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RESEARCH PAPER

Deletion of caveolin scaffolding domain alters cancer cell migration
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Supriyo Rayf, Hideshi Okadaa,g,h, Itta Kawamurai, Yoshiteru Murofushig, Fiona Murray j, and Hemal H. Patel a,b
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Pediatrics, Sharp Rees-Stealy Medical Group, San Diego, CA, USA; eDepartment of Anesthesiology, Tokushima University, Tokushima, Japan;
fUniversity of Texas, El Paso, TX, USA; gDepartment of Anesthesiology and Medicine, UCSD School of Medicine, San Diego, CA, USA;
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Medicine, Gifu Heart Center, Gifu, Japan; jAberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences & Nutrition,
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ABSTRACT
Caveolin-1 (Cav-1) is an integral membrane protein that plays an important role in proliferative
and terminally differentiated cells. As a structural component of Caveolae, Cav-1 interacts with
signaling molecules via a caveolin scaffolding domain (CSD) regulating cell signaling. Recent
reports have shown that Cav-1 is a negative regulator in tumor metastasis. Therefore, we
hypothesize that Cav-1 inhibits cell migration through its CSD. HeLa cells were engineered to
overexpress Cav-1 (Cav-1 OE), Cav-1 without a functional CSD (ΔCSD), or enhanced green
fluorescent protein (EGFP) as a control. HeLa cell migration was suppressed in Cav-1 OE cells
while ΔCSD showed increased migration, which corresponded to a decrease in the tight junction
protein, zonula occludens (ZO-1). The migration phenotype was confirmed in multiple cancer cell
lines. Phosphorylated STAT-3 was decreased in Cav-1 OE cells compared to control and ΔCSD cells;
reducing STAT-3 expression alone decreased cell migration. ΔCSD blunted HeLa proliferation by
increasing the number of cells in the G2/M phase of the cell cycle. Overexpressing the CSD
peptide alone suppressed HeLa cell migration and inhibited pSTAT3. These findings suggest that
Cav-1 CSD may be critical in controlling the dynamic phenotype of cancer cells by facilitating the
interaction of specific signal transduction pathways, regulating STAT3 and participating in a G2/M
checkpoint. Modulating the CSD and targeting specific proteins may offer potential new therapies
in the treatment of cancer metastasis.
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Introduction

Caveolins are structural components of Caveolae,
which are small membrane invaginations enriched
in glycosphingolipids and cholesterol [1,2].
Caveolins interact with lipids and are involved in
cholesterol transport [3,4]. Of the three isoforms of
caveolin (Cav-1, −2, and −3), Cav-1 is the dominant
isoform in non-muscular tissues [5]. Cav-1 is an
integral membrane protein that is central to scaffold-
ing and signal transduction inCaveolae [6–9].Mutant
and truncated caveolin proteins have been shown to
dramatically decrease cholesterol content and dysre-
gulate cellular growth patterns [10–13]. Cav-1 expres-
sion is downregulated during detachment and
migration in normal cells but causes hyper-
proliferation when overexpressed in tumor cells

[14]. Such data suggest that Cav-1 may act differently
depending upon the expression of the signaling pro-
teins in the cells and the signal cascade being
triggered.

Cav-1 has differential roles in cancer biology
and is suggested to act both as a tumor promotor
and suppressor, a concept that is controversial
[15–17]. Divergent effects are likely cell type-
specific and depend on downstream interactions
with signaling networks [15,16]. There is evidence
to suggest that Cav-1 expression may correlate to
tumor grade and stage and may undergo a switch
in expression with more severe tumor pathology
[17]. Cav-1 has the potential to regulate diverse
cancer-associated processes such as cell transfor-
mation, migration, survival, and death [18]. Cav-1
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has also been shown to have a critical role in
tumor progression and metastasis [14,19,20].

