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Abstract

Introduction: The brain mechanisms of cognitive impairment in prodromal

Huntington disease (prHD) are not well understood. Although striatal atrophy

correlates with some cognitive abilities, few studies of prHD have investigated

whether cortical gray matter morphometry correlates in a regionally specific

manner with functioning in different cognitive domains. This knowledge would

inform the selection of cognitive measures for clinical trials that would be most

sensitive to the target of a treatment intervention. Method: In this study, ran-

dom forest analysis was used to identify neuroanatomical correlates of function-

ing in five cognitive domains including attention and information processing

speed, working memory, verbal learning and memory, negative emotion recog-

nition, and temporal processing. Participants included 325 prHD individuals

with varying levels of disease progression and 119 gene-negative controls with a

family history of HD. In intermediate analyses, we identified brain regions that

showed significant differences between the prHD and the control groups in cor-

tical thickness and striatal volume. Brain morphometry in these regions was

then correlated with cognitive functioning in each of the domains in the prHD

group using random forest methods. We hypothesized that different regional

patterns of brain morphometry would be associated with performances in dis-

tinct cognitive domains. Results: The results showed that performances in dif-

ferent cognitive domains that are vulnerable to decline in prHD were correlated

with regionally specific patterns of cortical and striatal morphometry. Putamen

and/or caudate volumes were top-ranked correlates of performance across all

cognitive domains, as was cortical thickness in regions related to the processing

demands of each domain. Conclusions: The results underscore the importance

of identifying structural magnetic resonance imaging (sMRI) markers of func-

tioning in different cognitive domains, as their relative sensitivity depends on

the extent to which processing is called upon by different brain networks. The

findings have implications for identifying neuroimaging and cognitive outcome

measures for use in clinical trials.

Introduction

A formal diagnosis of Huntington disease (HD) is made

on the basis of unequivocal motor signs. However, subtle

motor, psychiatric, and cognitive symptoms are detected

years before a motor diagnosis in the prodromal phase

(prHD) (Paulsen et al. 2008). Cognitive decline in prHD

is of keen interest due to its correlation with genetic
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markers of disease progression (Tabrizi et al. 2009; Bech-

tel et al. 2010; Duff et al. 2010; Rowe et al. 2010; Stout

et al. 2011) and time to diagnosis (Harrington et al.

2012). With the development of treatments that might

prevent or slow the progression of the disease, it is vital

to identify cognitive variables for clinical trials that are

strongly associated with neurodegeneration and its pro-

gression, and that would be sensitive for evaluating treat-

ment effects. In this regard, it is important to identify the

brain centers that govern core cognitive functions, as the

suitability of a cognitive measure will likely depend on

the target of a treatment intervention.

The brain mechanisms of cognitive impairment in

prHD are not well understood partly due to the dearth of

structural imaging investigations into neurocognitive rela-

tionships. Despite progressive changes in the striatum and

in cortical gray and white matter that begin decades

before a manifest diagnosis (Nopoulos et al. 2010; Paul-

sen et al. 2010; Aylward et al. 2011; Tabrizi et al. 2011,

2012), much less is known about how they relate to func-

tioning in different cognitive domains. Several studies of

prHD have reported that striatal volume (Campodonico

et al. 1998; Jurgens et al. 2008; Paulsen et al. 2010; Papp

et al. 2013; Wolf et al. 2013) and/or white matter volume

(Paulsen et al. 2010; Papp et al. 2013) correlate with

measures of executive functioning including the Symbol

Digits Modality Test (SDMT), Stroop Interference, Verbal

Fluency, the Trial Making Test Part B, and the Towers

Task. Yet few studies of prHD have investigated whether

cortical gray matter morphometry correlates in meaning-

ful ways with functioning in different cognitive domains.

In an early study of 15 prHD individuals that used

whole-brain voxel-based morphometry (VBM) (Rosas

et al. 2005), linear regression analyses revealed that Verbal

Fluency, Stroop Interference, and SDMT performances

correlated with cortical thinning in some spatially differ-

ent regions, suggesting that structural changes were func-

tionally meaningful. Yet a recent study of 20 prHD

individuals found no statistically significant relationships

between cortical morphometry and cognitive functioning

on tests of alertness, divided attention, verbal and spatial

working memory, inhibition, or executive dysfunction

(Wisconsin Card Sorting Test, WCST), irrespective of the

structural magnetic resonance imaging (sMRI) method

employed (i.e., VBM and cortical surface modeling)

(Wolf et al. 2013). These discrepant findings may relate

to the small sample sizes, which is problematic given the

heterogeneity of symptoms and disease progression in

prHD. Other studies of large combined samples of prHD

and manifest HD have revealed relationships between cor-

tical thinning and cognition (e.g., timing, visuomotor

integration, emotion recognition) (Bechtel et al. 2010; Say

et al. 2011; Scahill et al. 2013). However, the results do

not address the neurocognitive relationships in the pre-

manifest period, wherein structural changes in the brain

may exhibit more regionally specific relationships with

different cognitive functions rather than potentially relate

more to global neurodegeneration.

