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Abstract

In this paper, we describe the design and implementation

of an automated 802.11 wireless network diagnostic system

called Shaman. Since the end-to-end performance of user

traffic is some combination of factors across all network lay-

ers, Shaman incorporates comprehensive, cross-layer models

of 802.11 network behavior and performance. These mod-

els include broadband interference at the physical layer, per-

packet link layer media access delays and losses, network

layer device mobility and association management, and trans-

port layer congestion and flow control. No one anomaly, fail-

ure or interaction is singularly responsible for all network

problems, and that a holistic analysis is necessary to cover

the range of problems experienced in real networks.

When users experience unsatisfactory performance at a

particular time, they can query Shaman for a diagnosis.

Shaman will then profile a user’s traffic at that time, deter-

mine the network events that shape the performance profile,

infer the causal sources of those events, and report the re-

sults to the user. We demonstrate the use of Shaman on an

enterprise wireless network deployed in a university campus

building, and illustrate the underlying analysis Shaman per-

forms on real network trouble reports submitted by users of

the enterprise network.

1 Introduction

Internet access based on 802.11 wireless networking has be-

come ubiquitous both in its use and its failures. Any reader

of this paper is likely to have experienced both the pleasures

of untethered high-bandwidth networking and the frustration

posed by unexpectedly degraded service, unknown problems

in connectivity and sudden disconnections. Moreover, such

problems are frequently both transient and selective. Indeed,

even more frustrating than having to ask, “Is the wireless

working?”, is the refrain, “Works fine for me.” Such issues

are only likely to grow in importance with the adoption of

802.11-based VOIP phones (a market projected to reach $70B

by 2012 [12]) and 802.11-based telemetry in medical devices

(increasingly ubiquitous in applications ranging from vital

signs monitors to infusion pumps).

However, today’s IT staff are poorly suited to solving such

problems. In addition to the inherent complexity of diagnos-

ing transient conditions, the complexity of the wireless envi-

ronment places two unique burdens on the diagnostician.

First, the radio frequency environment is itself complex.

Unlike point-to-point wired networks, an 802.11 transmission

must contend with signal attenuation, interference (from both

narrowband and broadband sources) and contention from

competing 802.11 devices (who themselves may be mutually

unaware of each other). As well, the 802.11 Media Access

Control (MAC) protocol adds significant dynamism to the

transmission schedule including link-layer congestion con-

trol, ARQ-based error control, dynamic rate selection and

variable transmission power. Even further complicating this

affair, individual vendors demonstrate significant heterogene-

ity in their implementation of the 802.11 “standard” and many

of these impacts are not directly observable, but must be in-

ferred.

Second, 802.11-based devices are generally designed to be

mobile. Consequently, the 802.11 standard provides mech-

anisms for discovering, associating with and authenticating

to access points – again with varying vendor algorithms on

how best to do this. However, to manage this mobility at

the network layer, most enterprise 802.11 networks employ

some additional non-standard network access control, involv-

ing user authentication, dynamic network address manage-

ment (typically via a combination of DHCP and ARP) and

VLAN-based address mobility. All of these disparate parts

are fragile – if one fails it may be sufficient to terminate a

user’s session and if one is overloaded it may indirectly cause

transient delays across the network. Finally, these symptoms

are further masked by the inherent variability of the Inter-

net itself, which introduces its own packet losses and delays

independent from those of any 802.11 access network. Con-

sequently, it is rare that a network administrator can explain

why the wireless network was slow and it is common that per-

sistent performance problems go unnoticed and unresolved

unless they are so severe to prevent use.

It is our contention that this state of affairs is unlikely to

change. Network administrators simply can’t know enough

– both in the quantitative sense of examining large amounts

of diagnostic data and in the qualitative sense of being an

expert in complex interactions between a wide range of net-

work protocol layers – to solve such problems. In this paper,

we introduce a system, called Shaman, for automating 802.11

wireless diagnoses 1. Based on the public Jigsaw engine of

1The English word Shaman is derived through Russian, from the Tungus

word saman meaning “one who knows”
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Cheng et al. [9], Shaman processes distributed packet traces

from both wireless and wired monitors to construct a com-

prehensive viewpoint of both wireless activity and dependent

network services (e.g., DHCP). Combining this viewpoint

with a causal model of protocol interactions, Shaman identi-

fies problem causes by process of elimination – ranging from

high-level issues (inability to transmit due to DHCP lease

timeout combined with DHCP server failure) to low-level in-

teractions (temporary queuing at the access point caused by

broadband interference from a microwave oven).

Shaman is designed to operate in two modes: reactive and

proactive. In the reactive mode, individual trouble tickets

identify the MAC address and approximate time of a ser-

vice problem and then system attempts to identify the cause

post-mortem. By contrast, the proactive mode is designed to

alert automatically on significant outages or degradations and

then apply its analysis to these. To evaluate our approach we

have subsumed all “help desk” functions for a modest produc-

tion wireless network (several hundred users) and have used

our system to diagnose submitted trouble tickets. As well, we

have constructed artificial problems and verified our ability to

identify their underlying causes.

The remainder of this paper is structured as follows: in Sec-

tion 2 we discuss the prior work that we build upon and our

relation to other diagnostic approaches. We then outline the

architecture of the Shaman system in Section 3 followed by

detailed descriptions of each of our analysis modules in Sec-

tion 4. We evaluate Shaman as applied to problems in our

production wireless network in Section 5 followed by a sum-

mary of findings.

2 Related Work

Various commercial products [1, 2, 3] and research systems

have been developed to monitor and diagnose 802.11 wireless

networks. Research systems in particular have evolved from

developing infrastructure for performing distributed wireless

monitoring and demonstrating the analysis capabilities of

such platforms [9, 10, 19, 15] to systems for diagnosing prob-

lems in wireless networks [5, 6, 7, 18, 14, 16].

In particular, Jigsaw [9] uses monitoring nodes distributed

throughout a university campus building to capture every

wireless event in the building across location, channels, and

time. Jigsaw combines and synchronizes traces from all ra-

dios into a single, unified trace, but in its original form pro-

vides little analysis for diagnosing problems. We use the Jig-

saw software in our environment, and have extended it with

our models and analyses for diagnosis.

