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Abstract

Background

Excess weight gain throughout adulthood can lead to adverse clinical outcomes and are

influenced by complex factors that are difficult to measure in free-living individuals. Metabo-

lite profiling offers an opportunity to systematically discover new predictors for weight gain

that are relatively easy to measure compared to traditional approaches.

Methods and results

Using baseline metabolite profiling data of middle-aged individuals from the Framingham

Heart Study (FHS; n = 1,508), we identified 42 metabolites associated (p < 0.05) with longi-

tudinal change in body mass index (BMI). We performed stepwise linear regression to select

8 of these metabolites to build a metabolite risk score (MRS) for predicting future weight

gain. We replicated the MRS using data from the Mexico City Diabetes Study (MCDS; n =

768), in which one standard deviation increase in the MRS corresponded to ~0.03 increase

in BMI (kg/m2) per year (i.e. ~0.09 kg/year for a 1.7 m adult). We observed that none of the

available anthropometric, lifestyle, and glycemic variables fully account for the MRS predic-

tion of weight gain. Surprisingly, we found the MRS to be strongly correlated with baseline

insulin sensitivity in both cohorts and to be negatively predictive of T2D in MCDS. Genome-

wide association study of the MRS identified 2 genome-wide (p < 5 × 10−8) and 5 sugges-

tively (p < 1 × 10−6) significant loci, several of which have been previously linked to obesity-

related phenotypes.
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Conclusions

We have constructed and validated a generalizable MRS for future weight gain that is an

independent predictor distinct from several other known risk factors. The MRS captures a

composite biological picture of weight gain, perhaps hinting at the anabolic effects of pre-

served insulin sensitivity. Future investigation is required to assess the relationships

between MRS-predicted weight gain and other obesity-related diseases.

Introduction

Obesity is a global epidemic [1] associated with adverse clinical outcomes including type 2 dia-

betes (T2D) [2], cardiovascular disease (CVD) [3], non-alcoholic fatty liver disease [4], and

death [5]. Population studies demonstrate that adults, on average, continue to gain weight at a

rate of 0.4–1 kg per year through the middle decades of life [6–8]. Likewise, the percentage of

adults who are overweight or obese (body mass index, BMI� 25 kg/m2) has increased from

around 29% to 37% globally over the past three decades [1].

Excess weight gain can be intuitively explained by an excess of energy intake relative to

energy expenditure and energy partitioning within an individual; however, the components

leading to energy imbalance are very complex, highly interactive, and hard to measure in free-

living populations over extended time periods [9]. Therefore, even though studies have identi-

fied various risk factors for weight gain, such as unhealthy diet, reduced physical activity,

change in smoking status, and glucose-stimulated insulin secretion, the biological mechanisms

linking these risk factors to weight gain have yet to be fully elucidated [8,10–12]. In terms of

genetic predisposition, while recent genome-wide association studies (GWAS) have identified

hundreds of BMI-associated loci [13,14], little is known about the genetics of longitudinal

change in BMI, which do not always agree with that of cross-sectional BMI [15]. Furthermore,

while recent studies have developed multivariate models that incorporate different types of

risk factors to predict weight gain [16,17], these models often include variables that may not be

readily available in many research or clinical settings (e.g. recalled lifestyle and dietary vari-

ables derived from detailed questionnaires and specialized calculations). Overall, the etiology

of obesity remains incompletely understood and there is a lack of easily generalizable predic-

tion models for weight gain, thus non-surgical interventions to modify weight have largely

been met with modest effect [18,19].

Metabolite profiling systematically measures metabolite levels in biological samples and

offers a new, powerful approach for studying both intrinsic (i.e. genetic) and extrinsic (i.e.

environmental) influences on obesity phenotypes in a data-driven, hypothesis-free manner

that does not depend on prior knowledge. Novel biomarkers for a trait could be identified by

testing for correlation between metabolites and the trait measured at a single time point; fur-

thermore, if longitudinal data are available, predictive biomarkers could also be identified by

associating metabolites with a future outcome. Numerous studies have successfully applied

this approach to identify correlated or predictive biomarkers for obesity and cardiometabolic

traits [20–27]. For instance, branched-chain amino acids (BCAAs), aromatic amino acids, and

lipids with low carbon number and double bond content have been shown to correlate with

cross-sectional BMI [21,22] and even predict the risk of developing insulin resistance and/or

T2D [24–26].

In contrast, there are limited studies of metabolite profiling with longitudinal weight trajec-

tories. A few studies have identified lipids, BCAAs, and metabolites involved in energy
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metabolism and/or oxidative stress to be correlated with past weight change [28,29]. While

these correlated biomarkers provide insights into the metabolic consequences of weight

change, they are not as useful as predictive biomarkers in terms of informing clinical obesity

prevention strategies. On the other hand, studies that looked at association between metabo-

lites and future weight change have identified acetylcholine, leucine, hippuric acid, acetylgly-

cine, urate, and xanthine to be predictive biomarkers for significant weight gain [29,30]. These

metabolites may be used as clinical risk factors and may even point to causal biological path-

ways for weight gain. However, none of these studies address how the individual metabolites

may be combined into a replicable and generalizable risk score for predicting weight gain, nor

do the studies compare the metabolites against conventional obesity risk factors to evaluate

their independence and predictive power. These additional analyses are important for assess-

ing the potential usefulness of metabolite predictors for weight gain.

The objectives of this study were to construct and validate a metabolite risk score (MRS)

consisting of multiple metabolites for predicting future weight gain and to investigate the

underlying biology captured by the MRS. Towards this end, we used longitudinal BMI mea-

surements and baseline metabolite profiling data of 1,508 middle-aged individuals from the

Framingham Heart Study (FHS) to construct an MRS consisting of 8 metabolites. The associa-

tion of the MRS with future weight gain was replicated using data from 768 individuals in the

Mexico City Diabetes Study (MCDS), demonstrating its validity and generalizability across

study populations. To understand the biological information contained within the MRS, we

investigated its association with other obesity-associated factors and performed a GWAS for

the MRS. Our findings indicate that the components of the MRS reflect diverse biological fac-

tors related to weight gain, possibly including anabolic effects of preserved insulin sensitivity

and protection from T2D, which are unlikely to be captured by single metabolites or other

obesity-associated factors.

Subjects and methods

Study samples and datasets

Discovery cohort: Data for the Framingham Heart Study (FHS), a prospective cohort study of

CVD risk factors, were obtained through the NCBI database of Genotypes and Phenotypes

(dbGaP) with accession number phs000007.v19.p7 [24,31]. Metabolite profiling was per-

formed on 2,016 fasting plasma samples from the FHS Offspring Cohort collected at Exam 5

(1991–1995) using liquid chromatography-mass spectrometry (LC-MS) [32]. We filtered sam-

ples with quality controlled metabolite data (n = 2,015; see Data processing) to exclude samples

with missing BMI values at Exam 5 or Exam 7 (1998–2002) (n = 271) and samples with clinical

diagnosis of T2D (n = 141), CVD (n = 154) and/or renal disease (n = 53) at Exam 5, resulting

in a total of 1,508 samples. T2D was defined as having fasting plasma glucose� 126 mg/dl or

using insulin or other anti-diabetic medications; CVD and renal disease status were ascer-

tained using ‘Survival File and Follow-up for Cardiovascular Events’ (pht003316) and Exam 5

clinical exam (pht000034). For genome-wide association analyses, we further restricted to a

subset of 1,349 samples with available genetic data (see S1 Text for details).