This study of prHD builds upon past research by iden-

tifying corticostriatal correlates of functioning in five cog-

nitive domains including attention and information

processing speed, working memory, verbal learning and

memory, negative emotion recognition, and timing. In

intermediate analyses, we first identified regions that

showed significant cortical thinning and striatal volume

loss in a large sample of prHD individuals relative to a

gene-negative control group. These regions were then

used as predictors of performance on each cognitive mea-

sure in the prHD group. As brain regions interact with

each other to fulfill a cognitive function, we hypothesized

that performance in each of the domains would be corre-

lated with different regional patterns of corticostriatal

morphometry. The random forest method was used to

test the hypothesis, as it is well suited for modeling these

complicated relationships.

Material and Methods

Subjects

Study participants included 325 prHD individuals and

119 gene-negative controls with a family history of HD.

Data for the study were collected at 31 sites in the United

States, Canada, Australia, Germany, Spain, and the Uni-

ted Kingdom from 2002 to 2008 from individuals

enrolled in PREDICT-HD (Paulsen et al. 2006, 2008).

Consent was obtained according to the Declaration of

Helsinki. The protocol was approved by the institutional

review boards at the University of Iowa and each partici-

pating site.

Participants were 18 years of age or older, had a family

history of HD, and completed independent genetic testing

for the HD CAG expansion prior to entry into

PREDICT-HD. Confirmatory DNA testing was conducted

on blood drawn at the baseline PREDICT visit using a

polymerase chain reaction method to determine CAG-

repeat length (Warner et al. 1993). PrHD participants

had the expansion (≥38 CAG repeats) and gene-negative

controls did not (<36 CAG repeats) (Table 1). A certified

examiner performed the Unified Huntington’s Disease

Rating Scale (UHDRS) motor examination on all partici-

pants. The UHDRS motor scale contains 31 items that

assess chorea, bradykinesia, rigidity, dystonia, and oculo-

motor function. Ratings for each item range from 0 (nor-

mal) to 4 (motor abnormalities, impairment) and are

summed for a total motor score (Table 1). Examiners also
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rated their level of confidence that observed motor signs

were an unequivocal manifestation of HD. Individuals

with a diagnostic confidence rating of 4 (≥99% confi-

dence that motor symptoms were unequivocal signs of

HD) at the time of testing were excluded. Individuals

were excluded from participation in PREDICT-HD if they

evidenced unstable medical or psychiatric conditions,

reported substance abuse within the past year, had a his-

tory of learning disability or intellectual disability requir-

ing special education classes, a history of other central

nervous system disease (e.g., seizures, traumatic brain

injury), or if they had a pacemaker or metallic implants.

Individuals were also excluded from participation if they

had used prescription antipsychotic medications within

the past 6 months or if they used phenothiazine-deriva-

tive antiemetic medications more than three times per

month, but no other prescription or over-the-counter

medications or natural remedies were restricted. All

participants underwent comprehensive baseline evaluations

including blood draw, neurological/motor examination,

cognitive assessment, psychiatric and psychological

questionnaires, and brain MRI.

Table 1 shows that age, years of education, and gender

were well balanced between the control and the prHD

groups. As expected, the prHD group exhibited more

symptoms on the UHDRS motor scale than the control

group. In the prHD group, the ranges for age

(20.1–74.9 years) and CAG-repeat length (38–50) indicate
a wide variation in baseline progression levels (Zhang

et al. 2011).

Cognitive tests

PREDICT-HD participants completed a battery of neuro-

psychological tests and computerized cognitive tasks once

a year. From this battery five tests were selected that rep-

resent different cognitive domains including attention and

information speed, verbal working memory, verbal learn-

ing and memory, negative emotion processing, and tem-

poral processing. These domains of cognitive functioning

are known to decline in prHD (Rowe et al. 2010; Stout

et al. 2011; Harrington et al. 2012). Attention and process-

ing speed was measured by the SDMT (total correct in

90 sec) (Smith 1982). Verbal working memory was

measured by the Wechsler Adult Intelligence Scale-III

Letter-Number Sequencing (total correct) (Wechsler

1997). Verbal learning and memory was measured by the

Hopkins Verbal Learning Test-Revised (HVLT-R) (imme-

diate recall, total number correct) (Brandt and Benedict

2001). Negative emotion processing was measured using a

computerized emotion recognition task where the partici-

pant viewed photographs of faces expressing one of six

emotions (fear, disgust, happiness, sadness, surprise,

anger) or a neural expression, and then matched the facial

expression with a verbal description (Johnson et al.

