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RESEARCH ARTICLE Open Access

Maternal BMI as a predictor of methylation
of obesity-related genes in saliva samples
from preschool-age Hispanic children at-
risk for obesity
Kathryn Tully Oelsner1, Yan Guo2, Sophie Bao-Chieu To3, Amy L. Non4 and Shari L. Barkin5,6*

Abstract

Background: The study of epigenetic processes and mechanisms present a dynamic approach to assess complex
individual variation in obesity susceptibility. However, few studies have examined epigenetic patterns in preschool-
age children at-risk for obesity despite the relevance of this developmental stage to trajectories of weight gain. We
hypothesized that salivary DNA methylation patterns of key obesogenic genes in Hispanic children would 1)
correlate with maternal BMI and 2) allow for identification of pathways associated with children at-risk for obesity.

Results: Genome-wide DNA methylation was conducted on 92 saliva samples collected from Hispanic preschool
children using the Infinium Illumina HumanMethylation 450 K BeadChip (Illumina, San Diego, CA, USA), which
interrogates >484,000 CpG sites associated with ~24,000 genes. The analysis was limited to 936 genes that have
been associated with obesity in a prior GWAS Study.
Child DNA methylation at 17 CpG sites was found to be significantly associated with maternal BMI, with increased
methylation at 12 CpG sites and decreased methylation at 5 CpG sites. Pathway analysis revealed methylation at
these sites related to homocysteine and methionine degradation as well as cysteine biosynthesis and circadian
rhythm. Furthermore, eight of the 17 CpG sites reside in genes (FSTL1, SORCS2, NRF1, DLC1, PPARGC1B, CHN2, NXPH1)
that have prior known associations with obesity, diabetes, and the insulin pathway.

Conclusions: Our study confirms that saliva is a practical human tissue to obtain in community settings and in
pediatric populations. These salivary findings indicate potential epigenetic differences in Hispanic preschool children
at risk for pediatric obesity. Identifying early biomarkers and understanding pathways that are epigenetically
regulated during this critical stage of child development may present an opportunity for prevention or early
intervention for addressing childhood obesity.

Trial registration: The clinical trial protocol is available at ClinicalTrials.gov (NCT01316653). Registered 3 March 2011
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Background
Prevalence of childhood obesity remains a significant
public health concern, especially in Hispanic populations
who have the higher pediatric obesity rates [1]. Despite
having increased risk of developing pediatric and adult
obesity compared to other ethnic groups [2], Hispanic
children are currently underrepresented in public health
research. This is particularly significant as Hispanics are
the most populous and rapidly growing ethnic minority
in the United States, meaning this population’s health
comorbidities secondary to obesity will increase health-
care costs and rates of morbidity [3, 4]. Genetic predis-
position, exposure to unhealthy dietary options, and lack
of adequate physical activity have all been identified as
contributors to pediatric obesity [5]. However, recent lit-
erature indicates a more nuanced dynamic mechanism
associated with later childhood and adult obesity that re-
flects the interaction between genetics, environment,
and developmental stage via epigenetic modifications
[6–8]. While the study of the epigenome is complex, it
has the potential to inform the prevention and treatment
of pediatric obesity by enhancing our understanding of
timing and the mechanisms by which the genetic code
could be susceptible to environmental influences [9, 10].
Genetic factors are known to affect multiple cellular

and metabolic pathways underlying the development of
obesity such as: adipogenesis and fat storage, adipocyte
accumulation, the hypothalamic-pituitary adrenal (HPA)
system stress response affecting cardiovascular and
metabolic health, gastrointestinal tract regulatory signals,
orexigenic and anorexigenic and satiety mechanisms,
and insulin regulation [11, 12]. For example, there is evi-
dence that adipocyte growth in number and size is
established early, by the age of 2, and is indicative of fu-
ture weight trajectory [13]. Additionally, maternal Body
Mass Index (BMI) is correlated with child’s BMI status
at age 6 [14] and is a better indicator of child’s BMI tra-
jectory than child birth weight alone [6]. Current mater-
nal BMI has been shown to be significantly associated
with current child’s BMI more than other maternal so-
cioeconomic factors (including age, marital status, edu-
cation). These and other studies indicate that both
current and pre-pregnancy maternal BMI are signifi-
cantly associated with child’s BMI trajectory [15, 16].
However, the epigenetic mechanisms affecting po-

