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Abstract 
Context: Night-shift work causes circadian misalignment, predicts the development of metabolic diseases, and complicates the interpretation of 
hormone measurements.
Objective: To investigate endogenous circadian rhythms, dissociated from behavioral and environmental confounds, in adrenal and gonadal 
steroids after simulated shift work.
Methods: Fourteen healthy adults (ages 25.8 ± 3.2 years) were randomized to 3 days of night or day (control) shift work followed by a constant 
routine protocol designed to experimentally unveil rhythms driven endogenously by the central circadian pacemaker. Blood was sampled every 
3 hours for 24 hours during the constant routine to concurrently obtain 16 Δ4 steroid profiles by mass spectrometry. Cosinor analyses of these 
profiles provided mesor (mean abundance), amplitude (oscillation magnitude), and acrophase (peak timing).
Results: Night-shift work marginally increased cortisol by 1 μg/dL (P= 0.039), and inactive/weak derivatives cortisone (P= 0.003) and 18- 
hydroxycortisol (P< 0.001), but did not alter the mesor of potent androgens testosterone and 11-ketotestosterone. Adrenal-derived steroids, 
including 11-ketotestosterone (P< 0.01), showed robust circadian rhythmicity after either day- or night-shift work. In contrast, testosterone 
and progesterone showed no circadian pattern after both shift work conditions. Night-shift work did not alter the amplitude or acrophase of 
any of the steroid profiles.
Conclusion: Experimental circadian misalignment had minimal effects on steroidogenesis. Adrenal steroids, but not gonadal hormones, showed 
endogenous circadian regulation robust to prior shift schedule. This dichotomy may predispose night-shift workers to metabolic ill health. 
Furthermore, adrenal steroids, including cortisol and the main adrenal androgen 11-ketostosterone, should always be evaluated during the 
biological morning whereas assessment of gonadal steroids, particularly testosterone, is dependent on the shift-work schedule.
Key Words: circadian misalignment, healthy young adults, internal desynchrony, reproductive health, sex steroids
Abbreviations: 17OHP, 17α-hydroxyprogesterone. 
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Sleep loss increases cortisol (a key catabolic signal) and de-
creases testosterone (a major anabolic hormone), thereby im-
balancing the hormonal signaling of whole-body metabolism 
[1-4]. This dysregulation would be expected to cause metabol-
ic dysfunction, and experimental studies do in fact show that 
sleep loss induces insulin resistance, a major factor in the de-
velopment of type 2 diabetes mellitus [3, 4]. Furthermore, 
we recently demonstrated that fixing cortisol and testosterone 

to prevent imbalance during sleep loss muted the development 
of insulin resistance [3-5]. This suggests that cortisol and tes-
tosterone signaling are important mechanisms by which sleep 
loss induces insulin resistance.

Both cortisol and testosterone also exhibit well-established 
temporal profiles that vary systematically across the 24-hour 
day. Alterations in signaling of these and other hormones 
could help explain why experimentally shifting the timing of 
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behavioral rhythms relative to endogenous circadian rhythmi-
city (ie, circadian misalignment) induces insulin resistance, 
even in the absence of sleep loss [3, 6]. And it may ultimately 
explain why night-shift work, which induces circadian mis-
alignment, is associated with the future development of com-
mon metabolic disorders such as obesity and type 2 diabetes 
mellitus [3, 7]. This is because the induction of insulin resist-
ance is widely recognized as underpinning the development 
of type 2 diabetes mellitus, and controlled experimental trials 
show that 1 to 4 nights of in-laboratory simulated shift work, 
even in the absence of sleep loss, induces insulin resistance [3].

Although cortisol and testosterone are the main metabolic-
ally active hormones secreted from the adrenal gland and tes-
tis, respectively, a set of 11-oxygenated androgens of 
predominately adrenal origin have been recently implicated 
in the signaling of many physiological and pathophysiological 
processes that impact metabolic health. These processes occur 
across the human lifespan and in both sexes and include, for 
example, polycystic ovarian disease in younger women and 
castration-resistant prostate cancer in older men [8, 9]. 
Understanding the signaling characteristics of cortisol, testos-
terone, and these other hormones is a prerequisite to properly 
identify and interpret the clinical and regulatory implications 
of such hormone abnormalities [10].

