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Abstract. This paper envisions creating more inclusive communities
through accessible urban places for not only those who identify as dis-
abled but all equity-deserving groups. Concentrating on the street scale
of the urban places, we propose identifying street scale accessibility fea-
tures, and then, with the help of spatial data science and geospatial arti-
ficial intelligence, collecting and analyzing reliable data on these features
to assess the accessibility of the urban places for movement diversity.
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1 Introduction: Accessibility Beyond Disability

Urban places are vital for vibrant city life since they act as mobility features and
destinations. However, urban places can restrict the full participation of people
with disabilities. The urban environment plays an important role, especially as
we consider the social model of disability, which suggests that “disability is an
experience of discrimination resulting from inaccessible built environments” [1].
The way the urban environment is planned, designed, and managed determines
who is, and is not, welcome in urban spaces.

Research on accessible built environments for people with disabilities within
the spatial data science literature has largely focused on sidewalk assessment and
improvement [2–5]. The number of studies employing (semi)automated data-
driven methods for sidewalk assessment is also growing [6–10]. This research
area is in its infancy. Further research from spatial data scientists is required to
make our cities more accessible. In this regard, urban accessibility for disabilities
and the need for new data collection and analysis techniques were addressed in
SDSS 2021 in the session “The Future of Global-Scale Spatial Data Collection
and Analyses on Urban (in)Accessibility for People with Disabilities” [11]. Here,
panelists mainly addressed the latest methods for measuring sidewalks’ quality,
condition, and accessibility, focusing on people with disabilities.
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Building on this critical work, we aim to create more inclusive urban envi-
ronments by extending the conversation to include the diverse mobility needs of
equity-deserving groups (EDGs): those with differing and intersectional physical
abilities and identities, including women, LGBTQ+, seniors, children, and neu-
rodiverse. Our goal is to envision urban places that enable the full participation
of all members of society. In this paper, we discuss accessible urban places at the
street scale and then explore opportunities for geospatial artificial intelligence
(GeoAI) to fill the data gaps. We conclude that expanding interdisciplinary dis-
courses is a vital step to more accessible communities that accept and support
diversity.

2 Accessible Urban Places at Street Scale

Social inclusion and diversity are becoming a growing interest among urban pol-
icymakers and researchers [12–15]. Accessible space for EDGs can be understood
as “a public space for all,” where everyone “feels welcomed, included, and not
discriminated against by their gender, age, sexuality, race, ethnicity, religion,
cultural background, socioeconomic status, and personal values when being in
the space” [16].

In addition to physical features in space, places encompass human experience
and interpretation [17] and what distinguishes a place from other spaces is its
meaning. According to Healey [18] place is about the meaning people give to
their surroundings and their capacity to influence people’s feelings, a process that
results in creating the sense of place. For a sense of place to be created, “there is a
need for a long and deep experience of a place, and preferably involvement in the
place” [19]. The users need not only reach a place, the common understanding
of accessibility, but be welcome to spend time in that place. This extends the
meaning of urban accessibility; a place could be accessible when it is not only
reachable but also usable in all its features: accessible sidewalks to be used to
reach the place, accessible benches to be used to sit on, accessible light posts to
be used to feel safe at dark hours, accessible landmarks to be used to refer to,
among many other accessibility features.

In this study, an important factor in identifying place accessibility features is
the scale of inquiry. In multi-scalar mobility research, Sheller [20] identifies five
scales of mobility justice concerns: body, street, urban, national, and planetary
scales. Focusing on urban places in this study, we are most concerned with the
street scale. At the street scale, such as urban streets, squares, and parks, we
interact closely with the urban environment during our everyday life, and our
feelings are affected by urban places’ welcoming or unwelcoming features.

We believe that the physical accessibility of urban places at the street scale
could be improved by representing, modeling, and simulating street-scale acces-
sible features, as the physical elements at the street scale that make the urban
places reachable and usable for all. Specifically, data collection on these features
for analyzing, mapping, and measuring is necessary for the assessment of urban
place accessibility conditions. However, we lack complete data on street-scale
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accessible features and too often use roads as a proxy for these types of analysis
[10]. The biggest challenge we see moving forward to assessing and improving
the accessibility of urban places is filling in these data gaps.

3 Opportunities for GeoAI to Fill Data Gaps

The difficulty in collecting reliable data on street-scale accessible features with
sufficient resolution remains the main challenge. In traditional accessibility map-
ping, data collection and analysis on the built environment are conducted via
in-person street audits and manual data processing [2]. These methods have
been proven to be labor-intensive, costly, and error-prone, especially for larger
urban areas of investigation. A growing state-of-the-art approach toward ac-
cessibility mapping is the (semi)automated data-driven approach. Studies in
(semi)automated approach, what we are most interested in, have relied on crowd-
sourcing data contributed through platforms like designed mobile apps [3, 5, 21],
Google Street View data (e.g., Project Sidewalk [22]), and corresponding digital
map visualizations (e.g., Wheelmap.org [23]).

Since the focus of this study is on the accessibility of urban places at the street
scale, the data types employed in the studies above do not provide the neces-
sary details. The platforms used in these studies largely rely on online digital
maps like Google Maps and OpenStreetMaps [24], which despite their signifi-
cant progress, still lack complete details of street-scale features. High-resolution
remotely sensed data seem to be an appropriate choice. Some studies have em-
ployed aerial imagery to extract sidewalks, their condition or material using
AI capabilities [6, 25, 26]. However, street-scale features are likely to be blocked
by overhead obstacles like building shadows and trees. These features are best
identified from an on-ground pedestrian point of view. However, Google Street
View images, which are from an on-ground perspective, miss spaces between
road networks such as urban parks and squares.