Replication cohort: The Mexico City Diabetes Study (MCDS), a prospective cohort study

for T2D, has been described previously [33,34]. Briefly, LC-MS profiling was performed on

865 fasting plasma samples collected at the 1998 visit. Starting with 841 samples with quality

controlled metabolite data (see Data processing), we excluded one sample with incorrect height

measurement, samples with missing BMI values at the 1998 or 2008 visit (n = 3), and samples

with CVD (n = 68) or renal disease (n = 1) at the 1998 visit, resulting in 768 samples for use in

analysis. No T2D cases were present at the 1998 visit. T2D was defined as having fasting
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glucose� 126 mg/dl, 2-hour glucose� 200 mg/dl in oral glucose tolerance test, or using anti-

diabetic medication; CVD was defined as receiving a possible or probable myocardial infarc-

tion diagnosis in electrocardiograph results; renal disease was defined as having history of

receiving kidney dialysis, transplant, or medication. For genome-wide association analyses, we

used a subset of 588 samples with available genetic data (see S2 Text for details).

Data collection for both cohorts were conducted at external facilities by researchers not

involved in the design and analysis of this study. All participants provided informed consent.

This study was approved by the Boston Children’s Hospital and UC San Diego Institutional

Review Boards.

Data processing

Change in BMI: The rate of change in BMI was calculated as difference in BMI divided by dif-

ference in age between the baseline (b) and follow-up (f) time points: (BMIf−BMIb)/ (Agef−-
Ageb), with age expressed in years. For FHS, we used Exams 5 and 7 as the baseline and follow-

up time points, respectively; for MCDS, we used the 1998 and 2008 visits as the two time

points. Height and weight values measured during the exam visits were used to derive BMI at

each time point for both cohorts. We adjusted the rate of change in BMI for baseline age and

sex and refer to the adjusted values as ΔBMI. As a sensitivity analysis, we performed rank-

based inverse normal transformation on ΔBMI and confirmed that the transformed vs.

untransformed ΔBMI values produced comparable results. To retain interpretability, we used

the untransformed ΔBMI in units of kg/m2/yr in downstream analyses.

Metabolite data: Baseline metabolite profiling data for each cohort were quality controlled

and standardized using the following steps: (1) remove samples and metabolites with> 25%

missing data, (2) log-transform the remaining metabolites, (3) adjust for covariates (age, sex,

and fasting time for FHS; age and sex for MCDS), (4) impute missing values using a multiple

imputation approach implemented in the MICE R package (v2.25; see S3 Text for details)

[35], and (5) perform rank-based inverse normal transformation to calculate metabolite abun-

dance z-scores. After these steps, we limited all subsequent analyses to 183 metabolites shared

between the FHS and MCDS datasets.

Genetic risk score for BMI: We used 97 previously identified BMI-associated variants [13]

and effect size estimates for their BMI-increasing alleles to calculate an effect size-weighted

genetic risk score (GRSBMI) for both FHS and MCDS samples. Large-scale Mexican-based

BMI GWAS was not available, so European-based effect estimates were used for both cohorts

despite ancestry differences.

Smoking status: Self-reported smoking information was available for FHS at both baseline

and follow-up time points. We constructed a binary “Quit Smoking” variable, where subjects

that were smokers at baseline but not at follow-up were categorized as “true” (n = 97) and sub-

jects whose smoking status did not change were categorized as “false” (reference category).

Physical activity: Physical activity (PA) was calculated as the sum of time spent on moderate

and heavy physical activities per day (hours/day), using self-reported questionnaires. PA data

were not available at baseline, so we used the PA data collected prior to baseline time points,

i.e. Exam 4 (mean 3.65 years before baseline) for FHS and the 1991 visit (mean 6.30 years

before baseline) for MCDS. For FHS, which had follow-up PA data, we were able to calculate

change in PA (ΔPA) as PA at Exam 7 minus PA at Exam 4.

Dietary intake: Daily macronutrient values (grams/day) derived from self-reported food

frequency questionnaires were used to calculate total caloric intake (calories/day) and the per-

centage of energy intake from carbohydrate (Carb Intake), fat (Fat Intake), and protein (Pro-

tein Intake). For FHS, dietary data collected at baseline were used; for MCDS, data collected at
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the 1991 visit were used due to lack of data available at baseline. For FHS, dietary fat intakes

(monounsaturated, polyunsaturated, and saturated fats; grams/day) were also available.

Glycemic measures: Plasma fasting glucose (mg/dl) and insulin (mIU/l) concentrations, as

well as 2-hour concentrations after oral glucose tolerance test, were available at baseline for

both cohorts. The homeostasis model assessment of insulin resistance (HOMA-IR), Matsuda

insulin sensitivity index (Matsuda ISI), and quantitative insulin sensitivity check index

(QUICKI) were also available and calculated as described previously [36–38].

Constructing the MRS for weight gain

A schematic overview of the protocol for constructing, validating, and evaluating the MRS is

provided in S1 Fig.

Identifying ΔBMI-associated metabolites (S1A(i) Fig): First, to identify metabolites associ-

ated with ΔBMI, we performed univariate linear regression of ΔBMI on each metabolite in

FHS. As both ΔBMI and metabolites were pre-adjusted for covariates (see Data processing
above), no additional variables were included in the regression models. Since FHS contains

families of related individuals (S2 Fig), we also performed sensitivity analysis using a linear

mixed model approach implemented in the lmerTest R package (v2.0–29) to account for sam-

ple relatedness as estimated by pedigree. We observed that the association statistics obtained

using simple linear regression vs. linear mixed model were highly consistent (S1 Table and S3

Fig), and therefore used linear regression in all subsequent analyses. For metabolites that

showed nominally significant (p< 0.05) association, we tested for their replication in MCDS

(although this replication was not required for including metabolites in the MRS as described

below). Clustered metabolite correlation heat maps were created using FHS data and the heat-

map.2() function in the gplots R package (v3.0.1).

Building the MRS model (S1 A(ii) Fig: To build an optimal multivariate model for predict-

ing weight gain using FHS data, metabolites nominally associated (p< 0.05) with ΔBMI in

FHS were used as input variables into a stepwise regression procedure implemented in the

step() function in R (v3.2.1). In order to determine which direction of variable selection (for-

ward, backward, or bidirectional) and model evaluation metric (Akaike information criterion,

AIC or Bayesian information criterion, BIC) to use for running the stepwise procedure, we

performed 100 repeated 10-fold cross validations (S4 Fig). Based on the cross-validation

results, the AIC metric combined with a bidirectional selection approach was used to train the

final stepwise model using all FHS data. We estimated partial R2 of each metabolite (i.e. pro-

portion of variance uniquely explained by the metabolite) in the final model by comparing the

full model against a reduced model without the metabolite: partial R2 = (SSEreduced−SSEfull)/
SSEreduced, where SSE = error sum of squares.

Calculating the MRS z-scores (S1A(iii) and S1B(i) Fig): We calculated a single MRS value

for each subject in either FHS or MCDS as: Sβi zi, where βi is the effect size estimate for each

metabolite in the FHS stepwise model and zi is the corresponding metabolite abundance z-
score for the sample. Rank-based inverse normal transformation was performed on the MRS

values for each cohort and the resulting MRS z-scores were used for all subsequent analyses.

Association analyses for ΔBMI, MRS, and other obesity-related phenotypes

Linear regression was performed to test for association between ΔBMI, MRS (or individual

metabolites in the MRS), and other obesity-related variables, including baseline BMI and

waist-to-hip ratio (WHR), GRSBMI, smoking status, physical activity, dietary intakes, and gly-

cemic measures (S1A(iv), S1B(ii) and S1C(i) Fig). Logistic regression was performed to asso-

ciate future T2D status with MRS, baseline anthropometric (BMI and WHR), or glycemic
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measures (S1C(ii) Fig). When testing for independence of MRS and another variable in terms

of association with ΔBMI, we included the variable as a covariate in regression analysis to see

whether it would affect the statistical significance of the association observed between ΔBMI

and MRS. When applicable, we estimated partial R2 of each variable (i.e. proportion of vari-

ance uniquely explained by the variable) in ΔBMI multivariate models, using the same formula

described for the MRS model above.