Shaman shares some goals with WiFiProfiler [5], which

also helps users troubleshoot wireless connectivity prob-

lems. The two systems take different approaches, however.

WiFiProfiler relies upon peer diagnosis among clients, while

Shaman relies upon third-party monitoring and inference.

WiFiProfiler installs custom software on the client to collect

detailed network stack statistics, such as beacon losses and

queue length, as well as OS and driver details. It then ex-

changes this information with peers to diagnose connectivity

problems. The client can then determine if it has an associa-

tion problem, DHCP problem, or TCP problem. Due to local

knowledge, however, the diagnosis is restricted to determin-

ing relatively high-level causes. For example, the client TCP

diagnosis can indicate high TCP loss rates, but not the cause

of the losses. The advantage of WiFiProfiler is zero infras-

tructure requirement and is best suited for ad-hoc first-step

diagnosis. On the other hand, the diagnosis is limited at high

level and users may raise security/privacy concerns to install

custom software to exchange detailed OS information with

other users. Overall, Shaman and WiFiProfiler are comple-

mentary to each other because each poses extra knowledge

about the wireless network that cannot be perfectly inferred.

DAIR [6, 7] helps system administrators diagnose WiFi

problems. DAIR and Shaman use similar approaches, dis-

tributed wireless monitors, for monitoring detailed wire-

less events in an enterprise network — DAIR uses wire-

less USB dongles attached to standard desktop machines,

while Shaman uses a monitoring infrastructure similar to Jig-

saw [9]. DAIR applications install trackers on the desktop

machines to trace information of interest and store it in a cen-

tral database; applications (inference engines) then query this

database to perform analyses. DAIR uses a sophisticated loca-

tion algorithm to estimate client locations accurately, and nar-

row diagnoses relative to location; in contrast, Shaman uses a

merged trace of global activity across the entire network. Un-

like Shaman, though, DAIR does not perform detailed PHY

or link layer loss or delay analyses due to lack of low-level

traces. Our goals are similar in that we develop analyses to

aid network management, but our approach is to base analy-

sis on a global understanding of network behavior across all

protocol layers.

3 Shaman system architecture

This section describes the architecture of the Shaman sys-

tem. Shaman consists of four main components. Figure 1 il-

lustrates the relationship of these components and how data

flows among them. A combination of wireless and wired net-

work monitors collect network traffic in real-time as input

into the system. Then a series of synchronization and pre-

processing steps synchronize and merge the traces, normal-

ize frames, track station association status, and reconstruct

frame exchanges from individual transmission attempts. Next

the processed trace data feeds into a collection of modules

that perform detailed analyses of network performance and

behavior across all layers of the network stack. Finally, two

diagnostic tools use the output of the analysis modules. A

user diagnostic tool answers queries on demand from users

about wireless network problems, and a real-time network di-

agnostic tool alerts network administrators to pervasive wire-

less problems.

We describe the first two components of the architecture

in detail in the remainder of this section. Then in Section 4

we describe the network models and analyses incorporated

into each of the analyzers, and in Section 5 we describe the

operation of the user and network diagnostic tools.
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Figure 1: The Shaman system architecture.

We have deployed a prototype Shaman system in our uni-

versity department building, and we are using it to diagnose

problems in our production 802.11 access network. The pro-

duction network consists of 40 APs serving over 1,000 unique

client MAC addresses. Shaman uses a hardware and soft-

ware monitoring platform similar to that used by the Jigsaw

project [9]; this platform consists of over 190 wireless mon-

itors that provide coverage of our building across location,

channels, and time.

We draw upon our experiences using the system prototype

throughout the rest of the paper to motivate its design and

illustrate its use.

3.1 Data monitors

Shaman monitors the wireless network from two different

vantage points, the wireless monitors and the wired distribu-

tion network. Each wireless monitor passively monitors the

channel and records all wireless events including frames with

CRC and PHY errors. The monitors capture the first 120 bytes

of most received frames; for DHCP frames, we capture 400

bytes to include the necessary DHCP headers. The monitor

compresses and streams the traces back to a central storage

server.

The wireless monitor hardware has limited processing ca-

pability and memory. Extreme packet bursts, e.g., physical

errors bursts caused by microwave oven, can cause receiver

livelock in the wireless monitor and depletes its memory and

triggers reboots. This would leave 2 minutes of trace holes in

our raw wireless traces. The wireless monitor disables wire-

less radios’ interrupts for one second when monitor memory

goes low.

Shaman also records wireless network traffic as it traverses

the wired distribution network. A SPAN port on the router

for the building distribution network forwards all packets to

a wired tracing machine, which also has a wireless monitor.

Tracing packets on the wired distribution network is neces-

sary for inferring detailed media access delays (Section 4.3);

in particular, we need to infer when wired packets arrive at

the APs as the basis for estimating queuing within the AP.

We attach an additional wireless monitor directly to the wired

monitor to synchronize across the the wired and wireless time

domains.

3.2 Synchronization and preprocessing

Shaman merges and time synchronizes all of the traces

from the wireless monitors into a single global unified trace.

Shaman implements synchronization based on Jigsaw’s algo-

rithms [9]. It merges frame transmissions observed by multi-

ple monitors into a single jframe, and timestamps each jframe

according to a global virtual clock. For example, if three mon-

itors receive a unicast DATA frame transmitted by an AP to

a client, Shaman will identify these frames as equivalent and

create a jframe representing that single transmission.

We have augmented Jigsaw’s synchronization with multi-

ple enhancements to better support its use in a diagnostic sys-

tem. First, we track the offset between the synchronized vir-

tual clock and the real-time clock of the wired trace monitor,

and timestamp jframes according to the real-time time. Since

our wired trace monitor also has a wireless radio that col-

lects wireless traces, we slave the synchronized virtual clock

to the real-time clock by putting real-time clock timestamps

in that particular wireless radio’s traces. Using this timestamp

serves two purposes. One, it synchronizes the time domains

of the wireless and wired traces. Two, it enables the diagnos-

tic system to easily correlate times specified in user queries

with timestamps in the jframe trace. Second, we have tuned

Shaman to synchronize and compress the traces in real time

with a relatively short delay. Every minute, the synchroniza-

tion process takes 3-15 second on a Pentium4 2.4GHz ma-

chine which enables Shaman to perform real-time analysis.

