
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Attribute Representation in Neural Language Models

Permalink
https://escholarship.org/uc/item/2j78k662

Author
Yu, Dian

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2j78k662
https://escholarship.org
http://www.cdlib.org/

Attribute Representation in Neural Language Models

By

Dian Yu
Dissertation

Submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

Kenji Sagae, Chair

Zhou Yu

Premkumar Devanbu

Committee in Charge
2022

-i-

Copyright © 2022 by

Dian Yu

All rights reserved.

Contents

Abstract . v

Acknowledgments . vii

1 Introduction 1

1.1 Modularized to End-to-End Models . 2

1.2 Omnipotent Large Neural Models . 3

1.3 Motivation . 5

1.4 Outline . 6

2 Background 7

2.1 Overview . 7

2.2 Model Architecture . 7

2.2.1 Recuent Neural Networks . 7

2.2.2 Transformers . 9

2.3 Language Models . 10

2.3.1 Causal Language Modeling . 11

2.3.2 Masked Language Modeling . 11

2.3.3 Sequence-to-Sequence Model . 12

2.4 Multi-modal Neural Model . 13

3 High Level Attribute Representation 14

3.1 Overview . 14

3.2 Introduction . 14

3.3 Related Work . 17

3.3.1 Controlled Text Generation . 17

3.3.2 Language Representation . 18

3.4 Methodology . 19

3.5 Language Representation for Cross-lingual Language Understanding . . . 21

3.5.1 Generating Language Representations 21

-ii-

3.5.2 Experiments . 23

3.5.3 Results and Analysis . 28

3.6 Feature Representation for Controlled Language Generation 33

3.6.1 Learning representation . 33

3.6.2 Experiments . 36

3.6.3 Results and Analysis . 40

3.7 Summary . 44

4 Low-level Attribute Representation 45

4.1 Overview . 45

4.2 Schema Induction . 45

4.3 Related Work . 47

4.4 Methodology . 48

4.4.1 Overview . 48

4.4.2 Candidate span extraction . 49

4.4.3 Clustering candidate spans . 51

4.5 Experiments . 53

4.5.1 Slot schema induction . 54

4.5.2 Application in DST . 57

4.5.3 Application in response generation 57

4.6 Analysis . 58

4.7 Summary . 61

5 Task-specific Attribute Representation 62

5.1 Overview . 62

5.2 Example Representation for Retrieval-based Language Understanding . . 63

5.2.1 Introduction . 63

5.2.2 Setup . 64

5.2.3 Model . 65

5.2.4 Experiments and Results . 67

-iii-

5.2.5 Analysis . 71

5.2.6 Related Work . 74

5.3 Problem Representation for Exposing Safety and Consistency Issues . . . 75

5.3.1 Introduction . 75

5.3.2 Task Definition . 77

5.3.3 Methodology . 77

5.3.4 Experiments and Results . 80

5.3.5 Analysis . 87

5.3.6 Related Work . 89

5.4 Summary . 91

6 Application: Case Study in Building Dialog Systems 92

6.1 Overview . 92

6.2 Introduction . 92

6.3 Methodology . 93

6.3.1 Modularized systems . 94

6.3.2 End-to-end . 95

6.4 Summary . 97

7 Conclusion 98

-iv-

Abstract

Attribute Representation in Neural Language Models

Neural models, including neural language models and encoder-decoder models, are

the backbone of current natural language processing (NLP) research. Large pre-trained

models have greatly improved the performance of both language understanding and gen-

eration in many NLP tasks. However, information encoded from the pre-trained models

cannot translate to target space easily, which typically requires fine-tuning on domain-

specific tasks. Due to domain shift between the pre-training data and the task data, it

is still challenging for models to adapt to downstream tasks, especially when the training

examples are limited such as in few-shot and zero-shot settings. More importantly, the

fine-tuned models can only work well for a small number of domains because of diverging

from the original pre-trained model, thus are prone to have over-fitting problems with

inductive bias. Although scaled up models with billions or trillions of parameters have

shown promising performance with prompts and examples, the challenges still remain.

In this thesis, we study if we can learn and inject attribute representation to pre-

trained neural models to solve the challenges. Different from a black-box model where

the parameters contain vast but encrypted world knowledge, the learned attribute repre-

sentation can guide the model to learn information relevant to the target task, or serve

as supplementary information aside from the original parameters. Attributes can be as

high level as language representation in a multilingual transfer learning setting, or as

low level such as span or ontology representations. This direction is appealing since we

can introduce new attributes to pre-trained models without requiring any changes to the

original trained model parameters. As we will show, learning attribute representation is

efficient in training with both computation and data requirements. Moreover, it is easy

to do transfer learning with even only few examples, while maintaining the original model

quality. We believe that training attribute representation is a critical step to reduce the

gap between neural model pre-training and applying to target tasks.

Specifically, we first introduce methods to represent high-level attributes. Those

-v-

learned attributes can differentiate from other similar attributes so that they can be uti-

lized to transfer useful knowledge across domains and further to control a neural model

towards certain understanding and generation directions. Then, we discuss how to rep-

resent low-level attributes from pre-trained models. Those attributes can be hidden with

pre-trained models and presented by latent representation. The representation can either

be used directly for target tasks by identifying significant features, or be incorporated for

further model training. Next, apart from more concrete attributes, we propose methods

to integrate task specifications for efficient modeling. Those task-specific attributes model

the target task directly, bridging model representation and prediction goals precisely, and

enabling performance close to or even above human capacity. Lastly, we apply these at-

tribute representations to dialog systems as a case study. We demonstrate how we can

represent different aspects of attributes to build a dialog system from scratch smoothly.

We present solutions to the most critical challenges in neural language models in general.

-vi-

Acknowledgments

I got asked why I decided to do a PhD in NLP a few weeks before this thesis. When I

look back from fives years ago, my answer is quite different now. I got a taste of research

work in several labs in my undergrad study, and I was amazed by how much NLP could

accomplish even before all the powerful pre-training. However, the way I think about

doing research dramatically changed especially since I got the chance to explore different

areas of NLP during my graduate school years. I underestimated, and also overestimated

some of the challenges, but I am very grateful to the suggestions I received along the way.

Firstly, I would like to thank my advisors, Kenji Sagae and Zhou Yu. I did not have

a clear research direction in mind when I started, but Kenji always believes in me and

encourages me to explore even vague ideas as long as I find them interesting. Although

many of the ideas proved to be not working, they really shaped the way I learn new

methods, which is one of the most important skills I acquired in the past few years. I

will always remember the suggestions he gave me for research and outside of research,

as well as the random but delightful conversations in the lab. Meanwhile, Zhou trusted

me in leading our team to build dialog systems where I got exposed to a wide range of

NLP problems early on. She guided me to focus on challenging problems and has been

inspiring my research vision. I am very fortunate to receive mentorship from advisors of

different styles.

Secondly, I really appreciate the help from my mentors and my peers. I had my three

wonderful internships at Uber AI and Google Research hosted by Yuan Cao, Luheng He,

Chandra Khatri, Alex Papangelis, Mingqiu Wang, and Yuan Zhang. They, among with

other senior researchers in the community, offered me opportunities to explore broader

research directions and taught me to think bigger in my research scope. They made me

better at taking research angles, and demonstrating my ideas and findings. I would also

like to thank my peers Sam Davidson, Andrea Madotto, Quan Vuong, Qingyang Wu,

Mingyang Zhou, and many more over the years. I could always get valuable suggestions

from them either on my research problems, or any other things. They made everything

simpler for me.

-vii-

Last but not least, I want to thank my parents Shengli Yu and Wei Ma. They taught

me to be persistent. I always have their support no matter what I decide to do, even the

craziest things. They made my journey much easier especially during the Covid lockdown

years. Their suggestions, even if not related to my work directly, often ended up benefiting

my research.

I thank all the people who made the challenging PhD years enjoyable.

-viii-

Chapter 1
Introduction

Learning dense representation for words started the era of pre-training for natural lan-

guage processing [1, 2, 3]. Since then, from independent word embeddings to contextual-

ized token representations, pre-training in a self-supervised way on a huge amount of data

[4, 5, 6, 7] become the natural starting point for most NLP applications. These achieve-

ments enable products such as automatic translation and virtual personal assistant, and

make people’s lives more convenient without relying on experts.

Typically neural language models are trained to predict some words in a sentence

to utilize massive training corpus such as Wikipedia and Reddit without requiring any

human supervision. At this point, the pre-trained models can either be used to fill in

some blanks, or complete some sentences freely. To accomplish downstream tasks ranging

from text classification to reading comprehension, and more recently to open-book multi-

hop question answering, engaging dialog systems, and towards reasoning, the pre-trained

models need to learn how to translate what it already knows to the target space. The

traditional solution to resolve this mismatch is to fine-tune on additional collected in-

domain supervised data, so that we can change the model representation tailored to

the target labels. Despite recent efforts in engineering prompts to enable large-scale

language models to perform reasonable given a handful of examples, adapting pre-trained

models to target tasks across domains is still demanding, especially for tasks that require

additional knowledge or have complex target space. The central thesis of this work is thus

1

to answer the question whether we can map the pre-trained representations to the target

representations more efficiently.

In addition to the challenges in pre-training and fine-tuning due to the differences in

tasks, there is also a mismatch in domain differences. Moreover, although the models

trained by predicting words exhibit strong understanding and generation ability demon-

strated by probing and prompting research, we do not have any control of the model. In

other words, when condensing world knowledge into dense representation, it is intriguing

what the model knows, and how much it needs to learn to finish specific tasks rather than

guessing words correctly. Importantly, once the model is pre-trained, the knowledge is

kept frozen up to a certain time period, indicating that unless retrain with updated infor-

mation with tremendous cost, there would be serious complications such as hallucination

and toxicity. Motivated by the question of controlling pre-trained neural models, we ex-

plore directions to learn attribute representations that guide the neural models towards

target tasks. This will make either a modularized or an end-to-end model controllable for

both understanding and generation perspectives.

1.1 Modularized to End-to-End Models
Conventionally, modularized models are employed by a pipeline of natural language under-

standing (NLU) tasks such as part-of-speech tagging, coreference resolution, and parsing

to generate symbolic representation before finishing the ultimate tasks such as question

answering. There are two main benefits for such a pipeline. Firstly, rather than com-

pletely a black box, the models are more controllable. We can observe what all the

intermediate representations are, and how each step influences the target output. Let us

take dialog systems as an example, with the clear separation for NLU, dialog manager,

and NLG. If any response generated is not expected, we can trace back to see if there is

any error with the NLU part such as a wrong intent detection, or a wrong policy planned.

Then it becomes easy to fix these problems and make the model more precise. Secondly,

compared to the downstream specific use cases and target spaces, modularized models

usually have simpler target space such as multi-label classification. This makes transfer

2

learning more accessible since there are similar tasks, and makes human annotation and

data augmentation more straightforward. These two are important considering factors

for real-world products.

In spite of their benefits, modularized models are not robust, especially when new

features require different annotation for intermediate representations. For example, for a

new domain, not only do we need parallel data between inputs and target outputs, we

also need a new set of intermediate representations and symbols. In comparison, end-to-

end models take the original texts as input and output the target sequence, such as the

answer to a question in a paragraph, directly. Combined with the powerful pre-training,

end-to-end models are appealing, especially because they are more generalizable to unseen

scenarios.

Regardless of the tempting benefits, one main caveat of end-to-end models is that

most of the time they are black-box models. In other words, we can only observe what

the model decides to output, but have no idea what its “thinking process” is, i.e., how a

decision about whether a label, or a token, is made. There are many efforts trying to probe

what the pre-trained models learned and found that intermediate results from modularized

tasks are actually inherently modeled. Yet, we don’t have any control, and cannot really

inspect if, for example, the intent is correctly recognized by the model. Moreover, machine

learning methods are known to be data intensive so that a large amount of task-specific

data annotation is required to guarantee performance in the target task.

Attribute representation is a way to make the best of the two world. When applied on

either a modularized model or an end-to-end model, attribute representation can make

the model more controllable, while being more robust to changes and new requirements

at the same time.

1.2 Omnipotent Large Neural Models
With recent success in both language and image pre-training using the transformer archi-

tecture, it seems that attention, if not “is all you need”, is a potential framework to utilize

different modalities, and maybe is indeed something important in scale-up modeling [8].

3

Based on the success in easy transfer learning from pre-training to downstream task, or

prompt-based NLP methods with only few demonstrations [9] or webpage search [10], or

even able to explain jokes [11], a natural question to ask is “is language model all we

need1”?

On the one hand, the powerful ability to complete various tasks make some people

speculate whether large-scale neural models are conscious and can lead the community

towards artificial general intelligence2. On the other hand, the seemingly omnipotent

models are more likely to simply reflect on whatever data they are trained with, while

not considering critical characteristics such as intents and pragmatics [12]. This makes

those models pointless without further supervised learning by either engineering prompts

or examples with high variance, or by fine-tuning model parameters with a high cost. In

addition to being data intensive, neural models are not generalizable to new tasks and

cannot be easily customized to specific use cases. For example, it is relatively easy to

build a general purpose translation system, but it is not trivial to translate texts that

require domain knowledge such as scientific papers. Furthermore, although larger models

perform better in different tasks, it is not clear what the model learns in its parameters

and why the model makes a certain prediction. Although probing tasks have shown

that the large models are knowledgeable, there is still a large mismatch between a general

model and what we need, since we cannot squeeze the knowledge in a specific way to draw

the connection. Therefore, those large neural models are largely limited from numerous

perspectives.