tential candidate genes linked to biological processes,
such as adipocyte accumulation, are relatively un-
known in pediatric populations. Epigenetic mecha-
nisms regulate the level of gene transcription, which
occurs through multiple processes including DNA
methylation [8, 17]. Research indicates that methyl
groups can bind the genetic code in either a heritably
stable or an environmentally-induced transient man-
ner, affecting the child’s trajectory for excessive weight

gain relative to height [18, 19]. There is some evi-
dence of in utero environmentally-induced methyla-
tion associated with exposure to maternal gestational
diabetes [20, 21]; maternal inadequate nutrition or in-
sulin resistance that can cause an adaptive response
in the child, resulting in epigenetic modifications sig-
naling caloric retention [22–25]. In addition, Liu and
colleagues reported that maternal pre-pregnancy BMI
was associated with alterations in offspring DNA
methylation in cord blood at CpG sites annotated to
genes related to the development of various complex
chronic diseases, such as cardiovascular disease [9].
While the study by Liu et al. linked maternal weight

phenotypes (normal weight; overweight; and obese) to
epigenetic patterns in offspring neonatal cord blood
samples [9], children between the ages 3–5 have been
relatively understudied in the field of epigenetics. This is
likely due to the convenience of neonatal cord blood at a
younger age and the limited feasibility of obtaining blood
samples until older ages. Yet, this age range is particu-
larly important as it falls closest to the adiposity rebound
stage and could play a significant role in a child’s future
BMI trajectory [26]. Thus, examining the link between
current maternal BMI and young children’s DNA methy-
lation patterns, particularly among Hispanic children at
high risk for obesity, can fill important gaps in current
epigenetic research.
Saliva is a promising yet relatively underutilized source

of DNA [27, 28]. Previous studies indicate that up to
74% of DNA in saliva comes from white blood cells, al-
though there is high variability in individual samples
[29]. Additionally, saliva is part of the gastrointestinal
tract, and therefore, an important tissue to examine in
obesity research [30]. Furthermore, using saliva samples
rather than blood to yield epigenetic information intro-
duces a more practical method to measure epigenetics
from young children in a variety of settings, including
the home and community [31].
While epigenetic patterns are tissue-dependent and

results may not be consistent with other tissues [32],
this study examines if there is variation in salivary
DNA methylation in young children at risk for later
obesity. We had three study aims: 1) to examine the
association of maternal BMI phenotype with methyla-
tion patterns in preschool Hispanic child saliva by
analyzing CpG sites located in genes previously asso-
ciated with obesity [33]; 2) to assess if preschool child
saliva would yield distinct epigenetic signatures in
children at-risk for obesity compared to children of
normal weight mothers; and 3) to identify biological
pathways and genes in children correlated with mater-
nal BMI. These findings could then identify potential
epigenetic signatures in saliva among young children
at risk for obesity, but not yet obese.
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Methods
Ethics statement
The study was approved by the Vanderbilt University
Institutional Review Board (IRB No. 120643). Data
were collected after a parent/legal guardian signed a
written informed consent, for themselves and their
child, in their preferred language (English or Spanish).
The clinical trial protocol is available at ClinicalTrials.gov
(NCT01316653). Registered 3 March 2011. The data for
this manuscript derive from baseline salivary samples ob-
tained prior to randomization.