The output of synchronization is a continuous stream of

jframes in a custom jcap format. A jcap trace has the format

of a gzipped pcap file that combines a jcap header with ev-

ery jframe. The jcap header includes the transmission rate,

3



preamble length, etc., in a 24-byte record for each jframe. A

record in the jcap trace is 170 bytes on average, resulting in

only a moderate trace data rate even for large monitored net-

works. The enterprise network we monitor generates 100 to

6000 events per second, resulting in a compressed jcap stream

rate of 5 GB/day. We simultaneously record the jcap trace to

disk as input for future offline analysis, as well as feed it into

the frame sanitizer for continued online processing.

The frame sanitizer examines jframes for anomalous or in-

consistent fields, and corrects or drops them to ensure that

all frames are valid before further processing. Inconsistencies

are typically the result of buggy 802.11 firmware implemen-

tations. For example, we regularly see frames with anomalous

durations (e.g., NAV fields with 0xFFFF) and packets with

inconsistent types and lengths (e.g., wireless security Web-

cams in our building transmit ACKs with impossibly large

packet lengths). We mark these frames and adjust frames

whose fields we can correct (e.g., by calculating the correct

value for the NAV field based on the frame length and rate). A

later analysis module can then process these frames without

concern.

The station module tracks state related to a station’s asso-

ciation with the network as a function of time. This state in-

cludes the preamble mode (short or long), slot time (short or

long), power save mode, the use of 802.11g protection mode

and RTS/CTS, etc. The station module maintains this state

directly, by tracking the parameters advertised in AP beacons

and client scan probe frames, and indirectly, based on the tim-

ing of successive frame transmissions (e.g., sufficiently fast

ACK responses preclude long preambles).

The station module provides reconstructs individual link-

layer conversations using a frame exchange constructor. The

constructor starts by identifying all transmission attempts.

A transmission attempt usually consists of control frames,

a data frame, and one ACK from the receiver (e.g., RTS-

CTS-DATA-ACK is a common frame exchange pattern for

802.11g clients). The constructor then groups transmission

attempts into complete frame exchanges. Since 802.11 im-

plements ARQ for unicast frames, a frame exchange may in-

volve multiple distinct transmission attempts. Normally it is

sufficient to simply group nearby transmission attempts that

share the same frame sequence number. But since the wire-

less monitors can fail to capture some frames, so the frame

exchange constructor performs contextual inference to com-

pensate for any omissions [9].

Typically, a frame exchange represents an packet deliv-

ered either to or from the wired distribution network. Thus,

sucessful frame exchaages usually also have a counterpart in

the wired trace. Relating these two vantage points serves two

important functions. First, the timestamp associated with the

wired packet indicates unambiguously when the frame en-

tered or left the wireless network. These events are critical

for inferring detailed 802.11 behaviors, which we discuss in

detail in Section 4.3. Second, since the wired monitor does

not drop frames it is critically useful in helping to identify

any frames missing from the wireless trace. This is particu-

larly essential for analyzing the TCP protocol, because such

analyses can be quite fragile to missing packet data.[13].

The job of the cross referencer is to match the packets in

the wired trace (Ethernet II frames) to the frame exchanges on

the wireless side with identical data content. It handles both

one-to-one cases, where one wired packet corresponds to one

wireless frame exchange (e.g., a unicast DATA packet), as

well as one-to-many cases, such as when a single broadcast

ARP request on the wired network induces broadcast frames

at all APs. The cross referencer adds a matched frame ex-

change structure into the trace, linking the wireless trace rep-

resentation of the packet (the frame exchange structure) with

the wired representation of the packet (the captured Ethernet

II frame) and combining the two input traces into one output

trace. The transitive extent of a matched frame exchange can

be considerable. Consider, for example, a DHCP request from

a client to an AP. The client transmits the DHCP request to

the AP as a unicast DATA frame destined to the AP. Because

the request is also a network broadcast, the AP bridges it by

broadcasting it on the AP wired distribution network. Each

AP, including the bridging AP, will then transmit a broadcast

frame for the DHCP request. The matched frame exchange

for this scenario will therefore encompass the initial unicast

frame exchange, the wired ethernet frame for the bridged

broadcast, and N frame exchanges for each of the broadcast

frames from the N APs. Finally, the output of the cross ref-

erence module is the matched frame exchanges which will be

used to driver various analysis modulers in the next sections.

4 Shaman network analyzers

The network analyzers are where the magic happens in

Shaman, and in this section we describe each of them in de-

tail. Each analyzer models the operation of a specific proto-

col (e.g., TCP, DHCP, ARP, etc.) or network layer (e.g., link-

layer media access or physical-layer broadband interference).

To provide insight into their operation, we also illustrate the

use of the analyzers on real problems reported by users of our

enterprise network.

Our previous work develops the analysis techniques and

models for inferring sources of transfer delay due to media

access and mobility [8]. This work is under submission, and

we have provided a technical report version of the submitted

paper as part of the SOSP reviewing process. With Shaman,

we implement those techniques and models as software mod-

ules within a diagnostic system. These modules analyze the

traffic an entire enterprise network both in real-time and on

demand; we also further extend our previous work with new

techniques and models. Where appropriate when describing

the various analyzers, we first summarize and reference the

analysis techniques developed in our previous work and then

detail their use as software analysis modules as part of a di-

agnostic system.
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4.1 Mobility

Stations need to complete a number of intermediate steps in

order to obtain IP connectivity at a particular location. By

“IP connectivity” we mean the ability to communicate with

the Internet through a gateway. The steps are typically MAC-

level association (including authentication) to obtain link-

level connectivity, DHCP to obtain IP connectivity in the sub-

net, and ARP to allow forwarding by the gateway linking the

station to the Internet. The time duration of this critical path

directly affects the user experience on the network.