GWAS for MRS and MRS metabolites

Genome-wide association analyses were performed in both FHS and MCDS to identify genetic

loci associated with MRS and with the individual metabolites in the MRS (S1C(iii) Fig). To

account for sample relatedness, we used the linear mixed model and kinship matrix calculation

methods in EPACTS (v3.2.6) [39] to perform the GWAS in each cohort. For MCDS, we also

included genotyping platform as a covariate (since genotype imputation was performed sepa-

rately for each platform). We separately analyzed genetic variants with minor allele count > =

3 in FHS or MCDS, and meta-analyzed the two cohorts using the inverse variance weighted

method in METAL (2011-03-25 version) [40]. To identify independent loci, we “clumped” the

meta-analysis results, grouping together sets of nearby, correlated variants that are within

500kb and have pairwise r2 > 0.1. We used PLINK (v1.9) [41] and 1000 Genomes phase 1 ref-

erence panel [42] to generate the clumps of correlated variants and selected the “lead” (best-

associated) variant from each clump. We used the Variant Effect Predictor [43] to identify

nearest genes (± 5kb) for the lead variants. For MRS-associated lead variants reaching sugges-

tive significance (p< 1 × 10−6), we also searched the NHGRI-EBI GWAS catalog (v1.0.2,

2019-05-03) [44] for traits previously associated (p< 5 × 10−8) with the variants (± 50kb).

Results

Metabolites associated with longitudinal change in BMI

We used longitudinal BMI measurements to calculate age- and sex-adjusted change in BMI

over time (ΔBMI) for 1,508 samples from FHS (demographic and clinical characteristics

shown in Table 1). The mean ΔBMI is 0.127 kg/m2/year (standard deviation, SD = 0.320) with

mean follow-up interval of 6.9 years. Using baseline metabolite profiling data, we identified 42

metabolites that have nominally significant association (p< 0.05) with ΔBMI (S1 Table).

Increased levels of 35 metabolites are associated with less weight gain (i.e. lower ΔBMI). These

include tyrosine, malate, alanine, niacinamide, hydroxyglutarate, glutamic acid, xanthine,

quinolinate, lactate, many lipids with relatively lower double bond content (i.e. between 0–3

double bonds; except for 2 triacylglycerides, TAG 56:10 and 58:12). On the other hand, 7

metabolites show the opposite trend, where increased levels are associated with more weight

gain (i.e. higher ΔBMI). These include uridine, pyruvate, and 5 lipids with higher double bond

content (TAG 56:6, 56:6, 58:7, 58:8, and a cholesteryl ester, CE 20:5). Overall, the ΔBMI-associ-

ated metabolites are spread out in different correlation clusters among all tested metabolites,

with lipids of similar saturation level (i.e. double bond content) showing especially strong cor-

relation with each other (Fig 1 and S5 Fig).

MRS model for weight gain

In order to combine the predictive power of individual metabolites, we performed stepwise

regression using the 42 ΔBMI-associated metabolites in FHS to build an MRS model for weight

gain. The resulting stepwise model includes eight metabolites that each contributes to the pre-

diction of weight gain: TAG 56:6, malate, niacinamide, sphingomyelin (SM) 24:0, uridine,
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TAG 56:2, tyrosine, and xanthine (Table 2). These metabolites show relatively weak correla-

tion with each other (r = -0.097 to 0.319, S2 Table and S6 Fig) and represent distinct clusters

formed by the 42 ΔBMI-associated metabolites (Fig 1). Using these 8 metabolites in the step-

wise model, we calculated an effect size-weighted MRS score for all FHS samples and observed

that this MRS is strongly associated with ΔBMI (β = 0.0612, p = 1.82 × 10−14) and explains

3.83% of the observed ΔBMI variance (S3 Table and S7 Fig). However, this estimate is likely

inflated due to overfitting and the winner’s curse [45], as indicated by our cross validation

results (i.e. MRS models generated using 10-fold cross validations all had R2 < 0.383; S4 Fig).

Replication in an independent cohort

To replicate the associations of individual metabolites and the MRS in an independent cohort,

and to obtain unbiased estimates of effect size, we first analyzed the 42 ΔBMI-associated

metabolites in 768 samples from MCDS. The mean ΔBMI in MCDS is 0 kg/m2/year (SD =

0.320; mean follow-up interval = 10.7 years; Table 1), which does not differ significantly from

that of FHS (p = 0.0913 in Welch’s two-sample t-test). In MCDS, 36 of the 42 (85.7%) metabo-

lites show directionally consistent ΔBMI associations compared to FHS, with 24 (57.1%) also

reaching nominal significance, providing strong evidence of replication in an independent

cohort drawn from a different population (S1 Table). Next, we calculated the effect size-

weighted MRS score for all MCDS samples using the FHS stepwise model and validated that

the MRS significantly predicts weight gain in MCDS (β = 0.0298, p = 1.63 × 10−4; S3 Table and

S7 Fig), where 1.84% of ΔBMI variation is explained by the score. The observed effect size esti-

mate indicates that one SD increase in MRS predicts 0.0298 kg/m2/year increase in ΔBMI (i.e.

~0.9 kg over 10 years for a 1.7 m adult).

Anthropometric and lifestyle risk factors do not mediate prediction of

ΔBMI by the MRS

We investigated the relationships between ΔBMI, MRS, and various obesity-related risk fac-

tors, both to gain insights regarding the underlying biology captured by the MRS and to evalu-

ate whether the MRS is independent of these factors. First, we assessed two baseline

anthropometric measures: BMI and WHR. Both measures are inversely correlated with ΔBMI

in MCDS (but show no association in FHS) and with MRS in both cohorts (S4 Table). How-

ever, conditional analyses using BMI or WHR as covariate showed that the association

between ΔBMI and MRS remains strongly significant after adjusting for either variable (Fig

Table 1. Descriptive characteristics of the study cohorts.

Characteristics Framingham Heart Study (FHS) Mexico City Diabetes Study (MCDS)

Number of samples 1508 768

Number of female samples 804 (53.3) 470 (61.2)

ΔBMI (kg/m2/yr) 0.127 ± 0.320 0.000 ± 0.220

Characteristics by Time Point Baseline

(Exam 5)

Follow-up

(Exam 7)

Baseline

(1998 visit)

Follow-up

(2008 visit)

Age (yr) 54.1 ± 9.52 61.0 ± 9.43 52.2 ± 7.59 62.4 ± 7.56

BMI (kg/m2) 27.4 ± 4.87 28.3 ± 5.33 28.5 ± 4.43 29.5 ± 4.80

Fasting Glucose (mg/dl)� 94.4 ± 9.46 97.8 ± 10.1 90.7 ± 10.1 99.7 ± 32.2

T2D 0 (0) 105 (6.96) 0 (0) 144 (18.8)

Showing mean ± standard deviation for quantitative traits or sample count (%) for binary traits.

� Fasting glucose: excluded T2D cases in both cohorts and missing measurements in MCDS (n = 16).

https://doi.org/10.1371/journal.pone.0222445.t001
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2A and S3 Table). We also asked whether a genetic risk score for cross-sectional BMI

(GRSBMI, see Methods) could predict ΔBMI. As expected, GRSBMI is significantly associated

with baseline age and sex-adjusted BMI in both cohorts (p = 2.37 × 10−6 in FHS;

p = 5.51 × 10−3 in MCDS); the degree of association is similar between FHS and MCDS (i.e.

overlapping 95% confidence intervals for β; S4C Table) despite differences in ancestry.

Fig 1. Clustered correlation heat map of the 42 ΔBMI-associated (p< 0.05) metabolites in FHS. The 8 metabolites included in the MRS are

labeled in red. TAG, triacylglyceride; DAG, diacylglyceride; PC, phosphatidylcholine; LPC, lysophosphatidylcholine; SM, sphingomyelin; CE,

cholesteryl ester.

https://doi.org/10.1371/journal.pone.0222445.g001
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However, GRSBMI is not associated with ΔBMI or with MRS (S4 Table). In summary, none of

the anthropometric-related risk factors we tested account for the predictive power of MRS for

weight gain, even though the MRS can be associated with baseline BMI and WHR.