Sample population study subjects
This study involved baseline saliva samples from 92
Hispanic parent-preschool children dyads, who are
participating in an ongoing randomized controlled
trial (RCT), the Growing Right Onto Wellness
(GROW) Trial [34]. Children were not necessarily
firstborn. Eligibility criteria for the RCT included:
child 3–5 years old; child’s BMI ≥50 and <95% (at
risk for obesity, but not yet obese) [35]; parental
commitment to participate in a 3-year randomized
controlled trial; parent age ≥18 years; parent and
child in good health, without medical conditions ne-
cessitating limited physical activity as evaluated by a
pre-screen; dyad considered underserved as indicated
by the parent self-reporting if they or someone in
their household participated in programs such as
TennCare (Medicaid), CoverKids, Special Supplemental
Nutrition Program for Women, Infants, and Children
(WIC), Food Stamps, and/or free and reduced price
school meal. These children are considered to be at high
risk for later childhood and adult obesity [36].

Phenotypic data
Height and weight were measured in accordance with
standard anthropometric measurement procedures [37,
38]. Both values were collected twice, with the mean of
the two closest measures used as the final measurement.
BMI was calculated as weight in kilograms divided by
the square of height in meters. Table 1 outlines the
phenotypic and demographic data for the sample
population.

Procedures
All salivary samples were collected at baseline in the
GROW RCT, before any interventions occurred, using
the Oragene DNA saliva kit following a strict protocol
[39]. All study members wore gloves and immediately
capped specimen after collection. Samples were sent to
the Vanderbilt genetic core for assessment of quality and
quantity prior to storage in the Vanderbilt Technologies
for Advanced Genomics (VANTAGE) core at Vanderbilt
University. DNA extraction was performed as per DNA

Genotek’s recommendations using the PrepIT L2P re-
agent. Extracted DNA was stored in individually bar-
coded cryovials at −80° Fahrenheit. For children, saliva
was obtained using the “baby brush” approach, in which
small sponges attached to plastic handles are inserted
between cheek and gumline to absorb saliva [40]. The
phenotypic data derived from a baseline survey and ob-
jectively measured anthropomorphic data was collected
from participating mother-child pairs.

Identification of CpG Probes
We focused our analysis on 11,387 CpG sites that re-
sided in 936 genes that have been previously reported in
genome-wide association studies (GWAS) to have asso-
ciation with childhood obesity in a Hispanic population
[41]. Moreover, the original GWAS study’s initial sample
size was 815 Hispanic children from 263 families [41].

Assay method
Genome-wide DNA methylation was conducted on
the 92 saliva samples using the Infinium Illumina
HumanMethylation 450 K BeadChip (Illumina, San
Diego, CA, USA), which interrogates >484,000 CpG
sites associated with ~24,000 genes [42]. This micro-
array spans 99% of genes in the Reference Sequence
database, with an average of 17 CpG sites per gene
region, and has been previously validated for
consistency [43]. Arrays were processed using stand-
ard protocol [44], with three samples randomly se-
lected to serve as duplicates and one sample run with
HapMap DNA to test functionality of reagents. Dupli-
cates were measured for high technique consistency
with Pearson correlation coefficient (>.99).

Table 1 Sample demographics

Child Age, mean (SD) 3.78 (0.78)

Age 3, No. (%) 40 (43)

Age 4, No. (%) 32 (35)

Age 5, No. (%) 20 (22)

Maternal Age, mean (SD) 31.70 (5.75)

Gender, No. (%)

Female 46 (50)

Male 46 (50)

Maternal BMI (kg/m^2), mean (SD) 29.80 (7.60)

Maternal Waist Circumference (cm), mean (SD) 98.16 (16.04)

Child BMI (kg/m^2), mean (SD) 16.80 (0.83)

Child Waist Circumference (cm), mean (SD) 53.34 (3.17)

Child and Parent Race, No. (%)