To diagnose user problems along this critical path, we im-

plement three network analyzers that track exchanges in each

of these protocols. In particular, we keep track of how much

time each protocol spends on a critical path and look for fail-

ures, poor performance, and other indicators and anomalies

(e.g., excessive time spent on the critical path, DHCP leases

for private (unusable) addresses, etc.). The analyzers query

the media access analyzer to identify cases where loss of

particular wireless packets may provide the explanation for

an anomaly. This information will be used by the diagnostic

tools to explain user reports and detect network-wide events.

4.1.1 MAC-level association

The MAC-level association protocol consists of two main

steps: choosing the access point and connecting to it. AP

selection starts with the client station broadcasting Probe

Request packets which specify the client’s capabilities, and

might also contain the SSID of the desired network. All APs

which hear those requests will respond (via unicast) with

Probe Response packets. Stations will wait before switching

to the next channel. This procedure is repeated on all channels

(which might take a while, especially on multi-band cards

with 802.11a enabled), and a proprietary algorithm picks the

best AP to connect to. If no AP is satisfactory, the scanning

will start over. APs also send Beacons to announce their pres-

ence, but stations do not usually use them for the AP selec-

tion.

Once a station selects an AP, the station sends an Associa-

tion Request to it. Since our network is open, this step rarely

fails, and the AP immediately responds with an Association

Response. The station then sends an Authentication Request.

If no previous packets were lost, the AP sends an Authen-

tication Response, and the station proceeds to the next step

(DHCP).

The protocol is straightforward, but clients performing it

still often have problems. The first problem is an unsuccessful

scan. If the wireless loss rate is high, probe responses might

not get delivered. Worse, if there is interference on a chan-

nel during the short window a station was scanning there, the

access point might not be detected at all. These losses can

make stations scan again, until a satisfactory access point is

found. Or they can cause a station to pick a suboptimal ac-

cess point, connect to it, and suffer high packet losses until

scanning again.

The access point detection is challenging to automate since

we do not know if the repeated scans observed by a client

were caused by the user, by the AP selection algorithm, or

by bad connections. The steps can also vary substantially

depending on the target OS, network driver, and usage sce-

nario. For example, some OS/driver combinations start send-

ing probe requests immediately on OS boot. Thus, multiple

scans with an empty SSID do not necessarily indicate a prob-

lem. OS delays are also important. For example, when the

computer becomes active from standby or sleep mode, fre-

quently the network card is initialized very early in the re-

sume process and starts scanning immediately. However, it

would not associate until resuming is complete. As a result,

client experiences long periods of scanning with a non-empty

SSID which are not caused by network anomalies.

The MAC-level association analyzer tracks the state of

clients as they perform the association protocol, and measures

the time spent on each step of the protocol. If a client’s asso-

ciation progresses through the normal sequence of steps, we

call it a successful association. Otherwise, we call it an unsuc-

cessful association. The analyzer keeps track of the number

and total duration of unsuccessful associations.

Unsuccessful associations are not uncommon, and we have

observed a variety of behaviors. Sometimes, a station that

have just associated decides that the current access point is

unsatistactory, so just 40 seconds after the association was

successful, the station disconnects and starts searching for a

better access point. After searching for 5-10 seconds, it comes

back to the same access point it left.

MAC-level associations can also affect established connec-

tions. Bad station selection algorithms degrade the connec-

tion by invoking re-association and blocking all connectivity

for 10 to 30 seconds.

More unsusual cases happen. For instance, one station is

working normally and has multiple active TCP connections.

The AP suddenly sends a deauthentication frame with ’Time-

out’ in the reason field. According to the protocol specifica-

tion, access point should send this packet when it have not

heard from a station for a long time. The station is supposed

to immedeately cease any high-level transmissions and re-

assocate. However, the station ignores the frame and contin-

ues sending data, thus violating the protocol. The AP also

ignores it and forwards data to station. Then the normal as-

sociation procedure is started, in parallel with the active TCP

flows. The procedure fails, and all connections get reset.

4.1.2 DHCP

Clients use DHCP to obtain IP connectivity on the bridged

wireless subnet. A station (DHCP client) that needs to ob-

tain an IP address broadcasts a DISCOVER message on the

subnet. Any DHCP servers that are reached by the message

and are able to provide the client with an IP address respond

by unicasting an OFFER message containing the IP address

to the client’s MAC address. After collecting OFFER mes-

sages, the client selects one and broadcasts a REQUEST mes-

sage based on the selected OFFER message. The REQUEST

message confirms to the selected server that its offer was ac-

cepted, and also indicates to the other servers that their of-
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Figure 2: Finite state machine to track DHCP.

fers were declined. Finally, the selected DHCP server com-

mits its offer, and unicasts an ACK message to the client con-

taining a lease time. The ACK message grants the client use

of the IP address until the lease time expires. (Alternatively,

the server may send a NAK message to cancel its offer.) The

client may renew the lease by unicasting or broadcasting a

REQUEST message containing the IP address, upon which

the server may return an ACK or NAK message. To accom-

modate client TCP/IP stacks that cannot receive unicast mes-

sages until an IP address has been configured, a client may

request the server to broadcast its responses to the client.

On receiving an ACK message, the client may discover that

the IP address is already in use by another host (e.g., using

ARP probes). For example, this may occur if the other host is

statically configured with an IP address. In this case the client

sends the server a DECLINE message. In addition, the client

may relinquish use of the address by sending a RELEASE

message to the server, e.g., when the client is shut down.

DHCP is also used to provide a host with parameters

such as the IP address of the gateway, DNS name servers,

etc. DHCP provides a separate mechanism to allow clients

that have been externally configured with an IP address to

learn these remaining parameters. Such a client broadcasts

an INFORM message, and receives parameters from a server

through an ACK message.

The DHCP analyzer tracks DHCP message exchanges us-

ing a finite state machine. Given that a station is attempt-

ing to establish IP connectivity we can define expected state

changes and flag other state changes as anomalous. Figure 2

shows the finite state machine. We track two properties of the

station: whether it is making requests (sending DISCOVER,

REQUEST or INFORM messages) or not, and whether it

owns a lease or not. These two properties combine to make

four different states, as shown in the figure.

