only sites were 
also much higher than at all sites from 1000 Genomes for 
the same coverage (1×) (Figs. 2 and 4). This is due to the phe-
nomenon described above: fewer sites result in wider genomic 
bins and a reduction in IBD0 likelihoods for self-comparisons 
(Supplementary Fig. S5B).

IBDGem comparison with data from rootless hairs
The sequencing libraries that generated the 1000 Genomes 
data were predominantly made from cell line derived, high-
molecular-weight DNA. Thus, the data quality is superior 
to what is possible from many forensic samples. To test the 
power of IBDGem using data derived from a more realistic 

Fig. 2. IBDGem performance at various levels of genome sequence coverage. LLRs are aggregated across regions of 200 SNPs. A histogram of the 
means, across bins, is shown. Top panel: each individual from the GBR panel was compared against itself (same individual comparisons) or a random 
non-self GBR individual (different individual comparisons) following down-sampling of sequence data to 2×, 1×, 0.5×, 0.1×, and 0.01× genome 
coverages. Bottom panel: analogous comparisons among individuals in the LWK panel.
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forensic DNA source, we extracted and sequenced DNA from 
the rootless hairs of a panel of 8 individuals. Separately, we 
collected DNA from the saliva of these same 8 individuals 
for genotype analysis using the Illumina Multi-Ethnic Global 
array.

We collected multiple head hairs from each individual. We 
then extracted and isolated DNA from individual hairs and 
chose the highest and lowest DNA concentration extracts for 
sequencing. Note that for many of the hair extracts, the DNA 
concentration was below the level of detection with qubit 
fluorimetry. We used a single-stranded library preparation ap-
proach (Kapp et al. 2021) to generate Illumina sequencing 
libraries from 50% (20 µL) of each extract. We pooled these 
libraries and generated roughly 60 million read-pairs per 

library (Supplementary Table S3). See the supplement for a 
detailed description of the wet-lab methods.

After mapping these shotgun hair DNA sequence data to 
the reference human genome, we found that the amount of 
usable human DNA for each hair sample was variable (Fig. 
5, top). This is likely due to the variability of the amount of 
DNA present per unit length of hair among people (Szabo et 
al. 2012).

After appropriate filtering of the hair sequence data 
(Supplementary Material), we ran IBDGem, comparing 
each hair DNA dataset to each saliva genotype dataset. For 
this comparison, we used the whole-panel 1000 Genomes 
individuals as our reference set for IBD0 since nothing about 
the donors was known and, as shown above, the method is 

Fig. 3. IBDGem performance using various population background genotype frequency models. LLRs are aggregated across 200 SNPs. A histogram 
of the means, across bins, is shown. Top panel: each individual from the GBR panel was compared against itself (same individual comparisons) or a 
random non-self GBR individual (different individual comparisons) using samples from the indicated superpopulation as the background reference panel. 
AFR = African, AMR = American, EAS = East Asian, EUR = European, GBR = British, LWK = Luhya, SAS = South Asian. Bottom panel: analogous 
comparisons among individuals in the LWK panel.

Fig. 4. IBDGem self and non-self comparisons of GBR and LWK individuals at GSA genotype array sites, with sequence data down-sampled to a depth 
of 1×.
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largely insensitive to the use of a specific population back-
ground panel. All 8 self comparisons and all 56 non-self 
comparisons were correctly identified (Fig. 5, bottom).

Relatedness detection using IBDGem
Determining self versus non-self using this framework is 
straightforward as self comparisons are IBD2 across every 
region of the genome and non-self comparisons are IBD0 
across nearly every region. Closely related individuals, how-
ever, will share genomic regions where 1 chromosome is 
identical-by-descent (IBD1). For example, parent/offspring 
relationships will share the whole-genome IBD1, baring 
mutations, and full siblings will also share some regions of 
IBD2.

To assess the power of IBDGem to detect regions of 
IBD1 and, more generally, to assess the degree of related-
ness between compared samples, we implemented a module 
(HiddenGem) that finds the most likely path of the 3 IBD 
states through the genome using regional likelihood values 
of each state (Supplementary Section 4 and Supplementary 

Fig. S13). We used the family pedigrees present within the 
1000 Genomes Phase 3 panel as relationships between these 
individuals are provided. While the IBD state (0, 1, or 2) is 
not known for any particular region of the genome, the total 
amount of each state is a simple function of the type of re-
latedness. For example, parent–child relatives must be IBD1 
across the whole genome as the child inherits exactly one of 
their 2 chromosomes from each parent. On the other hand, 
full siblings are expected to share both parental chromosomes 
at one-quarter of the genome, neither parental chromosome 
at one-quarter of the genome, and 1 parental chromosome at 
one-half of the genome.