2007). The number correct for the negative emotions was

the dependent measure as it best discriminates prHD

from control participants (Stout et al. 2011). Temporal

processing was assessed by the paced timing task (Rowe

et al. 2010), wherein the participant starts out by tapping

in synchrony with a 550 msec isochronous tone and then

continues tapping without the tone at the same pace

(continuation phase). The measure of timing precision is

the reciprocal of the within-subject intertap interval stan-

dard deviation during the continuation phase.

This study reports cross-sectional data from a sample

of participants whose cognitive testing coincided with

their first PREDICT-HD brain MRI, which was conducted

at either the first visit or the third visit. Due to the poten-

tial effects of practice on task performance for individuals

at their third visit, we tested for the effects of the number

of visits and group (control vs. prHD) on performance

using an analysis of covariance (ANCOVA) model, co-

varying age, gender, and education. Performance on all

cognitive measures did not differ between individuals

who had taken the tests once or three times (P > 0.10),

nor did the number of visits interact with group

(P > 0.42). Despite these negative results, number of vis-

its was still included as a covariate in the remaining

analyses to adjust for its potential minor influences on

the cognitive measures.

MRI acquisition and preprocessing

All scans were obtained using a standard multimodal pro-

tocol that included an axial 3D volumetric spoiled-gradi-

ent echo series (~1 9 1 9 1.5 mm voxels) and a dual

echo proton density/T2 (~1 9 1 9 3 mm voxels) series.

Thirty sites used General Electric 1.5 Tesla scanners,

and two sites used Siemens 1.5 Tesla scanners. Each

Table 1. Characteristics of study participants.

Controls (n = 119) prHD (n = 325) P-value

% Women1 65.5% 64.9% 0.90

Age (years)2 42.4 (11.4) 40.7 (10.2) 0.14

Education (years)3 14.7 (2.8) 14.3 (2.7) 0.12

UHDRS motor score4 2.7 (3.4) 5.2 (5.5) 0.0003

CAG-repeat length 20.2 (3.3) 42.3 (2.3)

Means (standard deviations) are reported for all variables except gen-

der. prHD, prodromal Huntington disease; UHDRS, Unified Hunting-

ton’s Disease Rating Scale.
1Chi-square test of group differences.
2Two-sided t-test of group differences.
3Two-sided Wilcoxon test of group differences.
4Two-sided Kolmogrov–Smirnov test of group differences.
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multimodal scan series was processed through BRAINS

(Brain Research: Analysis of Image, Networks, and

Systems) AutoWorkup (Pierson et al. 2011), a standard-

ized morphometric processing pipeline that corrected for

common multisite data differences (Magnotta et al.

2002). Outputs from the processing pipeline included

basal ganglia volumes (caudate, putamen), a brain mask

used for computing the intracranial volume (ICV), and a

T1-weighted image, which was used in FreeSurfer for cor-

tical thickness processing (Fischl et al. 2002). FreeSurfer

estimates of cortical thickness demonstrate very good

test–retest reliability across scanners and sites (Han et al.

2006; Dickerson et al. 2008; Jovicich et al. 2009; Reuter

et al. 2012). The brain mask was derived from all three

image intensity modes to obtain robust estimates of ICV,

which include tissue and surface cerebrospinal fluid (CSF)

that extends to the border of dura mater. To account for

individual differences in head size, basal ganglia volumes

were divided by ICV. The T1-weighted image was created

with isotropic (1.0 mm3) voxels. T1 images were normal-

ized so that the tissue intensities across the spatial domain

of a single image and scans from different sites were

placed in a consistent intensity range. Spatial intensity

inhomogeneities were removed by applying a parametric

correction (Styner et al. 2000) that used estimates of the

tissue intensities based on tissue classes from the multi-

modal tissue classification (Harris et al. 1999). Each scan’s

intensity range was placed on a consistent scale by linearly

scaling to maximize the dynamic range inside the brain

region. A reoriented, inhomogeneity, and intensity-cor-

rected T1 scan for each subject was then clipped to the

brain mask to be used as input for cortical parcellation.

Cortical reconstruction was performed using the Free-

Surfer image analysis suite (http://surfer.nmr.mgh.har-

vard.edu), which is an automated tissue classification and

segmentation software that exhibits good test–retest reli-

ability across scanner manufactures and field strengths

(Han et al. 2006). Each subject’s MRI was initially ana-

lyzed in original space using the following analysis pipe-

line. Processing included removal of nonbrain tissue by a

hybrid watershed/surface deformation procedure, subcor-

tical structures were segmented (Fischl et al. 2002), and

further intensity normalization was conducted. This was

followed by white matter segmentation, tessellation of the

gray–white matter boundary, and automated topology

correction (Fischl et al. 2001). Then surface deformation

following intensity gradients optimally placed the gray/

white and gray/cerebrospinal fluid borders at the location

where the greatest shift in intensity defines the transition

to the other tissue class (Fischl et al. 2001). Once the cor-

tical models were complete, deformable procedures per-

formed additional data processing and analysis, including

parcellation of the cerebral cortex into 34 conventional

gyral- and sulcal-based neuroanatomical regions in each

hemisphere (Desikan et al. 2006). This parcellation

method demonstrates diagnostic sensitivity in other dis-

eases (Desikan et al. 2009). Intensity and continuity infor-

mation from the segmentation and deformation

procedures produced representations of cortical thickness,

which were calculated as the closest distance from the

gray–white matter boundary to the gray–CSF boundary at

each vertex on the tessellated surface (Fischl and Dale

2000). Cortical thickness was used in this study as it

accounts for most volumetric changes in prHD (Nopou-

los et al. 2010) and is influenced by genetic factors

(Winkler et al. 2010).