Caveolins have two domains, namely a membrane
binding domain containing 3 C-terminal cysteines
that can be palmitoylated for membrane anchoring
and a caveolin scaffolding domain (CSD) which is an
aromatic residue-rich motif [21,22]. The CSD binds
directly with cholesterol and is involved in choles-
terol transport and also provides a platform for the
Caveolar organization of functional proteins to
impact signaling [9,23]. The CSD is a key domain
for Cav-1 interactions with other signaling proteins
such as adenylyl cyclase (AC), heterotrimeric Gα and
Gβγ, Src, PI3 kinase (PI3K), endothelial nitric oxide
synthase (eNOS, NOS 3), protein kinase A (PKA),
protein kinase C (PKC), and mitogen-activated pro-
tein kinase (MAPK, ERK) [8,24]. CSD provides an
inhibitory binding site for protein phosphatases 1
and 2A and maintains the Akt activity for potential
cell survival in pancreatic ductal adenocarcinoma
(PDAC) [25] and prostate cancer [26]. On the
other hand, the CSD’s inhibitory modulation of cell
signaling proteins (i.e., Gi2α, eNOS, Src family
kinases, EGF-R and PKCα), that are involved in cell
proliferation suggests its behavior as a negative reg-
ulator of cell proliferation and survival [27].
However, Cav-1 level of expression is critical for its
dual behavior together with CSD playing an impor-
tant role in regulating activation of tyrosine kinases
as well as serine and threonine kinases that are
involved in various signaling pathways leading to
cell growth and proliferation [28–30]. More impor-
tantly, CSD modulates the activities of different ion
channels. It interacts with calcium channel TRPC1
for regulating Ca+2 influx through store-operated
cation channels affecting cellular processes such as
cell proliferation and tumor invasion. These cellular
mechanisms are critically regulated by extracellular
Ca+2 concentrations and Ca+2 influx [31–34]. Cav-1
scaffolding domain also interacts with voltage-gated
sodium channel type X and potassium channel
(Kv1.3) regulating their surface localization for var-
ious cellular mechanisms [35,36]. Though many stu-
dies have focused on the importance of the CSD in
cell biology, specifically with the interaction of spe-
cific binding partners, the impact of this domain on
cell physiology is less well understood.

Based on these previous findings of Cav-1
importance in cell and cancer biology, we tested

the hypothesis that the scaffolding domain of Cav-
1 is essential in regulating the migration and pro-
liferation of tumor cells.

Results

Stable overexpression of Cav-1 and Cav-1
lacking the scaffolding domain (Cav-1δCSD) in
HeLa cells

Hela cells were genetically engineered to stably
overexpress Cav-1 or Cav-1 with CSD deletion
(Cav-1 OE, Cav-1ΔCSD, respectively). Stable
expression of enhanced green fluorescent protein
(EGFP) was used as a comparative control. Cav-1
protein expression increased two-fold in Cav-1 OE
and Cav-1ΔCSD (lower band detected by the anti-
body-upper band is native Cav-1) cells compared
to the control cells (Figure 1(a,b)). Cav-1 localiza-
tion (Figure 1(c), upper panels) (WGA, wheat
germ agglutinin, Figure 1(c), lower panels) were
confirmed by immunohistochemistry and found
not to be different between the various stable cell
lines.

Figure 1. Hela cells stably expressing variants of Cav-1. (A)
Western blot detecting Control, Cav-1 OE and Cav-1 ΔCSD
indicates increased expression of Cav-1 and Cav-1 ΔCSD. The
Cav-1 antibody results in a native Cav-1 band (upper) and
a Cav-1 ΔCSD band (lower) for cells expressing Cav-1 ΔCSD.
Actin was used as a loading control. (B) Densitometric quanti-
fication of Cav-1 expression in stable cell lines. Cav-1 expression
increased twofold in Cav-1 OE or Cav-1 ΔCSD expressing cells
compared with control cells. *P< 0.05 vs. Control cells by one-
way ANOVA. (C) Immunochemistry of expression of Cav-1 OE
and Cav-1 ΔCSD shows normal localization. Wheat germ agglu-
tinin, a cell membrane stain, was used to confirm normal cell
morphology.
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The scaffolding domain of Cav-1 plays a critical
role in reducing cell migration

The migration assay revealed that overexpression of
Cav-1 with an in intact CSD led to a suppression of
cellular migration (Figure 2(a,b)), whereas Cav-
1ΔCSD significantly promoted cell migration com-
pared to both Cav-1 OE and control cells (Figure 2
(a,b)). Thus, the CSD of caveolin may play a critical
role in preventing cell migration. Epithelial–
mesenchymal transition markers were further ana-
lyzed to determine if the CSD utilizes such transi-
tion as a key feature of developing a migratory
phenotype. Zonula occludens (ZO-1) is a tight
junction protein critical to cell-cell communication
and adhesion, whereas, vimentin is an intermediate
filament that serves as a marker of mesenchymal

cells associated with a migratory phenotype [37].
We observed a significant decrease in ZO-1 and
a trend towards an increase in vimentin in Cav-
1ΔCSD cells compared to control and Cav-1 OE
cell (Figure 2(c,d)).