The signaling and action of many hormones, including corti-
sol and testosterone, depends on their underlying pulsatile and 
diurnal (ie, 24-hour) rhythms [11-13]. Randomized controlled 
trials show that better mimicking the diurnal rhythmicity of 
cortisol further optimized weight, blood pressure and glucose 
metabolism [14], and replicating both pulsatile and diurnal 
rhythmicity further improved working memory and caused 
subtle differences in the neural processing of emotional input 
assessed by functional magnetic resonance imaging and psy-
chological face expression recognition tasks [15].

The 24-hour patterns observed in these hormones could be 
driven centrally by the central circadian pacemaker in the supra-
chiasmatic nuclei of the hypothalamus and/or by external envir-
onmental or behavioral factors that have a diurnal pattern. 
Identifying the underlying 24-hour patterns of these hormones 
as driven specifically by the central circadian pacemaker, free 
of external influences, requires the use of the constant routine 
protocol as the gold standard method to remove or uniformly 
distribute external influences so that only the endogenous 
rhythm is expressed [16, 17]. The endogenous circadian rhythm 
of cortisol was established decades ago using the constant rou-
tine method [18, 19], and one of these studies also showed that 
circadian misalignment did not alter the timing of the cortisol 
rhythm [19]. However, the underlying endogenous rhythm of 
testosterone remains unknown because a constant routine has 
not been utilized to assess it, and the diurnal rhythms observed 
in prior studies may have been driven by external influences, in-
cluding cycles of light/dark, sleep/wake, feeding/fasting, and ac-
tivity/rest [20-22]. Prior studies examining the diurnal rhythm of 
11-oxygenated androgens also did not remove the influence of 
these external confounds by utilizing a constant routine protocol 
[10]. Accordingly, the aim of this study was to determine the very 
nature of the underlying 24-hour pattern of secretion of clinically 
relevant androgenic hormones as driven by the central circadian 
pacemaker, and the effect of circadian misalignment on these en-
dogenous rhythms.

We therefore conducted an in-laboratory study where 
healthy young men and women were assigned to 3 days of ei-
ther a simulated day-shift (ie, control condition) or night-shift 

(ie, experimental condition) schedule at random. Following 
the 3 days of shift work, blood was collected every 3 hours 
through an intravenous catheter during a 24-hour constant 
routine protocol, in which subjects remained semirecumbent 
and awake, in a controlled environment with fixed ambient 
temperature and dim light, and ate identical small snacks 
regularly every hour. The blood samples were used for later 
simultaneous extraction and concurrent measurement of 16 
Δ4 steroids that comprise the mineralocorticoid, glucocortic-
oid, and androgen pathways—including cortisol, testoster-
one, and certain 11-oxygenated androgens—using liquid 
chromatography triple quadrupole tandem mass spectrom-
etry [23].

Materials and Methods
Participants and Experimental Design
A total of 14 individuals between the ages of 22 and 34 years 
(mean = 25.8 ± 3.2 years; 10 males, 4 females; body mass in-
dex = 25.7 ± 3.2 kg/m2) completed the study at the Sleep and 
Performance Research Center at Washington State 
University Health Sciences Spokane. The study protocol was 
approved by the Washington State University Institutional 
Review Board, and all participants provided written informed 
consent. Additional details regarding study design and results 
have been previously reported [24].

In brief, participant subjects were physically and psycho-
logically healthy with no medical or drug treatment, as veri-
fied by physical examination, blood chemistry, urinalysis, 
questionnaires, and in-laboratory polysomnography. One fe-
male participant had an etonogestrel implant inserted at least 
a year prior to study participation and had not had a men-
strual period for at least 6 months. None of the other partici-
pants were taking any hormonal therapies. Two of the 
remaining 3 female participants were studied in the follicular 
phase of the menstrual cycle based on menstrual history, but 
menstrual phase could not be conclusively determined in the 
third due to incomplete documentation. All subjects reported 
good habitual sleep of 6 to 10 hours duration, wake between 6 
AM and 9 AM, no extreme morning or evening chronotypes, 
and no sleep or circadian disorders. They were not involved 
in shift work within 3 months of entering the study and did 
not travel across time zones in the month preceding 
participation.