Statistical analyses

We employed the random forest method (Breiman 2001)

to identify the relationships between brain morphometric

measures and cognition for several reasons. First, there

are a large number of variables (brain regions) and many

of them are highly correlated. It is important to include

correlated brain regions in the same model, but under the

traditional regression framework the simultaneous inclu-

sion of highly correlated variables can cause a severe mul-

ticollinearity problem and lead to invalid statistical

inference. A second issue is that brain regions interact

with each other to fulfill a cognitive function. However,

for a standard regression analysis, an exhaustive specifica-

tion of all the interactions among brain regions is near

impossible. A third consideration is that it may be overly

simplified to assume that all brain regions relate to a cog-

nitive function in a linear fashion. The random forest

method is well equipped to handle these challenges. Ran-

dom forest is an ensemble method that works by generat-

ing a large number of data sets via resampling with

replacement from the original data set (bootstrap sam-

ples) and making a collective decision (e.g., association)

by combining results from the analyses of all resampled

data sets. Random forest has a built-in training and test-

ing mechanism to overcome overfitting problems associ-

ated with traditional machine learning methods

(Smialowski et al. 2010). Specifically, in each resampling

procedure about two thirds of the original observations

are included in the bootstrap sample, which is used to

grow each tree in the forest. One third of the observations

are left out to evaluate the predictive performance of the

tree. The importance of each variable is assessed by ran-

domly permuting the values of the variable in the sample

that is left out of each resampled data set. If a variable is

important in terms of its relationship with a measure,

after the random permutation the performance using the

permuted variable should decrease. Variables can there-

fore be rank ordered in terms of their importance.
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Intermediate analysis

To select sMRI predictor variables, an intermediate analy-

sis was first conducted to identify regions that showed

significant group differences in basal ganglia volume and

cortical thickness. To account for the potential confound-

ing nonlinear effect of age and the interaction between

age and gender, random forest was used to control for

the covariate effect of age and gender on brain morphom-

etry in each region. Data from gene-negative controls

were first used to derive the relationship of cortical thick-

ness and basal ganglia volume with age and gender. The

difference between observed and predicted thickness/vol-

ume was calculated from this fitting, which defined a set

of residuals (residual 1). Then data from the prHD group

were used to obtain the estimated effect of age and gen-

der using the same model, and a second set of residuals

were calculated (residual 2). Next, a two-sample Wilco-

xon rank sum test compared residuals 1 and 2 for each

cortical region and basal ganglia volume. Abnormal brain

morphometry in prHD was declared if the mean residual

1 for a region was significantly greater than the mean

residual 2. A false discovery rate (FDR) of 0.05 was used

to adjust for multiple comparisons. Regions showing sig-

nificant mean thinning or atrophy in the prHD group

were then used as sMRI variables in the main statistical

analyses.

Main analyses

Random forest was used to model the relationship

between the sMRI variables identified in the intermediate

analyses and performances in each cognitive domain only

in the prHD group. The analyses were conducted sepa-

rately for each cognitive variable. To adjust for the con-

founding effects of age, gender, education, and number of

visits on cognitive performance, these variables were also

included in the random forest model. The number of

bootstrap samples was set at 5000, and the default value

of the number of predictors divided by 3 was used for

the number of variables randomly sampled when assessing

the importance of variables. The importance measure of

each sMRI variable in relation to each cognitive measure

was determined by the increase in mean squared error

(MSE) in correlating with the outcome for observations

outside the bootstrap sample when values of the sMRI

variable were randomly permuted. The MSEs of all sMRI

variables were ranked to quantify the relative importance

of each brain region in correlating with the outcome of a

cognitive measure. In order to obtain the most robust

sMRI variable ranking, each random forest analysis was

repeated 1000 times and the average ranking for each var-

iable was used. To select the most parsimonious model

that had at least as good performance as a model that

used all sMRI predictors, the variable selection method of

Genuer et al. (2010) was applied. By this method, the top

ranking variables that rendered the smallest mean MSE

over 200 runs in their correlation with performance on

each cognitive measure were chosen for interpretation.

Although random forest is a relatively complicated ana-

lytic method, it is surprisingly computationally efficient.

For the analysis in our study, each random forest run

took about 19 sec, although computation time depends

on the hardware and operating system.