Cav- 1 regulates molecular signaling linked to
migration via its scaffolding domain

We next explored biochemical changes that may
account for this hypermigratory phenotype of Cav-
1ΔCSD. Phosphorylated STAT-3 was reduced in Cav-
1 OE compared to the control and Cav-1ΔCSD cells;
however, activated JAK was higher in Cav-1 overex-
pressing cells (Figure 3(a,b)). These significant
changes in Cav-1 OE cells were absent in Cav-
1ΔCSD cells suggesting that an intact CSD is critical
to expression or activation of specific molecular sig-
naling partners. No significant changes were observed
in gp130 or SOCS3 expression among the three cell
types. To specifically probe the role of STAT3 inHeLa
cell migration, we utilized STAT3 targeted siRNA in
control cells. STAT3 specific siRNA treatment
reduced the amount of activated (phospho) STAT3
compared to scrambled control (Figure 3(c)).
Migration assays showed that downregulation of
pSTAT3 caused a two-fold decrease in the migration
of theHeLa cells (Figure 3(d)), an effect similar toCav-
1 OE cells that show decreased migration and phos-
pho STAT3 expression. To further confirm the role of
the CSD in regulating cancer cell migration, we over-
expressed only the CSD (scrambled as a control) with
a GFP tag. Overexpression of CSD peptide alone
dramatically suppressed of p STAT3 expression in
HeLa cells (Figure 3(e)). Expression of CSD or
scrambled peptide was confirmed in HeLa and HT29
colon cancer cells (which normally do not express any
caveolin) using GFP specific antibody (Figure 3(f)). In
both of these cells, overexpression of CSD alone
resulted in a significant suppression of cell migration
(Figure 3(g), HeLa and 3H, HT29). These data show
the importance of CSD regulated STAT3 phosphor-
ylation in the migration of multiple cancer cell types.

Cav-1 regulates cell proliferation and cycle via
the scaffolding domain

To investigate if the change in migration patterns of
the HeLa cells were not due to the effects of

Figure 2. Cav-1 overexpression decreased cell migration via
CSD. (A) Representative images of hematoxylin stained
migrated cells. (B) Quantification of migrated cells in control,
Cav-1 OE and Cav-1 ΔCSD cells. The migration was increased in
Cav-1 ΔCSD cells while Cav-1 overexpression inhibited cell
migration compared with control cells. *, + P< 0.05 vs.
Control, Cav-1 OE cells, respectively (one-way ANOVA). (C and
D) Epithelial–mesenchymal transition markers were analyzed to
determine if the CSD alters this transition to induce migratory
phenotype. Zonula occludens (ZO-1) and vimentin expression
were assessed. Cav-1ΔCSD significantly decreased ZO-1 and
showed a trend towards an increase in vimentin expression in
cells compared to control and Cav-1 OE. *, + P< 0.05 vs. Control
(one-way ANOVA).
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Figure 3. STAT3 phosphorylation was decreased in Cav-1 overexpression cells and overexpression of CSD alone decreases STAT3
phosphorylation and cell migration. (A) Representative western blot analyses of STAT-3, phospho-STAT3, gp130, JAK and phosphor-
JAK, and SOCS3 in control, Cav-1 OE and Cav-1 ΔCSD cells. Actin was used as a loading control. (B) Densitometric quantification of
phosphor/total STAT-3 and JAK (other proteins were unchanged) in control, Cav-1 OE and Cav-1 ΔCSD cells. Phospho-STAT3 was
decreased whereas phosphor-JAK was increased in Cav-1 OE cells compared with control and Cav-1 ΔCSD cells. *P< 0.05 vs. LacZ.
(one-way ANOVA). (C) Representative western blot analyses of phosphor/total STAT3 following STAT3 siRNA treatment (scrambled
vector was used as control). (D) Representative images of hematoxylin stained migrated cells (top) and quantification of migrated
cells (bottom) in scrambled control vs STAT3 siRNA treated cells. Loss of STAT3 decreased migration. *, + P< 0.05 vs. Scr (one-way
ANOVA). (E) pEGFP tagged SCD or scrambled vector were transiently expressed in HeLa or HT-29 colorectal cancer cell line. GFP was
observed in scrambled and CSD vector-treated cells. (F) Representative western blot analyses of CSD and scrambled vector with EGFP
in HeLa cells for phospho/total STAT3. CSD treatment decreased pSTAT3. CSD expression led to decreased migration in HeLa (G) and
HT29 (H) cells.
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proliferation, wemeasured thymidine [3H] incorpora-
tion. Remarkably, we saw that there was no significant
difference in the Cav-1 OE cells; however, serum-
induced proliferation was blunted in Cav-1ΔCSD
cells (Figure 4(a)). Since Cav-1 can regulate the cell
cycle through its scaffolding domain, we next investi-
gated the phase of the cell cycle that is regulated by
Cav-1. Cells were synchronized by serum starvation,
treated with propidium iodide (PI), and subsequently
sorted according to their DNA content. Our results
showed that Cav-1ΔCSD resulted in a higher number
of cells in G2 phase compared to both control and
Cav-1 OE cells (Figure 4(b,c)). To further understand
the G2/M arrest, we also analyzed the active state of
Cdc2, which is involved in the G2/M transition. Cdc2
is a universally conserved protein that mediates the
transition fromG2 toM phase. Cav-1 ΔCSD cells had
high Cdc2 inhibitory phosphorylation in cells com-
pared to Cav-1 OE or control cells (Figure 4(d)). No
significant changes were observed in cyclin B1.