The 7-day study protocol included a 24-hour baseline peri-
od. Following baseline, participants were assigned at random 
in groups of 2 or 3 to 1 of 2 simulated shift-work conditions: 
day shift (n = 7, 4 males) or night shift (n = 7, 6 males). Day- 
and night-shift sleep/wake schedules and blood-draw timing 
are depicted in Figure 1. The 3-day day-shift condition in-
cluded a sleep opportunity from 10 PM to 6 AM each day. 
The 3-day night-shift condition included a nap opportunity 
from 2 PM to 6 PM prior to the first simulated night shift, fol-
lowed by a 12-hour behavioral cycle shift and a sleep oppor-
tunity from 10 AM to 6 PM on all subsequent days. Scheduled 
wake was sustained by continuous observation and interactive 
conversation when required. During the simulated shift days, 
meals were provided at 1.5 (breakfast), 7 (lunch), and 13.5 
(dinner) hours after scheduled waking. Subjects were kept 
under low light (<50 lux) and fixed ambient temperature 
(21 ± 1°C). Scheduled sleep was recorded by polysomnogra-
phy (Nihon Kohden, Foothill Ranch, CA, USA), and visual 
scoring was conducted in accordance with American 
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Academy of Sleep Medicine guidelines [25]. The night-shift 
condition did not cause any substantive sleep restriction [26] 
and had negligible impact on timing of the endogenous circa-
dian rhythm [24].

At the end of the third day of either day or night shift, par-
ticipants followed a 24-hour constant routine protocol. This 
involved participants staying in a room with fixed ambient 
temperature (21 ± 1°C) and dim light (<50 lux) while main-
taining a fixed semirecumbent posture, with sustained wake-
fulness maintained as described previously, while receiving 
small isocaloric snacks on an hourly basis. Over the course 
of the 24-hour protocol, blood draws were conducted every 
3 hours via intravenous catheter (see Fig. 1). Assayed blood 
samples were used to evaluate the endogenous 24-hour 
rhythms subsequent to circadian misalignment (night-shift 
condition) or alignment (day-shift condition). After comple-
tion of the 24-hour constant routine protocol, participants 
had a recovery day before going home.

Measurements
Blood was drawn through an intravenous catheter into 
EDTA-containing vacutainer tubes at 3-hour intervals 
throughout the 24-hour constant routine protocol. Samples 
were immediately centrifuged for 10 minutes at 2200 revolu-
tions per minute at 4°C to separate plasma which was then 
frozen at −80°C until assayed. All samples from the same 
subject were assayed together. Liquid chromatography triple 
quadrupole tandem mass spectrometry was used to quantify 
16 Δ4 steroids: cortisol, cortisone, corticosterone, 11-deoxy-
cortisol, 11-deoxycorticosterone, progesterone, 17α-hydrox-
yprogesterone (17OHP), 16 α-hydroxyprogesterone, and 
rostenedione, testosterone, 11-hydroxyandrostenedione, 
11-ketoandrostenedione, 11-hydroxytestosterone, 11-keto 
testosterone, 18-hydroxycorticosterone, and 18-hydroxyco 
rtisol. Steroids were extracted and quantified simultaneously 

using spiked commercially available internal standards as pre-
viously described [23]. The sensitivity of measurement of all 
steroids was 5 pg/mL, and the inter and intra-assay coeffi-
cients of variation were <12% for each assay.

Statistical Analyses
Cosinor analysis was conducted by linear mixed-effects regres-
sion [24, 27] to assess for 24-hour rhythmicity in steroid values 
that were collected every 3 hours (8 timepoints for each sub-
ject) during the 24-hour constant routine protocol. 
Regression coefficients for mesor (mean abundance), acrop-
hase (timing of peak), and amplitude (maximum extent of os-
cillation) for each sex were calculated simultaneously using a 
model that allowed for differences by sex. Overall mean and 
standard error of the mean were calculated by Cochrane’s 
method to account for the distribution of sex [28]. As previous-
ly described, rhythm significance in each of the 2 conditions 
was determined by testing amplitude against zero by student’s 
t-test, with a one-sided type I error threshold of 0.05, and 95% 
CI for acrophase were computed using the delta method [24]. 
Differences between conditions in acrophase, amplitude, and 
mesor were evaluated using student’s t-test, with a 2-sided 
type I error threshold of 0.05, as previously described [24]. 
Finally, a sensitivity analysis was performed by repeating all 
analyses without the female participant who had received the 
etonogestrel implant, and findings were not changed; there-
fore, results for the full sample are reported. Analyses were 
conducted using the proc mixed procedure in the SAS statistic-
al package version 9.4 (SAS Institute, Cary, NC).