We also looked at several lifestyle factors that can influence weight gain: smoking status,

physical activity, and dietary intake measures. Quitting smoking is strongly associated with

ΔBMI but not with MRS (S4 Table), and adjusting for this variable did not affect the MRS pre-

diction of ΔBMI (S3 Table). To further assess confounding due to smoking, we performed a

sensitivity analysis by regressing ΔBMI against MRS using only baseline non-smokers in FHS.

The association between MRS and ΔBMI in non-smoking samples is highly significant

(n = 1,243, β = 0.045, p = 1.96 x 10−7, R2 = 0.021), albeit with a slightly diminished effect size

estimate (empirical p< 0.0061, calculated using 10,000 random samplings of 1,243 FHS sam-

ples) compared to association in all samples (n = 1,508, β = 0.055, p = 5.80 x 10−12, R2 = 0.031).

Overall, these results indicate that while smoking is associated with weight gain in our data, it

does not explain the observed association between ΔBMI and MRS.

In contrast to smoking status, neither physical activity nor dietary intake variables are sig-

nificantly correlated with ΔBMI and MRS in our data (S4 Table). Furthermore, based on

results of conditional analyses, none of these variables account for the association between

ΔBMI and MRS (S3 Table). More detailed analysis of the FHS dietary data, however, showed

that several MRS metabolites are nominally associated with different types of fat intake (TAG

56:6 with saturated and monounsaturated fats, malate with polyunsaturated fat, uridine with

saturated and polyunsaturated fats, and xanthine with saturated fat; S5 Table), suggesting that

these metabolites may be influenced by dietary patterns. In general, our results demonstrate

that the MRS is a stronger predictor for weight gain compared to lifestyle factors that measure

energy intake (i.e. diet) or expenditure (i.e. physical activity) in our datasets, and the MRS has

the additional advantage of not relying on participant recall.

Insulin resistance measures and future T2D outcome are negatively

associated with MRS

Next, to better understand the physiological correlates of the information contained within the

MRS, we tested whether baseline clinical measures of dysglycemia and insulin resistance are

associated with ΔBMI and MRS. In both FHS and MCDS, ΔBMI and MRS are generally nega-

tively correlated with variables that assessed insulin resistance (i.e. fasting/2-hour glucose and

insulin, and HOMA-IR) and positively correlated with those that marked insulin sensitivity

(i.e. Matsuda ISI and QUICKI) (S4 Table). Analysis of individual metabolites within the MRS

Table 2. Metabolite risk score model for predicting weight gain in FHS.

Metabolite β SE CI 2.5 CI 97.5 P-value Partial R2

TAG 56:6 0.0310 0.0088 0.0138 0.0482 4.17E-04 0.0083

Malate -0.0241 0.0082 -0.0401 -0.0080 3.27E-03 0.0058

Niacinamide -0.0226 0.0084 -0.0389 -0.0062 6.98E-03 0.0048

SM 24:0 -0.0209 0.0081 -0.0367 -0.0050 9.88E-03 0.0044

Uridine 0.0211 0.0084 0.0046 0.0375 1.20E-02 0.0042

TAG 56:2 -0.0203 0.0089 -0.0378 -0.0027 2.38E-02 0.0034

Tyrosine -0.0177 0.0084 -0.0342 -0.0013 3.49E-02 0.0030

Xanthine -0.0145 0.0082 -0.0306 0.0017 7.88E-02 0.0021

β, effect size estimate; SE, standard error of β; CI 2.5—CI 97.5, 95% confidence interval for β; Partial R2, proportion of variance uniquely explained by the metabolite (see

Methods); TAG, triacylglyceride; SM, sphingomyelin.

https://doi.org/10.1371/journal.pone.0222445.t002
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indicated that TAG 56:2 and tyrosine are the strongest drivers of the associations between

MRS and glycemic response in both cohorts, with the remaining metabolites showing less con-

sistent associations (S6 Table). The percentage of ΔBMI variance explained by the MRS

(1.84% in MCDS) is on the same order of magnitude as the percentage explained by the vari-

ous glycemic traits (1.38 to 5.21%; S4 Table) and BMI GRS. In conditional analyses, the rela-

tionship between ΔBMI and MRS remained nominally significant after adjusting for each of

the glycemic variables (Fig 2A and S3 Table), implying that the MRS is not solely a proxy for

insulin sensitivity.

In both FHS and MCDS, the baseline anthropometric and glycemic measures are, as

expected, significantly associated with future incident T2D (p = 1.93 × 10−29 to 1.10 × 10−3; S7

Table). Therefore, we tested whether the MRS can be used to predict future T2D using logistic

Fig 2. Association between ΔBMI or future T2D status and MRS with adjustment for baseline anthropometric or glycemic measures. (a) Effect size

estimates (β) of MRS for ΔBMI. (b) Odds ratios (OR) of MRS for T2D status at follow-up. Variables in Model, which variables were included in the linear

(for ΔBMI) or logistic (for T2D) regression model when estimating the effect of MRS. Error bars indicate 95% confidence interval (CI). Vertical dashed

black lines indicate null effect (β = 0 or OR = 1).

https://doi.org/10.1371/journal.pone.0222445.g002
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regression and assessed whether its predictive power is independent from these baseline vari-

ables. Unexpectedly, the MRS is negatively associated (p = 2.57 × 10−6) with T2D in MCDS,

where one SD increase in MRS translates into 36.6% reduction in risk of developing T2D over

a ~10-year period; in FHS, the MRS also has a negative but nonsignificant association with

T2D (Fig 2B and S8 Table). However, when we included specific glycemic variables (i.e. fast-

ing insulin, HOMA-IR, Matsuda ISI, and QUICKI) as covariates during conditional analyses,

the association between T2D status and MRS in MCDS became nonsignificant (p> 0.05; Fig

2B and S8 Table). Thus, measured baseline glycemic variables could account for the observed

association between MRS and lower incident T2D, but not continued rise in BMI as shown in

Fig 2A.

Genetic loci associated with MRS

Finally, we utilized genetic data to begin to dissect the underlying biology reflected by the

MRS. We performed separate GWAS for the MRS in FHS and MCDS and meta-analyzed the

association results. We identified 2 genome-wide significant loci (p< 5 × 10−8; Table 3). The

most significant locus (rs174565; p = 5.97 × 10−10) lies in the FADS1/FADS2 gene cluster, both

of which encode fatty acid desaturases that introduce double bonds into fatty acids [46]. This

locus has been associated with a wide range of traits (S9 Table), including lipid-related metab-

olites [47,48], fasting glucose [49], liver enzyme levels [50], and heart function traits [51–53].

The second locus (rs192386132; p = 2.80 × 10−8) is near TACC2, which encodes a transforming

acidic coiled-coil containing protein that has been linked to cancer [54]; no previous GWAS

associations have been reported near (± 50kb) this locus. We also identified five additional loci

at suggestive significance (p< 1 × 10−6; Table 3), 2 of which overlap with BMI loci reported in

the GWAS catalog (rs12325540 and rs146167165; S9 Table).

Since the MRS is a composite phenotype generated using 8 individual metabolites, we also

performed GWAS separately for each of the metabolites and identified a total of 37 loci reach-

ing at least suggestive significance (S10 Table). Only 3 of these loci are genome-wide signifi-

cant (2 for TAG 56:6 and 1 for TAG 56:2), one of which overlaps with the FAD1/FADS2 locus

for MRS. Interestingly, the TACC2 locus, which is genome-wide significant for MRS, does not

show up as significant for any of the MRS metabolites. Together, these findings suggest that

while the MRS can reflect biology driven by individual metabolites in the MRS (e.g. TAG

56:6), it might also be capturing more complex biological patterns that are not specific to a sin-

gle metabolite.

Table 3. Genetic loci reaching suggestive significance (p< 1 × 10−6) in MRS GWAS meta-analysis.