Motivated by the current problems in terms of both model capacity and computa-

tion cost and corresponding impact, we propose to study attribute representation, which

can potentially bring automatic prediction closer to human annotation in both inference

resemblance and accuracy.
1Large language models (or encoder-decoder neural models in general in this context) can be applied

to both modularized models as well as end-to-end models.
2https://twitter.com/ilyasut/status/1491554478243258368?s=20&t=

klsduOygu6srcG3i9QlfMw

4

https://twitter.com/ilyasut/status/1491554478243258368?s=20&t=klsduOygu6srcG3i9QlfMw
https://twitter.com/ilyasut/status/1491554478243258368?s=20&t=klsduOygu6srcG3i9QlfMw

1.3 Motivation
Given by the limitations of large neural language models, we are interested in learning

methods to translate from the general representation, or representation learned from dif-

ferent tasks, to the target task efficiently. We propose to leverage attribute representations

and inject the learned representations into large neural models to control both modular-

ized and end-to-end models, and turn the black-box into white-box models. This thesis

demonstrates the idea by answering the following three research questions.

1. How to control a pre-trained language model for NLU and NLG tasks? Because

the pre-training phase of self-supervised training with massive data do not consider any

extra information, the first critical challenge is to control a neural model towards specific

tasks. We introduce attribute representation methods in Chapter 3. Instead of the typical

fine-tuning setup, we propose to connect the two phases by learning and aligning repre-

sentations that the original model can recognize, while freezing the model parameters. We

explain how this method can represent high-level attributes such as a specific language,

or sentiments and topics, and why this is effective in controlling a neural language model

in both understanding and generation tasks.

2. How to represent fine-grained attributes from neural models? Different from high-

level attributes, low-level nuanced attributes are less straightforward to represent because

they are usually not well defined and less distinct from each other. Although less studied

than high-level attributes, low-level attributes are critical to represent features implicitly

required for target tasks. We demonstrate how to learn and represent low-level attributes

by pre-training and interpreting models for schema induction in the task-oriented dialog

domain. Specifically, we introduce methods to construct the ontology of a task through

detecting phrases and groups from in-domain pre-trained neural models.

3. How to align what a neural model already knows to what we need? High-level

and low-level attribute representations serve as an intermediate step to connect learned

parameters to the target tasks. However, there are tasks where attributes cannot be

easily defined to draw the connection. Instead, representing task-specific attributes may

be more straightforward. We introduce task-specific attribute representations from two

5

angles, to represent the target space by disentangling from the input representation, as

well as to represent intrinsic latent structure. We illustrate the former from a retrieval-

based few-shot metric-learning methods for both classification and structured predictions

tasks, and the latter by representing systematic issues that trigger a pre-trained neural

dialog model into generating problematic responses.

1.4 Outline
In the rest of this thesis, I will briefly introduce relevant background including how state-

of-the-art neural language models function in Chapter 2, which are the backbone and

prerequisite for attribute representation. In Chapter 3, we introduce high-level attribute

representation, and we introduce low-level attribute representations in Chapter 4. Chapter

5 discusses how to represent attributes for task-specific features. In Chapter 6, we combine

different attribute representation methods and apply them to building a dialog system as

a case study. Finally, we summarize this thesis and analyze the key findings and address

potential future directions in Chapter 7.

6

Chapter 2
Background

2.1 Overview
This Chapter briefly introduces the background for attribute representation. We first go

through the widely used architectures including recurrent neural networks and Transform-

ers, as well as their potential drawbacks and fixes. Then we review methods to pre-train

large language models, and the potential problems that associate with this process. Fi-

nally, we expand the scope of language representation to multi-modal representation,

as attribute representation can be utilized beyond language to other modalities such as

images, although the main focus of this thesis is language.

2.2 Model Architecture
For models and experiments in this proposal, we mainly use two neural architectures,

Long short-term memory (LSTM, [13]), and Transformers [14].

2.2.1 Recuent Neural Networks

Different from images where each pixel is continues and rendered by surrounding pixels,

the nature of language considers each input as a linear sequence of discrete tokens, which

may be considered as a Monte Carlo process, or take the whole context into consideration.

To incorporate longer sequence without losing information, recurrent neural networks

(RNNs) are introduced to process one token at a time while itertively consider previous

7

information. At each timestep t in a sequence of tokens x1, x2, . . . , xt−1, xt, xt+1, . . . , we

consider both the current token xt and previous hidden state ht−1 to calculate the current

hidden state ht = a1(Whhht−1+Whxxt+bh) and current output yt = a2(Wyhht+by) where

Whh,Whx,Wyh, bh, by are trainable parameters and a1, a2 are activation functions such as

tanh. The hidden states are designed to capture all information, or in other words, to

compress the past sequence into some fixed hidden representation up to a certain time step

so that we can still model the sequence in a Monte Carlo fashion, without losing all the

information about the sequence. Outputs are the actual observable representations that

can later be used. When calculating the hidden states as well as outputs, the parameters

we train can be considered as feed-forward neural networks (FF), and the activation

functions aim to model nonlinear functions to have stronger representation power. Task-

specific FF layers are common to map the RNN representations to target labels.

To mitigate the vanishing gradient problems in RNNs which makes it difficult to cap-

ture long context, LSTM learns gates to control how much information from the memory

should be propagated to the current timestep and how much more recent information

should be considered. In specific, LSTM is implemented with the following equation

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ot = σ(Woxt + Uoht−1 + bo)

ht = ot ⊙ tanh(ct)

where i, f, c and o are input gate, forget gate, cell vectors, and output gate. The gates

control how much information we should flow into the next hidden state, and how much

we should just ignore since they may not be important to consider. W and U are learned

weight matrices, σ is the logistic sigmoid function, and ⊙ represents element-wise multi-

plication.

8

Similar methods such as Gate Recurrent Unit (GRU, [15]) were also introduced. We

refer interested readers to their original papers for close comparison.

2.2.2 Transformers

RNN-based architectures are intuitive: we control what we need to memorize from the

past, while considering new information at each new time step. However, because they can

process long context by keeping a fixed representation as the history, this mechanism loses

a lot of representation power, especially for contexts from many tokens before. Moreover,

because of the iterative sequential order, encoding the input is relatively slow, particular

when there are multiple layers.

In Transformers models, sequential dependencies are implemented with positional en-

coding as well as attention among token representations in multiple layers with layer

normalization. Specifically, we learn independent weight matrices to map a word embed-

ding or the representation from the previous layer (X) to key(K), value(V), and query(Q)

representations for all the tokens in a sequence. Thus we can get contextual token repre-

sentation through self-attention, which basically means to attend each token to the input

itself, as

Z = Attention(Q,K, V) = softmax(
QKT

√
dk

)V

where dk is the dimension of queries and keys. In this way, each token representation is

weighted by how important other tokens (keys) are regarding the query (target token). It

is therefore considered as contextual representation compared to word embeddings used

directly in RNNs. Moreover, we can employ multiple heads where each head has its

own set of key, query, value weight metrics to be able to encode the context into different

views. Instead of iterative modeling, as we can see here, we can calculate all the contextual

representation simultaneously of all heads. The only linear requirement is the number of

layers, which is constant to the number of tokens in a sequence, making it very attractive

for large model pre-training.

After the self-attention layer, we can learn some layer normalization to normalize the

representation and speed up training. Meanwhile, this can also make the training at each

9

layer more independent because higher layers are not dependent on the scales of the lower

layers. Different from batch normalization which normalizes the representation of each

mini-batch, layer normalization is designed to better fit for language tasks where each

example has different length and we may only be able to use small batch sizes due to the

long sequence lengths, which make batch normalization not really feasible. Instead, we

apply normalization on different dimensions. Specifically,

µ =
1

d

d∑
j=1

zj

σ2 =
1

d

d∑
j=1

(zj − µ)2

znorm =
z − µ√
σ2 + ϵ

z̃norm = γ · znorm + β

where γ and β are learnable. In practice, we apply layer norm together with residual

connection by Z = LayerNorm(Z) +X before sending the Z into FF networks.

In an encoder-decoder architecture, in addition to self-attention in the encoder part, we

can also apply cross-attention so that we consider self-attention on the already generated

tokens, as well as the encoder representations.

Although Transformer architectures are powerful and efficient, one potential draw-

back is its quadratic computation cost since at each layer, we need n2 computation of

self-attention for a sequence of length n. Variations to solve this problem include calcu-

lating self-attention on certain tokens through potentially learnable patterns [16, 17, 18],

employing global and local memory [19, 20, 21], and combining recurrence into Trans-

formers [22, 23]. We refer readers to [24] for more details.

2.3 Language Models
Before large language model pre-training, previous research learns word embeddings with

large dataset such as word2vec [2] which uses skip-gram with negative sampling to pre-

dict surrounding words, and GloVe [25] which also considers words’ probability of co-

occurrence.

10

In order to consider context in word embeddings, there are two major language model

pre-training methods, causal language modeling and masked language modeling. We in-

troduce the most popular language model pre-training methods here based on Transform-

ers, as it is the backbone of recent pre-training models. We include sequence-to-sequence

model here for simplicity in notation.

2.3.1 Causal Language Modeling

In causal language modeling, the goal is to predict the next token based on the already

generated context, which is similar to recurrent neural networks. Specially, we are mod-

eling p(xt|x1, x2, ..., xt−1). During pre-training, because we are not supposed to glimpse

the future tokens, we need to apply some mask on the self-attention by only using the

lower triangular of the attention matrix. At each time step, the model predicts some

distribution as which token should be the next, and compare that to the ground-truth

using loss functions such as cross-entropy.

Many powerful large scale models adapt this pre-training method such as GPT-3

[26, 27, 9]. Because the goal is to generate a sentence token by token, models pre-trained

this way exhibit strong generation ability. It can also be applied to different generation

scenarios such as dialog [28, 29, 30]. In addition, we can feed the model with some

examples as the prompt, and ask the models to generate the target results. Although

the pre-trained models are powerful, as motivated earlier, given some prompt, we have no

information on what direction the model will generate.

2.3.2 Masked Language Modeling

Different from the auto-regressive nature of causal language model, the goal of masked

language modeling is to utilize the bi-directional encoding ability. This has two benefits,

namely better encoding ability, and faster encoding time since we do not require token-

by-token encoding.

The masked language modeling task is to replace a portion of subwords (such as byte

pair encoding [31] which tokenize words with frequently occurring subwords) in a sentence

with a unique mask token or a random token and the training objective is to predict the

11

masked token distribution. Similar to causal language modeling, we compare the dis-

tributing to its ground-truth for training. Specifically, it models p(wt|w1, ..., wt−1, wt+1, ...)

where wt is masked. It has been applied to BERT [7], XLM [32], and other models. For

example, BERT encodes token embeddings, segment embeddings, and position embed-

dings to optimize the next sentence prediction (NSP) task which predicts if two sentences

are consecutive, in addition to the masked language modeling task during pre-training. In

comparison, XLM introduces a translation language modeling task which learns attention

across language pairs with language embeddings associated with each token instead of

NSP for multi-lingual language modeling. For downstream tasks, the pre-trained models

fine-tune Transformer parameters on a relatively small annotated dataset together with

some task-specific parameters such as linear layers on top of the last Transformer output.

Compared to causal language modeling, masked language modeling show better nat-

ural language understanding ability, probably because of the bi-directional encoding

[7, 33, 32]. We still need to translate whatever the model parameters contain, to a target

label space, which is not trivial.

2.3.3 Sequence-to-Sequence Model

Sequence-to-Sequence (Seq2Seq) models utilizes an encoder-decoder architecture [34]. The

task for the encoder is to encode the input into some representations, and the task for the

decoder is to generate a sequence of tokens based on the input. With the Transformers

architecture, the encoder is always a bi-directional model with dense attention, while the

decoder is a causal language model by both cross-attention on the encoder outputs, and

the self-attention on generated tokens.

Pre-trained Seq2Seq models can leverage the powerful and efficient encoder similar

to masked language modeling, as well as the generation ability [35, 36, 37]. Meanwhile,

it also has the drawbacks for the previous two methods, namely not controllable, and

requiring mapping to the target space.

The models mentioned above are mostly dense attention models. Recently improve-

ment to utilize more parameters using sparse Transformers by activating small portions

of the weights in a mixture-of-experts style [38, 39, 40] is another direction in scaling up

12

large neural language models.

2.4 Multi-modal Neural Model
In addition to language models where the input and the output are both texts, similar

architectures can incorporate different modalities such as image and speech [41, 42, 8,

43, 44, 45, 46]. The main goal then is to align representations from different modalities

into the same space, so that for example, the word “apple” would have very similar rep-

resentation with an image of apples. Although powerful in different modalities through

pre-training, we still cannot represent attributes that are relevant to scene images, or

speech directly, and we cannot understand how the alignment happens between text and

images for example in a specific task. This is not the main focus of this thesis, but

attribute representations above language follow the same philosophy [47] and we point

interested readers to relevant research for details.