Results
Participant characteristics are shown in Table 1. Figure 2 de-
picts the effects of prior simulated night-shift work on the 
mesor (mean abundance) of measured steroids that comprise 

X X X X X X

Clock Time:

X X X X X X

X X

Clock Time:

Wake, behavioral monitoring Wake, IV line, behavioral monitoring; 24-hour constant routine, hourly snack

Sleep opportunity, polysomnography X Blood sample collection

Day 6

Day 2

12 15

Day 6

Day 5

Day 7

Day 4

Day 5

Day 2

Day 3

Day 4

Day 1

Day 7

Day 3

Day 1

15 18

Simulated Day Shift Condition

Simulated Night Shift Condition

0 3 6 9

21 24

18 21 24

0 3 6 9 12

Figure 1. In-laboratory study design. The 7-day study comprised an adaptation period in both conditions (days 1 and 2), a transition nap in the simulated 
night-shift condition (2 PM-6 PM on day 2), and then in both conditions 3 days of a simulated day-shift or night-shift schedule (days 2-5), a 24-hour constant 
routine protocol (days 5, 6), and a recovery period (days 6, 7) [24]. The 24-hour constant routine protocol consisted of sustained wakefulness in constant 
ambient temperature and dim light, fixed posture, and hourly isocaloric snacks [24], such that the blood samples taken during this period reflected the 
endogenous circadian rhythmicity after the 3 days of simulated day or night shift.
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the mineralocorticoid, glucocorticoid, and androgen path-
ways. Table 2 shows circadian rhythm amplitude (maximum 
extent of oscillation), mesor, and acrophase (peak timing) 
after simulated day-shift work, night-shift work, and the dif-
ference between the 2 conditions after controlling for sex, 
for each of the 16 Δ4 steroids measured. Analogous ampli-
tude, mesor, and acrophase estimates for men and for women 
separately are shown in Supplementary Tables S1 and S2, re-
spectively [29]. Exemplar steroid profiles are shown in Figures 
3 to 6, as discussed later.

Night-shift work did not alter the mesor of potent andro-
gens such as testosterone and 11-ketotestosterone but did in-
crease a weak/precursor androgen, 11-ketoandrostenedione 
(t12 = 2.55, P = 0.025): see Table 2 and Figure 3. Night-shift 
work slightly decreased the mesor of progesterone by 
0.03 ng/mL (t12 = −2.33, P = 0.038) but had no effect on 
17OHP: see Table 2 and Figure 4. Night-shift work marginal-
ly increased the mesor of the major glucocorticoid cortisol, by 
1 μg/dL (t12 = 2.32, P = 0.039), as well the inactive gluco-
corticoid metabolite cortisone (t12 = 3.64, P = 0.003) and hy-
brid steroid 18-hydroxycortisol (t12 = 4.75, P < 0.001), but 

had no effect on other glucocorticoids, including cortico-
sterone: see Table 2 and Figure 5. The associated amplitude 
and timing (acrophase) of steroids with endogenous circadian 
rhythmicity were not significantly affected by night-shift work 
for any of the measured steroids: see Table 2.

Significant endogenous circadian rhythmicity (as indicated 
by significant non-zero amplitudes) was observed for all ad-
renal hormones under both night- and day-shift conditions 
but not for gonadal hormones: see Table 2. In order to illus-
trate this, Figure 6 (upper panels) shows the individual partic-
ipants’ 24-hour profiles, as measured under constant routine, 
for the exemplar adrenal hormone cortisol. In contrast, indi-
vidual rhythms were not present for the main testicular hor-
mone testosterone: Figure 6 (lower panels).

Discussion
Prior studies have unequivocally established the diurnal rhyth-
micity of key metabolically active steroids such as cortisol and 
testosterone [18-22]. Recently, the diurnal rhythmicity of a 
novel set of adrenal 11-oxygenated steroids that are increas-
ingly recognized to be important for human physiology and 
pathophysiology has also been documented [10]. However, 
the underlying rhythmicity of these 11-oxygenated steroids, 
as well as testosterone, as being driven by the central circadian 
pacemaker has not been unveiled previously. Here, by remov-
ing or uniformly distributing all external influences through a 
gold-standard constant routine protocol conducted in con-
junction with an experimental and analytical paradigm where 
all blood steroids were treated equivalently and measured by 
state-of-the-art tandem mass spectrometry, we determined 
the origin of these diurnal rhythms. Specifically, we showed 
that 24-hour rhythms in steroids of predominately adrenal 
origin are robustly driven endogenously by the central circa-
dian pacemaker, whereas steroids with a substantial gonadal 
origin generally did not show endogenous 24-hour 
rhythmicity.