When the station is in Requesting it does not have a lease

and is on the critical path towards acquiring IP connectivity.

The goal of DHCP is satisfied when the station has obtained

a lease. We have observed that stations are quite aggressive

in renewing their leases, and so we treat attempts to renew a

lease before a current lease has expired as being off the criti-

cal path. (Indeed, we have observed that in our network such

renewals are often not answered, yet this is harmless if the

station still owns a lease.) Therefore Leasing as well Leas-

ing+Requesting are not on the critical path. Finally, when

the station is in state Idle, it may or may not be on the criti-

cal path. If the station is simply switched off, it is not on the

critical path. If the user is attempting to communicate, it is on

the critical path.

A station that needs IP connectivity progresses through

states Idle (switched off) to Requesting to Leasing in that

order, then alternates between states Leasing and Leas-

ing+Requesting, and ultimately reverts to Idle. Based on this

the analyzer flags as anomalous:

• Time spent in Requesting longer than two seconds. This

situation indicates that the station is getting poor service.

• Transitions from Leasing or Leasing+Requesting to

Requesting or Idle, as well as transitions from Request-

ing to Idle. However, we allow transitions to Idle peri-

ods longer than a minute, since this is expected for sta-

tions that have switched off.

• Leasing and Leasing+Requesting if the lease is for

an IP address that is invalid in our network or for less

than one minute. We have observed cases where sta-

tions send REQUEST messages for private network ad-

dresses that are granted by the DHCP server. However,

these addresses are unusable for communication. Leases

of twenty seconds also appear to be common in our net-

work.

• A change of IP address. This is disruptive for ongoing

transport-layer sessions. Also it may cause re-ARPing.

For each of the above anomalies, we attempt to provide

further detail. For example, for each state change we store

the event (e.g., message type) that causes the state change. In

addition, in the case of excessive time spent in state Request-

ing, we break down the time spent and assign it to specific

causes such as wireless packet loss, station-side and server-

side delay, and lack of server response.

Since the wireless monitoring system cannot guarantee

complete coverage of all transactions, we conservatively as-

sume that an ACK has not been delivered to the station un-

less we see evidence that it has. Examples of such evidence

are: wireless loss inference indicates a MAC acknowledg-

ment was seen, a subsequent RELEASE or DECLINE, an

ARP message sent from the IP address in the ACK, or a lack

of DHCP activity in the station. In particular, we assume the

ACK is not delivered if the client proceeds sending request-

type messages (DISCOVER, REQUEST or INFORM) soon

after.
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Figure 3: DHCP analyzer example.

Figure 3 shows an example of DHCP activity for a user

reporting frustratingly poor connectivity. The client begins

without having a lease. Just after 12:34 it requests a lease,

the analyzer enters the Requesting state (solid DHCP line).

During this period the client sends a number of request

messages that are not answered. Finally after nearly 4 min-

utes, it receives an ACK and obtains a lease (dashed DHCP

line). The subsequent request messages for lease renewal

cause the analyzer to alternate between states Leasing and

Leasing+Requesting (not shown). The Requesting period is

longer than two seconds and flagged as an anomaly. While the

client owns a lease, the analyzer ignores any request timeouts.

4.1.3 ARP

The ARP protocol establishes the mapping of IP address to

MAC address in a subnet. ARP allows a host that wishes to

send a packet to a host in the subnet for which it has only the

IP address to discover what MAC address to send the packet

to. We are interested in ARP between a station and gateway:

a station has the IP address of the gateway but must discover

the gateway’s MAC address before it can send packets to the

gateway for forwarding to the Internet. Similarly, traffic from

the Internet destined to the station’s IP address needs to be

forwarded by the gateway to the station, requiring the gate-

way to map the station’s IP address to a MAC address.

In a typical ARP exchange, a host that needs to know the

IP address of another host on the subnet broadcasts an ARP

WHOHAS packet. The owner of the IP address unicasts a re-

ply IS-AT to the requester giving its MAC address. The ARP

cache in the requester stores the results. A host periodically

refreshes its cache entries by repeating WHOHAS queries.

Cache entries are also updated using the source information

of received WHOHAS queries.

We describe the case when a station ARPs the gateway; the

reverse case is analogous. We define an ARP attempt as the

station starting to send WHOHAS packets until it receives

an IS-AT, or until it gives up after not receiving an IS-AT.

If the ARP analyzer sees successive unanswered WHOHAS

messages, it groups these together in the same ARP attempt

using a timeout of two minutes. The analyzer measures the

time of successful ARP attempts and sets a threshold of two

assoc
scan

mwave

TCP
TCP-SWLOSS

arp-fr-gw
arp-fr-gw msgarp-fr-gw msg

arp-to-gw
arp-to-gw msgarp-to-gw msg

dhcp state
dhcp msg

16:30 16:33 16:36 16:39 16:42 16:45 16:48 16:51 16:54 16:57 17:00

time

DHCP/ARP request msg
DHCP/ARP: resp msg

DHCP: Requesting state
DHCP: lease

Figure 4: ARP analyzer example.

seconds to indicate that the station is getting poor service.

Similar to DHCP, before processing an IS-AT we first look

for evidence that the IS-AT was received by the station. If the

station gives up ARPing after we observe an IS-AT we infer

that the IS-AT is received.

ARP is a simpler protocol than DHCP, but, due to its sim-

plicity, we have less information about the internal state of

the client than with DHCP. For example, ARP attempts may

be made to refresh cache entries, in which case the ARP at-

tempt is not on a critical path. How do we know whether an

ARP attempt is on the critical path? Initially we assume the

attempt is on the critical path, and then rule out critical path

based on the following heuristics. We use heuristics based on

observing IP packets that make use of the address mapping

that the ARP attempt is trying to establish. Our first heuris-

tic is to check if the ARP attempt is immediately followed by

such an IP packet (one second). If not, we rule out the attempt

being on the critical path. Second, we observe IP packets sent

during the ARP attempt. IP packets sent to the gateway by

the station are evidence that the station is aware of the gate-

way’s MAC address. If the station is in the midst of an ARP

attempt when we see such evidence, we infer that the ARP at-

tempt thus far was not on any critical path and ignore it. (The

remainder of the ARP attempt may still be on a critical path.)