13

Chapter 3
High Level Attribute Representation

3.1 Overview
In this chapter, we introduce methods to represent high-level attributes. We start with

the general methodology for attribute representation, and then explain how this can be

applied to sentiment and topic representation for language generation, as well as how to

represent a slightly different but more abstract language representation for cross-lingual

transfer learning.

This chapter is based on our works [48, 49] that were published at the ACL 2021 and

EMNLP 2021 conference, which I lead as the main author. Taiqi He was a co-author for

the language representation paper, and Zhou Yu and Kenji Sagae serve in an advisory

capacity.

3.2 Introduction
While large pre-trained language models (LM) have advanced text generation with co-

herent language by training on a large amount of unlabeled data [26, 50, 36], they are

not controllable. For instance, given the prompt “The issue focused on”, GPT-2 [27] can

generate a high-quality sentence, but it cannot take extra input such as “positive” or “busi-

ness” to guide the sentence towards a positive sentiment or business-related topic, due

to the lack of attribute labels during training. Similarly, despite recent efforts showing

that pre-trained (multi-lingual) models can perform well across various languages, we do

14

Attribute Generated Text

None The issue focused on a 2008 decision by the United States Court of Appeals for

the Ninth Circuit, in San Francisco, that denied local restaurants advance notice

of changes to their menus, even when that change had not been submitted to ...

positive The issue focused on returning to the simple premise that dialogue is more effective

than banal reactions. They demonstrate very good personal style with establishing

dialogue and bringing about a good point of view. Most fantastic of all ...

negative The issue focused on a false belief that treatment can never be "good enough" and

that long-term treatment only "cures" a person. This does not account for why this

is the case: Patients with the ...

business The issue focused on the regulations preventing banks and other entities in the fi-

nancial sector from moving money across foreign borders without the consent of its

investors.

athlete The issue focused on Robinson, who went to camp with his hometown team after

being released by the Seattle Seahawks, though it was ruled an emergency by the

National Football League.

military The issue focused on whether servicemen and women should be allowed to opt out of

serving overseas. It was also about whether making it easier for American troops to

return home would help their families.

Table 3.1. Examples generated using the proposed alignment function with Bayes
disentanglement (ACB). Tokens underscored are the prompts. “None" indicates non-
controlled generation from the original GPT-2 model. “business" is from AG News
corpus, “athlete" is from DBpedia corpus, and “military" is not in the training data
(zero-shot).

not have any control on how to utilize similar representation to transfer useful knowledge

since similar languages can benefit from sharing parameters, but less similar languages do

not help [51, 52].

To solve the discrepancy between training and inference, one direction is to train an

LM from scratch with some supervision such as control codes in CTRL [53]. Nevertheless,

this method requires training an LM with a large number of parameters, and is limited by

the attributes used during pre-training. Another direction is to fine-tune the pre-trained

LM on some annotated datasets. This usually requires updating all the parameters in

the model, which incurs large computational costs with current large LMs that have

15

millions or billions of parameters, and may result in an LM highly relevant only to the

specific training data. For example, one can fine-tune a large pre-trained LM on product

reviews labeled with sentiment to generate positive and negative sentences, but the fine-

tuned model will tend to generate sentences like those from product reviews which greatly

limits its utility with out-of-domain prompts. Both these methods require training all the

parameters of the model. Alternatively, recent research leverages a discriminator to re-

weight output distributions [54] or to perturb latent representations in the token level such

as in PPLM [55] without changing the pre-trained LM. However, raising target-relevant

token probabilities may lead to less fluent sentences. In addition, updating gradients at

the token level makes decoding expensive and slow.

Inspired by language codes which guide multilingual translation models to translate

to the target language [56], we learn high-level attribute representation that can identify

similarities and differences across different attributes. The main idea is to encode an

attribute (e.g. positive, negative, business, military, etc.) with a pre-trained LM and learn

an alignment function to transform the attribute representation. Examples of controlled

generation based on high-level attribtues can be seen in Table 3.1.

In terms of more abstract features such as language representation, the goal is to eas-

ily adapt and transfer from one domain (or language), to another domain. Instead of

an alignment function as a global indicator, we learn representations with vectors that

capture cross-lingual similarities and differences across different dimensions. This infor-

mation can guide a multilingual model regarding what and how much of the information

in the model should be shared among specific languages. Different from previous research

on generating language embeddings using prior knowledge such as word order [57, 58],

using a parallel corpus [59, 60], and using language codes as an indicator to distinguish

input and output words in a shared vocabulary into different languages [61, 32], our work

focuses on generating and using language embeddings more effectively as soft-sharing [62]

of parameters among various languages in a single model.

16

3.3 Related Work
3.3.1 Controlled Text Generation

To interpolate a controlling factor, concatenating the attribute to the input sequence is

the most straightforward approach and has been commonly used in grounded generation

[63, 64]. [53] proposes to pre-train a large conditional language model with available labels

such as URLs for large LM control. This method can be effective in conditional modeling,

but requires a substantial amount of resources for pre-training and is limited by the

labels used during pre-training (e.g. 55 control codes in CTRL). Another approach is to

concatenate the attribute representation to the hidden states using linear transformation

[65, 66] or latent variables [67, 68]. These approaches require training from scratch or

fine-tuning the entire pre-trained model to incorporate the external target attributes and

model conditional probability [69, 70, 71]. In addition, they always require carefully

designed Kullback-Leibler (KL)-Divergence and adversarial training to generate out-of

training domain text with the desirable attribute only [72]. In comparison, our proposed

method does not require fine-tuning the original LM so that we can make use of the high

quality pre-trained LM while controlling the target attributes.

Instead of fine-tuning the whole model, [73] proposes to add residual adapters, which

are task-specific parameters to transformer layers for each language understanding task.

Different from adding adapters for each individual attribute [74, 75], our method only

requires learning one attribute alignment function for all attributes to do controlled gen-

eration, and is more flexible at inference time without degrading quality such as diversity

[76]. Recently, [77] proposes to use self-supervised learning with hand-crafted phrases

(e.g. “is perfect” to represent positive sentiment), but suffers from high variance, low co-

herence and diversity in order to incorporate the target phrase. An alternative is to take

a pre-trained unconditional LM and perturb the hidden states towards a target attribute

in a plug and play manner [78]. PPLM proposes to train a classifier or bag-of-words

to increase the likelihood of the target attribute in the hidden state for each token [55].

Similar to ours, their method does not require changing the pre-trained LM and they are

able to control sentiment and various topics. However, ascending conditional probability

17

in the token level to shift the distribution towards target-related tokens can lead to degen-

eration [79] and is slow at inference time. The most similar work to ours is probably GeDi

[80] which proposes to apply weighted decoding using class-conditional LMs with Bayes’

Rule on each token to solve the slow inference problem. Concurrently, [81] introduces

learning prefix rather than task instructions [9] and achieves better performances than

adapter-based lightweight baselines. In contrast, our method learns an alignment function

on hidden representations of the attribute so that tokens can do self-attention with the

attribute without breaking the pre-trained self-attention in the LM. During generation,

we can simply send the attribute as a signal for conditional generation. Our method is

uniform for different attributes such as sentiment and topics, and is more efficient and

flexible.

3.3.2 Language Representation

Feature-based language representations An intuitive method to represent language

information is through explicit information such as known word order patterns [57, 82],

part-of-speech tag sequences [83], and syntactic dependencies [84]. [58] propose sparse

vectors using pre-defined language features such as known typological and geographical

information for a given language. However, linguistic features may not be available for

less studied languages. Our proposed approach assumes no prior knowledge about each

language, deriving typological information from plain text alone. Once a vector for a

target language is created, it contains many typological features of the target language,

and can be used for transfer learning in downstream tasks.

Dense representation with parallel data Other previous work has also explored

dense continuous representations of languages. One method is to append a language token

to the beginning of a source sentence and train the language embeddings with a many-to-

one neural machine translation model [85, 86]. Another method is to concatenate language

embedding vectors to a character level language model [60, 87, 88]. These two methods

require parallel translation data such as Bible and TED Talk. [89] derive typological

information in the form of phylogenetic trees from translation of different languages into

English and French using the European Parliament speech corpus [90], based on the

18

assumption that unique language properties are present in translations [91, 92]. [59]

abstract the translated sentences from other languages to English with part-of-speech tags,

function words, dependency relation tags, and constituent tags, and train the embedding

vectors by concatenating a language representation with a symbol representation. In

comparison, we generate our language embeddings using no parallel corpora or linguistic

annotation, which is suitable for a wider variety of languages, including in situations where

no parallel data or prior knowledge is available.

Language vectors without parallel data The approach that is closest to ours is

XLM [32], which adds language embeddings to each byte pair embedding using Wikipedia

data in various languages with a masked language modeling objective. However, similar

to [61], the trained language embeddings only serve as an indicator to the encoder and

decoder to identify input and output words in the vocabulary as belonging to different

languages. In fact, in a follow up paper, XLM-R [93], language embeddings are removed

from the model for better code-switching, which suggests that the learned language em-

beddings may not be optimal for cross-lingual tasks. In this paper, following the finding

that structural similarity is critical in multilingual language models [94], we generate lan-

guage embeddings from a denoising autoencoder objective and demonstrate that they can

be effectively used in cross-lingual zero-shot learning.

3.4 Methodology
The general methodology we propose to learn high-level attribute representation is to

learn some dense representations which can indicate to the model how to encode and

decode corresponding texts. Specifically, as illustrated in Figure 3.1, we consider each

attribute as some fixed length parameters, and train the parameters with tasks such as

language modeling. Depending on the task and architecture, the attribute representations

can be the only trainable parts while freezing the other parameters in the original model to

utilize the original representation, or update the whole parameters as well. For example,

in the Transformers architecture, we can initialize the representations at each layer and the

tokens can attend to the learned representations as a guide towards the target direction. In

19

positive

Epositive

The

EThe

Alignment Function

director

Edirector

is

Eis

great

Egreat

actor

Eactor

…

E’positive
…

director is great , Wt+1

<movie>

E<movie>

Pre-trained LM Pre-trained LM

E’<movie>

Attribute Representation Aligned Attribute Representation

Figure 3.1. Attribute Alignment model architecture with corpus representation dis-
entanglement. We train the alignment function (an MLP in our experiment shown
as blue arrows) to transform attribute (e.g. positive sentiment) representation (en-
coder hidden states in the left grey box) to aligned attribute representation (blue shade
box in the middle). The training objective is to generate attribute-related sentences in
the training dataset by attending to aligned attribute representation (green lines) in
addition to regular self-attention (grey lines).

the RNN architecture, we can choose to append a dense representation to the end of each

token embedding. This process can be considered similar to learning soft prompts, which

has the benefits of both easy to train, as well as saving storage. As we will show later,

the learned attribute representations can be transferable across different architectures. In

addition, if we do initialize the representation with some trained parameters and learn

some additional transformation instead, we can easily swap in unseen attributes in a zero-

shot setting, and combine many attributes together without limitations of restricting to

training one specific representation per attribute.

By training the attribute representation this way, we can either use supervised parallel

data, or train the model in a totally self-supervised manner. We will carefully describe the

methodology for different types of high-level attributes and suggest how the representation

should be trained efficiently in Section 3.5 and Section 3.6.

20

3.5 Language Representation for Cross-lingual Language
Understanding

3.5.1 Generating Language Representations

We consider language representations and language embeddings. We first present the data

used to generate language embeddings, then introduce our approach inspired by denoising

autoencoders [95].

3.5.1.1 Data and preprocessing

To train our multilingual model, we use the CommonCrawl dataset from the CoNLL 2017

shared task [96] to obtain monolingual plain text in various languages. To represent words

across different languages in a shared space, we use the unsupervised pretrained aligned

word embeddings from MUSE [97]. We choose the 29 languages from the CoNLL 2017

monolingual text dataset for which MUSE pretrained embeddings are available.1 A subset

of 200K sentences are selected randomly for each language. The languages we use are:

English, French, Romanian, Arabic, German, Russian, Bulgarian, Greek, Slovak, Catalan,

Hebrew, Slovene, Croatian, Hungarian, Spanish, Czech, Indonesian, Swedish, Danish,

Italian, Turkish, Dutch, Norwegian Bokmål, Ukrainian, Estonian, Polish, Vietnamese,

Finnish, and Portuguese, which cover ten language genera.

We experiment with two types of word representations in training language embed-

dings. The most straightforward way is to use the pretrained MUSE embedding for each

specific language (we refer to this setting as Spe.). We also experimented with mapping

word embeddings from different languages into one language (English in our experiments

because it is used as the pivot language in MUSE embeddings, Eng.) for three reasons.

First, because MUSE is mainly trained by an orthogonal rotation matrix and the dis-

tances among words in each language are still maintained thereafter, language identities

can potentially be revealed. The result is that the learned language embeddings reflect

the features incorporated in the unsupervised word mapping methods instead of the in-

trinsic language features. Second, we hypothesize that mapping to a single language space

requires the model to encode more information in language embeddings as their language
1https://github.com/facebookresearch/MUSE

21

https://github.com/facebookresearch/MUSE

identities instead of relying on their revealed ones. Finally, using shared word embed-

dings can reduce the vocabulary size for memory concerns by effectively reducing both

the lookup table size and the output softmax dimension size.