Variant ID Chr Position EA OA EAF β SE P-value� R2 Nearest Gene (± 5kb) In GWAS Catalog

rs174565 11 61591636 C G 0.701 0.267 0.043 5.97E-10 0.030 FADS1, FADS2 Yes

rs192386132 10 123937855 A G 0.003 1.981 0.357 2.80E-08 0.025 TACC2 No

rs12325540 16 73380363 C T 0.788 0.236 0.044 8.63E-08 0.019 - Yes

rs72848293 17 72314849 A G 0.052 0.444 0.087 3.17E-07 0.019 DNAI2 No

rs113940640 9 37228390 A T 0.023 0.657 0.130 4.33E-07 0.019 ZCCHC7 Yes

rs146167165 6 163054293 T C 0.013 0.986 0.197 5.26E-07 0.024 PARK2 Yes

rs188635171 12 7378287 A G 0.009 1.087 0.219 7.07E-07 0.020 - Yes

� Genome-wide significant p-values are in bold. Chr, chromosome; Position, hg19 genomic position; EA, effect allele (i.e. MRS-increasing allele); OA, other allele; EAF,

effect allele frequency; β, effect size estimate; SE, standard error of β; R2, proportion of variance explained, estimated as: β2 × 2f(1-f), where f = EAF; In GWAS Catalog,

whether the locus (± 50kb) has been linked to traits in the GWAS catalog (see S9 Table for list of associated traits).

https://doi.org/10.1371/journal.pone.0222445.t003
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Discussion

In this study, we defined a metabolite risk score (MRS) incorporating eight individual metabo-

lites, which predicts change in BMI over a span of 7–10 years. This MRS was constructed and

validated using two independent cohorts with demographic differences (e.g. geography, ances-

try, lifestyle, and dietary patterns), indicating the generalizability of the score. Based on our

results, we estimated that adults of average height (~1.6 m for women to ~1.8 m for men) with

high MRS (+1 SD above mean) would gain about 0.15 to 0.19 kg more than those with low

MRS (-1 SD below mean) per year. Given that the average person gains 0.4–1.0 kg/year in

adulthood, identifying individuals with high-risk MRS could be useful on both the individual

and population levels, especially if additional metabolites are identified to improve predictive

power. Importantly, none of the routinely measured anthropometric, lifestyle, and glycemic

risk factors we tested fully account for the association between ΔBMI and MRS. The propor-

tion of ΔBMI variance explained by the MRS is comparable to that for the best predictive risk

factors (i.e. glycemic measures). Therefore, the MRS can be used as an independent predictor

for studying weight gain.

The MRS consists of eight metabolites, including three lipids (TAG 56:6, SM24:0, and TAG

56:2), malate, niacinamide, uridine, tyrosine, and xanthine, and may point to independent bio-

logical processes related to weight gain. For the lipids, we observed that TAG 56:6 is positively

correlated with ΔBMI, while SM 24:0 and TAG 56:2, which have lower double bond content,

show the opposite trend. This pattern is in accordance with previous studies that found lipids

with varying saturation levels to have opposite association with obesity-related phenotypes.

For instance, lipids of lower vs. higher double bond content were previously associated with

increased vs. decreased risk of diabetes in FHS, respectively [25]. Here, we observed that TAG

56:2 and SM 24:0 are linked to decreased weight gain in both FHS and MCDS and increased

T2D risk in MCDS (i.e. they have negative effect sizes in the MRS that is protective against dia-

betes), while TAG 56:6 has the opposite direction of effect. Among the non-lipid metabolites,

xanthine has been previously identified as a predictor for significant future weight gain [30];

and uridine is closely related to both xanthine and urate [55], which was another predictor

identified in the same study. Niacinamide is involved in nicotinamide adenine dinucleotide

biosynthesis and has been connected to obesity and weight regulation through its role in

energy metabolism [56,57]. Tyrosine has been associated with past weight gain, insulin resis-

tance, dyslipidemia, and T2D [24,26,29,58]. Finally, though malate has not been linked directly

to weight gain, it is involved in several metabolic pathways that are essential for energy metab-

olism, including the TCA cycle, pyruvate/malate-cycle, and malate/aspartate shuttle [59,60].

Further investigation is necessary to test whether these MRS metabolites exert causal influence

on weight gain.

When we investigated whether the MRS might be tagging specific aspects of obesity-related

physiology, we found it to be a strong marker of preserved insulin sensitivity. This finding is

consistent with the notion that insulin effect can drive obesity and agrees with previous studies

that found insulin to be associated with increased weight gain [61,62]. The unanticipated nega-

tive correlations between the MRS and baseline insulin resistance or future T2D in our data

have important implications for interpreting our results: historically, excess weight (or BMI)

has been used as a proxy for metabolic dysfunction associated with disease outcomes, under

the assumption that higher weight gain is associated with higher risk of developing diseases;

however, part of our MRS actually captures a “healthy” component of weight gain with respect

to diabetes risk and identified weight-gainers who had more robust insulin secretion. Thus, for

clinical disease prevention efforts related to T2D, it might be more fruitful to target individuals

with low MRS who are less likely to gain weight but are more metabolically unhealthy with
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respect to T2D. Future investigation is needed to test if this type of inverse association also

exists between the MRS and other obesity-related diseases such as CVD, liver disease, cancer

and mortality. In any case, we note that the MRS-T2D association we observed loses statistical

significance after adjustment for some of the glycemic measures, indicating that the MRS and

these measures are capturing the same insulin effect signature responsible for T2D prediction.

In contrast, the MRS-ΔBMI association appears to be partially independent from insulin effect,

supporting the MRS as a composite marker encompassing both known (insulin-related) and

potentially novel aspects of obesogenic physiology.

Some limitations of this report should be recognized. First, the discovery and replication

cohorts differ on risk factors such as ethnicity and lifestyle, thus the participants may have

important biological differences (e.g. ΔBMI is not correlated with baseline BMI or WHR in

FHS, but shows significant association in MCDS). While we were able to replicate the MRS

despite these caveats, future replication in additional cohorts could yield a better estimate of

the predictive power of MRS on weight gain across different settings. Next, by excluding sam-

ples with metabolic diseases (T2D, CVD, and renal disease) at baseline, we may have intro-

duced selection bias, whereby subsetting data using a variable caused by two independent

variables induces an association between them. Nevertheless, since these diseases are known to

cause drastic changes in the metabolome, it was prudent to exclude them to reduce the risk of

capturing a skewed profile. In addition, a similar bias may be caused by the fact that we needed

to subtract out (i.e. “condition on”) baseline BMI in order to calculate ΔBMI, therefore poten-

tially inducing associations between ΔBMI or MRS and other variables correlated with baseline

BMI. This bias may contribute to our seeming paradoxical observation that the MRS is corre-

lated with glycemic measures and negatively predictive of T2D. However, we note that (1) the

MRS is more strongly associated with several glycemic variables compared to with baseline

BMI (S4 Table) and (2) the MRS is independent from baseline BMI in conditional analysis to

predict T2D in MCDS (S8 Table). These results provide some evidence that the association

between the MRS and insulin response/T2D is not entirely a statistical artifact induced by our

definition of ΔBMI. Finally, while we observed little correlation between ΔBMI or MRS and

lifestyle factors that measure energy intake and expenditure in this report, lifestyle data were

not available at every visit for both cohorts, and our investigations were also limited by the

methods used to assess lifestyle in these cohorts. Therefore, future investigation is required to

determine if the lack of correlation is a reflection of limited sample size and/or data availability.

Additional data types (e.g. dietary quality measures or calorimetry-derived metabolic rate)

may also help us assess if and how the MRS is linking imbalance in energy metabolism to

weight gain.

In conclusion, we have systematically constructed an MRS that is a generalizable weight

gain predictor and is independent from traditional risk factors. Interestingly, we found the

MRS to be a strong marker for insulin sensitivity (even though they independently contribute

to weight gain prediction) and showed that individuals with higher MRS have lower risk of

developing T2D in one cohort, indicating that it may be more clinically important to track

individuals with lower MRS who are less likely to gain weight but more metabolically

unhealthy with respect to T2D. We were not able to test association of MRS with other obe-

sity-associated outcomes, such as cancer, which may be related to unchecked weight gain and

anabolic effects of insulin. Overall, our study showcases the power of leveraging metabolite

profiling to elucidate and identify the role of intrinsic and extrinsic factors on weight change.