We ran IBDGem followed by the maximum-likelihood 
IBD-state caller HiddenGem, comparing genotypes at only 
GSA sites for the known relatives of 2 individuals, NA19662 
and NA19686, from the MXL (Mexican-American) popula-
tion. In this experiment, we assumed site independence and 
calculated likelihoods for the IBD models (including IBD0) 
on a per-site basis, using the alternate allele frequency learned 
from all unrelated 1000 Genomes individuals at each site. 
Then, we simply multiplied over sites to get regional IBD 

Fig. 5. IBDGem comparisons using DNA from hair. Top: sequence coverage distribution at known variable sites on chromosome 1 of hair samples. 
Illumina libraries were sequenced to similar depths. Variation in coverage represents the variability of DNA presence and recovery in human hairs. 
Bottom: IBDGem self (same individual) and non-self (different individual) comparisons using DNA data from hair and corresponding high-quality, saliva-
derived genotype array data. LLRs are aggregated across 50 SNPs for which there was sample data. Plot shows distributions of LLRs within these 
50-SNP regions. Left panel is lower-coverage samples (<1×). Right panel is higher-coverage samples (>1×).
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likelihoods. We down-sampled the sequence data from each 
individual to 1× average genome coverage. For each known 
relative, there is general concordance between the observed 
proportion of each IBD state and the expected values given 
the degree of relatedness (Fig. 6 and Supplementary Fig. S8). 
As expected, only the full-sibling comparison generates more 
than 1% of the genome assigned to IBD2. All parent–child 
comparisons assign all or nearly all of the genome to IBD1.

Aside from human-related applications, our method can be 
readily extended to other organisms for which identity and 
kinship are also of interest, in particular wildlife species in 
the context of conservation and population monitoring. The 
minimal sequence input requirements make IBDGem an ap-
propriate tool for the analysis of challenging specimens such 
as hair and feathers that can be collected noninvasively for 
conservation purposes.

However, unlike humans, for most nonmodel species there is 
no reference panel similar in scale to the 1000 Genomes dataset 
from which allele frequencies can be inferred. Therefore, as a 
surrogate for evaluating the program’s performance on a non-
human organism with a smaller sample size, we subset the 
global 1000 Genomes dataset to only include 50 random 
individuals and used allele frequencies derived from this panel 

to perform kinship estimation. As before, we down-sampled 
the sequence data of individuals NA19662 and NA19686 from 
the MXL population to 1× genome coverage and compared 
these samples to their known relatives at only GSA sites, using 
the allele frequencies calculated from our 50-individual subset 
for the background model (IBD0). We then estimated the pro-
portion of the genome shared IBD0, IBD1, and IBD2 between 
these relatives with the IBD-state caller HiddenGem (Fig. 7).

We found that the program is robust to a panel size 
reduced to 50 individuals to define the background, IBD0 
model. All pairs of relatives showed the expected proportions 
of IBD0, IBD1, and IBD2 predicted by their degrees of re-
latedness. The observed proportions also show only small 
deviations from the previous experiment using the whole 
1000 Genomes dataset containing thousands of individuals. 
We  have also  found that minor allele frequencies for a 
large proportion of biallelic SNP sites, when inferred from 
a random 50-individual subset, are still largely consistent 
with those estimated from the global 1000 Genomes panel 
(Supplementary Fig. S9). Overall, these results follow the ex-
pectation that allele frequencies, especially at common SNPs 
(Chakraborty 1992), can be reliably estimated from a small 
panel.

Fig. 6. IBDGem comparisons between related individuals in the MXL panel. Results of IBDGem at 1× down-sampled coverage followed by HiddenGem 
to apportion each genomic segment into IBD0, IBD1, or IBD2 states among annotated pedigrees.

Fig. 7. IBDGem comparisons between related individuals in the MXL panel, using allele frequencies from a 50-individual subset for the background 
model. Results of IBDGem at 1× down-sampled coverage followed by HiddenGem to apportion each genomic segment into IBD0, IBD1, or IBD2 states 
among annotated pedigrees.
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Discussion
Because it can reliably detect identity with minute quantities 
of input data, IBDGem addresses a specific problem in 
DNA-based forensics and other applications: extremely lim-
ited input DNA. We show that for the special case of iden-
tity, IBDGem reliably discriminates self versus non-self data 
with as little as 1% genome coverage. We also show that at 
1× genome coverage, IBDGem and HiddenGem can detect 
IBD segments. Using DNA sequence data derived from root-
less hairs, we show that IBDGem can distinguish self from 
non-self comparisons using input DNA samples that are not 
amenable to PCR-based forensic analysis. IBDGem does not 
require any genotype calling or genotype likelihood infer-
ence, imputation, or phasing of the query sample.

The central task in DNA-based forensics is determining if 
2 samples derive from the same individual. Typically, the data 
from the 2 samples are symmetrically generated, i.e. 2 PCR-
derived STR profiles, although the samples themselves may 
be different in DNA quality and quantity. IBDGem provides 
a framework for comparing nonsymmetric data types, i.e. a 
genotype file from a DNA sample for which there is abundant 
DNA and low-coverage sequence data from a limited forensic 
sample.

The statistical model within IBDGem works regionally 
across the genome. One pertinent question for forensic use 
is how the LLRs, across the genome, should be aggregated to 
generate a single statistic for distinguishing between self and 
non-self. For this, we propose aggregating LLRs across each 
arm of each autosome. For identification purposes, the chro-
mosome arm with the minimum IBD2/IBD0 ratio represents 
a conservative and straightforward metric for discriminating 
self versus non-self.