Transient overexpression of Cav-1 and Cav-
1δCSD in multiple cancer cell lines regulates cell
migration

To confirm the observed role of caveolin on cell
migration, we created lentiviral vectors of the various

constructs to study transient expression in several
cancer cell lines that have variable expression of Cav-
1, such as MDA-MB-231 breast adenocarcinoma
cells, MIA PaCa-2 pancreatic adenocarcinoma cells,
HCT-116 colorectal carcinoma cells, and HT-29 col-
orectal adenocarcinoma cells. Fluorescence micro-
scopy of Cav-1 in HCT-116 and HT-29 colon
cancer cells revealed punctate expression of Cav-1
in these both cell types expressing the full-length
form whereas the expression of Cav-1ΔCSD was
more focal (Figure 5(a)). The migration assays
revealed that transient overexpression of Cav-1 con-
sistently led to a significant decrease in cell migration
whereas overexpression of Cav-1ΔCSD increased
migration (Figure 5(b)). When we correlated migra-
tion as a function of basal expression of Cav-1 in
these various cells we observed a linear relationship
of increased basal migration with increased endo-
genous Cav-1 expression in the various cell types
(Figure 5(c)). However, when exogenous Cav-1 or
Cav-1ΔCSD added the correlation to baseline Cav-1
proteins expression was no longer observed but
rather dependent on the exogenous expression ofca-
veolin where wild-type Cav-1 (Figure 5(d)) sup-
pressed and Cav-1ΔCSD (Figure 5(e)) increased
migration when normalized to the baseline migra-
tion response in the respective cell line. Such data
confirm the importance of the CSD in the migration
phonotype across various cell types irrespective of
endogenous Cav-1 expression.

Discussion

Caveolins are dynamic proteins in many cells cri-
tical for stress adaptation and cell survival [38].
Since caveolins are crucial for membrane structure
and function, these proteins are involved in var-
ious pathologies [39]. The role of Cav-1 in cancer
is multifaceted and likely has dual functionality, as
Cav-1 has been proposed to be a tumor promotor
or suppressor depending upon the cancer cell type
[40]. Our results show the role of Cav-1 in cell
migration and proliferation is dependent on the
CSD and its role in the activation and expression
of signaling proteins, such as JAK/STAT3: the
CSD is key in determining the proliferative vs
migratory phenotype of a variety of cancer cells
and this can be enhanced in cancer cells that do
not normally expression caveolin.