Results

Cognitive measures

To characterize the entire prHD group, an ANCOVA

tested for group differences on each of the cognitive mea-

sures, adjusting for age, gender, years of education, and

number of visits (P < 0.05, unadjusted). Figure 1 plots

the means (standard deviations) for the groups on each

measure. The prHD group performed significantly worse

on all cognitive measures (SDMT: t = �3.04, P < 0.0025;

letter-number sequencing: t = �2.50, P < 0.013; HVLT-R:

t = �2.09, P < 0.037; negative emotions: t = �2.58,

P < 0.01; and timing: t = �3.16, P < 0.002).

Cortical thinning and basal ganglia atrophy
in prHD

Figure 2 displays regions showing significant mean basal

ganglia volume loss and cortical thinning in the prHD

group relative to the gene-negative controls. As expected,

significant volume loss was found in the bilateral caudate

and putamen. Cortical thinning was found in 36 regions

including areas of the frontal, superior and middle-

temporal, parietal, and occipital cortices of both hemi-

spheres on the lateral and the medial surfaces. These 40

regions were used as sMRI predictors of performance in

each cognitive domain.

sMRI correlates of cognitive functioning

Figure 3 shows the number of the top-ranked sMRI vari-

ables that minimized the mean MSE (designated by the

dotted line) for each cognitive measure. Negative emo-

tions and SDMT performances best correlated with the

highest ranked 15 and 13 sMRI variables, respectively. For

the remaining cognitive variables, the 10 highest ranked

sMRI variables resulted in the lowest MSE. An exception

was the letter-number sequencing task, wherein the MSE

was technically the lowest for the top-ranked 23 variables,

but very close to the MSE corresponding to the
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top-ranked 10 sMRI variables. With the principle of parsi-

mony in mind, the model with the top 10 sMRI variables

was selected for interpretation. Figure 3 also shows that

as more sMRI variables were added to the model, there

typically was a progressive reduction in the mean MSE

until it was minimized. For the Negative Emotions task,

however, the top two ranked variables almost minimized

the mean MSE, although the addition of other sMRI vari-

ables did result in a slightly lower mean MSE. Figure 4

displays the spatial maps of the top-ranked sMRI corre-

lates of performance for each cognitive measure according

to their mean rank order of importance, with lighter col-

ors corresponding to more highly ranked sMRI variables.

The exact rank order of sMRI variable importance is

listed in Table 2. An inspection of the data showed that

for all top-ranked sMRI correlates of each cognitive mea-

sure, greater cortical thinning and striatal atrophy were

associated with worse performance.

Figure 4 shows that the top-ranked correlates of SDMT

performance included elements of the motor circuit

(bilateral putamen, right precentral gyrus, bilateral post-

central gyrus), right hemisphere cognitive-control centers

in prefrontal cortex (PFC) (right superior frontal, caudal

and rostral middle-frontal cortex), an auditory and

semantic processing hub including Broca’s area (left pars

opercularis, bilateral superior temporal cortex), and visual

centers (left cuneus, right lingual gyrus). The highest

ranked sMRI variables were the bilateral putamen, fol-

lowed by the bilateral superior temporal cortices and then

right hemisphere PFC regions (Table 2).

Top-ranked correlates of letter-number sequencing per-

formance included the striatal-frontoparietal working

memory network (left caudate, bilateral rostral middle

frontal, right caudal middle frontal, right pars triangular-

is, left inferior parietal), an auditory and semantic pro-

cessing hub (left superior temporal), and elements of the

right ventral attention network (right lateral occipital and

middle-temporal cortices). The highest ranked sMRI vari-

ables were the right lateral occipital and right rostral mid-

dle-frontal cortices, followed by the left caudate and the

right middle-temporal cortex (Table 2).

Top-ranked correlates of HVLT-R immediate recall

performance included dorsal frontoparietal regions of the

working memory network (bilateral caudate, left caudal

middle frontal, bilateral superior parietal) and a semantic

processing network including Broca’s area (left pars

Figure 1. Mean (standard deviation) group performance on each of the cognitive measures. The gene-negative control group (C) performed

significantly better than the prHD group on all cognitive measures (SDMT: P < 0.0025; letter-number sequencing: P < .013; HVLT-R: P < 0.037;

negative emotions: P < 0.01; and timing: P < 0.002). prHD, prodromal Huntington disease; SDMT, Symbol Digits Modality Test; HVLT-R, Hopkins

Verbal Learning Test-Revised.

Figure 2. Regions showing significant cortical thinning and striatal

atrophy in the prodromal Huntington disease (prHD) group. Bilateral

caudate and putamen atrophy were found in the prHD group.

Cortical thinning was also found in 36 regions including areas of the

frontal, superior and middle-temporal, and parietal-occipital cortices

of both hemispheres on lateral and medial surfaces. These 40 regions

were the predictor variables in the random forest analyses.
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opercularis, right pars triangularis and pars orbitalis, and

right superior temporal gyrus and bank of the superior

temporal sulcus). The highest ranked sMRI variables were

the left caudate and right pars orbitalis, followed by the

right superior temporal cortex and right caudate, and

then other PFC regions (Table 2).