Further studies of metabolite profiling and weight gain are required to replicate and expand

these findings in independent cohorts. For instance, untargeted profiling methods may be

used to discover many more unknown metabolites predictive of weight gain, which can greatly

improve the power of the MRS model. Another critical future direction is to leverage genetic
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data to use Mendelian randomization approaches to establish if and how the MRS is capturing

the causal biology of weight gain.

Supporting information

S1 Fig. Schematic overview for constructing, validating, and understanding the MRS for

weight gain. The MRS was constructed using FHS data and tested for replication in MCDS.

After validating that the MRS was associated with ΔBMI in both cohorts, we used phenotype

and genetic data from both cohorts to study the relationships between MRS and various obe-

sity-related risk factors, future T2D outcome, and genetic variants.

(PDF)

S2 Fig. Sample relatedness in FHS. (a) Distribution of pedigree size (left) and number of indi-

viduals in pedigrees of different sizes (n = 1,508; right). (b) Distribution of identity by descent

measure (PI_HAT) for all pairs of individuals with genetic data (n = 1,349; left) or subset of

pairs with PI_HAT > 0.05 (right). PI_HAT was calculated using 92,210 independent genetic

markers using PLINK (v1.9).

(PDF)

S3 Fig. Comparison of ΔBMI-metabolite association statistics derived using simple linear

model (LM) vs. linear mixed model (LMM) in FHS. Effect size estimates (a) and negative

log10 p-value (b) of the 183 metabolites calculated using each approach are plotted. R2, squared

correlation between the LM and LMM statistics.

(PDF)

S4 Fig. Summary of cross validation results for the stepwise regression procedure in FHS.

100 repeated 10-fold cross validations were performed to determine the optimal direction of

variable selection (DIRECTION: forward, backward, or both/bidirectional) and model evalua-

tion metric (METRIC: AIC or BIC) for building a stepwise MRS model for predicting ΔBMI.

R2 (a) and root-mean-squared error (b) statistics across the 100 cross validations are plotted as

notched boxplots, with the notches indicating 95% confidence interval of the median.

(PDF)

S5 Fig. Clustered correlation heat map of all 183 metabolites analyzed in FHS. The 8 MRS

metabolites and the other 34 ΔBMI-associated (p< 0.05) metabolites are labeled in red and

blue, respectively. CE, Cholesteryl esters; DAG, diacylglyceride; F1P/F6P/G1P/G6P, fructose-

1- phosphate/fructose-6-phosphate/glucose-1-phosphate/glucose-6-phosphate; LPC, lysopho-

sphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; SM, sphingo-

myelin; TAG, triacylglyceride.

(PDF)

S6 Fig. Density histogram of pairwise correlation between the 42 ΔBMI-associated metab-

olites (“Nominal”) vs. the subset of 8 metabolites included in the MRS (“MRS”) in FHS.

Dashed vertical lines indicate mean correlation of each group.

(PDF)

S7 Fig. ΔBMI vs. MRS for FHS (red) and MCDS (blue) samples. Linear regression lines

(with shaded 95% confidence regions) and corresponding statistics (bottom right text labels)

are shown.

(PDF)

S1 Table. FHS and MCDS association statistics for ΔBMI-associated (p< 0.05) metabolites

in FHS. � As a sensitivity analysis in FHS, LMM (linear mixed model) regression was
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performed to account for sample relatedness (see Methods); �� Nominally significant p-values

are in bold. β, effect size estimate; SE, standard error of β; CI 2.5—CI 97.5, 95% confidence

interval for β; LMM R2 (i.e. proportion of variance explained) estimated as: β2�var(Metabo-

lite)/var(ΔBMI); Directional Consistency, whether the directions of effect in FHS and MCDS

agree with each other; TAG, triacylglyceride; SM, sphingomyelin; PC, phosphatidylcholine;

DAG, diacylglyceride; LPC, lysophosphatidylcholine; CE, cholesteryl ester.

(XLSX)

S2 Table. Correlation and correlation p-value between the 8 MRS metabolites in FHS. Cor-

relation (red) is shown in upper left triangle and correlation p-value (blue) is shown in lower

right triangle. Metabolites are tabulated in order to match Fig 1 heat map. Nominally signifi-

cant p-values are in bold.

(XLSX)

S3 Table. Association between ΔBMI and MRS with adjustment for obesity-related risk

factors. � Association Model: Y ~ X indicates linear regression with Y as dependent variable

and X as independent variable(s). �� Nominally significant p-values are in bold. N, number of

samples; β, effect size estimate; SE, standard error of β; CI 2.5—CI 97.5, 95% confidence inter-

val for β; R2, proportion of variance explained, partial R2 is shown for models with multiple

independent variables (see Methods).

(XLSX)

S4 Table. Association between ΔBMI or MRS and obesity-related risk factors. � All risk fac-

tors were assessed at or prior to baseline, except for "Quit Smoking" and “ΔPA” (see Methods).
�� Nominally significant p-values are in bold. Greyed out rows indicate that data were not

available. N, number of samples; β, effect size estimate; SE, standard error of β; CI 2.5—CI

97.5, 95% confidence interval for β.

(XLSX)

S5 Table. Association between MRS or MRS metabolites and dietary fats in FHS. � Nominally

significant p-values are in bold. N = 1387 for all analyses. β, effect size estimate; SE, standard error

of β; CI 2.5—CI 97.5, 95% confidence interval for β; TAG, triacylglyceride; SM, sphingomyelin.

(XLSX)

S6 Table. Association between MRS metabolites and baseline anthropometric or glycemic

measures. � Nominally significant p-values are in bold. N, number of samples; β, effect size

estimate; SE, standard error of β; CI 2.5—CI 97.5, 95% confidence interval for β; TAG, triacyl-

glyceride; SM, sphingomyelin.

(XLSX)

S7 Table. Association between future T2D status and baseline anthropometric or glycemic

risk factors. � Nominally significant p-values are in bold. N total, number of samples; N cases,

number of T2D cases (by follow-up); OR, odds ratio; CI 2.5—CI 97.5, 95% confidence interval

for OR.

(XLSX)

S8 Table. Association between future T2D status and MRS with adjustment for baseline

anthropometric or glycemic measures. � Association Model: Y ~ X indicates logistic regres-

sion with Y as dependent variable and X as independent variable(s). �� Nominally significant

p-values are in bold. N total, number of samples; N cases, number of T2D cases (by follow-up);

OR, odds ratio; CI 2.5—CI 97.5, 95% confidence interval for OR.

(XLSX)
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mosome; Position_hg38, hg38 genomic position; β or OR, effect size or odds ratio estimate for

the effect allele.

(XLSX)
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GWAS meta-analysis. � Genome-wide significant p-values are in bold. �� Loci boundaries

were defined by linkage disequilibrium proxies (< = 500kb and r2 > 0.1) with minimum and

maximum chromosomal positions. Chr, chromosome; Position, hg19 genomic position; EA,

effect allele (i.e. metabolite-increasing allele); OA, other allele; EAF, effect allele frequency; β,

effect size estimate; SE, standard error of β; R2, proportion of variance explained, estimated as:

β2�2f(1-f), where f = EAF; TAG, triacylglyceride; SM, sphingomyelin.
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27. Geidenstam N, Al-Majdoub M, Ekman M, Spégel P, Ridderstråle M. Metabolite profiling of obese indi-

viduals before and after a one year weight loss program. Int J Obes. Nature Publishing Group; 2017;

41: 1369–1378. https://doi.org/10.1038/ijo.2017.124 PMID: 28529327

28. Wahl S, Vogt S, Stuckler F, Krumsiek J, Bartel J, Kacprowski T, et al. Multi-omic signature of body

weight change: results from a population-based cohort study. BMC Med. 2015; 13: 48. https://doi.org/

10.1186/s12916-015-0282-y PMID: 25857605

29. Menni C, Migaud M, Kastenmuller G, Pallister T, Zierer J, Peters A, et al. Metabolomic Profiling of Long-

Term Weight Change: Role of Oxidative Stress and Urate Levels in Weight Gain. Obes (Silver Spring).