Figure 4. CSD contribute to cell proliferation and cell cycle
arrest. (A) Proliferation assessed by [3H]-thymidine incorpora-
tion, was reduced in Cav1 ΔCSD cells compared with control
and Cav-1 OE cells. *P< 0.05 vs. LacZ. (one-way ANOVA). (B)
Representative image of FACS. The DNA content of propidium
iodide-stained nuclei were analyzed by FACSCalibur flow cyto-
metry, as described in Materials and Methods. (C) The percen-
tage of cells in phase G1, S and G2/M. *P< 0.05 vs. Control cells.
(one-way ANOVA). (D) Representative western blot analyses of
Cdc2 and phospho-Cdc2 in Control, Cav-1 OE and Cav-1 ΔCSD
cells.
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Figure 5. Cell migration in multiple cancer cells is impacted by exogenous Cav-1 and Cav-1ΔCSD. (A) HCT-116 and HT-29 cells were
grown on laminin-coated 35 mm glass bottom dishes, transduced with either Cav1 or Cav1ΔCSD, and stained with both Cav1 (green)
and DAPI (blue). Left panels at 2-D images whereas the right panels represent 3-D Z-stacked images of multiple sections. (B) HCT-
116, HT-29 cells, MDA-MB-231 cells, and MIA PaCa-2 cells (~150,000/well, n = 5) were transduced with either Cav1 or Cav1ΔCSD and
migration was assessed using an 8uM Boyden chamber insert, followed by cell staining and calorimetric quantification (OD 560 nm).
Scatter plots of cell migration (y-axis) as a function of baseline caveolin-1 protein expression (x-axis) under baseline conditions (C) as
well as baseline-normalized conditions following exogenous Cav-1 (D) and Cav-1ΔCSD (E) expression.
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The caveolin scaffolding domain regulates an
array of signaling pathways by providing
a platform for localizing various receptors and
signaling mediators and effectors important to
cell signaling [16]. Our studies show that loss of
Cav-1 CSD enhances cell migration possibly
through the regulation of STAT-3. Recent studies
have identified that Cav-1 regulates and promotes
cell growth by indirectly affecting STAT3 expres-
sion, where STAT3 acts as a positive regulator of
cell progression and survival [41]. STAT3, a proto-
oncogene, is activated by the JAK/STAT pathway
and has been shown to be constitutively activated
in many cancer cell types including endometrial
and cervical cancers [42]. In in vitro studies, Cav-1
knockdown in MIA-PaCa-2 cell lines inhibited
tumor progression by negatively regulating the
JAK/STAT-3 pathway [43]. In breast cancers,
Cav-1 overexpression led to tumor invasion and
metastasis by inhibiting STAT3 signaling [44].
However, STAT3 also has the potential to be
a tumor suppressor [45] suggesting that its inter-
action with signaling proteins may impact its over-
all function. Suppression of cytokine activity by
inhibiting JAK/STAT signaling through CSD was
also determined in previous studies [46]. It has
been speculated that the CSD of Cav-1 can act as
a pseudosubstrate for STAT3 and has the potential
to negatively regulate the activation of
STAT3 [47].

In our studies, up-regulation of the CSD region
alone in cells led to decreased STAT3 phosphor-
ylation suggesting a direct regulation of STAT3 by
caveolin dependent on the CSD. However, acti-
vated/upregulated STAT3 is of major concern as
a heterogenic modulator of cell migration and
invasion in various cancers [48]. Activated focal
adhesion kinase (FAK) mediated activation of
STAT3 has been shown to derive anchorage-
independent growth and invasion in ovarian car-
cinoma cells [49]. Transient expression of Cav-
1ΔCSD in HCT116 and HT29 cells led to focal
localization of the modified Cav-1 possibly sug-
gesting an interaction of this CSD loss with the
leading edge of cells contributing to the migratory
phenotype. Previous experiments have shown that
activated STAT3 bound directly to the Cav-1 pro-
moter can inhibit its transcription [44].
Conversely, Cav-1 was seen to negatively regulate

the activation of STAT3 and invasion of brain-
metastatic cancer cells [50].

Caveolin-1 with is dual effects in cancer has
a critical role in cell migration, metastasis, and
invasion [51]. Cav-1 was previously reported to
induce high motility rates in metastatic cells [52].
On the other hand, Cav-1 gene disruption can also
induce metastasis and invasiveness. Induction of
CSD into highly metastatic mammary carcinoma
cell lines inhibits invasion via reduced secretion of
MMP-2 and MMP-9 [5]. In recent experiments,
the introduction of Cav-1 ΔCSD in normal cells,
showed retarded Ca+2 signaling pathways resulting
in a number of pathologies [34]. Deletion mutants
and point mutations in CSD resulted in muscular
dystrophies, tissue remodeling abnormalities, can-
cer progression including invasiveness and cancer
cell migration whereas increased expression of
full-length caveolin and expression of CSD in dif-
ferent cancer cell lines led to inhibition of cell
migration [53–55]. In addition, it was observed
in previous studies that different reactive oxygen
species act as positive tumor regulators and have
different effects on Cav-1 mediated cell migration
and invasion suggesting another aspect of the dual
role of caveolin [56].