Top correlates of negative emotion performance

included a frontostriatal cognitive-control network (bilat-

eral caudate and putamen, bilateral rostral middle frontal,

right caudal middle frontal, right BA pars opercularis, left

pars triangularis), a memory retrieval hub (left precu-

neus), and visual processing regions (right lingual gyrus,

bilateral lateral occipital cortex, left cuneus, and right

middle-temporal cortex). The highest ranked sMRI vari-

ables were the right putamen and right lingual gyrus

(Table 2).

Top correlates of motor timing precision included a

frontostriatal cognitive-control network (bilateral puta-

men, right caudate, left caudal middle frontal, and right

rostral middle frontal), sensorimotor cortex (left postcen-

tral gyrus), and multimodal association centers (bilateral

superior temporal and bilateral lateral occipital cortices).

The highest ranked sMRI variable was the left caudal

middle-frontal cortex, followed by bilateral putamen,

right caudate, and bilateral superior temporal cortex

(Table 2).

Discussion

This study demonstrated that functioning in different cog-

nitive domains that are vulnerable to decline in prHD is

associated with regionally specific patterns of both cortical

and striatal morphometry. Although caudate and/or puta-

men volumes in prHD are known to correlate with cogni-

tive performances on several tests (e.g., SDMT, Stroop

Interference, Verbal Fluency, WCST, Trail Making Test)

(Campodonico et al. 1998; Jurgens et al. 2008; Paulsen

et al. 2010; Wolf et al. 2013), most studies report no rela-

tionship between cortical volume loss or thinning and cog-

nition (Novak et al. 2012; Wolf et al. 2013), with one

notable exception (Rosas et al. 2005). This is surprising

given the widespread changes in cortical morphometry in

prHD (Nopoulos et al. 2010). Discrepant findings may

relate to variations among studies in imaging processing

Figure 3. Number of top structural MRI (sMRI) correlates of performance for each cognitive measure. Each circle in the plot represents a sMRI

predictor variable. The x axis shows the number of sMRI variables based on their mean squared error (MSE) ranking in the random forest analysis.

The y axis represents the mean MSE value of the variables when the corresponding number of top sMRI predictors was included in the model.

The lowest mean MSE is marked with a dashed line and signifies the number of top ranking variables that provided the most parsimonious

correlation with performance on each cognitive measure. Negative emotions and SDMT performances were best associated with the highest

ranked 15 and 13 sMRI variables, respectively. For the other cognitive variables, the 10 highest ranked sMRI variables resulted in the lowest mean

MSE. An exception was for letter-number sequencing, in which the mean MSE was technically the lowest for the top-ranked 23 variables, but

very close to the mean MSE corresponding to the top-ranked 10 sMRI variables. As such, the top 10 sMRI variables were selected for a more

parsimonious interpretation.
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methods, sample size, and levels of proximity to disease

onset. Individuals far from diagnosis (more than 15 years)

typically perform similarly to controls on most cognitive

measures, whereas those closer to diagnosis perform more

poorly relative to gene-negative controls (Stout et al.

2011). Likewise, striatal volumes decrease and cortical thin-

ning increases with proximity to diagnosis (Nopoulos et al.

2010; Paulsen et al. 2010). However, individuals far from

diagnosis do not exhibit significant cortical thinning (Nop-

oulos et al. 2010), although striatal volumes can be

reduced. As such, the wide range of cognitive performances

and cortical-striatal structure in this study provides a

strong test of the anatomical correlates of cognitive func-

tioning in prHD. Moreover, it is reasonable to infer that

the structure–function relationships identified by our study

are more expressed as disease burden advances. However,

longitudinal studies are needed to directly evaluate this

supposition. Our results build upon reports of cognitive-

sMRI associations in combined samples of prHD and HD

individuals (Bechtel et al. 2010; Say et al. 2011; Scahill

et al. 2013) by elucidating sMRI correlates of cognitive

functioning in different domains that are specific to the

premanifest period.

One notable finding was that attention and information

processing speed, as measured by the SDMT, was

uniquely associated with thickness of both the motor

(precentral gyrus) and sensory (postcentral gyrus) cortices

and bilateral putamen volume. In fact, the bilateral puta-

men and right precentral gyrus were highly ranked corre-

lates of performance. These results are compatible with

the stronger sensorimotor component of the SDMT rela-

tive to most other cognitive measures except timing,

which was also associated with sensory cortex thickness.

The results also comport with the correlation of motor

measures, such as maximum tapping speed (Bechtel et al.