Table 1. Baseline characteristics

Simulated day-shift 
condition 
(n = 7)

Simulated night-shift 
condition 
(n = 7)

Age (years); mean ± SD 24.0 ± 2.2 27.6 ± 3.2

Height (m); mean ± SD 1.8 ± 0.1 1.9 ± 0.1

Weight (kg); mean ± SD 81.1 ± 12.3 90.8 ± 19.6

BMI (kg/m2); mean ± SD 25.7 ± 3.4 25.6 ± 3.3

Gender; n (%)

Male 4 (57) 6 (86)

Female 3 (63) 1 (14)

Abbreviations: BMI, body mass index.

Figure 2. The Δ4 steroidogenesis pathway and the effects of prior simulated shift work on mesors calculated from each temporal steroid profile. The 
figure depicts the mineralocorticoid (left), glucocorticoid (middle), and androgen (right) pathways and the enzymes (gray) that catalyze the steroidogenic 
transformations. Thick gray upward/downward arrows indicate a significantly higher/lower mesor in the night-shift condition as compared to the day-shift 
condition for both sexes combined. Simulated shift-work effects for which significant sex differences were observed are marked with a + sign. The 3 Δ5 
steroids shown above the dotted line were not measured but are included to illustrate how the steroidogenesis pathways are linked. The Δ4 steroid 16 
α-hydroxyprogesterone is not shown since it does not have a position in the pathways depicted. Table 2 shows further details for 16 
α-hydroxyprogesterone and all the other Δ4 steroids measured.



Journal of the Endocrine Society, 2022, Vol. 6, No. 12                                                                                                                                     5

T
ab

le
 2

. 
A

m
p

lit
u

d
e,

 m
es

o
r,

 a
n

d
 a

cr
o

p
h

as
e 

es
ti

m
at

es
 b

y 
p

ri
o

r 
d

ay
- 

an
d

 n
ig

h
t-

sh
if

t 
co

n
d

it
io

n
s 

fo
r 

m
en

 a
n

d
 w

o
m

en

A
m

pl
it

ud
e

±
SE

 (
pg

/m
L

)
M

es
or

±
SE

 (
pg

/m
L

)
A

cr
op

ha
se

±
SE

 (
H

H
:M

M
)

D
ay

-s
hi

ft
 

co
nd

it
io

n
N

ig
ht

-s
hi

ft
 

co
nd

it
io

n
N

ig
ht

 v
s 

da
y 

di
ff

er
en

ce
D

ay
-s

hi
ft

 
co

nd
it

io
n

N
ig

ht
-s

hi
ft

 
co

nd
it

io
n

N
ig

ht
 v

s 
da

y 
di

ff
er

en
ce

D
ay

-s
hi

ft
 

co
nd

it
io

n
N

ig
ht

-s
hi

ft
 

co
nd

it
io

n
N

ig
ht

 v
s 

da
y 

di
ff

er
en

ce

C
or

ti
co

st
er

oi
d 

pa
th

w
ay

Pr
og

es
te

ro
ne

a,
e

11
.0

3 
±

5.
65

b
4.

22
 

5.
85

−
6.

82
 

8.
13

70
.9

8 
9.

82
41

.9
9 

7.
62

−
28

.9
9 

12
.4

3c
13

:0
0 

2:
23

7:
53

 
7:

03
−

5:
06

 
7:

26

11
-D

eo
xy

co
rt

ic
os

te
ro

ne
6.

34
 

2.
12

c
5.

64
 

2.
10

c
−

0.
70

 
2.

98
22

.3
4 

1.
44

19
.9

1 
1.

48
−

2.
42

 
2.

06
10

:0
4 

1:
24

9:
55

 
1:

29
−

0:
09

 
2:

03

C
or

ti
co

st
er

on
e

11
05

.8
2 

26
3.

60
d

14
12

.1
8 

26
3.

29
e

30
6.

36
 

37
2.

56
15

44
.4

9 
18

7.
32

18
56

.9
3 

18
3.

97
31

2.
43

 
26

2.
56

8:
41

 
1:

03
8:

31
 

0:
45

−
0:

10
 

1:
17

18
-H

yd
ro

xy
co

rt
ic

os
te

ro
ne

a,
c

58
.5

7 
23

.7
8c

77
.9

6 
20

.0
3d

19
.3

9 
31

.0
9

14
4.

90
 

16
.4

1
16

9.
81

 
13

.9
5

24
.9

2 
21

.5
4

8:
13

 
2:

20
8:

30
 

0:
54

0:
16

 
2:

31

16
 α

-P
ro

ge
st

er
on

e
36

.2
7 

9.
19

d
43

.5
7 

9.
11

d
7.

30
 

12
.9

4
12

0.
21

 
7.

47
11

3.
81

 
7.