For all GBR and LWK comparisons at 1× genome cov-
erage, this approach generates LLR values of >3,576 for 
self-comparisons and <−12,410 for non-self comparisons 
(Supplementary Fig. S10A and B). For the hair panel 
comparisons, the minimum self-comparison result is 267.1. 
Using this metric, in the least confident self-comparison the 
hair data are 2.54 × 1080 times more likely under the model 
that they derive from a genetically identical person than under 
the model that they derive from an unrelated person. For the 
non-self comparisons using the hair data, the maximal LLR 
(IBD2/IBD0) is −35.26 (Supplementary Fig. S10C).

We also calculated this chromosome arm statistic for sev-
eral first-degree relationships using known pedigrees from 
1000 Genomes. We found that the smallest aggregated LLR 
between models IBD2 and IBD0 for every first-degree com-
parison is consistently negative (Supplementary Figs. S11 
and S12). As described, lower-coverage data can result in 
higher LLR values (Fig. 2) across bins. When we aggregate 
likelihoods over a full chromosome arm, the distance spanned 
is the same regardless of the coverage of sequence data or sites 
chosen, and hence our summary statistics are less affected by 
this phenomenon.

We envision that the IBDGem and HiddenGem frame-
work described here could be extended in several ways. First, 
HiddenGem currently has a single penalty value for switching 
between IBD states in its maximum-likelihood path calcula-
tion. Incorporation of known human recombination map data 
could help refine transition states, improving the fine-scale ac-
curacy of IBD-state determination for comparisons between 
related individuals. This may be particularly beneficial for 

detecting distantly related individuals who share few, small 
IBD segments.

Second, HiddenGem does not explicitly estimate or re-
port a level of relatedness. The amount and distribution of 
IBD states between 2 individuals necessarily fall within non-
continuous categories (parent/child, full sibling, cousin, etc.) 
each with a characteristic mean and variance of expected 
IBD0, IBD1, and IBD2. Specifically, for any degree of related-
ness, the amount of shared (IBD) DNA is reduced by a factor 
of 2. A simple future extension of IBDGem and HiddenGem 
could convert its results to the most likely level of relatedness. 
Because IBD2 and IBD1 are distinguishable using this frame-
work, disambiguating between parent/child and full-sibling 
pairs (both first-degree genetic relationships) should be trivial 
even though both relationships are 50% genetically identical.

Third, the IBDGem algorithm does not currently analyze 
sex chromosome data. Simple modifications of the under-
lying probability equations could be made to handle the spe-
cial case of the hemizygous sex chromosome in genetic males. 
This is a particularly easy extension given that identification 
of genetic sex is possible from minute amounts of genome 
DNA sequence data since genetic males have half the amount 
of chromosome X data as females.

Fourth, many older DNA samples will contain some amount 
of cytosine deamination (Briggs et al. 2007). This manifests as 
C to T errors in the sequencing data from these samples, with 
a specific profile along the DNA strand. IBDGem could there-
fore be extended to measure and model cytosine deamination.

Finally, the likelihood framework described here compares 
sequence data to a known genotype. The motivation for this 
approach is that it addresses a real-world scenario. However, 
in some instances it may be useful to directly compare 2 lower 
quality or lower-coverage datasets to one another. For ex-
ample, it may be useful to compare low-coverage sequence 
data from 2 rootless hairs directly to one another, without 
calling genotypes. The likelihood framework described here 
could be extended, for example, to calculate the likelihood of 
the sequence data from 1 sample to a probabilistic genotype 
called from the other limited sample.

IBDGem makes comparisons between a known sample with 
genotype calls and a sample with limited amounts of DNA se-
quence data. In this asymmetric framework, it is assumed that 
the genotype error in the known sample is near zero and thus 
negligible. For the results presented here, these genotype calls 
come from either the 1000 Genomes Project analysis or from 
genotype array data from high-quality saliva-derived DNA 
samples. In other instances, it will be important to evaluate 
the quality of the genotype calls for the known sample, in 
whatever manner they are generated.

IBDGem further assumes that the known sample geno-
type and the low-input comparison DNA sequence are free 
of mixtures or contamination. Appropriate analysis of the 
input data should be done to rule out the presence of DNA 
from multiple contributors. For the low-input DNA sequence, 
analysis of the haploid mitochondrial genome or use of a pro-
gram like tilde can detect the presence of sample mixtures or 
contamination (Vohr et al. 2015, 2017).

After more than a decade of advances in high-throughput 
DNA sequencing technology, it is now possible to recover 
and sequence DNA from sources that were once considered 
intractable for forensic purposes. Coupled with comprehen-
sive catalogs of existing DNA variation, these technologies 
open powerful avenues for personal identification. Given the 
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ubiquitous nature of shed hair, however, it will be important for 
the criminal justice community to pay even greater attention to 
what has been termed activity level propositions (e.g. how the 
hair came to be in that location) rather than just source level 
propositions (e.g. whose hair it is) (Cook et al. 1998).

Supplementary material
Supplementary material is available at Journal of Heredity 
online.
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