2010) and visuomotor integration (Say et al. 2011), with

sensorimotor cortex thinning in combined samples of

prHD and HD participants, and the correlation of puta-

men, but not caudate volume, with SDMT performance

in prHD (Jurgens et al. 2008). SDMT performance also

depends on the capacity to selectively attend to and

integrate symbol–digit pairs. This is consistent with its

relationship to thickness in mostly right PFC executive-

control centers and in an articulatory/semantic processing

center (bilateral superior temporal cortex), which was also

a highly ranked correlate of performance, perhaps because

it assists in integrating symbol–digit pairs.
A distinctly different regional pattern of sMRI variables

was associated with letter-number sequencing, which

emphasizes executive components of working memory

(i.e., manipulation of information) more so than the other

tests. Performance was associated with thinning in elements

of an executive working memory network, including the

inferior parietal cortex and bilateral rostral PFC, which is

Figure 4. Spatial maps of the top-ranked

structural MRI (sMRI) correlates of

performance in each cognitive domain.

Cortical regions are displayed on the lateral

(1st and 2nd rows) and medial (3rd and

4th rows) surfaces of the left (L) and right

(R) hemispheres. The basal ganglia are

shown at the bottom. The importance of a

brain region in correlating with a cognitive

measure is color coded on a continuum

(red to yellow) according to the rank order

of the mean square error (MSE) value for a

sMRI variable, where larger MSEs signified

greater importance. Yellow signifies a

higher rank order of importance than red.

Colors on the bar designate variables

ranked in the top 20th (yellow) to the

bottom 20th (red) percentile of the top-

ranked sMRI predictors for each cognitive

measure.

36 ª 2013 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

Neuroanatomy and Cognition in Prodromal HD D. L. Harrington et al.



thought to be engaged by more abstract or complex execu-

tive processes than caudal PFC (Badre 2008). Unlike the

other cognitive domains, the highest ranked cortical corre-

lates of performance were the right rostral middle-frontal

cortex and the right lateral occipital and middle-temporal

cortices, which by way of interactions with the PFC, selec-

tively enhance the processing and maintenance of informa-

tion in working memory (Lee and D’Esposito 2012). The

greater importance of rostral PFC in its association with

working memory is consistent with functional magnetic

resonance imaging (fMRI) studies of verbal working mem-

ory, which report hypoactivation and weakened connectiv-

ity of the dorsolateral FC (DLPFC) in prHD (Wolf et al.

2007, 2008). Although working memory was not related to

cortical thinning in another study (Wolf et al. 2013), this

result may be due to the small sample size (n = 20) and/or

the use of different working memory tasks (spatial and digit

span), which may not emphasize executive aspects of work-

ing memory to the same extent. Another top-ranked corre-

late of working memory ability was the left caudate,

consistent with its anatomical connections with the rostral

PFC, especially the DLPFC.

Cortical thickness in a decidedly more dorsal frontopa-

rietal working memory network was associated with ver-

bal learning ability on the HVLT-R, including bilateral

superior parietal cortex and the caudal PFC, which pre-

sumably modulates less abstract executive-control pro-

cesses (Badre 2008). However, the left caudate was the

highest ranked variable of performance, perhaps because

the striatum governs updating and integrative functions

of working memory (Hazy et al. 2007), which is vital for

learning. Other top-ranked variables were components of

the articulatory and semantic processing network includ-

ing Broca’s area (superior temporal and inferior frontal

cortices), consistent with the emphasis of the HVLT-R on

verbal rehearsal.

The ability to recognize negative emotions was associ-

ated with yet another regional pattern of corticostriatal

morphometry in structures commonly associated with

emotion processing including the bilateral caudate and

putamen, a memory encoding/retrieval center (precu-

neus), and visual analysis centers of the occipitotemporal

cortices (lingual gyrus, cuneus, lateral occipital cortex,

and middle-temporal cortex) (Adolphs 2002). These

results are compatible with an fMRI study reporting tem-

poral-occipital hypoactivation in prHD during an implicit

emotion processing task (Novak et al. 2012). However,

the same study found no relationship between cortical

morphometry and explicit negative emotion recognition

in prHD (Novak et al. 2012), possibly due to the small

sample size (n = 16) and normal task performance. An

important consideration is that in our study the two top-

ranked correlates of negative emotion recognition,

namely, right putamen and right lingual gyrus, minimized

most of the MSE suggesting that the morphometry of

these structures in prHD was most highly associated with

task performance. Putamen volume, especially the ventral

portion, and lingual gyrus thickness may be critical

because these structures, respectively, modulate limbic

system processing and govern refined visual analyses,

which is especially important for recognition of negative

facial expressions. Although orbitofrontal cortex is more

commonly associated with emotion processing, this

region was not included in our analyses as there was no

Table 2. Rank order of importance for the top sMRI correlates of performance in each cognitive domain.