Another case, specific to ARP attempts by the gateway, is

when a gateway is sending WHOHAS packets to the station

and is not getting IS-AT responses. While this may indicate

a problem with the station’s networking stack, flagging these

cases as errors leads to a large number of false positives: the

station may simply be switched off. In fact we have observed

that our gateway periodically probes dead stations using ARP.

(Possibly in order to reclaim DHCP leases, or in an attempt

to forward traffic for the station’s IP address.) To distinguish

between these two cases we use the following heuristic. We

only treat a gateway’s ARP attempt as critical if we observe

evidence that the station is alive during the attempt. To test

for liveness we check if the station sends any 802.11 DATA

frames (which include the ARP IS-AT response).

We illustrate our techniques to suppress false positives us-

ing Figure 4. ‘arptogw’ represents ARP queries for the gate-
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way sent by the client, and ‘arpfrgw’ represents ARP queries

for the client from the gateway. (Note that the long request

period is ended by a WHOHAS query from the client.) There

are many queries from the gateway. However, most (including

the long request period from around 16:50 to 16:54) are not

followed by an IP packet and so are not considered critical.

(During most of these, the analyzer observes data frames sent

by the client, so the client is actually alive.) As a result the

analyzer finds only 1.9 seconds of critical time spent in ARP

queries from the gateway. In contrast, disabling our heuristics

results in 446 seconds of critical time.

4.1.4 Summarizing mobility

The purpose of keeping track of critical time spent in each

mobility protocol is to aid the user diagnostic tool in assign-

ing blame on a particular mobility. However, protocols inter-

act and time spent by one protocol may in fact be due to mal-

functioning of another. In particular we shift to DHCP the

blame for critical time spent on an ARP attempt by a station

in following cases of DHCP mishaps: leased a non-UCSD

address, caused station’s IP address to change, leased for less

than one minute. In each of these cases, ARP time spent is

useless. Also if DHCP allows its lease to expire and later ac-

quires another lease, the subsequent ARP attempt by the sta-

tion is blamed on DHCP. We only shift blame across a small

period of time: to shift blame of an ARP attempt to DHCP,

the ARP attempt must start no later than five seconds after

the DHCP anomaly. After that, we assume DHCP is not the

reason for ARP time. After shifting blame, the result is for

each mobility protocol the critical time that it is responsible

for and a set of detected failures and anomalies.

4.2 Broadband interference

Broadband interference at the physical layer from non-802.11

devices can significantly impact 802.11 performance. In our

network, the primary source of broadband interference is

from microwave ovens. Microwaves generate interference in

the 2.4 GHz band used by 802.11b/g that causes frames to

be delayed or corrupted. The 802.11 MAC can detect and

adapt to such interference, but fundamentally performance

degrades during such periods to such an extent that the user

experience noticeably suffers.

As a result, our broadband interference analyzer currently

focuses on detecting intervals of microwave interference. The

analyzer takes synchronized jframes, which include counts of

physical error bursts, as input. It analyzes the trace to produce

two kinds of output into an internal trace related to microwave

interference. First, for each wireless monitor, it determines

the time intervals during which microwaves are actively gen-

erating interference as observed by that monitor. Second, it

estimates which MAC addresses are likely affected by the in-

terference for each interval. When queried on demand about

a particular client at a particular time, the analyzer uses its in-

ternal traces to determine whether a client was experiencing

broadband interference due to an active microwave.

The analyzer can detect microwave interference intervals

by monitoring the number of physical error packets received

in a time frame. Under normal circumstances, the number

of physical errors remains roughly at a constant background

level. However, in the presence of microwave interference,

the number of physical error packets spikes, increasing to 4–

10 times above the nominal level.

We take advantage of this evidence to determine time in-

tervals of active microwaves as follows. First, we map the

physical error frames to a specific offset in the period of a mi-

crowave signal. To determine this offset, we use the formula

offset = time− ⌊ time

T
⌋ ∗T ;T =

1

60
. This offset corresponds

to the phase in the 60-Hz cycle where the error occurred.

Then we sample the distribution of physical error frames

across the offsets over time. Typical household microwaves

do not have full-duty synchrotrons. As a result, an active mi-

crowave will generate interference for only part of the pe-

riod interval. When a microwave is active within this period,

a monitor will observe many more physical error frames than

the default level of background physical errors; when the mi-

crowave is inactive, a monitor will observe just the back-

ground level of physical errors across an entire period.

To sample this distribution, we first partition time into in-

tervals of 15 microwave periods (250 ms). Within an interval,

we then bin the offsets and count the number of physical er-

rors within each bin across the entire interval. We take the

difference between the 2nd-largest and 2nd-smallest bins and

compare it against a threshold. At the threshold or above, we

suspect a microwave is in use for this time interval because

of the large difference between the number of physical errors

during the active phase and the background physical errors

during the inactive phase. We use an initial threshold of 400

physical errors based on experience; background physical er-

ror counts in our network are 100 or less for a 250-ms interval.

The threshold is dynamically adjusted every five minutes

thereafter, by averaging the difference value computed earlier

across the five minute period and taking the 4th standard de-

viation above the mean. The threshold is then adjusted to the

sum of 90% of the prior threshold and 10% of the newly com-

puted threshold. Dynamically adjusting the threshold allows

us to more accurately determine microwave periods since the

number of physical errors seen by a sniffer may vary depend-

ing on how far the sniffer is from the microwave and the

amount of background noise heard by the sniffer.

The microwave analyzer performs this analysis for all wire-

less monitors in each time interval. As a last step, the analyzer

will only declare that a microwave is in use for a time interval

if it suspects an active microwave for more than one monitor;

in our network, at least 2–3 monitors observe physical error

bursts when one microwave is active. In this case, it outputs

the list of all such monitors as observing an active microwave

in its internal trace.