10
−

6.
41

 
10

.3
1

7:
59

 
1:

03
7:

36
 

0:
49

−
0:

23
 

1:
20

G
lu

co
co

rt
ic

oi
d 

pa
th

w
ay

17
α-

H
yd

ro
xy

pr
og

es
te

ro
ne

a,
e

40
.5

2 
35

.5
1

42
.1

3 
36

.9
5

1.
61

 
51

.2
5

56
8.

09
 

72
.3

4
54

6.
64

 
54

.5
7

−
21

.4
5 

90
.6

1
12

:4
4 

3:
44

7:
05

 
4:

00
−

5:
38

 
5:

28

11
-D

eo
xy

co
rt

is
ol

55
.5

6 
16

.8
6d

90
.2

2 
16

.9
7e

34
.6

5 
23

.9
2

13
0.

76
 

11
.8

9
16

1.
24

 
12

.0
2

30
.4

8 
16

.9
0

10
:2

9 
1:

11
9:

52
 

0:
41

−
0:

37
 

1:
22

C
or

ti
so

l
36

04
3.

81
 

47
05

.4
2e

38
72

8.
17

 
48

69
.2

8e
26

84
.3

6 
67

71
.3

3
62

90
3.

27
 

34
74

.5
2

74
30

0.
45

 
34

82
.0

8
11

39
7.

18
 

49
19

.0
6c

8:
43

 
0:

31
9:

44
 

0:
28

1:
00

 
0:

42

18
-H

yd
ro

xy
co

rt
is

ol
a,

c
15

5.
15

 
38

.1
3d

24
7.

30
 

35
.8

9e
92

.1
5 

52
.3

6
32

1.
39

 
31

.8
4

52
2.

35
 

27
.9

2
20

0.
96

 
42

.3
5e

9:
52

 
0:

59
9:

47
 

0:
32

−
0:

05
 

1:
07

C
or

ti
so

ne
58

99
.3

5 
63

6.
64

e
58

49
.6

4 
66

3.
56

e
−

49
.7

1 
91

9.
58

13
55

0.
24

 
45

0.
83

15
90

8.
18

 
46

3.
98

23
57

.9
5 

64
6.

94
d

9:
53

 
0:

27
11

:0
2 

0:
26

1:
08

 
0:

37

A
nd

ro
ge

n 
pa

th
w

ay

A
nd

ro
st

en
ed

io
ne

a,
e

13
0.

26
 

39
.4

1d
13

1.
14

 
40

.5
1d

0.
88

 
56

.5
2

80
5.

59
 

11
3.

60
86

1.
64

 
82

.9
6

56
.0

4 
14

0.
67

10
:1

0 
1:

10
9:

29
 

1:
07

−
0:

40
 

1:
37

11
-H

yd
ro

xy
an

dr
os

te
ne

di
on

e
32

8.
59

 
66

.0
8d

47
4.

46
 

66
.8

1e
14

5.
87

 
93

.9
7

83
1.

68
 

47
.0

5
96

1.
57

 
47

.3
9

12
9.

89
 

66
.7

8
9:

40
 

0:
46

9:
14

 
0:

32
−

0:
25

 
0:

56

11
-K

et
oa

nd
ro

st
en

ed
io

ne
50

.0
5 

16
.7

4c
96

.5
0 

17
.0

2e
46

.4
5 

23
.8

7
19

6.
92

 
13

.3
0

24
4.

16
 

12
.8

8
47

.2
4 

18
.5

2c
10

:1
2 

1:
15

9:
00

 
0:

40
−

1:
12

 
1:

25

T
es

to
st

er
on

ea,
e

84
.7

5 
15

4.
01

12
3.

32
 

16
0.

00
38

.5
7 

22
2.

08
30

20
.1

4 
96

2.
35

45
02

.1
9 

68
5.

51
14

82
.0

6 
11

81
.5

4
16

:2
7 

7:
03

20
:4

0 
5:

45
4:

12
 

9:
06

11
-H

yd
ro

xy
te

st
os

te
ro

ne
41

.3
6 

11
.9

0d
33

.0
7 

11
.1

5c
−

8.
29

 
16

.3
1

10
6.

19
 

9.
03

93
.5

2 
8.

23
−

12
.6

7 
12

.2
1

11
:1

7 
1:

05
12

:2
5 

1:
21

1:
07

 
1:

44

11
-K

et
ot

es
to

st
er

on
e

88
.4

6 
27

.9
7d

10
2.

92
 

28
.2

6d
14

.4
7 

39
.7

6
30

3.
72

 
22

.0
1

28
6.