FAK is also necessary for cell invasion and
migration as it plays an important role in cell
surface signaling interactions via multiple signal-
ing pathways [57]. FAK might be activated by
cellular Src forming dual kinase complex. The
FAK/Src complex is associated with tumorigenesis,
epithelial to mesenchymal transition and in
orchestrating anchorage-independent growth, cell
migration and invasion [58]. However, although
we saw a decrease in Z0-1 with deletion of the
CSD, we did not observe any significant changes
in the activation of Src or FAK (data not shown).
Such signaling aspects need further exploration
and elucidation.

Along with cell migration, another unique char-
acteristic of cancer cells is their proliferative phe-
notype. Cav-1 has an important role in interacting
with the cell cycle signaling pathways leading to
mitotic cell division [59,60]. Overexpression of
Cav-1 has a negative regulatory effect on cell
cycle at G0/G1 phase [61–63]. We observed that
HeLa cells expressing the CSD deletion had
a larger number of cells in the G2/M phase

1274 S. OKADA ET AL.



compared to the WT and Cav-1 OE. We speculate
that Cav-1 scaffolding domain may play a role in
arresting the cells at the G2/M checkpoint and
does not allow them to progress to mitosis.
Nuclear translocation of Cav-1 during cell prolif-
eration via VEGF suggests a role for Cav-1 in
regulating transcription of cell cycle genes [64].
Cav-1 was determined experimentally to be loca-
lized in the nucleus in ovarian carcinoma and was
involved in transcription regulation of cyclin D1
by binding to its promoter site, hence affecting cell
proliferation [65]. It is possible that the Cav-1
scaffolding domain might be involved in activa-
tion/phosphorylation of JNK. Cav-1 is known to
regulate JNK mediated apoptosis in lung adeno-
carcinoma [66], and hence inhibit G2/M transition
and induce apoptosis and autophagy [67]. G2/M
transition is modulated by Cdc2 [68,69] and cyclin
B1 [70–72]. We found that the cells expressing
Cav-1ΔCSD had elevated phospho-Cdc2, support-
ing a role for the Cav-1 scaffolding domain reg-
ulation of cell cycle kinetics through Cdc2.

In summary, caveolin is a dynamic signaling pro-
tein and emerging data suggests that specific
domains of caveolin may contribute to many of
these dynamic features involved in regulating cell
physiology and morphology. The Cav-1 scaffolding
domain may be one such domain that plays a critical
role in the cancer cell cycle, migration, and prolif-
eration; modulating the interaction of the CSD with
specific proteins may offer potential new therapies
in the treatment of cancer cell phenotypes and
a means to target cancer biology as a therapeutic.

Methods

Antibodies, cell lines, chemicals/medias

Polyclonal antibody to Cav-1 (sc-894), polyclonal
antibody to actin (sc-1616) and gp130 (sc-656) were
purchased from Santa Cruz Biotechnology; addi-
tional antibodies were purchased from Cell
Signaling Technology (GAPDH, 2118; pSTAT3,
9131; STAT3, 9132; pJAK, 3331; JAK, 3332;
SOCS3,2923; pCdc2, 9111; Cdc2, 9116; cyclinB1,
4138) or AbCam (GFP, ab290; ZO-1, ab96587;
vimentin, ab45939). Lipofectamine 2000
(11,668,027), Opti-MEM Reduced Serum Medium
(31,985,062), and 1% penicillin/streptomycin

(15,240,096) were from ThermoFisher Scientific.
G-418 solution was purchased from Roche
Diagnosis (4,727,878,001). Human cervical epithe-
lial cancer cell line (HeLa) were purchased from
ATCC (CCL-2).

Plasmid and vector constructs, generation of
stable cell lines, siRNA, and cell culture