For Eng. word embedding mapping, we align words from different languages to En-

glish embeddings using cross-domain similarity local scaling (CSLS, [97]). The vocabulary

of our model is restricted to the words in the English MUSE embeddings, and all unknown

words are replaced with a special unknown token. Although imperfect mapping from each

language to English tokens may introduce noise and result in a coarse approximation of

the original sentences, crucial syntactic and semantic information should still be present.

In our experiments, a language code is appended to each token according to the original

language of the sentence. For instance, the German sentence “Er hat den roten Hund nicht

gesehen" would be represented in our Spe. condition as

Er_de hat_de den_de roten_de Hund_de nicht_de gesehen_de

and in the Eng. condition as

he_de has_de the_de red_de dog_de not_de seen_de

Intuitively, the idea is to have the words themselves be the same across languages (either

through the aligned MUSE embeddings or by direct mapping to English words), and let

the additional language code provide to the model the information that would explain the

structural differences observed across languages in the training data.

3.5.1.2 Denoising autoencoder

Given a multilingual plain text corpus with sentences in each language (and no parallel

text), we first perturb each sentence to create a noisy version of the sentence where its

words are randomly shuffled. The training objective is to recover the original sentences,

which requires the model to learn how to order words in each language. We hypothesize

that compared to language modeling, this will encourage the language embeddings to learn

more structural information instead of relying on topics or word co-occurrence to generate

meaningful training sentences. We implement our multilingual denoising autoencoder with

22

an LSTM-based [98] sequence-to-sequence model [34]. The input strings are perturbed

sentences and the output strings are the original sentences.

After preprocessing the data, we concatenate a language embedding vector initialized

from normal distribution as a language identity feature (the language code mentioned in

Section 3.5.1.1) to each of the pretrained word embeddings. Since certain languages are

more similar to, or more different from, each other, the model will learn how to reorder

a sequence of words depending on the specific language. For example, reordering an

Italian sentence should be more similar to reordering a Spanish sentence than it is to

reordering a German sentence. Because the decoder captures the actual word order of the

sentences in each target language, whereas the language codes in the encoder are meant

to capture only language identity and no word order information, we use the extracted

language embeddings from the decoder in our experiments.2 Each word is represented

with a pretrained 300-dimensional vector, and each language embedding is represented

with a 50-dimensional vector3. The input token is thus a 350-dimensional vector from the

concatenation.

3.5.2 Experiments

To examine the quality of the typological information captured by the language embed-

dings, we perform intrinsic and extrinsic evaluations. Our intrinsic evaluation consists of

predicting linguistic typology and language features from the World Atlas of Language

Structures (WALS, [99]). Our extrinsic evaluations are based on cross-lingual dependency

parsing and cross-lingual natural language inference (XNLI, [100]) in a zero-shot learning

setting, where a trained model makes predictions on a language not seen during train-

ing, but for which a language embedding has been learned from plain monolingual text.

In contrast with previous research which applies learned typology to cluster similar lan-

guages and train machine translation tasks in clusters [86], we explore if we can apply the

learned embeddings directly into downstream tasks. We compare three different sets of
2To confirm our assumption about the embeddings for the language codes in the encoder and the

decoder, we also performed experiments using the encoder language embeddings. As expected, the
results obtained with embeddings from the encoder were inferior in every case tested.

3We experimented with different dimensions for language embedding and did not observe performance
difference.

23

embeddings based on our approach with three sets of embeddings from previous work:

Spe. lang_emb represents language embeddings from our proposed denoising au-

toencoder trained with language specific MUSE embeddings, using CommonCrawl text.

Eng. lang_emb represents language embeddings trained with English MUSE em-

beddings after mapping words from different languages to English, using CommonCrawl

text.

Wiki lang_emb represents language embeddings trained with English MUSE em-

beddings using Wikipedia. We use the same data selection and preprocessing process as

detailed in Section 3.5.1.1. We use these embeddings to show the impact of training data.

In addition, we use these embeddings to compare with XLM embeddings trained with

Wikipedia.

Malaviya represents language embeddings from [85], trained with a many-to-one ma-

chine translation model using Bible parallel data. It has 26 languages in common with

our 29 languages except English, Hebrew, and Norwegian. We use these embeddings to

represent previous methods of learning language representations from parallel data.4

XLM mono represents language embeddings trained with XLM model using the same

monolingual data as Wiki lang_emb on 29 languages.

XLM parallel represents language embeddings trained with XLM using monolingual

and parallel data from 15 XNLI languages. We extract the embeddings from the publicly

available model.

3.5.2.1 Linguistic typology prediction

We first inspect the language embeddings qualitatively through principle component anal-

ysis (PCA) visualization. We also use spectral clustering to recover the language genus

(language family subgroup) information from the embeddings. To compare the quality

of the clusterings quantitatively, we calculate the adjusted Rand index [101] between the
4We do not evaluate the embeddings from [85] on parsing and XNLI because they do not include

English embeddings, which are necessary for a direct comparison. In XNLI, in particular, there is only
training data for English.

24

generated clusters and the actual language genera.

3.5.2.2 WALS feature prediction

We evaluate the language embeddings on predicting language features in WALS. Each

WALS feature describes a characteristic of languages, such as the order of subject, object,

and verb. We consider the features for which information is available for more than 50%

of the languages we use and cast each feature prediction as a multi-class classification

task. We then classify the features into the following categories.

• Lexicon: usage of specific words, e.g. whether the language has separate words for

“hand” and “arm”, etc.;

• Syntax: mostly related to the relative orders between various types of constituents,

including order of subject, object and verb, adpositions and noun phrases, and also

features related to syntactic constructions;

• Partially Morphological (Part. Morph.): features that mainly concern syn-

tax or semantics but either usually relate to morphology (such as inflectional mor-

phemes), or have morphological information coded in the values of the features, e.g.

gender systems, order of negative morphemes and verbs;

• Non-learnable: features that mainly concern morphology, phonology, or phono-

tactics, and are not learnable from reordering plain text.

The categories make it easier to evaluate what the language embeddings capture. We

train linear classifiers to predict WALS results. For each feature, we hold out one language

and train a classifier on the language embeddings of the rest of the languages to predict

the corresponding feature values on the held-out language embedding, in a leave-one-

out cross-validation scheme. We then average the accuracy of the features within each

category to report the results. In addition to comparing different language embeddings,

we also compare to two baselines: a Random baseline, and a Majority baseline (which

predicts the most common value for each feature). We repeat this procedure 100 times

while randomly permuting the orders of the input vectors to the classifiers to eliminate

possible effects due to initial states and report the average and significant scores.

25

Compared to a recent shared task where the input is some features of a language (e.g.

language family and various WALS features), with optionally pre-computed language

embeddings to develop models to predict other features [102], we investigate if trained

language embeddings alone can be used to predict WALS features. In addition, we showed

that our language embeddings outperformed a frequency baseline among other baselines

(see Section 3.5.3.2) compared to [102].

0.4 0.2 0.0 0.2 0.4 0.6

0.4

0.2

0.0

0.2

0.4

0.6

English

Arabic

Bulgarian Catalan

Croatian
Czech

Danish

Dutch

Estonian

Finnish

French

German

Greek

Hebrew

Hungarian

Indonesian

Italian

Norwegian

Polish

Portuguese

Romanian

Russian

Slovak
Slovene

Spanish

Swedish

Turkish

Ukrainian

Vietnamese

Germanic
Semitic
Slavic
Romance
Finnic
Greek
Ugric
Malayo-Sumbawan
Turkic
Viet-Muong

Figure 3.2. Two-dimensional PCA projection of the 50-dimensional language embed-
dings. Shapes represent automatically derived clusters, and colors represent language
genera.

3.5.2.3 Cross-lingual dependency parsing

Since our language embeddings are trained using a word ordering task, we hypothesize that

they capture syntactic information. To verify that meaningful syntactic information is

captured in the language embeddings, we use a dependency parsing task where sentences

for each target language are parsed with a model trained with treebanks from other

languages, but no training data for the target language. This can be seen as a form of

cross-lingual parsing or zero-shot parsing, where multiple source languages are used to

train a model for a new target language. Without annotated training data for parsing a

target language, the model is expected to leverage treebanks from other languages through

language embeddings.

26

We use 16 languages from Universal Dependencies v2.6 [103], representing five distinct

language genera (Table 3.3). We modified Yu Zhang’s implementation5 of biaffine depen-

dency parser [104]. In specific, we freeze word embeddings, concatenate a 50-dimensional

embedding (either the corresponding Eng. language embedding or a random embedding)

to the embedding of each token, and not use part-of-speech information (since we are

assuming no annotated data is available for the target language). The goal of this eval-

uation is not to obtain state-of-the-art attachment scores, but to find whether a model

that uses our language embeddings produces higher attachment scores than a model that

instead uses random embeddings of the same size6. While our embeddings should capture

syntactic typology, random embeddings would simply indicate to the model the language

for each sentence with no information about how languages are related.

3.5.2.4 XNLI

Natural language inference (NLI) is a language understanding task where the goal is to

predict textual entailment between a premise and a hypothesis as a three-way classifica-

tion: neutral, contradiction, and entailment. The XNLI dataset [100] translates English

NLI validation and test data into 14 other languages. We evaluate on ten of the XNLI

languages which we trained language embeddings with.

State-of-the-art models on XNLI are Transformers [105] pretrained on large corpora [106].

To evaluate if our learned language embeddings (from an LSTM model) can be plugged

off-the-shelf into other architectures such as Transformer, we compare with two strong

Transformer-based baselines, XLM ([32]. L = 12, H = 1024, 250M params) and XLM-R

([93]. XLM-RBase: L = 12, H = 768, 270M params; XLM-RLarge: L = 24, H = 1024,

550M params). XLM adds language embeddings together with each word embedding and

position embedding as the input embedding in training masked language modeling (MLM,

with monolingual data) and/or a translation language modeling (TLM, with translation

parallel data). In comparison, XLM-R removes language embedding and is pretrained with

MLM on much more data. We train our model on the English MultiNLI [107] dataset,
5https://github.com/yzhangcs/parser
6Random embeddings are used to eliminate the effect of different dimensionality. In our preliminary

experiments, we found that adding a random embedding performs better than not adding any embedding.

27

https://github.com/yzhangcs/parser

and directly evaluate the trained model on the other languages without language-specific

fine-tuning, in a zero-shot cross-lingual setting. To select the best checkpoint for test set

evaluation, we follow [93] by evaluating on the development set of all languages. In addi-

tion, we also experiment with a fully zero-shot transfer setting where we select the best

checkpoint by evaluating on the English development set. We run the selected checkpoint

on the test set of each language and report the accuracy scores. We use the public avail-

able XLM model pretrained on 15 XNLI languages with MLM and TLM objectives, and

XLM-R pretrained on 100 languages. In order to add our learned language embeddings

into XLM and XLM-R models, we normalize our embeddings to have the same variance

as the XLM language embeddings, and we learn a simple linear projection layer to map

our 50-dimension embeddings (which is frozen during training) to the hidden dimension

of corresponding models. We report all results averaged over three random seeds.

3.5.3 Results and Analysis

We show results of our proposed language embeddings in comparison to the baselines and

language vectors generated from previous work on linguistic typology, WALS, cross-lingual

parsing, and XNLI. We report results with Eng. language embeddings.

3.5.3.1 Linguistic Typology

Lexicon Syntax Part. Morph. Non-learn. Rand

n features 2 14 46 20 -

Random 0.56 0.61 0.52 0.52 -

Majority 0.64 0.75 0.69 0.68 -

Malaviya 0.66* 0.74 0.66 0.66 0.13

XLM mono 0.41 0.75 0.66 0.68 0.12

Spe. 0.64 0.78* 0.68 0.66 0.53

Eng. 0.85* 0.79* 0.71* 0.66 0.58

Wiki 0.87* 0.81* 0.70* 0.68 0.51

Table 3.2. WALS prediction and linguistic typology clustering results on 26 in-common
languages across 10 language genera. *indicates statistical significance (p < 0.01) over
the Majority baseline.

Figure 3.2 shows a two-dimensional PCA projection of the learned language embed-

dings. Due to space limitations, we only show the projection of the language embeddings

28

using words mapped to English embeddings; using language-specific embeddings produces

similar results. We can clearly see the clustering of Slavic languages on the lower left,

Romance on the right, and Germanic on the upper left. Our dataset also contains two

Finnic languages, which appear right above the Slavic languages, and two Semitic lan-

guages, which appear on the lower right. The other languages, Vietnamese, Indonesian,

Turkish, and Greek, are from language groups underrepresented in our dataset, and ap-

pear either mixed with the Germanic languages (in the case of Hungarian, Turkish and

Greek), or far on the lower right corner (Vietnamese, Indonesian). Romanian, a Romance

language, appears miscategorized by our language embeddings. While it is close to the

cluster of romance languages, it appears closer to the singleton languages in the dataset

and to the two Semitic languages.