The analyzer then estimates which clients are likely af-

fected by the microwave during those intervals using a simple

heuristic: clients in the neighborhood of monitors that have
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Figure 5: Physical errors observed by one wireless monitor

and the output of the microwave analyzer during short periods

of microwave use, and the TCP throughput of a user reporting

a slow connection during this time.

detected an active microwave are also affected by the mi-

crowave. The analyzer assumes that a client is in the neigh-

borhood of the monitors if the monitors observe most of the

frames from the client. It tracks the clients seen by each wire-

less monitor over time by tracking unique MAC addresses

per monitor. It also counts the number of frames observed for

each MAC by a monitor and compares the count against the

total number of frames from the client observed by the entire

system. If the percentage of frames observed by the monitor is

at least 70% of the total frames, then the analyzer assumes the

client is in the monitor’s neighborhood. For all such clients, it

outputs their MAC addresses into its internal trace. The user

diagnostic tool can then query the analyzer by MAC address

for a given time, and the analyzer can then quickly respond

whether the client was affected by a microwave at that time.

Figure 5 shows the microwave analyzer in use while di-

agnosing a problem reported by a user doing a bulk TCP

transfer. The figure shows the number of physical errors ob-

served by one wireless monitor over time (other nearby mon-

itors make similar observations); each count is the number of

errors in successive 250 ms intervals. It also shows the out-

put of the analyzer as a step function. The analyzer correctly

identifies the periods of microwave use; the “Microwave Ac-

tive” line is low during periods of small error counts and high

when the microwave is in use, resulting in large error counts.

Finally, it also shows the effect of the microwave on the user’s

TCP throughput. When the microwave is in use, the through-

put drops by over a factor of three. During this time, the an-

alyzer would output when the microwave is active and which

clients are likely to be affected. When queried using the user

diagnostic tool during this time period, the tool detects the

throughput degradation using the TCP analyzer (Section 4.4),

determines that the microwave is active using the microwave

analyzer, and decides that the microwave is most likely to

blame.

4.3 Media access

The media access analyzer uses a detailed model for inferring

the critical path delays of every monitored frame exchanges

sent by the APs [8]. The model consists of a representation of

the wired distribution network, queuing behavior in the AP,

and frame transmission using the 802.11 MAC protocol. The

analyzer determines the various delays an actual data (e.g.

TCP packet) encountered as it traversed through the stages of

the wired and wireless network path. For each AP, the ana-

lyzer uses the matched wireless frame exchanges and wired

Ethernet packet from the cross reference module as external

input and output events from the AP. It then emulates the

AP’s internal queuing and transmission states to infer vari-

ous delays. These delays include fine-grained phenomena on

the critical path such as AP queuing, power-save buffering,

802.11 media access and contention delays. It is used primar-

ily by other analyzers, in particular the TCP analyzer, rather

than directly by the diagnostic tools.

4.4 Transport layer

The transport analyzer models TCP performance and behav-

ior for interactive and bulk transfer flows. First we recon-

struct per-flow TCP state to infer detail TCP events based on

the analysis of [11, 17], designed for wired passive monitors.

The analyzer observes the TCP data sequence and ACK se-

quence to infer the cause of any out-of-order events like fast

or regular retransmission, spurious/unneeded retransmission,

and data reordering. In addition, since we have detailed in-

formation on the wireless transmissions (frame exchanges),

we can further resolve some ambiguities. For example, a re-

transmission could be caused by the AP failing to deliver the

TCP-DATA packet to the client, or the client failing to deliver

the TCP-ACK packet to the AP. But if we have seen the client

respond with an L2-ACK to the TCP-DATA packet to the AP,

we can confirm that the client has received the packet at the

TCP layer. Together with L2 information, the TCP analyzer

can detect TCP-DATA and TCP-ACK losses at both sides.

Once we have reconstructed the flow characteristics, we

can begin to diagnose any problems associated with the TCP

flow. We first classify the flow as interactive or bulk transfer

by checking the number of bytes sent by the client and server,

and the number of full-sized TCP packets; bulk flows send

substantially more bytes often with all but the last packet be-

ing full-sized.

For interactive flows, we calculate the response time for a

TCP data sequence segment to be acknowledged. Note that

this time may not be the RTT during loss recovery as it may

take the sender several round trips to finally get the ACK for

the data; we mark a particular data segment as having a slow

response time if it exceeds a certain threshold (e.g., 200 ms

for interactive connections [4]) and inspect the delay and loss

characteristics during that period. If most losses happen at

the Internet side, the analyzer simply returns with that error

because it does not have enough information for further diag-

nosis.
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Figure 6: Response time and TCP behavior of a user who reported substantial delay with an interactive SSH session.

If the client has wireless losses, the TCP analyzer checks

for broadband interference from microwaves or co-channel

interference from other clients in the nearby area [9]. It also

checks if the loss of the particular frame exchange is caused

by loss of L2-DATA or L2-ACK transmissions. For instance,

we have observed clients who suffer heavy AP to client L2-

ACK losses. Although these losses would not result in a loss

to higher layers since the DATA has been delivered, the client

would retry excessively because it cannot receive the L2-

ACKs from its AP. The excessive retries would backlog the

client’s TCP-ACKs, eventually causing the server to timeout

and retransmit (spuriously).

If the client does not have wireless losses but instead suf-

fers from high link delay, the TCP analyzer returns the major

cause of the link delay. The cause could be contention from

other clients, from other connections from the same client it-

self, or contention due to excessive backoff and retries [8].

As an example of the operation of the TCP analyzer, Fig-

ure 6 shows a time series graph of the response time and TCP

behavior of a user reporting a slow SSH connection during

a lab seminar. The graph shows the user suffers from long

response times (200 ms – 2.5 seconds) even though the con-

nection is to a server in the same department.

The TCP analyzer reports high losses from the user’s client

device to the AP (shown as gray crosses), meaning the client’s

TCP-ACK or TCP-DATA packets do not get through. It finds

that most server retransmissions (shown as black diamonds)

are not fast retransmissions, but caused by TCP timeout.

Therefore the retransmissions usually occur after 200 ms

(WindowsXP default [17]). Further, often the TCP-ACK of

the retransmission is also lost, causing the SSH server to ex-

ponentially backoff the RTO timer.