Mouse Cav-1 (456bp) sequence was cloned into an
expression vector pEGFP-N1 (632,469) from
Clontech Laboratories with EGFP deleted. The
original vector containing EGFP was used as
a control. Lentivirus expressing these constructs
were also generated. For the CSD only and
scrambled constructs, human CSD was cloned
into the pEGFP-N1 vector (scrambled sequence
for control), these vectors were used for transient
transfections. For the generation of stable cells,
HeLa cells were seeded (5 × 105/well) on 24-well
plates without antibiotics and incubated at 37°C
overnight. After 24 h of incubation 0.8 μg of
pEGFP-N1, pEGFP-N1-Cav-1 (EGFP deleted) or
pEGFP-N1-Cav-1ΔCSD (EGFP deleted) plasmid
was transfected into Hela cells using 2 μl of
Lipofectamine 2000 in Opti-MEM Reduced
Serum Medium following the manufacturer’s
instructions. Transfected cells were selected with
G418 at 800 μg/ml for 4 weeks, and the expression
of Cav-1 protein in selected cell clones was deter-
mined by Western blotting. HeLa cell were cul-
tured in Dulbecco’s Modified Eagle Medium
(DMEM, 10–013-CV) containing 10% fetal bovine
serum (35–010-CV) from Corning in a 95% air,
5% CO2 humidified atmosphere at 37°C. Stably
transfected HeLa cells were supplemented with
800μg/ml G418. siRNA for STAT3 (sc-29,493)
and control (sc-44,230) was purchased from
Santa Cruz Biotechnology.

Immunoblot analysis

Immunoblotting was performed on transfected
multiple cancer cell lysates following the protocol
described [73]. Cell extracts were obtained by lys-
ing cells in lysis buffer (50 mM Tris·HCl, 150 mM
NaCl; pH 7.4) supplemented with protease and
phosphatase inhibitor cocktail (5872, Cell
Signaling). After 30 min incubation on ice, the
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cells were homogenized by a 23-gauge needle, and
the lysates were cleared of debris and unbroken
cells by centrifugation (800 g, 5 min at 4°C).
Protein concentrations were determined by the
Bio-Rad protein assay (5,000,001, Bio-Rad
Laboratories). Equal amounts of cell lysates (20
ug) were loaded. The proteins were separated by
10% SDS-PAGE (NW00102BOX, ThermoFisher
Scientific) and transferred to a polyvinylidene
difluoride membrane by electro-elution.
Membranes were blocked in tris-buffered saline
and 1% Tween containing 3% bovine serum albu-
min solution and incubated with primary antibody
(1:2000) overnight at 4°C. Bound primary antibo-
dies were visualized using secondary antibodies
(1:5000) conjugated with horseradish peroxidase
(rabbit, sc-2030; mouse, sc-2031 from Santa Cruz
Biotechnology) and ECL reagent (RPN2236,
Amersham Biosciences).

Immunocytochemistry and microscopy

Cells were fixed with 4% paraformaldehyde for 15
min at room temperature (RT) and washed three
times with PBS. Cells were permeabilized with
0.1% Triton X-100 for 10 min at RT followed by
washing three times with PBS. Cells were then
blocked with 3% bovine serum albumin in PBS
for 30 min at RT. The cells were incubated with
respective primary antibodies in 3% bovine serum
albumin in PBS overnight at 4°C. The
following day, cells were washed three times in
PBS and incubated with respective secondary anti-
bodies in 3% bovine serum albumin in PBS for 1
hr at RT. After incubation, cells were washed three
times and mounted on slides using
VECTASHIELD HardSet Antifade Mounting
Medium (H-1200, Vector Laboratories). For detec-
tion, secondary antibodies Alexa Fluor 594
(R37119) or wheat germ agglutinin 488 conjugate
(W11261) from ThermoFisher Scientific were
used. Cells were imaged using the KEYENCE
BZ-X710 fluorescent microscope equipped with
a 40x lens (CFI Plan Apo; Nikon).

For HCT-116 and HT-29 studies, cells were
grown on MatTek 35 mm dish with 14 mm glass
bottom microwell coated with laminin at
a concentration of 100 ug/mL. Cells were trans-
duced with Lenti-Cav1 or Lenti-Cav1ΔCSD for 24

hr. Virus was then removed and cells were incu-
bated in serum-free McCoy’s 5A medium for 18
h at 37°C in a CO2 incubator (5% CO2). Cell
culture media was then removed and replaced
with 1 mL of 5% (w/v) formaldehyde solution in
PBS and incubated for 15 min at room tempera-
ture. Fixative was then removed and washed 3X
with PBS. Cells were then permeabilized with
1 mL of 0.5% TX-100 for 15 min at room tem-
perature, followed by washing 3X with PBS. Cells
were then blocked with 2 mL of 3% BSA for 1 h at
room temperature and subsequently incubated in
1:500 antibody (Cav1 – Cell Signaling – Catalog
#3267S) in 1% BSA in PBS in a humidified cham-
ber overnight at 4°C. The solution was then dec-
anted and the cells were washed 3X in PBS, 10 min
each wash. Cells were then incubated with the
secondary antibody (Goat anti Rabbit – Alexa
Fluor 488) 1:1500 in 1% BSA for 1 h at room
temperature in the dark. Secondary antibody solu-
tion was then decanted and washed 3X with PBS
for 10 min each in the dark. Cells were then
incubated with DAPI (1 ug/mL in PBS) for 5
min at room temperature in the dark and washed
3X with PBS for 10 min in the dark. Cells were
then imaged using a 100X lens with oil on
a Keyence BZ-X700.