In addition to actual language relationships represented by color, we also present the

result of spectral clustering with four categories through different shapes. Results illus-

trate that our language embeddings can capture similarities and dissimilarities among

language families. In comparison, language embeddings generated by [85] do not capture

clearly visible language relationships. Quantitatively, clusters from our learned language

embeddings (Eng.) achieve a much higher Rand score (0.58) compared to previous lan-

guage embeddings, as shown in Table 3.2 (last column). This indicates that our clusters

closely align with true language families.

3.5.3.2 WALS predictions

Table 3.2 shows the prediction accuracy for WALS features, averaged within each cate-

gory. Unlike the language representations generated by [59], which do not outperform the

majority baseline without finetuning, our derived language embeddings perform signifi-

cantly better than the baselines and previous methods in lexicon, syntax, and partially

morphological categories. Note that even though the training objective of the denoising

autoencoder is to recover a language-specific word order, the model does not use linguis-

tic features such as grammatical relation labels or subject-verb-object order information.

Instead, it derives typological information from text alone through the word reordering

task. The language embeddings generated with words mapped to English embeddings

29

(Wiki and Eng.) generally produce more accurate predictions, with the models trained

from Wikipedia producing slightly better results likely due to cleaner training data. Re-

sults from different settings show that we do not need clean data (e.g. Wiki) to generate

language embeddings.

Language Baseline Language Emb.

Finnic

Estonian 56.19 61.68 (+5.49)

Finnish 59.59 62.91 (+3.32)

Germanic

Danish 63.31 69.62 (+6.31)

English 74.51 74.08 (-0.43)

German 64.36 65.67 (+1.31)

Norwegian 77.19 78.20 (+1.01)

Slovene 67.92 67.91 (-0.01)

Romance

Catalan 72.41 80.76 (+8.35)

French 68.75 79.37 (+10.62)

Spanish 74.42 81.74 (+7.32)

Portuguese 71.11 79.57 (+8.46)

Semitic

Arabic 48.44 52.51 (+4.07)

Hebrew 41.87 33.66 (-8.21)

Slavic

Bulgarian 62.91 67.00 (+1.09)

Czech 65.62 66.98 (+1.36)

Russian 62.10 66.45 (+4.35)

Average 64.61 68.01 (+3.40)

Table 3.3. Zero-shot parsing results (UAS), where each of 16 languages are parsed
using annotated language from the other 15 languages. In the Language Emb. column,
results were obtained by concatenating the language embedding to each token’s MUSE
embedding. In the Baseline column, results were obtained using a random embedding
instead. Boldface indicates a statistically significant difference (p < 0.05).

3.5.3.3 Cross-lingual dependency parsing

The cross-lingual dependency parsing results in Table 3.3 indicate that our language

embeddings are in fact effective in allowing a parsing model to leverage information from

different languages to parse a new language. Substantial accuracy improvements were

observed for 13 of the 16 languages used in the experiment, while accuracy degradation

was observed for two languages. Notably, there were large improvements for each of the

four Romance languages used (ranging from 7.32 to 10.62 absolute points), and a steep

30

fr es de el bg ru tr ar vi avg.

Selected with English development set

XLM 77.3 77.9 75.9 74.3 75.3 73.8 70.4 70.9 73.2 74.3

XLM + lang_emb 78.3 79.0 76.5 75.6 76.6 74.8 71.3 72.3 74.4 75.4

Selected with averaged development set

XLM 77.4 78.2 76.1 75.4 76.3 74.4 70.3 71.7 73.5 74.8

XLM + lang_emb 78.5 79.0 76.7 75.9 76.8 75.3 71.5 72.4 74.8 75.7

XLM-RBase 77.9 78.7 76.9 76.0 77.9 75.9 72.4 72.2 74.8 75.9

XLM-RBase + lang_emb 78.8 79.4 77.4 76.2 78.2 76.1 73.2 72.6 75.4 76.4

XLM-RLarge 83.6 84.6 83.0 82.4 83.3 80.3 79.1 79.0 80.0 81.7

XLM-RLarge + lang_emb 83.9 84.8 83.7 82.8 84.2 81.1 80.3 79.4 80.3 82.3

Table 3.4. Results on XNLI test set with zero-shot prediction. The results show that
adding language embeddings outperforms the baselines in all settings.

drop in accuracy for Hebrew (-8.21). Although a sizeable improvement was observed

for the only other language from the same genus in our experiment (Arabic, with a 4.07

improvement), accuracy for the two Semitic languages was far lower than the accuracy for

the other genera. This is likely due to the over-representation of Indo-European languages

in our dataset, and the lower quality of the MUSE word alignments for these languages.

While our accuracy results are well below current results obtained with supervised

methods (i.e. using training data for each target language), the average accuracy im-

provement of 3.4 over the baseline, which uses the exact same parsing setup but without

language embeddings, shows that our language embeddings encode actionable syntactic

information, corroborating our results using WALS.

3.5.3.4 XNLI prediction

The XNLI results in Table 3.4 indicate that our language embeddings, which capture

relationships between each test language and the training language (English), are also

effective in tasks involving higher-level semantic information. We observe consistent per-

31

formance gains over very strong baselines in all settings and models for each language.

Specifically, in the fully zero-shot setting where we select the best model based on the

English development data, adding our learned language embeddings increases 1.1 absolute

points on average for XLM. The same trend holds for XLM-R results, not shown due to

space limits. On the other hand, if we select the best model on the averaged development

set following [93], we observe averaged performance gain of 0.9, 0.5, and 0.6 absolute

points for XLM, XLM-RBase, and XLM-RLarge, respectively. We conjecture that the lower

improvement on XLM-R models compared to XLM is due to that XLM-R was pretrained

without language embeddings. When we add our language embeddings to the original

word and positional embeddings, the distribution of the overall input embedding such as

variance is changed. Hence, the language embeddings can be considered as noise at the

beginning, making it hard to learn and incorporate additional information. However, the

improvement is consistent over all strong baselines, suggesting that our language embed-

dings, which are not optimized towards any specific task, can be leveraged off-the-shelf in

large pretrained models and achieve better zero-shot transfer ability in downstream tasks.

3.5.3.5 Discussion

Our results in each of the intrinsic and extrinsic evaluation settings demonstrate that

our denoising autoencoder objective, which has been shown to be effective in various

language model pre-training tasks [35, 108], is effective for learning language embeddings

that capture typological information and can be used to improve cross-lingual inference.

Even though reconstructing the original sentence from a randomly ordered string is the

direct training objective, our evaluation of the resulting embeddings is not based simply

on word order.

The grammar of a language is of course an important factor in determining the order

of words in a sentence in that language, although it is not the only factor. The syn-

tax area features in our WALS evaluation, which are largely related to relative orders

of constituents and syntactic constructions and therefore clearly relevant to our train-

ing objective, confirm that part of what our embeddings capture is in fact related to

word ordering. However, our results on the lexicon and morphology areas indicate that

32

language-specific information capture in our embeddings goes beyond ordering informa-

tion. Although it may seem that the model only has access to information about word

ordering during training, text in the various languages also provides information about

word usage, co-occurrence, and to some extent even inflection through the word embed-

dings. As a result, language embeddings trained with our approach capture interpretable

and useful typological information beyond word order. Because language embeddings are

the only signal to the model indicating what each of the languages that are mixed within

the training data reads like, we conjecture that our denoising autoencoder objective en-

courages the embeddings to encode language-specific information necessary to distinguish

each language from the others.

3.6 Feature Representation for Controlled Language Gen-
eration

3.6.1 Learning representation

Unconditional language models are trained to optimize the probability of p(xi|x0:i−1)

where xi is the next token and x0:i−1 are already generated tokens. For controlled genera-

tion, we need to model the conditional distribution p(xi|x0:i−1, a) where a is the attribute

for the model to condition on. To make use of large LMs trained on unlabeled data, we

need to infuse the attribute a into the pre-trained unconditional distribution p(xi|x0:i−1).

We introduce Attribute Alignment to this end. Different from fine-tuning the whole

LM, our alignment function is the only trainable component while the pre-trained LM

parameters are frozen.

3.6.1.1 Attribute representation with alignment function (A)

The high-level idea is to append the attribute token to the beginning of a prompt as a

signal so that each token in the sentence can attend to the attribute token. However, this

may break the originally learned sequential dependencies because now the sentence starts

with an attribute token followed by a regular sentence, different from the data used for

large LM pre-training.

Instead, Attribute Alignment first gets the hidden states of the attribute by running

33

the pre-trained LM on a. Then we align the hidden states using our alignment function

(F), implemented as a multi-layer perceptron (MLP) with non-linear connections in this

paper, to get aligned attribute representation. Specifically, in the Transformer architecture

[105] where hidden states are represented as key-value pairs, the key (K) and value (V)

pair after attribute representation alignment is represented by

K ′
:t, V

′
:t = [F(Ka);K:t], [F(Va);V:t] (3.1)

Ka, Va are from LM(xa) and K:t, V:t are from LM(x:t) where xa is the attribute phrase,

and x:t are the tokens in the generated sentence up to timestep t. Then we can calculate

attention and output in the original Transformer model.

During training, we freeze the pre-trained LM and compute the language modeling

loss on datasets with the attribute a to train the alignment function F . The loss function

is thus

LA = −
l∑

t=0

log p(xt|a, x:t) (3.2)

and we only update the parameters of the alignment function using the gradients. Fig.3.1

illustrates the model architecture. At inference time, all tokens starting from the prompt

attend to the target attribute representation transformed by the trained alignment func-

tion in addition to the standard self-attention to generate the next token. Intuitively, this

can be considered as a conditional LM because all tokens now can attend to the aligned

attribute representation.

3.6.1.2 Disentangle irrelevant attributes

The learned alignment function bridges the attribute representation to pre-trained LMs.

However, we do not disentangle different features in the training data. For instance, if

we train the alignment function on a movie review dataset for sentiment control, then

F encodes both sentiment and movie review style after aligning the sentiment attribute

representation. Thus, the target attribute representation may be diluted. To solve this

problem, we propose three disentanglement methods.

Attribute representation with corpus representation disentanglement (AC)

We propose to add a corpus domain representation d along with the attribute represen-

34

tation a during training. For a training corpus (such as movie reviews) with multiple

attributes (such as positive and negative sentiment), d is used in all the training data

while a is only used in a subset of the training data labeled with the target attribute.

Similar to [109], this can encourage the model to encode target attribute and other fea-

tures separately into different representations. Specifically, the key-value pairs can be

represented as

K ′′
:t, V

′′
:t = [F(Ka);Fd(Kd);K:t], [F(Va);Fd(Vd);V:t] (3.3)

where Fd is a separate alignment function for corpus domain representation, and Kd,

Vd are from the LM encoding of corpus domain names. Compared to attributes, corpus

domain names might be more abstract so we use special tokens for d (such as <movie

review>) and the original texts for attributes (such as athlete). At inference time,

we want to generate coherent sentences given any (including out-of-domain) prompts.

Therefore, we ignore the corpus representation while having tokens attend to the attribute

representation in addition to normal self-attention as in Equation 3.1 7.

KL disentanglement (ACK) We also experiment with adding KL-Divergence on top

of AC to ensure that the LM does not diverge too much from the original distribution when

an attribute signal is added following [55]. The disadvantage of this method, however, is

that KL-Divergence may also prevent the alignment function from learning useful updates

to attribute representation.

Bayes disentanglement (ACB) To further disentangle different features, we use

Bayes’ Rule to split domain-relevant distribution from attribute-relevant distribution.

Derived from Bayes’ Theorem, we have

p(x|a) ∼ p(x|a,d)
p(x|d)

· p(x, a)

p(a|x,d)
(3.4)

p(x|a,d) is the probability distribution of the generated sentence conditioning on both

the attribute and the corpus domain, while p(x|d) is the probability distribution of the

generated sentence conditioning on the corpus domain only. During training, we assume
7In other words, if corpus representation is considered, generating movie reviews or wikipedia-type

sentences for any prompt will greatly limit its utility

35

that different attributes in a corpus (e.g. different sentiments in movie reviews) are close

to a uniform distribution. Hence, we consider p(a|x, d) as a constant for a given sentence

x from the corpus d. Likewise, we consider p(x, a) as a probability distribution from

the frozen pre-trained LM with roughly comparable attribute distribution on any sen-

tence to approximate p(a|x), similar to [110]. Therefore, we approximate this equation by

eliminating the rest where the elimination does not directly impact a specific training sen-

tence for the target conditional distribution. We can approximate the desired conditional

probability in the log space as

log p(x|a) ∼ log p(x|a,d)− log p(x|d) (3.5)

During training, we train the attribute and domain alignment functions (F ,Fd) by run-

ning the LM conditioned on both attribute and domain (p(x|a,d)), and on domain only

(p(x|a)). In specific, the loss function is

LACB = −
l∑

t=0

log p(xt|a,d, x:t) +
l∑

t=0

log p(xt|d, x:t) (3.6)

Similar to other proposed methods, the loss is used to update F and Fd. At inference

time, suggested by [110], we use a hyper-parameter λ to balance the two distributions.

Therefore, the distribution we sample tokens from is

log p(x|a) ∼ log p(x|a,d)− λ log p(x|d) (3.7)

3.6.1.3 Multi-attribute Control and Zero-shot Inference

We can simply concatenate aligned attribute representations to control multiple attributes

at the same time. In addition, as we learn the alignment function on the attribute hidden

representation from word embeddings instead of learning the attribute representation

directly [75], we can switch in any attribute token at inference time. Therefore, we can

choose attributes not seen in the training corpus and generate text conditioned on a new

topic as a zero-shot setting.