62
 

21
.2

2
−

17
.1

1 
30

.5
7

12
:2

8 
1:

14
11

:3
3 

1:
05

−
0:

54
 

1:
38

D
at

a 
ar

e 
lis

te
d 

as
 m

ea
ns

±
st

an
da

rd
 e

rr
or

 o
f 

th
e 

m
ea

n.
 S

ta
ti

st
ic

al
ly

 s
ig

ni
fic

an
t 

di
ff

er
en

ce
 f

ro
m

 z
er

o 
ar

e 
bo

ld
ed

. 
a Si

gn
ifi

ca
nt

 s
ex

 d
if

fe
re

nc
e.

 
b
P

=
0.

04
9.

 
c P

<
0.

05
. 

d
P

<
0.

01
. 

e P
<

0.
00

1.



6                                                                                                                                     Journal of the Endocrine Society, 2022, Vol. 6, No. 12

In particular, our finding of the robust endogenous circa-
dian rhythmicity of cortisol is consistent with prior literature 
[18, 19] and supports the reliability and validity of our experi-
mental and analytical procedures. However, the diurnal 
rhythm of testosterone as previously observed in the presence 
of sleep/wake and other behavioral rhythms [20-22] was not 
replicated under constant routine, and thus this rhythm is 
not attributable to endogenous circadian regulation but rather 
to environmental or behavioral influences, which are likely as-
sociated with the sleep/wake cycle. Although progesterone 
showed weak evidence of rhythmicity after the day-shift 
work condition only (P = 0.049), 17OHP also did not exhibit 
a circadian rhythm after either condition. These findings may 
be explained by prior studies that directly showed substantial, 
but not exclusive, gonadal production through cannulation of 
the testicular and ovarian veins [30, 31].

Simulated night-shift work had relatively minor effects on 
steroidogenesis in our study. Effects detected include a small 
increase in the mean abundance of cortisol of 1 μg/dL, a neg-
ligible decrease in progesterone of 0.03 ng/mL, and similarly 
inconsequential changes in steroid precursors that are inactive 
(cortisone and 18-hydroxycortisol) or marginally active 
(11-ketoandrostenedione) [8, 32, 33]. Amplitude and acrop-
hase of all steroid profiles with endogenous circadian rhythmi-
city were not affected by prior night-shift work. These minor 
hormonal changes are in contrast with marked changes to the 
metabolome and lipidome that we have previously observed 
using the identical 3-day simulated shift-work paradigm 
[24, 34]. These data suggest that endocrine networks are 

robust to circadian misalignment relative to rhythms in me-
tabolites and lipids that change dramatically.

The aforementioned findings have repercussions for the 
evaluation of the endocrine health of shift workers—a sizable 
group that comprises about 20% of the US working popula-
tion. Millions more are likely involved because circadian mis-
alignment is often experienced due to caregiver duties, medical 
conditions, and/or lifestyle [3, 35]. The relatively minor effects 
on steroidogenesis unveiled in our study suggest that shift 
work per se is unlikely to cause hypogonadism or clinically 
relevant hypercortisolemia—so simply changing working 
time arrangements may not improve hormonal dysfunction 
that is already present. The problem of how to assess hypo-
gonadism in this population is amplified because symptoms 
consistent with hypogonadism are common in shift workers 
and especially so in those with shift-work sleep disorder 
[36-38].

As such, our data provide important information regarding 
how testosterone reference ranges should be applied to evalu-
ate hypogonadism in this population. Normative reference 
ranges for testosterone and cortisol were developed in the 
morning among healthy young non-shift workers. Because 
of the marked 24-hour rhythmicity of these hormones 
[21, 39-41], these normative reference ranges cannot be ap-
plied indiscriminately to other times of day. The impact of 
the diurnal variation on the clinical measurement of serum tes-
tosterone in particular has been recognized for decades [42], 
but how this knowledge should be applied to shift workers 
has not been conclusively established until now. Our data, 

Figure 3. Temporal patterns of exemplar androgens measured under constant routine following 3 days of a simulated day-shift (yellow) or night-shift 
(blue) schedule. Data are shown as mean ± SE by time of day for the active gonadal androgen testosterone (top) and the active adrenal-derived androgen 
11-ketotestosterone (bottom) in women (left), men (middle), and both (right). The gap in the line shows where the 24-hour constant routine protocol 
began/ended.
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Figure 4. Temporal patterns of progesterone and 17OHP measured under constant routine following 3 days of a simulated day-shift (yellow) or 
night-shift (blue) schedule. Data are shown as mean ± SE by time of day for progesterone (top) and 17α-hydroxyprogesterone (bottom) in women (left), 
men (middle), and both (right). The gap in the line shows where the 24-hour constant routine protocol began/ended.