Cell migration assay

The migration chambers were put in 24-well cell
culture dish. In the upper chamber, 300 µl DMEM
including cells (1.0x105/well) and 0.2% FBS was
added. In the lower chamber, 750 µl DMEM with
10% FBS was added. Cells were then incubated at
37°C for 24 h. After 24-h HeLa cells were fixed by
2.5% glutaraldehyde at RT for 15 min. The cells were
permeabilized by 0.5% triton X-100 at RT for 20 min.
For staining, hematoxylin was added at RT for 15
min. After staining, non-migrated cells were scraped
off from the migrated cells with cotton swabs. Then
migrated cells were manually counted under a light
microscope.

For studies on involving HCT-116, HT-29,
MDA-MB-231, and MIA PaCa-2 cells, cells were
transduced with lenti-Cav1 or lenti-Cav1ΔCSD for
24 hr. Virus was then removed and cells were incu-
bated in serum-free medium for 18 h at 37°C in
a CO2 incubator (5% CO2). To assess migration in
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HCT-116, HT-29, MDA-MB-231, and MIA PaCa-2
cells, a QCM Chemotaxis Cell Migration Assay, 24-
well (8 µm), colorimetric (Millipore Sigma), was
used. Plates and reagents were brought to room
temperature (23–25°C) prior to initiating assay.
Cells were lifted with a 0.02% EDTA solution pre-
pared in DPBS (w/o calcium and magnesium).
A cell suspension was then prepared containing 0.5
× 106 cells/mL in cell culture medium + 0.2% FBS
(chemoattractant-free media). Three hundred
microliters of the prepared cell suspension was
then placed inside each insert. Five hundred-
microliter cell culture medium + 10% FBS was also
placed into the lower chamber. The plate was then
covered and incubated for 24 h at 37°C in an incu-
bator (5% CO2). The cells and media from were
then removed by pipetting out the remaining cell
suspension and placing the migration insert into
a clean well containing 400 µL of room temperature
Cell Stain for 20 min. The insert was then rinsed by
dipping into a beaker of water several times and
then non-migratory cells layer from the interior of
the insert were gently removed using two cotton-
tipped swabs per insert. Insert was then air dried
and transferred to a clean well containing 200 µL of
extraction buffer for 15 min at room temperature,
with gentle tilting of the insert back and forth. One
hundred microliters of the dye mixture was then
transferred to a 96-well microtiter and the optical
density was measured at 560 nm.

Analysis of cellular DNA content by flow
cytometry

Cells were plated in 6-well plates. After 48 h, cells
were harvested by trypsinization and washed twice
with ice-cold PBS, and then fixed with ice-cold
70% ethanol in DPBS (Dulbecco’s phosphate-
buffered saline) at 4°C. Cells were then centrifuged
and washed with staining buffer. After washing,
the pellets were treated with 100 uL RNase
A (1 mg/mL) for 30 min at 37°C. After incubation,
900 μL of staining buffer and 20 μL of propidium
iodide (1 mg/mL) were added to each sample and
incubated in the dark for 30 min. The samples
were then analyzed with BD FACScan™ flow cyto-
metry (BD Biosciences) using CellQuest Software
(BD Biosciences).

[3h]thymidine incorporation

[3H]Thymidine incorporation was used to assess
DNA synthesis as a measure of proliferation. Cells
(3 x 105 per well) were seeded into a 6-well culture
plate and serum-starved overnight. [3H]thymidine
1μCi (1 Ci = 37 GBq)/ml was added with or with-
out 10% FBS and the cells were incubated for 24
h at 37°C. The cells were washed with cold PBS
and 7.5% TCA and then dissolved in 0.5 M NaOH
before liquid scintillation counting.

Statistical analysis

Statistical analyses were performed by one-way
ANOVA followed by a Bonferroni’s post hoc test
using GraphPad Prism 4 software (GraphPad
Software, Inc.). All data are expressed as mean ±
SE. statistical significance was defined as P < 0.05.
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