3.6.2 Experiments

We evaluate our proposed methods A: using attribute representation only; AC: Model A

with corpus representation for disentanglement; ACK: AC with KL disentanglement; and

36

lastly ACB: AC with Bayes disentanglement. We evaluate these models on sentiment

control for thorough comparisons. We use nucleus sampling [79] for all the methods at

inference time.

3.6.2.1 Sentiment control

Data. We use the Stanford Sentiment Treebank (SST, [111]) as our training data. We

choose the sentences with positive and negative sentiment to train our alignment function.

We select the same 15 prompts such as “Once upon a time” that were used in prior work,

which were originally randomly selected [55].

Baselines. We compare with five baselines. GPT2 generates unconditioned sentences

given the prompts from pre-trained GPT2-medium. The generated sentences are coherent

and consistent, but may not capture the target attribute. Its fluency, diversity, and how

much the results look like a particular training corpus serve as an upper bound. GPT2-

concat appends the sentiment token (i.e., positive, negative) before the prompt. It

shares the same motivation as our model (see Section 3.6.1.1). GPT2-finetune is GPT2

fine-tuned with all the model parameters on the same SST dataset by appending an

attribute token to the beginning of a sentence. Its sentiment control score is an upper

bound. PPLM perturbs pre-trained LMs to incorporate attributes without fine-tuning

the LM parameters. Similar to ours, the recent state-of-the-art GeDi incorporates target

attributes by weighted decoding on the token-level and uses Bayes’ Rule on all control

codes (rather than domain) to remove unwanted attributes. It serves as a strong baseline.

3.6.2.2 Topic control

Data. For topic control, we use AG News dataset [112] with four topic attributes (“World”,

“Sports”, “Business”, “Sci/Tech”) and DBpedia [112] with 14 topic attributes such as “nat-

ural place” as our training data. We use the same 20 prompts from [55]. AG News dataset

collects news articles whereas DBpedia dataset collects entity definitions from Wikipedia.

Baselines.

PPLM uses different methods for topic control (pre-defined bag of words). For fair

comparison, we only compare with GPT2, GPT2-finetune, and GeDi training on

the same data. We choose the best preforming models from sentiment control for topic

37

control experiments (AC, ACB), while having ablation study among proposed models

on sentiment control.

3.6.2.3 Evaluation

We evaluate our proposed methods and baselines on sentiment and topic control. Follow-

ing [55], we sample ten sentences in a batch and select the most attribute-relevant one

over three runs for human evaluation for each prompt in each target attribute. For auto-

matic evaluation, we compare the average performance on all the 30 (3×10) conditionally

generated results to test the average performance and stability against variances.

Automatic evaluation We evaluate the conditional generation results on fluency, di-

versity, attribute relevance, and training data corpus resemblance.

Fluency is measured by GPT2-large, a pre-trained external LM, different from the LM

we conduct our experiments with (GPT2-medium). We get the average perplexity of

the generated sentences (including the prepended prompt). The perplexity score also

indicates how much the generated examples diverge from the pre-trained LM.

Diversity is measured by distinct uni-, bi-, and tri-gram ratios as Dist-1, Dist-2, and

Dist-3 [110] averaged over all generated sentences.

Attribute relevance measures how well the generated examples condition on the target

attributes. We train classifiers to predict the probability that a given sentence has the

target attribute. For sentiment control, we train an external sentiment classifier using

IMDB movie review dataset [113] with a BERT [7] classifier. The classifier achieves an

accuracy of 88.51% on the IMDB test set. We also experiment with an internal sentiment

classifier trained with SST development set, and we observe that the prediction on the

generated texts is similar to that with the external classifier.

For topic control, we train multi-class classifiers with BERT using 80% of the devel-

opment sets of AG News and DBpedia datasets. The classifiers achieve an accuracy of

89.71% and 99.25% on the rest of the two development sets, respectively. Because other

datasets do not share the same topics, we cannot train external classifiers.

Training data corpus resemblance is used to evaluate if the proposed methods gener-

ate sentences that contain undesirable features such as style from the training corpus. For

38

Model
Attribute Quality Data

Sentiment% ↑ Positive% ↑ Negative% ↑ PPL↓ Dist-1 ↑ Dist-2 ↑ Dist-3 ↑ Corpus resemblance % ↓

Baselines

GPT2 49.24 77.15 21.33 37.78 0.49 0.85 0.91 18.31

GPT2-concat 52.24 65.42 39.06 57.5 0.49 0.84 0.89 18.87

PPLM 57.03 81.58 32.47 54.03 0.44 0.79 0.88 26.12

Attribute Alignment

A 52.61 77.35 27.86 40.19 0.45 0.82 0.90 59.13

AC 68.92 80.22 57.61 48.78 0.47 0.84 0.91 62.13

ACK 64.89 76.25 53.53 52.66 0.48 0.84 0.91 62.8

ACB 64.49 85.35 43.64 36.62 0.48 0.85 0.91 24.05

Attribute Alignment with strong polarized training data

AC-S 67.04 81.62 54.45 38.46 0.45 0.80 0.88 63.21

ACB-S 58.85 80.88 36.82 33.33 0.46 0.83 0.89 28.12

Language model fine-tuning

GPT2-finetune 78.78 81.92 75.63 55.60 0.37 0.66 0.75 92.24

Table 3.5. Results on sentiment control. Our proposed model with Bayes disentan-
glement (ACB) achieves good performance on sentiment controlling while maintaining
high quality language generation. Note that even though GPT2-finetune achieves the
best sentiment controlling score by training the whole LM, it suffers in generation
quality and the generated sentences read like movie reviews measured by corpus resem-
blance.

instance, because our proposed method trains with a movie review dataset, the generated

examples may tend to be semantically similar to movie reviews. Similar to attribute rele-

vance, we train a BERT classifier by randomly selecting 2,000 training examples and 500

development examples from each of SST, DBpedia, and AG News, and the trained clas-

sifier achieves an accuracy of 99.3%. We report the probability that a generated sentence

is from its controlling attribute training corpus as the corpus resemblance score.

Human evaluation We evaluate the generated sentences on attribute relevance, lan-

guage quality, and training data corpus resemblance. All the metrics are on 1-5 Likert

scale. Attribute relevance and Corpus resemblance are similar to the automatic

metrics, measuring the degree to which the generated sentences are relevant to the tar-

get attributes, and how much the generated sentences read like from their correspond-

ing training corpus, respectively. Since one can easily increase attribute relevance score

39

by sampling target-related tokens more frequently regardless of coherence and the con-

text, Language quality measures if the generated sentences are coherent, in addition

to fluency. Since GeDi outperforms previous strong baselines including PPLM from both

automatic and human evaluation [80], we only do human evaluation comparing our best

performing model (ACB) with GeDi.

3.6.3 Results and Analysis

We show controlled examples in Table 3.1 and analyze sentiment and topic control results

as follows.

3.6.3.1 Sentiment control

Comparison with baselines. Table 3.5 shows results on sentiment control. Compared

to the pre-trained LM (GPT2, 49.24%), all our proposed methods achieve better sentiment

controlling scores with a large margin and get similar distinct scores. This shows that our

proposed method is effective in sentiment control.

Even though GPT2-finetune achieves the highest sentiment score (78.78%), it gets

higher perplexity, lower distinct scores, and very high corpus resemblance (92.24%). This

implies that we can fine-tune a pre-trained LM to condition on the target attribute but

suffer from the cost of being restricted to generating sentences resembling the training

data.

All our methods outperform PPLM and GeDi with better sentiment control and di-

versity while having higher language quality. For qualitative comparisons between our

proposed method and PPLM, we use the IMDB classifier to rank the most negative sen-

tence generated from 30 examples for each prompt. Compared to our models, PPLM

suffers from repetition and degeneration problems suggested by both distinct scores and

qualitative analysis from the generated examples. Similarly, even though GeDi can suc-

cessfully generate sentiment relevant sentences with prompts similar to the training data

(such as “The book” for book reviews, [80]), it does not generate coherent examples with

target sentiment (2.18 from human annotation) on a more diverse set of prompts. In

contrast, using the aligned attribute representation as a control signal to guide the text

generation leads to higher sentiment controlling probabilities while keeping the original

40

Topic source Model
Attribute Quality Data

On topic prob. % ↑ Perplexity↓ Dist-1 ↑ Dist-2 ↑ Dist-3 ↑ Corpus resemblance % ↓

AG News

GPT2 25.43 38.00 0.49 0.84 0.90 84.08

AC 63.38 32.37 0.47 0.83 0.90 92.47

ACB 64.80 31.22 0.46 0.83 0.90 90.66

DBpedia

GPT2 6.63 37.40 0.49 0.84 0.90 1.01

AC 32.98 60.22 0.50 0.84 0.90 7.33

ACB 32.18 49.85 0.49 0.83 0.90 7.46

Table 3.6. Topic control results with topics from AG News and DBpedia. Our proposed
methods outperform the baselines by a large margin while having similar perplexity
and diversity compared to the pre-trained language model (GPT2).

quality.

Comparison among proposed methods. The worse performance of having attribute

representation only (52.61%) indicates that the entangled attributes dilute the conditional

distribution and result in texts using similar vocabularies suggested by low diversity scores.

In comparison, adding a corpus representation to disentangle target attributes leads to

the best performance on sentiment probability prediction. Further disentanglement by

adding KL-Divergence and separating corpus distribution with Bayes’ theorem helps to

reach lower perplexity and higher distinct scores as expected, but it hurts the attribute

controlling performances. This may be caused by that the attribute and corpus represen-

tations in fact still mingle with each other so that when we remove the corpus distribution,

we also remove some of the target attribute distribution. We also note that without Bayes

disentanglement, all the other proposed methods reach much higher training corpus re-

semblance score (e.g. 62.13% with AC) but still much lower than that from fine-tuning

(92.24%). This may be partially explained by that sentences with a strong sentiment are

more similar to movie reviews than others from the training corpus resemblance classifier.

Combining all the metrics, it shows that there is trade-off between sentiment control and

generation quality. However, we can still control the sentiment better without the cost of

perplexity, diversity, and style convergence than the strong baselines.

Adversarial prompts results. Following [55], we also experiment with generating a

41

sentence to an opposing sentiment from a highly polarized prompt. For example, the goal

is to generate a positive sentence with the negative prompt “The food is awful”. Using the

external classifier to select the generated examples with the most likely target sentiment,

we can obtain sentences such as “The food is awful but the service is amazing!” which

is coherent compared to methods like PPLM and GeDi perturbing on the token level.

Despite the prompts being very polarized, our method can still lead the text generation

to the target sentiment without compromising fluency and diversity. More importantly,

although we train our alignment function in the movie review domain, our generated

sentences are not biased towards the domain.

Attribute data influence results. To evaluate how much attribute relevance in train-

Model
Attribute Quality Data

Sentiment% ↑ Positive% ↑ Negative% ↑ PPL↓ Dist-1 ↑ Dist-2 ↑ Dist-3 ↑ Corpus resemblance % ↓

AC-S 67.04 81.62 54.45 38.46 0.45 0.80 0.88 63.21

ACB-S 58.85 80.88 36.82 33.33 0.46 0.83 0.89 28.12

Table 3.7. Results on sentiment control comparing strong polarized training data.

ing data influences controlling effect, we experiment with training on strong polarized

examples labeled as “very positive” and “very negative” from SST. We denote the corre-

sponding models as AC-S: AC with strong polarized training data; and ACB-S: AC-S

with Bayes disentanglement. Table 3.7 shows that training with strong polarized data

achieves similar controlling ability but suffers from lower diversity. This suggests that our

proposed method is not sensitive to the attribute quality in the training data, showing

the potential to use less strictly annotated data for controlling more diverse attributes.

3.6.3.2 Topic control

Comparison among different methods. We present our results on topic control in

Table 3.6. Similar to sentiment control, we observe that our proposed methods signifi-

cantly outperform the baseline in target topic controlling while holding similar perplexity

and distinct scores. Even though the topic relevance score is lower than GeDi from au-

tomatic evaluation, ACB performs similarly measured by human annotation in terms of

both relevance and language quality, while being much more diverse. In addition, us-

42

ing Bayes’ disentanglement results in lower perplexity. However, compared to sentiment

control, further disentanglement derives controlling effect on par with the simple disentan-

glement (+1.42% and −0.80% relative change for AG News and DBpedia) and generates

comparable distinct scores. This indicates that topic attribute representations may be

less entangled with other features such as style from the training corpus compared to that

for sentiment representation.

Comparison between training dataset. To compare the results between topics from

AP News and DBpedia, the perplexity is higher than the baseline and the relative corpus

resemblance score is also high for DBpedia. We conjecture that this is caused by that

topics such as “educational institution” may be difficult to associate with prompts such as

“Emphasised are” in the pre-trained LM. When we control the model to generate sentences

with the corresponding attributes, the generation diverges from the pre-trained LM more.

However, distinct n-grams are not sacrificed.

3.6.3.3 Comparison to GeDi

From both sentiment control and topic control, we can see that our propose method is

on par or better than GeDi in terms of attribute relevance and language quality, while

being much more diverse (more than 10% averaged absolute points on distinct scores).