Rank order SDMT Letter number HVLT-R Negative emotions Timing

1 R putamen R occipital L caudate R putamen L cMFG

2 L putamen R rMFG R pOrbt R lingual gyrus R putamen

3 L STG L caudate R STG L caudate L putamen

4 R STG R MTG R caudate L putamen R caudate

5 R precentral L STG L cMFG R caudate L STG

6 R cMFG R cMFG L pOper L rMFG R STG

7 R SFG R STG R pTrng R pOper R occipital

8 R rMFG L rMFG L SP R occipital R rMFG

9 L postcentral L IP R STS R MTG L occipital

10 L cuneus R pTrng R SP L precuneus L postcentral

11 R postcentral L cuneus

12 L pOper L occipital

13 R lingual gyrus R rMFG

14 L pTrng

15 R cMFG

L and R, left and right hemisphere; cMFG, caudal middle-frontal gyrus; IP, inferior parietal; MTG, middle-temporal gyrus; pOper, par opercularis;

pOrbt, pars orbitalis; pTrng, pars triangularis; rMFG, rostral middle-frontal gyrus; SFG, superior frontal gyrus; SP, superior parietal; STG, superior

temporal gyrus; STS, bank of the superior temporal sulcus; SDMT, Symbol Digits Modality Test; HVLT-R, Hopkins Verbal Learning Test-Revised.
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significant atrophy in the prHD group. The amygdala also

mediate negative emotion recognition (Adolphs et al.

1999), but amygdala volumes were not available, which is

a limitation of this analysis.

Lastly, we found that motor timing precision was also

associated with the caudate and putamen, PFC cognitive-

control centers, and temporal-occipital regions. The high-

est ranked variables were the left caudal middle-frontal

cortex, followed by the putamen/caudate, and then bilat-

eral superior temporal cortex. These findings comport

with striatal modulation of a core timekeeping system,

which is thought to receive and integrate duration infor-

mation about relevant events from the PFC and multi-

modal association regions (Harrington et al. 2010;

Merchant et al. 2013). Our results are compatible with an

fMRI study reporting hypoactivation of the striatum dur-

ing motor timing in prHD (Zimbelman et al. 2007). This

study also reported hyperactivation of the bilateral supe-

rior temporal cortex in individuals who were more than a

decade from diagnosis, but not in individuals closer to a

manifest diagnosis. It is unknown whether hyperactivation

reflects compensation, but our results suggest the possibil-

ity that individuals with more significant atrophy may

not be capable of compensation because performance is

impaired. Whether presumed compensatory responses are

related to the structural integrity of brain tissue is an

important area for future investigations.

Conclusions

This study uncovered distinct regional patterns of cortical

and striatal morphometry that correlated with functioning

in different cognitive domains in the prHD group.

Although the volume of one or more striatal nuclei was

typically one of the higher ranked correlates of functioning

across domains, cortical thickness of various brain regions

was also a top-ranked correlate of all cognitive functions. It

is unlikely that co-occurring psychiatric symptoms in

prHD were a factor in our results, as gray matter volume

was unrelated to psychiatric measures in a large combined

sample of prHD and early diagnosed HD patients (Scahill

et al. 2013). Furthermore, co-occurring depressive symp-

toms in prHD do not correlate with proximity to diagnosis

(Epping et al. 2013), unlike motor and cognitive symp-

toms and gray matter volume and thinning. Certainly,

functional imaging studies are needed to better illuminate

neurocognitive relationships, but our results suggest the

possibility that the functionality of brain circuits may

partly depend on their structural integrity. Structural

changes may not affect functioning unless there is sizeable

atrophy or thinning, although longitudinal studies of

sMRI-cognitive correlates are needed to confirm and

extend these findings. Another important consideration is

that white matter volume and tissue diffusivity changes in

prHD also influence cognitive functioning (Magnotta et al.

2009; Paulsen et al. 2010; Aylward et al. 2011; Dumas et al.

2012; Matsui et al. 2013) via weakening of corticostriatal

and corticocortical communication. Thus, multimodal

imaging approaches, including diffusion tensor imaging,

will likely be the future path toward delineating the earliest

changes in the brain, elucidating their functional signifi-

cance, and tracking the timescale of progression.

As for clinical applications, our study highlights the

importance of identifying sMRI markers of functioning in

different cognitive domains, as their relative sensitivity

depends on the extent to which processing is called upon

by different brain networks. This information will inform

clinical trials where there is a need to use cognitive and

neuroimaging outcomes that are relevant to the treatment

target(s). Moreover, the search for a single “best” neural

marker of cognitive decline is likely to be misguided, as

behavior depends on complex interactions among brain

regions. With the application of more powerful statistical

methods such as random forest, one can begin to utilize

knowledge about the importance of multiple predictors,

which exhibit complex relationships with behavior, to

guide the selection of clinical outcome measures. This fea-

ture of random forest, together with its more generaliz-

able and robust results relative to single sample analysis

(Berk 2006), may further prove to be more sensitive in

identifying combinations of neurobiological markers that

are sensitive to the earliest changes in prHD, wherein

treatment effects are more likely to succeed.
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