Hispanic/Hispanic 92 (100)
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Quality control
Methylation data were quality controlled using Illumina
GenomeStudio (V2011.1), Methylation module (V1.9.0).
The data processing and quality control were performed
using the Illumina GenomeStudio, methylation module
1.8. The GenomeStudio had built in protocols for con-
ducting methylation array normalization. We utilized
Background Subtraction, where the background value is
derived by averaging the signals of built-in negative con-
trol bead types. Outliers are removed using the median
absolute deviation method. Background normalization is
capable of minimizing the amount of variation in back-
ground signals between arrays. This is accomplished
using the signals of built-in negative controls, which are
designed to be thermodynamically equivalent to the
regular probes but lack a specific target in the transcrip-
tome. Negative controls allow for estimating the ex-
pected signal level in the absence of hybridization to a
specific target. The average signal of the negative con-
trols is subtracted from the probe signals. As a result,
the expected signal for unexpressed targets is equal to
zero. Samples with lower than 98% call rate (i.e.
<485,000 probes) were excluded.
Any non-specific cross-reacting probes, probes car-

rying common SNPs (MAF >1%), or any probes with
p-values greater than 0.05 for more than 20% of the
sample were sequentially excluded [45, 46]. One saliva
sample was removed after quality control analysis
(total analytic sample of n = 91). Normalization at
CpG island level was performed using internal control
subtracting background noise.

Statistical analysis
We employed an advanced statistical method called elas-
tic net in order to select a reduced set of CpG markers
for regression analyses because the number of CpG
markers is substantially greater than the number of sub-
jects [47]. The elastic net method provides variable se-
lection to produce parsimonious and interpretable
models without being severely limited by the sample size
[47, 48]. While multiple test corrections are not neces-
sary for elastic net [49–51], to demonstrate the more
common presentation of results, we report Hochberg
adjusted p-values [52].
The elastic net was performed prior to linear regres-

sion analysis to identify CpG sites associated with mater-
nal BMI, due to its clinical relevance to childhood
obesity for the Hispanic population [53–55]. The CpG
sites selected by elastic net were then used in a univari-
ate model to examine the individual association with
maternal BMI using a linear regression model where the
main outcome was child CpG methylation and the main
predictor was maternal BMI, adjusting for covariates

that included: child BMI, maternal age, child gender, and
child age.

Pathway analysis
Functional analysis of differentially methylated genes
was conducted using Ingenuity Pathway Analysis (IPA)
on child CpG Sites determined to be significantly meth-
ylated and associated with maternal BMI by linear re-
gression. The analysis utilized the Ingenuity Knowledge
Base (QIAGEN), a structured collection of five million
findings from biomedical literature and integrated third
party databases that contains 40,000 nodes with
1,480,000 edges representing cause-effect relationships.
These cause-and-effect relationships take into account
expression, transcription, activation, molecular modifica-
tion, transport, and binding [56].

Results
Methylation analysis
The elastic net identified 17 CpG sites that were associ-
ated with maternal BMI (Fig. 1). Twelve of the 17 CpGs
had increased methylation with increased maternal BMI
while 5 of the 17 CpGs had decreased methylation asso-
ciated with increased maternal BMI. Of these CpGs, all
were significantly and independently associated with ma-
ternal BMI, as determined by linear regression (Table 2).
Five CpGs were found within an enhancer region of the
associated gene, 1 CpG was associated with the promo-
tor region, and 5 CpGs were unclassified.

Pathway analysis
The top 10 canonical signaling pathways included cyst-
eine biosynthesis, homocysteine degradation, cysteine
biosynthesesis III, superpathway of methionine degrad-
ation, D-glucuronate degradation I, and Circadium
Rhythm Signaling (Table 3).

Discussion
To our knowledge, this is the first study examining
DNA methylation in saliva samples obtained from
preschool-age Hispanic children to investigate epigenetic
patterns in children at-risk for later childhood obesity.
We identified 17 CpG sites in saliva of children to be as-
sociated with maternal BMI, indicating a potential inter-
generational transmission of risk for obesity in children
of obese mothers.

Effect of maternal BMI phenotype on child DNA
methylation in saliva
The 17 CpG probes identified by the Elastic net analysis
from saliva samples are consistent with Comuzzie et al’s
original GWAS study of whole blood DNA samples from
815 Hispanic children in 263 families [41]. The 17 CpG
sites in Table 2 were independently and significantly
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Fig. 1 Direct Correlation of CpG Site with Maternal Obesity. Maternal BMI per Child methylation level for the 17 CpG sites with significant
methylation as determined by linear regression. Genes indicated in parenthesis; Red line indicating linear regression; dotted line indicating 95%
confidence interval
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associated with maternal BMI. While child age was con-
trolled for in the linear regression analysis, these patterns
may change as children age. We plan to assess epigenetic
signatures and the development of childhood obesity over
time in future research.