Qualitatively, because GeDi applies weighted decoding on the token level similar to PPLM,

we observe that it indeed boosts attribute-relevant token distribution which may lead

to incoherent sentences (such as repeating the same phrase). For instance, regardless

of the prompt, country and names (e.g. “Palestinian”) are frequently sampled for the

attribute “world”. This can be further justified by their lower diversity score compared

to the baselines. In addition, since GeDi utilized Bayes’ Rule on all attribute codes (in

comparison to ours on domains), it can also explain the lower performance on sentiment

control where attributes are less decoupled.

3.6.3.4 Multi-attribute control and zero-shot analysis

In Table 3.1, we show examples with controlling multiple attribute (e.g. “world + science

technology"). In addition, topics such as “military” are not in the topic control training

corpus so that they are considered as zero-shot attributes. Our trained alignment function

43

can map unseen attribute representation to the target representation to generate fluent

and on-topic sentences. However, this zero-shot ability largely depends on the unseen at-

tribute and the provided prompt. Following previous research [53] where there may not be

good evaluation metrics for the much harder multi-attribute and zero-shot inference task,

we only show generated examples here with limited human annotation results showing

better controlling and language quality compared to previous work [80]. We conjecture

that our better performance is due to our more flexible alignment structure. In compari-

son, it is more complicated to compute the contrastive generation decoding method using

Bayes rule suggested by [80] with more control codes without compromising the marginal

distribution.

3.7 Summary
In this chapter, we propose methods to learn high-level attribute representations. We show

examples of learning one representation per attribute, or learning alignment functions to

convert original attribute representations (embeddings) to be generalizable. We showed

that on sentiment and topic attribute representations, we can successfully convert an

original language model into a controllable model through attribute alignment, while

maintaining the language generation quality. Moreover, we demonstrated that we can

efficiently control a trained model for transfer learning by leveraging similarities in more

abstract language representations. Our method suggests that we do not require any

supervised data, or only need a small parallel corpus, which is a promising direction to

adapt a trained model to data-scarce scenarios such as cross-lingual settings where there

may not be labeled data for a specific language, or we need to control a model with

multiple unseen attributes.

44

Chapter 4
Low-level Attribute Representation

4.1 Overview
Not all attributes can be easily defined such as a positive and negative sentiment, or

different languages, where each attribute is fundamentally different from others. In this

chapter, we use an example of ontology attribute to illustrate how we can learn the

attribute implicitly and generate their corresponding representations.

This chapter is based on our work [114] that was published at the NAACL 2022

conference, which I lead as the main author. Mingqiu Wang, Yuan Cao, Izhak Shafran,

Laurent El Shafey, and Hagen Soltau (all from Google) serve in an advisory capacity.

4.2 Schema Induction
Defining task-specific schemas, including intents and arguments, is the first step of build-

ing a task-oriented dialog (TOD) system. In real-world applications such as call cen-

ters, we may have abundant conversation logs from real users and system assistants

without annotation. To build an effective system, experts need to study thousands of

conversations, find relevant phrases, manually group phrases into concepts, and itera-

tively build the schema to cover use cases. The schema is then used to annotate belief

states and train models. This process is labor-intensive, error-prone, expensive, and

slow [115, 116, 117, 118]. As a prerequisite, it hinders quick deployment for new domains

and tasks. We therefore are interested in developing automatic schema induction methods

45

Can I have more information for the
train you’re needing?

I am leaving from Cambridge and
going to Norwich.

I also need a train. The train should
leave after 16:15 and leave on sunday.

…

…

I want to book an expensive Italian
restaurant at 12 pm.

after 16:15
before 9:30

12:30
…

cheap
expensive
moderate

…

12 pm
7:20

9
…

Span extraction

Multi-step clustering

train
leaveat

hotel
pricerange

restaurant
booktime

Figure 4.1. Overview of slot schema induction from raw conversations. We use a
bottom-up representation level distance function derived from pre-trained LMs (com-
bined with PCFG structure) to extract informative candidate phrases such as “after
16:15” and “expensive”. The spans are subsequently clustered through multiple stages
to form coarse to fine categories. The ground truth mapping is shown on the right
(such as “train leaveat”).

in this work to create the ontology1 from conversations for TOD tasks.

Most existing approaches for slot schema induction rely on syntactic or semantic mod-

els trained with labeled data [119, 120, 117]. Our proposed method, on the other hand,

is completely unsupervised without requiring generic parsers and heuristics, and hence

portable to new tasks and domains seamlessly, overcoming the limitations of previous

research. Analogous to human experts, our procedure is divided into two general steps:

relevant span extraction, and slot categorization. Fig. 4.1 provides an overview of our

approach. We introduce a bottom-up span extraction method leveraging a pre-trained

language model (LM) and regularized by unsupervised probabilistic context-free grammar

(PCFG) structure. We also propose a multi-step auto-tuned clustering method to group

the extracted spans into fine-grained slot types with hierarchy.

We demonstrate that our unsupervised induced slot schema is well-aligned with expert-

designed reference schema on the public MultiWoZ [121] and SGD [122] datasets. We fur-

ther evaluate the induced schema on dialog state tracking (DST) and response generation

to indicate usefulness and demonstrate performance gains over strong supervised base-

lines. Meanwhile, our method is applicable to more realistic scenarios with complicated

schemas.
1We use “schema” and “ontology” interchangeably in this paper. Following previous work in literature,

we focus on schema induction for slots, which is more challenging than domains and intents.

46

4.3 Related Work
Schema induction for dialog Motivated by the practical advantages of unsupervised

schema induction, [123, 124] propose to induce spoken dialog grammar based on n-grams

to generate fragments. Different from studying semantic grammars, [119, 125, 126, 127,

120] propose to utilize annotated FrameNet [128] to label semantic frames for raw utter-

ances [129]. The frames are designed on generic semantic context, which contains frames

that are related to the target domain (such as "expensiveness") and irrelevant (such as

"capability"), while other relevant slots such as “internet” cannot be extracted because

they do not have corresponding defined frames. This line of work focuses on ranking ex-

tracted frame clusters and then manually maps the top-ranked induced slots to reference

slots. Instead of FrameNet, [130] extract features such as noun phrases (NPs) using part-

of-speech (POS) tags and frequent words and aggregate them via a hierarchical clustering

method, but only about 70% target slots can be induced. In addition to the unsatisfactory

induction results due to candidate slot extraction, most of the previous works are only

applicable to a single domain such as restaurant booking with a small amount of data,

and require manual tuning to find spans and generate results. These methods are not

easily adaptable to unseen tasks and services.

The most comparable work to ours is probably [117], which is not bounded by an

existing set of candidate values so that potentially all slots can be captured. They propose

to mix POS tags, named entities, and coreferences with a set of rules to find slot candidates

while filtering irrelevant spans using manually updated filtering lists. In comparison, our

method does not require any supervised tool and can be easily adapted to new domains

and tasks with self-supervised learning. In addition to flexibility, despite our simple

and more stable clustering process compared to their variational embedding generative

approach [131], our method achieves better performance on slot schema induction and

our induced schema is more useful for downstream tasks.

Span extraction Previous works in span extraction consider all combination of tokens

as candidates [132]. Alternatively, keyphrase extraction research [133, 134] mostly de-

pends on corpus statistics (such as frequency), similarity between phrase and document

47

embeddings, or POS tags [135, 136], and formulates the task as a ranking problem. Al-

though these methods can find meaningful phrases, they may result in a low recall for

TOD settings. For instance, the contextual semantics of a span (such as time) in an utter-

ance may not represent the utterance-level semantics compared to other generic phrases.

Other methods for span extraction include syntactic chunking, but mostly require super-

vised data [137] and heuristics (such as considering “noun phrases” or “verb phrases”), and

thus are not flexible and robust compared to our method.

Finally, target spans can be found in syntactic structures which can be potentially

induced from supervised parsers or unsupervised grammar induction [138, 139, 140, 141,

142]. [143] probe LMs and observe that recursively splitting sentences into binary trees

in a top-down approach can correlate to constituency parsing. However, unlike the task

of predicting relationship between words in a sentence where phrases at each level of a

hierarchical structure are valid, detecting clear boundaries is critical to span extraction

but challenging with various phrase lengths. Even though more flexible compared to

semantic parsers that are limited by pre-defined roles, there is no straightforward way to

apply these methods to span extraction.

4.4 Methodology
Our proposed method for slot schema induction consists of a fully unsupervised span

extraction stage followed by coarse-to-fine clustering.

4.4.1 Overview

Given user utterances from raw conversations, our goal is to induce the schema of slot

types S and their corresponding slot values. The span extraction stage extracts spans

(e.g., “with wifi”) from an utterance x. The candidate spans from all user utterances are

then clustered into a set of groups S where each group si corresponds to a slot type such

as “internet” with values “with wifi”, “no wifi”, and “doesn’t matter”. The induced slot

schema can be later used for downstream applications such as dialog state tracking and

response generation.

48

4.4.2 Candidate span extraction

Challenges Since it is unclear what spans are meaningful phrases representative of

task-specific slots, candidate span extraction presents two challenges. Firstly, with either

supervised or unsupervised predicted structures, there is no protocol on what constituent

and from what level we should extract the spans from without relying on dataset-specific

heuristics, especially as structured representations are often compositional [144]. The

second challenge is that span extraction methods should be flexible and robust to unseen

tasks and domains. To tackle these problems, we leverage pre-trained LMs and propose

a novel bottom-up attention-based span extraction method regularized by unsupervised

PCFG for better structure representation. Because our method does not need any super-

vised data, the second problem can be effectively addressed by in-domain self-training.

The full algorithm is outlined in Algorithm 1.

Algorithm 1: Span Extraction
Require: x = x1, x2, . . . , xn: a user utterance x

1: t← PCFG(x) {A Chomsky normal form (binary) tree structure from self-supervised PCFG}

2: a← LM(x) {Attention distribution from a LM}

3: d← [f(ai, ai+1) for i = 1, 2, . . . , n− 1] {Distance between consecutive tokens using a distance

function f}

4: τ ← median(d)

5: sort d in increasing order, di still represents f(ai, ai+1)

6: for all di in d do

7: if di < τ and using PCFG then

8: if nodei and nodei+1 are siblings in PCFG then

9: nodei+1 ← {nodei, nodei+1} {merge nodes, assign new parents}

10: end if

11: else if di < τ then

12: wi+1 ← {wi, wi+1} {merge two tokens}

13: end if

14: end for

Bottom-up attention-based extraction with LMs and PCFG regularization

Recent studies reveal that attention distributions in pre-trained LMs can indicate syn-

tactic relationships among tokens [145]. Therefore, we hypothesize that similar attention

49

0.67 0.55 0.12 0.33 0.45 0.42 0.22 0.14

Figure 4.2. Illustration of span extraction where LM-derived distance function (dis-
tances between tokens are shown below the text) is constrained by a structure predicted
by PCFG (tree structure shown in the figure). Numbers in red are above the median
threshold (0.375) while numbers in green are below, indicating that the tokens share
similar semantics and are from the same span. We can then extract candidate phrases
“a restaurant” and “modern global cuisine”, together with unigrams “I”, “want”, “which”,
and “serves”.

distributions indicate tokens to form a meaningful phrase. We define the distance between

attention distributions as a symmetric Jensen-Shannon divergence [145], and iteratively

merge tokens whose distance is smaller than a threshold2 in a bottom-up fashion. We

start from the smallest distance to the largest, where the merged tokens are considered

as a new token in the next iteration but the distribution distance with adjacent tokens

remains the same. Fig. 4.2 illustrates the distances between tokens from a pre-trained LM

for an example sentence where adjacent tokens such as “global” and “cuisine” are merged

but not “serves” and “modern”. This new decoding method enables us to effectively group

tokens into phrases with precise boundaries.

Although LMs can be used to induce grammar, their training objectives are not opti-

mized for sentence structure prediction, hence falling behind unsupervised PCFG [143] on

syntactic modeling. Utilizing attention distribution from LM representations to extract

spans can thus be fuzzy and noisy. We therefore employ unsupervised PCFG proposed

by [146] as a mechanism to regularize our bottom-up span extraction. Instead of relying
2We use the median of all pairwise distances in an utterance in the experiments. We also compared

other thresholds such as mean but did not observe significant difference.

50

solely on attention distribution, we in addition require two tokens to share the the same

parent in the predicted PCFG tree structure before merging. This extra requirement

reduces the noise from the distribution divergence in a sub-optimal structure representa-

tion. An example illustrating the necessity of span constraint is given in Fig. 4.2. Even

though the distance between “restaurant” and “which” (0.33) is small, we disregard this

span since they do not belong to the same parent in the PCFG structure. After merging

two tokens, we assign the grandparent of the two tokens as the new parent, and continue

the iteration until all distances are examined.

Self-supervised in-domain training Our attention-based approach enables us to ex-

tract phrases beyond certain n-grams, or certain types of phrases in a specific hierarchical

layer. More importantly, it is appealing to adapt to new domains, where a LM can be

further trained to encode structure representations without any annotated data and to

group tokens into candidate phrases based on the training corpus. To encourage efficient

span extraction above token-level representation, we further pre-train a SpanBERT model

[147] by predicting masked spans together with a span boundary objective (denoted as

TOD-Span) on TOD data [148]. This process can be thought of as incorporating corpus

statistics such as phrase frequency into the model implicitly [149].