Figure 5. Temporal patterns of exemplar glucocorticoids measured under constant routine following 3 days of a simulated day-shift (yellow) or night-shift 
(blue) schedule. Data are shown as mean ± SE by time of day for cortisol (top) and cortisone (bottom) in women (left), men (middle), and both (right). The 
gap in the line shows where the 24-hour constant routine protocol began/ended.
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showing that the morning peak in testosterone is driven by ex-
ogenous factors, now provides strong evidence that the hor-
monal evaluation of hypogonadism in night-shift workers 
must account for the behavioral cycle of sleep/wake, feed-
ing/fasting, and activity/inactivity. Since we and others have 
shown that sleep, in particular, strongly modifies testosterone 
[1, 43], the hormonal evaluation of hypogonadism should oc-
cur soon after waking, irrespective of time of day. In contrast, 
the strong circadian regulation of cortisol and its robustness to 
prior shift work indicates that assessment of the adrenal axis 
should occur in the biological morning.

Given the predominance of males, our study was unable to 
evaluate the effects of shift work on estradiol because of the 
detection limit of the assay. Although derivatization can im-
prove detection [44], this usually requires extra plasma that 
was not available and could render comparisons between non-
derivatized and derivatized steroids invalid. Another limita-
tion was that we were not powered to examine sex 
differences, but we did control for them to provide data that 
is valid across both sexes. Interestingly, our analyses correctly 

identified 5 steroids that have previously been identified to 
show sex differences: progesterone, 17OHP, androstene-
dione, and testosterone as well as 18-hydroxycortisol 
[41, 45]. As expected, our results showed progesterone and 
androstenedione were higher in women [45], whereas 
17OHP and testosterone were higher in men [41]. Our find-
ings that 18-hydroxycorticosterone and 18-hydroxycortisol 
were higher in women will need verification in future studies 
because we are unaware of prior studies examining sex effects 
of 18-hydroxycorticosterone, and data are conflicting regard-
ing sex differences on 18-hydroxycortisol [41].

Our study also had important strengths. We utilized gold- 
standard experimental methods including constant routine 
after simulated shift work in a dedicated sleep/circadian re-
search laboratory with a high level of experimental control. 
We also applied gold-standard analytical methods such as tan-
dem mass spectrometric measurement of temporal steroid pat-
terns followed by mixed-effects cosinor analyses allowing for 
sex differences. Because our experimental and analytical 
methods were identically applied, comparisons across a range 

Figure 6. Temporal patterns of cortisol (top) and testosterone (bottom) in individual subjects measured under constant routine following 3 days of a 
simulated day-shift (left, yellow shades, n = 7) or night-shift (right, blue shades, n = 7) schedule in men (square) and women (circles). The gap in the line 
shows where the 24-hour constant routine protocol began/ended.
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of different steroids could be made in an unbiased fashion. 
Our experimental paradigm of 3 consecutive days of simu-
lated night-shift work (compared to 3 consecutive days of si-
mulated day-shift work) shifted the behavioral cycle by 
12 hours, which is the maximum misalignment that can be 
achieved. It is also ecologically valid with regard to real-world 
work schedules, including those in many hospital settings [46] 
where 3 consecutive days of night work flanked by day work 
or days off are common (eg, in nurses). When not on night 
work, real-world night-shift workers routinely revert back 
to a day-aligned schedule (to interact with family and friends, 
address domestic duties, attend daytime events, etc.), so that 
circadian misalignment in bursts of 3 consecutive days is eco-
logically representative. Our study was not designed to ad-
dress adjustment or accommodation to a consistently shifted 
schedule over weeks to months, and our data do not address 
this separate though related question.

In conclusion, we identified the presence/absence of under-
lying circadian regulation for a set of important steroids and 
the impact of circadian misalignment through simulated 
night- and day-shift conditions. We showed that the rhythmi-
city of cortisol—but not of testosterone—is under strong en-
dogenous circadian regulation and is robust to prior shift 
schedule. Furthermore, since normative reference ranges for 
cortisol and testosterone were developed specifically in the 
morning among healthy young non-shift workers, we now 
show that the assessment in night-shift workers of the adrenal 
axis should occur in the biological morning, whereas hypo-
gonadism in men should be determined according to the be-
havioral cycle, soon after waking irrespective of time of day.
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