Top differentially methylated genes
Eight out of the 17 CpG sites selected by the elastic net
analysis reside in genes that are associated with obesity,
diabetes, or the insulin pathway by prior studies
(Table 2). Specifically, the PPARGC1B and NXPH1
genes have been associated with childhood obesity in
Brazil and with diabetes in the Mexican-Mestizo popula-
tions respectively. Since our population was solely His-
panic, we found it interesting that the saliva epigenetic
signatures were consistent with known genetic causes of
obesity and diabetes in similar populations of Hispanic
origins. There are similarities between obesogenic and
oncogenic states, namely cellular proliferation and in-
flammation, and it is interesting to note, that in this
study two of the genes with significant methylation,
DLC1 and CRYL1, are associated with hepatocellular
carcinoma. These genes have biologic plausibility of con-
tributing to an increased risk of childhood obesity. How-
ever, because the saliva samples were derived from
children within similar non-obese BMI ranges, these sig-
nificant differences may indicate changes occurring in
numerous different pathways even before the clinical
presentation of obesity.

Table 2 Linear regression analysis of child DNA methylation signal predicted by maternal BMI

Probe Gene Effect Standard Deviation P-Value* Associated Pathology

cg21790991a FSTL1 0.005058 0.001776 0.0156 Obesity [65, 66]

Cg03218460 SORCS2 0.003025 0.001091 0.0165 Cardiovascular disease [67]
SORCS family associated with Type 1
and 2 Diabetes [67–70]

Cg23241637 ZNF804A 0.002443 0.00081 0.0143 Schizophrenia [71–75]

Cg04798490 SHANK2 0.002391 0.000787 0.0143 Autism [76–81]

cg01307483 NRF1 0.002344 0.000879 0.0172 Type 2 Diabetes [82–85]

cg19312314 CBS 0.001952 0.000813 0.0243 Cardiovascular Disease [86]
Homocystinuria [87–89]

cg14321859 DLC1 0.001801 0.00076 0.0243 Insulin-Pathway [90]
Hepatocellular Carcinoma [91–94]

cg03067613 ATP8B3 0.001547 0.000672 0.0253 Reproduction [95, 96]
Liver Disease [97]

cg11296553 CEP72 0.001159 0.000312 0.0041 Ulcerative colitis [86]

cg16509445 CRYL1 0.001091 0.000427 0.0204 Hepatocellular Carcinoma [98, 99]

Cg16344026 PPARGC1B 0.001021 0.000403 0.0204 Obesity [100–102]

Cg15354625 ODZ4 0.000932 0.000402 0.0253 Bipolar Disorder [103–105]

cg23836542 CHN2 −0.00081 0.000337 0.0243 Insulin-Pathway [106]
Type 2 Diabetes [107, 108]

cg07511564 NXPH1 −0.00135 0.00061 0.0295 Type 2 Diabetes [109, 110]

cg18799510 GRIN3A −0.00171 0.000633 0.0172 Schizophrenia [111, 112]

Cg14996807 UNC13A −0.00174 0.00048 0.0041 Amyotrophic lateral sclerosis [113–116]

Cg18431297 SORCS2 −0.00316 0.001079 0.0146 Cardiovascular disease [67]
SORCS family associated with Type 1
and 2 Diabetes [67–70]

*Hochberg adjusted p-values noted
aBolded CpG sites are associated with Obesity, Diabetes, and/or the Insulin-Pathway

Table 3 Top 10 signaling pathways derived from top
differentially methylated genes