The analyzer does not find microwave or hidden terminal

events, and continues to look for other causes. It analyzes the

rate used by the wireless transmissions, and finds that the

client has 10-times higher losses for 802.11g transmissions

than 802.11b transmissions. The TCP analyzer concludes the

final diagnosis as high client losses caused by a poor rate

adaption algorithm.

Since the user typically does not indicate the specific con-

nections that are slow, the TCP analyzer performs diagno-

Figure 7: Shaman problem report form.

sis on all connections from the user. Based on the diagnosis

from each connection, the analyzer returns the major cause

across all diagnosis reports. We have noticed that the diag-

noses across active simultaneous connections from the same

user are very consistent (except server side Internet losses).

More surprisingly, the analyzer reports bursts of server or

client-side Internet losses across different clients. While In-

ternet losses should be more dependent on the Internet paths

and the end server, these results may indicate that our wire-

less gateway is dropping packets. We are still investigating

this issue with our campus network operations staff.

5 Shaman diagnostic tools

This section describes the two Shaman diagnostic tools, one

designed for users to invoke on demand about wireless prob-

lems that they are experiencing and a second designed to alert

network administrators about pervasive network problems.

5.1 User diagnostic tool

The goal of the Shaman user diagnostic tool is to answer

queries on demand from users about performance problems
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Figure 8: Shaman basic diagnosis. The problematic device

has MAC address 00:0b:7d:1a:db:c7.

that they are experiencing with the enterprise wireless net-

work. The user interface to the tool is a simple Web form with

fields for identifying a user’s network device, an approximate

time that the problem occurred, a contact email address, and

any notes about the problem for archiving. Figure 7 shows a

screenshot of a form filled in to report the DHCP behavior

illustrated in Figure 3.

When a user submits the form, the tool executes on a back-

end server with the fields from the form as input, invokes the

various network analyzers on the trace covering the time of

the reported problem, evaluates the output of the analyzers,

and makes a decision about the primary cause of the problem.

The tool then reports this decision back to the user, accompa-

nied with additional results for context if the user is inter-

ested in more details. Figure 8 shows a screenshot of results

reported from the tool for the user experiencing the DHCP

problem described in Section 4.1.2. The tool correctly identi-

fies DHCP as the main problem in Figure 3.

The decision algorithm of the user diagnostic tool works

as follows. First it examines the wireless loss rates returned

by the various analyzers, including both mobility operations

(e.g., DHCP or association) and during network communica-

tion (e.g., media access and TCP). If the loss rates are high,

it uses the broadband analyzer to determine whether a mi-

crowave is active during that period. If so, it reports the mi-

crowave as the dominant cause.

Otherwise it compares the results of the various analyzers

in more detail to determine a dominant cause. As a common

basis for comparison, it uses a time duration metric for each

analyzer that reports a problem. We chose time as the com-

mon metric because it intuitively matches how users toler-

ate and react to network problems; when a problem persists

long enough to be affect the user network experience, users

are sufficiently motivated to invoke a service to diagnose the

problem.

For the mobility protocols, this duration is the critical time

spent in the various protocols (association, DHCP, ARP). For

TCP, this duration is the total time during which TCP was

under performing (low throughput or high delay). The tool

assigns the dominant cause for the poor user experience to

the analyzer with the longest time metric. The tool then re-

ports this time, which analyzer reported the cause, and any

detailed explanation returned by the analyzer (e.g., excessive

AP disassociation and re-association, timeouts while request-

ing DHCP leases, contention constraining TCP throughput,

losses or delays causing TCP timeouts, etc.).

5.2 Network alert tool

The goal of the Shaman network alert tool is to pro-actively

report serious pervasive problems to network administrators.

Serious pervasive problems are those that simultaneously af-

fect multiple clients at one or more APs and require the inter-

vention of a network administrator to correct. Typically these

problems are due to failures of critical network components

(DHCP or DNS servers, routers, wireless management gate-

ways, etc.), or persistent performance issues (e.g., poor cov-

erage within a building [6]).

The design of the network alert tool includes analyzers that

mirror the network analyzers described in 4. These alert ana-

lyzers operate continuously by invoking the network analyz-

ers to detect pervasive problems. The tool counts the fraction

of the client population affected by a specific type of event

(e.g., clients performing DHCP requests who timeout). If this

count is significant (we currently use a threshold of 75%),

the tool triggers an alert by sending email to a wireless ad-

ministration mailing list detailing the event, results from the

analyzers, and the clients affected.

Motivated by experience, we have currently implemented

one alert module for DHCP. The majority of our pervasive

problems in which multiple users have simultaneously sub-

mitted wireless reports that all have the same underlying

cause have been linked to DHCP — the DHCP server itself

has failed, the router between the wireless distribution net-

work and the DHCP server was overwhelmed by a denial-of-

service attack, etc. Specifically, our DHCP analyzer informs

the alert tool of clients that remain in the Requesting state

for more than two seconds. As an example, our tool produced

an alert for a particular day around noon. The alert lasted for

twelve minutes, during which 6–10 clients were trying to ob-

tain new DHCP leases. In each of the successive two-minute

bins, at least 83% percent of the requesting clients were un-

successful. The clients were associated with different APs,

indicating a network-wide DHCP problem. Further investi-

gation revealed that the DHCP server was unreachable from

parts of the wireless network.
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6 Conclusions

In this paper we have described Shaman, a system for per-

forming comprehensive and automatic diagnosis on wireless

problems down to fine-grained low-level root causes. Shaman

combines wireless monitoring infrastructure, trace synchro-

nization, a collection of network analyzers, and two diagnos-

tic tools into a single diagnostic sytem for enterprise wireless

networks. We have deployed a Shaman prototype in our uni-

versity department building, and draw upon our experiences

using the system prototype throughout to motivate its design

and illustrate its use.

For more widespread deployment, we envision migrating

the monitoring infrastructure used by Shaman into the ac-

cess points themselves. Merging this functionality into the

APs reduces the deployment cost and simplifies analysis, al-

beit reducing monitoring coverage. Exploring this evolution

in wireless monitoring and automated diagnosis remains an

exciting open problem.
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