For our study purpose, a promising data source is ground-based mobile Li-
DAR (Light Detection and Ranging) data. LiDAR scanners can quickly collect
3D information by producing dense, unorganized points that require further pro-
cessing to identify ground features [27]. Compared with imagery, LiDAR data
offers positional information, 3D information, and scaled models of the objects
[28] which is more appropriate for mapping and measuring the identified fea-
tures. However, with LiDAR scanners, it is not always possible to fully capture
the object in question due to the occlusion of target objects [28]. This restriction
is magnified in aerial LiDAR systems for collecting data on street-scale accessible
features that might be occluded by overhead obstacles. Instead, mobile LiDAR
systems “provide the possibility of acquiring data in a complex environment in
high detail” [29]. In this study, hence, we will use mobile LiDAR scanners inte-
grated into smartphones, like iPhones 12 and 13 Pro [30], for their capabilities
to collect ground-based points of view as well as scalable data.

LiDAR data contains less semantic information, compared with imagery [28].
However, deep learning, as a type of machine learning and a subfield of artifi-
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cial intelligence (AI), allows the extraction of semantic information from LiDAR
point clouds. Four main deep learning techniques to work with point clouds are
object classification, parts segmentation, object detection, and semantic segmen-
tation [31]. Semantic segmentation technique seems more relevant to our research
goal and has been applied in different studies at scales comparable to this study
[32–34]. Semantic segmentation is “the process of classifying point clouds into
multiple homogeneous regions and the points in the same region will have the
same properties” [35]. Using semantic segmentation models, each point of the
LiDAR data can be assigned to a street-scale accessible feature class.

Given that we approach this work as urban design and traditional GIS ex-
perts, rather than programmers or computer scientists, we will utilize the ESRI
platform that makes available a range of deep learning [36] and automation tools
[37] that were previously unavailable to us. ArcGIS API for Python, including the
arcgis.learn module [36], allows training semantic segmentation models to detect
and classify street-scale accessible features from LiDAR data. Though the ESRI
platforms have limited deep learning models for working with point clouds, they
provide a rich environment to integrate the LiDAR data with other data types
(like OpenStreetMaps), detect, classify and map street-scale accessible features,
and store, manage, and present the data in various forms.

4 Conclusion: Continuing the Conversation

This paper puts forward a vision for urban environments that are inclusive of
all EDG members by creating places that are accessible in all their physical
features. We emphasize the significance of the street scale of these places for
diverse mobilities and explore the combination of on-ground mobile LiDAR data
and ESRI’s AI capabilities to detect the features from the LiDAR data for further
processing.

As we begin to experiment with our approach, we acknowledge that there
might be limitations in employing GeoAI for creating accessible urban places.
For instance, LiDAR’s irregular and unstructured nature, as well as slow data
collection, inconsistent positional accuracy, and shorter range of smartphones
LiDAR scanners are some restrictions. On the other side, LiDAR’s positional
and 3D information and ability to penetrate areas blocked by shade or vegetation
make it promising data here. Also, the smartphone LiDAR scanners, as novel,
cost-effective alternatives, provide the opportunity for generating scalable data
for future crowdsourcing purposes.

Here we tried to extend the accessible mapping conversation from SDSS 2021
to include our urban design perspective. This is not the end of the conversation.
The future of accessible cities demands more constructive dialogues between ex-
perts from both academia and industry with diverse points of view. As society is
diverse and as barriers to accessibility are multifaceted, we strongly believe that
expanding multidisciplinary conversations is the key to more inclusive accessible
communities.
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13. Irazábal, C., Huerta, C.: Intersectionality and planning at the margins: LGBTQ
youth of color in New York. Gender, Place and Culture 23(5), 714–732 (2016)

14. Lui, CW., Everingham, J., Warburton, J., Cuthill, M., Bartlett, H.: What makes
a community age-friendly: A review of international literature. Australasian journal
on ageing 28(3), 116–121 (2009)

15. Kern, L.: Feminist city: claiming space in a man-made world. 1st edn. Verso Books,
Location (2021)

16. Zhou, S.: Understanding ‘Inclusiveness’ in Public Space: Learning from Existing
Approaches. Greenest City Scholar Project, Vancouver (2019)

17. Falahatkar, H., Aminzadeh, B.: The sense of place and its influence on place brand-
ing: a case study of Sanandaj natural landscape in Iran. Landscape Research 45(1),
123–136 (2018)

18. Healey, P.: Making better places: The planning project in the twenty-first century.
Bloomsbury Publishing (2017)



6 H. Falahatkar, V. Fast

19. Shamai, S,. Ilatov, Z.: Measuring sense of place: Methodological aspects.Tijdschrift
voor economische en sociale geografie 96(5), 467–476 (2005)

20. Sheller, M.: Mobility justice: The politics of movement in an age of extremes. 1st
edn. Verso Books (2018)

21. Zimmermann-Janschitz, S.: The application of geographic information systems to
support wayfinding for people with visual impairments or blindness. In Visual Im-
pairment and Blindness-What We Know and What We Have to Knowe. IntechOpen
301–322 (2019)

22. Saha, M., Saugstad, M., Maddali, HT., Zeng, A., Holland, R., Bower, S., Dash,
A., Chen, S., Li, A., Hara, K., Froehlich, J.: Project sidewalk: A web-based crowd-
sourcing tool for collecting sidewalk accessibility data at scale.Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems 1–14 (2019)
https://doi.org/10.1145/3290605.3300292

23. Mobasheri, A., Deister, J., Dieterich, H.:Wheelmap: the wheelchair accessibility
crowdsourcing platform. Open Geospatial Data, Software and Standards 2(1), 1–7
(2017)

24. Froehlich, JE., Brock, AM., Caspi, A., Guerreiro, J., Hara, K., Kirkham, R.,
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