Top Canonical Pathways

Adjusted P-value

Cysteine Biosynthesis/Homocysteine Degradation 1.55E-03

D-glucuronate Degradation I 2.33E-03

Cysteine Biosynthesis III (Mammalia) 1.46E-02

Superpathway of Methionine Degradation 2.45E-02

Circadian Rhythm Signaling 2.53E-02

Top Diseases and Bio Functions

Developmental Disorders (3 Molecules) 4.70E-02 - 7.76E-04 3

Hematological Disease (6 Molecules) 3.98E-02 - 7.76E-04 6

Hereditary Disorder (5 Molecules) 4.70E-02 - 7.76E-04 5

Metabolic Disease (5 Molecules) 3.96E-02 - 7.76E-04 5

Neurological Disease (8 Molecules) 4.41E-02 - 7.76E-04
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One unexpected finding, was that 5 of the 17 CpG
sites with significant methylation have strong associa-
tions with neurological disease in the literature, specific-
ally schizophrenia, bipolar disorder, autism, and
amyotrophic lateral sclerosis (Table 2) [57, 58].

Pathway analysis
Pathway analysis identified significant enrichment of
genes within pathways involved in conical signaling with
respect to methylation in cysteine biosynthesis, homo-
cysteine degradation, cysteine biosynthesis III, and me-
thionine degradation pathways (Table 3). These
pathways have been associated with obesity previously.
For example, cysteine biosynthesis has been found to be
positively associated with risk of obesity in Hispanic
children [59], and total plasma cysteine has been inde-
pendently associated with obesity and insulin resistance
in the same population [60]. Furthermore, homocysteine
degradation has been found to be positively associated
with morbidly obese patients [61], and restriction of me-
thionine intake has been shown to have a significant in-
crease in fat oxidation [62]. Circadian rhythm was also
identified as a top canonical pathway. Circadian rhythms
regulate many biological processes and cellular meta-
bolic pathways. Disruption of circadian rhythm has an
adverse effect on metabolic function [63].

Salivary vs blood assays
Comuzzie et al. used DNA samples from whole blood in
a GWAS study to identify novel genetic loci associated
with the pathophysiology of childhood obesity in His-
panic children ages 4–19 years old [41]. Using these
same genes in our analyses of saliva, we identified 17
CpG sites in a Hispanic pediatric population with signifi-
cant methylation and associated with maternal obeso-
genic phenotypes. Thus, this proof of principle study
demonstrated that saliva is a probable viable medium for
epigenetic testing, which in this case, was consistent to
whole blood findings, but we acknowledge that further
testing would have to include both blood and saliva sam-
ples from the same Hispanic pediatric population to hol-
istically assess the similarities between these 2 tissue
samples. Previous studies that have investigated both of
these tissues in other patient populations indicate that
saliva and whole blood findings are consistent, so we
would anticipate further investigations to yield similar
findings [25, 26].

Limitations
Although prior literature indicates that DNA methyla-
tion levels in saliva are similar to those in peripheral
blood, skin fibroblasts, and buccal swab DNA, it may
not reflect the epigenome of adipose tissue, muscle, pan-
creas, GI system, and pituitary [64], which are implicated

in the development of obesity. Furthermore, we acknow-
ledge that we cannot assess whether these findings
would be consistent in blood samples in this specific
population, although prior literature seems to indicate
that we would find similar epigenetic methylation pat-
terns if tested. We did not correlate gene expression
data with methylation changes, and thus can only
speculate on the implications for a child’s BMI trajec-
tory. P-adjusted values were less likely to be signifi-
cant due to the large number of genes analyzed in
the Illumina Human Methylation Bead Chip 450 K,
making our statistically significant findings important,
but likely under-identifying other potential statistically
significant differential methylation patterns.

Conclusions
Results of this proof of principle study indicate that sal-
iva is a practical way to obtain biologically plausible find-
ings in an epigenetic analysis of preschool-age children.
It is important to understand the potential pathways that
could be epigenetically regulated in preschool aged chil-
dren who are not currently obese but at higher risk of
obesity. Moreover, saliva, an easily accessible tissue,
could assist in the future identification of early bio-
markers of later childhood obesity and metabolic dys-
function, presenting an opportunity for prevention or
early intervention for addressing childhood obesity.
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