2017; 25: 1618–1624. https://doi.org/10.1002/oby.21922 PMID: 28758372

30. Zhao H, Shen J, Djukovic D, Daniel-MacDougall C, Gu H, Wu X, et al. Metabolomics-identified metabo-

lites associated with body mass index and prospective weight gain among Mexican American women.

Obes Sci Pr. 2016; 2: 309–317. https://doi.org/10.1002/osp4.63 PMID: 27708848

31. Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP. An investigation of coronary heart

disease in families. The Framingham offspring study. Am J Epidemiol. 1979; 110: 281–290. Available:

http://www.ncbi.nlm.nih.gov/pubmed/474565 https://doi.org/10.1093/oxfordjournals.aje.a112813

PMID: 474565

32. Rhee EP, Ho JE, Chen MH, Shen D, Cheng S, Larson MG, et al. A genome-wide association study of

the human metabolome in a community-based cohort. Cell Metab. Elsevier Inc.; 2013; 18: 130–143.

https://doi.org/10.1016/j.cmet.2013.06.013 PMID: 23823483

33. Williams Amy AL, Jacobs Suzanne SBR, Moreno-Macı́as H, Huerta-Chagoya A, Churchhouse C, Már-

quez-Luna C, et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in

Mexico. Nature. 2014; 506: 97–101. https://doi.org/10.1038/nature12828 PMID: 24390345

34. Hsu YHH, Churchhouse C, Pers TH, Mercader JM, Metspalu A, Fischer K, et al. PAIRUP-MS: Pathway

analysis and imputation to relate unknowns in profiles from mass spectrometry-based metabolite data.

PLoS Comput Biol. 2019; https://doi.org/10.1371/journal.pcbi.1006734 PMID: 30640898

35. van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. J Stat

Softw. 2011; 45: 1–67. https://doi.org/10.18637/jss.v045.i03

36. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model

assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin

Metabolite risk score for predicting weight gain

PLOS ONE | https://doi.org/10.1371/journal.pone.0222445 September 27, 2019 18 / 20

https://doi.org/10.1093/eurpub/ckw216
http://www.ncbi.nlm.nih.gov/pubmed/28013243
https://doi.org/10.1038/sj.ijo.0802982
http://www.ncbi.nlm.nih.gov/pubmed/15997250
https://doi.org/10.1136/bmj.g2646
http://www.ncbi.nlm.nih.gov/pubmed/25134100
https://doi.org/10.1016/j.cmet.2009.02.002
http://www.ncbi.nlm.nih.gov/pubmed/19356713
https://doi.org/10.1371/journal.pmed.1001765
http://www.ncbi.nlm.nih.gov/pubmed/25490400
https://doi.org/10.1371/journal.pone.0148361
http://www.ncbi.nlm.nih.gov/pubmed/26863521
https://doi.org/10.1161/CIRCULATIONAHA.111.067827
https://doi.org/10.1161/CIRCULATIONAHA.111.067827
http://www.ncbi.nlm.nih.gov/pubmed/22496159
https://doi.org/10.1038/nm.2307
http://www.ncbi.nlm.nih.gov/pubmed/21423183
https://doi.org/10.1172/JCI44442
http://www.ncbi.nlm.nih.gov/pubmed/21403394
https://doi.org/10.2337/dc12-0895
http://www.ncbi.nlm.nih.gov/pubmed/23129134
https://doi.org/10.1038/ijo.2017.124
http://www.ncbi.nlm.nih.gov/pubmed/28529327
https://doi.org/10.1186/s12916-015-0282-y
https://doi.org/10.1186/s12916-015-0282-y
http://www.ncbi.nlm.nih.gov/pubmed/25857605
https://doi.org/10.1002/oby.21922
http://www.ncbi.nlm.nih.gov/pubmed/28758372
https://doi.org/10.1002/osp4.63
http://www.ncbi.nlm.nih.gov/pubmed/27708848
http://www.ncbi.nlm.nih.gov/pubmed/474565
https://doi.org/10.1093/oxfordjournals.aje.a112813
http://www.ncbi.nlm.nih.gov/pubmed/474565
https://doi.org/10.1016/j.cmet.2013.06.013
http://www.ncbi.nlm.nih.gov/pubmed/23823483
https://doi.org/10.1038/nature12828
http://www.ncbi.nlm.nih.gov/pubmed/24390345
https://doi.org/10.1371/journal.pcbi.1006734
http://www.ncbi.nlm.nih.gov/pubmed/30640898
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1371/journal.pone.0222445


concentrations in man. Diabetologia. 1985; 28: 412–419. Available: https://www.ncbi.nlm.nih.gov/

pubmed/3899825 https://doi.org/10.1007/bf00280883 PMID: 3899825

37. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: com-

parison with the euglycemic insulin clamp. Diabetes Care. 1999; 22: 1462–1470. Available: https://

www.ncbi.nlm.nih.gov/pubmed/10480510 https://doi.org/10.2337/diacare.22.9.1462 PMID: 10480510

38. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity

check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol

Metab. 2000; 85: 2402–2410. https://doi.org/10.1210/jcem.85.7.6661 PMID: 10902785

39. Kang HM. EPACTS (Efficient and Parallelizable Association Container Toolbox). Available: http://

genome.sph.umich.edu/wiki/EPACTS

40. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association

scans. Bioinformatics. 2010; 26: 2190–2191. https://doi.org/10.1093/bioinformatics/btq340 PMID:

20616382

41. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to

the challenge of larger and richer datasets. Gigascience. 2015; 4: 7. https://doi.org/10.1186/s13742-

015-0047-8 PMID: 25722852

42. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated

map of genetic variation from 1,092 human genomes. Nature. 2012/11/07. 2012; 491: 56–65. https://

doi.org/10.1038/nature11632 PMID: 23128226

43. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The Ensembl Variant Effect Predic-

tor. Genome Biol. 2016; 17: 122. https://doi.org/10.1186/s13059-016-0974-4 PMID: 27268795

44. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of pub-

lished genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017; 45: D896–D901.

https://doi.org/10.1093/nar/gkw1133 PMID: 27899670

45. Forstmeier W, Schielzeth H. Cryptic multiple hypotheses testing in linear models: overestimated effect

sizes and the winner’s curse. Behav Ecol Sociobiol. 2011; 65: 47–55. https://doi.org/10.1007/s00265-

010-1038-5 PMID: 21297852

46. Marquardt A, Stohr H, White K, Weber B+H. cDNA cloning, genomic structure, and chromosomal locali-

zation of three members of the human fatty acid desaturase family. Genomics. 2000; 66: 175–183.

https://doi.org/10.1006/geno.2000.6196 PMID: 10860662

47. Teslovich TM, Musunuru K, Smith A V, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical

and population relevance of 95 loci for blood lipids. Nature. 2010/08/06. 2010; 466: 707–713. https://

doi.org/10.1038/nature09270 PMID: 20686565

48. Mozaffarian D, Kabagambe EK, Johnson CO, Lemaitre RN, Manichaikul A, Sun Q, et al. Genetic loci

associated with circulating phospholipid trans fatty acids: a meta-analysis of genome-wide association

studies from the CHARGE Consortium. Am J Clin Nutr. 2015; 101: 398–406. https://doi.org/10.3945/

ajcn.114.094557 PMID: 25646338

49. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci

implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010; 42:

105–116. https://doi.org/10.1038/ng.520 PMID: 20081858

50. Chambers JC, Zhang W, Sehmi J, Li X, Wass MN, Van der Harst P, et al. Genome-wide association

study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet. 2011; 43: 1131–

1138. https://doi.org/10.1038/ng.970 PMID: 22001757

51. den Hoed M, Eijgelsheim M, Esko T, Brundel BJ, Peal DS, Evans DM, et al. Identification of heart rate-

associated loci and their effects on cardiac conduction and rhythm disorders. Nat Genet. 2013; 45:

621–631. https://doi.org/10.1038/ng.2610 PMID: 23583979

52. Arking DE, Pulit SL, Crotti L, van der Harst P, Munroe PB, Koopmann TT, et al. Genetic association

study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat

Genet. 2014; 46: 826–836. https://doi.org/10.1038/ng.3014 PMID: 24952745

53. Verweij N, Mateo Leach I, van den Boogaard M, van Veldhuisen DJ, Christoffels VM, LifeLines Cohort

S, et al. Genetic determinants of P wave duration and PR segment. Circ Cardiovasc Genet. 2014; 7:

475–481. https://doi.org/10.1161/CIRCGENETICS.113.000373 PMID: 24850809

54. Lauffart B, Gangisetty O, Still IH. Molecular cloning, genomic structure and interactions of the putative

breast tumor suppressor TACC2. Genomics. 2003; https://doi.org/10.1016/S0888-7543(02)00039-3

55. Albrecht E, Waldenberger M, Krumsiek J, Evans AM, Jeratsch U, Breier M, et al. Metabolite profiling

reveals new insights into the regulation of serum urate in humans. Metabolomics. 2014; https://doi.org/

10.1007/s11306-013-0565-2 PMID: 24482632

Metabolite risk score for predicting weight gain

PLOS ONE | https://doi.org/10.1371/journal.pone.0222445 September 27, 2019 19 / 20

https://www.ncbi.nlm.nih.gov/pubmed/3899825
https://www.ncbi.nlm.nih.gov/pubmed/3899825
https://doi.org/10.1007/bf00280883
http://www.ncbi.nlm.nih.gov/pubmed/3899825
https://www.ncbi.nlm.nih.gov/pubmed/10480510
https://www.ncbi.nlm.nih.gov/pubmed/10480510
https://doi.org/10.2337/diacare.22.9.1462
http://www.ncbi.nlm.nih.gov/pubmed/10480510
https://doi.org/10.1210/jcem.85.7.6661
http://www.ncbi.nlm.nih.gov/pubmed/10902785
http://genome.sph.umich.edu/wiki/EPACTS
http://genome.sph.umich.edu/wiki/EPACTS
https://doi.org/10.1093/bioinformatics/btq340
http://www.ncbi.nlm.nih.gov/pubmed/20616382
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/s13742-015-0047-8
http://www.ncbi.nlm.nih.gov/pubmed/25722852
https://doi.org/10.1038/nature11632
https://doi.org/10.1038/nature11632
http://www.ncbi.nlm.nih.gov/pubmed/23128226
https://doi.org/10.1186/s13059-016-0974-4
http://www.ncbi.nlm.nih.gov/pubmed/27268795
https://doi.org/10.1093/nar/gkw1133
http://www.ncbi.nlm.nih.gov/pubmed/27899670
https://doi.org/10.1007/s00265-010-1038-5
https://doi.org/10.1007/s00265-010-1038-5
http://www.ncbi.nlm.nih.gov/pubmed/21297852
https://doi.org/10.1006/geno.2000.6196
http://www.ncbi.nlm.nih.gov/pubmed/10860662
https://doi.org/10.1038/nature09270
https://doi.org/10.1038/nature09270
http://www.ncbi.nlm.nih.gov/pubmed/20686565
https://doi.org/10.3945/ajcn.114.094557
https://doi.org/10.3945/ajcn.114.094557
http://www.ncbi.nlm.nih.gov/pubmed/25646338
https://doi.org/10.1038/ng.520
http://www.ncbi.nlm.nih.gov/pubmed/20081858
https://doi.org/10.1038/ng.970
http://www.ncbi.nlm.nih.gov/pubmed/22001757
https://doi.org/10.1038/ng.2610
http://www.ncbi.nlm.nih.gov/pubmed/23583979
https://doi.org/10.1038/ng.3014
http://www.ncbi.nlm.nih.gov/pubmed/24952745
https://doi.org/10.1161/CIRCGENETICS.113.000373
http://www.ncbi.nlm.nih.gov/pubmed/24850809
https://doi.org/10.1016/S0888-7543(02)00039-3
https://doi.org/10.1007/s11306-013-0565-2
https://doi.org/10.1007/s11306-013-0565-2
http://www.ncbi.nlm.nih.gov/pubmed/24482632
https://doi.org/10.1371/journal.pone.0222445


56. Kraus D, Yang Q, Kong D, Banks AS, Zhang L, Rodgers JT, et al. Nicotinamide N-methyltransferase

knockdown protects against diet-induced obesity. Nature. 2014; 508: 258–262. https://doi.org/10.1038/

nature13198 PMID: 24717514

57. Yang SJ, Choi JM, Kim L, Park SE, Rhee EJ, Lee WY, et al. Nicotinamide improves glucose metabolism

and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J Nutr

Biochem. 2014; 25: 66–72. https://doi.org/10.1016/j.jnutbio.2013.09.004 PMID: 24314867

58. Yamakado M, Nagao K, Imaizumi A, Tani M, Toda A, Tanaka T, et al. Plasma Free Amino Acid Profiles

Predict Four-Year Risk of Developing Diabetes, Metabolic Syndrome, Dyslipidemia, and Hypertension

in Japanese Population. Sci Rep. 2015; 5: 11918. https://doi.org/10.1038/srep11918 PMID: 26156880

59. Jitrapakdee S, Wutthisathapornchai A, Wallace JC, MacDonald MJ. Regulation of insulin secretion: role

of mitochondrial signalling. Diabetologia. 2010; 53: 1019–1032. https://doi.org/10.1007/s00125-010-

1685-0 PMID: 20225132

60. Jensen M V, Joseph JW, Ronnebaum SM, Burgess SC, Sherry AD, Newgard CB. Metabolic cycling in

control of glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab. 2008; 295: E1287–97.

https://doi.org/10.1152/ajpendo.90604.2008 PMID: 18728221

61. Swinburn BA, Nyomba BL, Saad MF, Zurlo F, Raz I, Knowler WC, et al. Insulin resistance associated

with lower rates of weight gain in Pima Indians. J Clin Invest. 1991; 88: 168–173. https://doi.org/10.

1172/JCI115274 PMID: 2056116

62. Wedick NM, Snijder MB, Dekker JM, Heine RJ, Stehouwer CD, Nijpels G, et al. Prospective investiga-

tion of metabolic characteristics in relation to weight gain in older adults: the Hoorn Study. Obes (Silver

Spring). 2009; 17: 1609–1614. https://doi.org/10.1038/oby.2008.666 PMID: 19197256

Metabolite risk score for predicting weight gain

PLOS ONE | https://doi.org/10.1371/journal.pone.0222445 September 27, 2019 20 / 20

https://doi.org/10.1038/nature13198
https://doi.org/10.1038/nature13198
http://www.ncbi.nlm.nih.gov/pubmed/24717514
https://doi.org/10.1016/j.jnutbio.2013.09.004
http://www.ncbi.nlm.nih.gov/pubmed/24314867
https://doi.org/10.1038/srep11918
http://www.ncbi.nlm.nih.gov/pubmed/26156880
https://doi.org/10.1007/s00125-010-1685-0
https://doi.org/10.1007/s00125-010-1685-0
http://www.ncbi.nlm.nih.gov/pubmed/20225132
https://doi.org/10.1152/ajpendo.90604.2008
http://www.ncbi.nlm.nih.gov/pubmed/18728221
https://doi.org/10.1172/JCI115274
https://doi.org/10.1172/JCI115274
http://www.ncbi.nlm.nih.gov/pubmed/2056116
https://doi.org/10.1038/oby.2008.666
http://www.ncbi.nlm.nih.gov/pubmed/19197256
https://doi.org/10.1371/journal.pone.0222445