The unsupervised PCFG is trained to maximize the marginal likelihood of in-domain

utterances with the inside-outside algorithm on the same TOD dataset. Similar to self-

supervised LMs, this process is flexible and robust against domain mismatch, a common

problem with supervised parsers [150]. At inference time, the trained model predicts a

Chomsky normal form from Viterbi decoding [151].

4.4.3 Clustering candidate spans

Challenges After extracting candidate spans as potential slot values, we apply contex-

tualized clustering on them to form latent concepts each slot value belongs to. We face

two major challenges. Firstly, for any clustering method, hyperparameters such as the

number of clusters are critical to the clustering quality, while they are not known for a new

domain. Secondly, because of the trivial differences in slot types (for example, a location

can be a “train departure place”, or a “taxi arrival place”), clustering requires considering

51

Extracted Spans
after 16:15

Sunday
Cambridge

Norwich
east

4 star
doesn’t matter

before 11
guesthouses

need
free parking

12
expensive

12:30
before 9:30
moderate

need
7:15
…

time
16:45
7:28

before 3

price
cheap

moderate
expensive

taxi time
16:45
17:26

before 3

train time
after 4:15
before 11

7:28

departure
time

after 4:15
5:11

before 7:28

arrival time
7:15

before 11
21:36

First step Second step Third step

area
east

center
don’t care

Figure 4.3. Multi-step clustering procedure. Each coarse cluster is further refined by
next-step clustering. The first step uses contextualized span representations to capture
salient groups (such as a cluster about time), and the second step uses the utterance-
level representations of each span to capture domain and intent information. The third
step utilizes span-level representation for fine-grained slot types.

different dimensions of semantics and pragmatics. To address these problems, we propose

an auto-tuned, coarse-to-fine multi-step clustering method.

Auto-tuning hyperparameters To avoid hyperparameter tuning, we utilize density-

based HDBSCAN [152]. Compared to other clustering methods such as K-Means, HDB-

SCAN is mainly parametrized by the minimum number of samples per cluster, and re-

sulting clusters are known to be less sensitive to this parameter. We set this number

automatically by maximizing the averaged Silhouette coefficient [153]

s =
b− a

max(a, b)

across all clusters where a represents the distance between samples in a cluster, and b

measures the distance between samples across clusters.

Multi-step clustering The input to our first-step clustering is the contextualized span-

level representation from the extracted spans. To prevent the surface-level token embed-

dings from playing a dominant role, we replace candidate spans with masked tokens and

use the contextual representation of the masked spans [154].

[155] suggest that we may only identify salient clusters (e.g., cardinal numbers), but

cannot separate for example, different types of cardinals (e.g., number of people or number

52

of stays). Thus, in the second step, we cluster examples within each cluster from the

first step leveraging utterance level representation of spans (i.e. the [CLS] token of the

utterance where the span is from). This enables us to distinguish between domains and

intents as they reflect utterance-level semantics. For example, we may find a cluster of

time information (e.g., “11 AM”) in the first step, and the second step clustering is to

differentiate between train and taxi booking time. Lastly, we cluster groups developed

from the second step into more fine-grained types using span-level representations similar

to the first step. After this multi-step clustering, we can potentially separate for instance,

departure time and arrival time in train booking. This process is illustrated in Fig. 4.3.

Each cluster represents a slot type, with slot values shown as data points. This multi-step

clustering brings an additional benefit of inducing the slot schema with hierarchy, where

sub-groups in further steps belong to the same parent group.

4.5 Experiments
To examine the quality of our induced schema, we perform intrinsic and extrinsic eval-

uations. Our intrinsic evaluation compares the predicted schema with the ground truth

schema by measuring their overlap in slot types and slot values. This indicates how well

our induced schema aligns with the expert annotation. The extrinsic evaluation estimates

the usefulness of the induced schema for downstream tasks, for which we consider dialog

state tracking and response generation tasks. Experiments are conducted on MultiWOZ

[115] and SGD [122] datasets following previous research. We also apply and evaluate our

method for both intent and slot schema induction on realistic scenarios (See Section 4.6).

Baselines We compare our proposed approach with different setups against DSI [117],

which uses supervised tools and heuristics. We evaluate different span extraction methods

including using parsers only, leveraging distance functions from LMs, and combining LMs

with unsupervised PCFG. Specifically, NP extracts all noun phrases3, DSI cand. uses the

same candidates phrases as DSI, and PCFG and CoreNLP [156] extract phrases from an

unsupervised and supervised structure respectively by taking the smallest constituents
3https://spacy.io/

53

https://spacy.io/

above the leaf level. These baselines solely rely on parsers. For our bottom-up attention-

based LM methods (Section 4.4.2), we compare spans extracted using representations from

BERT [7], SpanBERT [147], TOD-BERT [148], and our span-based TOD pre-training

from masking random spans (TOD-Span). Lastly, we combine the LMs with unsupervised

PCFG structures.

4.5.1 Slot schema induction

To evaluate the induced schema against ground truth, we need to match clusters to

ground truth labels4. Previous work on dialog schema induction either requires manual

mapping from a cluster to the ground truth [120] or compares predicted slot values to

its state annotation at each turn [117]. These can create noises and biases, hence not

practical when no annotation is available. Particularly, [117] compare candidate spans to

corresponding reference slot types at each turn, which is a small subset of the ground-

truth ontology. This would overestimate the performance of schema induction since the

matching is more evident and is different from defining schemas in realistic settings.

Instead, we simulate the process of an expert annotator mapping clusters to slot names

by considering the general contextual semantics of spans in a cluster.

Setup We consider semantic representations of ground truth clusters as labels. Specif-

ically, we calculate the contextual representation of spans averaged across all spans in an

induced cluster as cluster representations, and compare that with ground truth slot type

representations computed in the same way. For fair comparison among different methods,

we use BERT to obtain span representations. We assign the name of the most similar slot

type representation to a predicted cluster measured by cosine similarity. If the score is

lower than 0.8 [117], the generated cluster is considered as noise without mapping, which

simulates when a human cannot label the cluster. We report precision, recall, and F1

on the induced slot types. When the number of clusters is larger than the ground truth,

multiple predicted clusters can be mapped to one slot type. This evaluation process is

identical to human annotation, but may be biased towards more clusters. Thus we report
4Predicting labels for each cluster is out of the scope of this paper. Since there are many ways to

assign labels with equal semantics to a cluster (e.g., “food” vs. “restaurant type”)

54

method # clusters slot type slot value

Baseline

DSI 522 87.72 37.18

Parser only

NP 88 69.39 47.46

DSI cand. 113 85.19 49.71

PCFG 339 91.53 53.62

CoreNLP 292 87.72 54.43

Language model only

BERT 340 85.71 55.80

SpanBERT 343 89.66 45.21

TOD-BERT 219 89.66 50.89

TOD-Span 374 85.71 55.29

Language model contrained on unsupervised PCFG

BERT 350 87.72 52.32

SpanBERT 203 89.66 44.51

TOD-BERT 245 91.53 48.13

TOD-Span 290 96.67 58.71

Table 4.1. Schema induction results on MultiWOZ. TOD-Span (span-based LM fur-
ther pre-trained on in-domain data) regulated by PCFG achieves the best performance
on slot type induction and slot value induction evaluated by F1 scores. All methods
(except DSI) differ only by span extraction (i.e., same clustering).

the number of induced clusters for reference. Similarly, within each slot type, we com-

pute the overlapping of cluster values to all ground truth slot values and report precision,

recall, and F1 by fuzzy-matching scores [117], averaged across all types.

Results Table 4.1 shows the results of schema induction on slot types and slot values.

All methods lead to a number of clusters within a similar range (except the slightly larger

522 clusters for DSI), indicating that the results are not biased and are comparable. When

the candidate span input to our proposed multi-step clustering is the same as the baseline

DSI using POS tagging and coreference (DSI cand.), we achieve similar performance on

55

method turn level joint level

Baseline

DSI 18.29 25.22

Parser only

PCFG 25.43 32.39

Language model only

BERT 24.35 30.18

SpanBERT 20.24 26.07

TOD-BERT 25.05 34.94

TOD-Span 29.72 38.89

Language model contrained on unsupervised PCFG

BERT 23.27 30.09

SpanBERT 20.96 27.25

TOD-BERT 27.11 31.92

TOD-Span 39.59 46.69

Table 4.2. DST results on MultiWOZ. We show F1 scores of turn and joint level.
TOD-Span regularized by PCFG achieves the best performance.

slot type induction (85.19) and better results on slot values (49.71). This illustrates the

effectiveness of our proposed clustering method since the only difference from the DSI

baseline is clustering. Compared to methods leveraging noun phrases (NP), or supervised

parsers (CoreNLP), using an unsupervised PCFG trained on in-domain TOD data can

achieve comparable or superior results.

If we extract spans using LMs only, different models perform similarly on both slot

types and slot values. However, when regularized by an unsupervised PCFG structure,

we observe a large performance boost especially with TOD-Span. This indicates that the

unsupervised PCFG can provide complementary information to LMs. In addition, results

show that further pre-training a LM at span level is more efficient.

56

belief state BLEU

None 15.6

DSI 13.9

TOD-Span + PCFG 16.4

Ground truth 17.9

Table 4.3. Response generation results on MultiWOZ. Our method introduces positive
inductive bias.

4.5.2 Application in DST

Now that we have mapped induced clusters to ground truth names, we can immediately

evaluate DST performance by identifying slot values and types as described above. This

can be considered as a zero-shot setting.

Setup Following [117], we calculate the overlapping of the predicted slots and values

with their corresponding ground truth at both the turn level and the joint level. At each

turn, a fuzzy matching score is applied on predicted values [122] whose corresponding

slot types are in the ground truth. On the other hand, even if a slot value is predicted

correctly but its slot type does not match the ground truth, no reward is accredited. On

the joint level, we calculate the score for accumulative predictions up to the current turn.

Results Table 4.2 summarizes the results for DST. Similar to the trend in schema

induction, constraining an in-domain fine-tuned LM (TOD-Span) on an unsupervised

structure representation (PCFG) achieves the best performance (39.95 on turn level),

significantly outperforming a strong baseline DSI (18.29)5. We also note that because all

accumulated predictions are evaluated for partial rewards instead of exact matching on

all slot types in standard DST evaluation, the joint level scores are higher than the turn

level from accumulative scores.

4.5.3 Application in response generation

The above settings map latent slot clusters to ground truth analogous to expert designs so

that we can evaluate the alignment with human annotations. This experiment investigates

whether the induced latent schema is still useful before mapping.
5We use their provided data and model to run the DSI baseline. The reason the score is lower here

than their report is due to slot type matching (Section 4.5.1).

57

Setup We modify the model of [157, 158] by appending the predicted labels (i.e., cluster

index such as “10-24” indicating a specific slot type) and values to the context (e.g., “I

need a train at 7:45. [10-24] 7:45” as input). The added belief state can be considered

as a prior to generate responses similar to [159]. Since we do not have the mapped

names of the slots, we only report the BLEU score rather than other metrics used in

response generation that require entity-level matching (e.g., inform rate). This is a more

practical setting directly evaluating on the induced schema compared to previous work

[117], where dialog act is modeled with delexicalized input utterances ([160], not feasible

because ontology is required from a pre-defined schema for delexicalization).

Results Table 4.3 compares the performance of using no belief state (None), belief state

induced by DSI, our introduced method (TOD-Span + PCFG), and ground truth. Results

show that our induced schema introduces a positive inductive bias (16.4) compared to the

baseline (15.6) and is close to the ground truth schema with actual slot type names. We

conjecture that the lower performance of DSI is due to the larger number of latent types

(522) which creates noises in model training. Thus, our induced slot schema is useful for

downstream applications.

4.6 Analysis
Comparison among different methods Our results show that in general, span-based

pre-training methods outperform token-based, and continued pre-training on in-domain

data is important. When regularized by PCFG structures, we observe a large performance

boost on TOD-BERT and TOD-Span, however the PCFG structure does not help BERT

and SpanBERT when the LM is trained on general domain data only. We speculate that

the LM representation trained on generic text is not compatible with the predicted struc-

ture induced via in-domain self-supervision. In addition, we believe that the performance

gap between our proposed method and previous research using rules from supervised

parsers (such as NPs and coreference) is larger when the data is less biased (for example,

if NP is not dominant as slot values, [161]). Moreover, our proposed method is data-

driven, indicating that the slots are determined by the dialog corpus. If there are specific

58

annotation requirements, we can inject inductive bias to the LM to change distribution

distances [162] or add rules to incorporate such conditions.

Comparison among different datasets On MultiWOZ, our method induces 30 out

of 31 slot types in the ontology except “hospital-department”, which only appears once

in the dialog corpus. For slot values, errors are mostly from low precision due to loose

boundaries and semantic matching (e.g., predicting “free wifi”, and “include free wifi”,

where the target value is “yes”). In comparison, DSI induces 26 slot types, with similar

slots mixed (such as mapping “taxi-arriveby” to “taxi-leaveat”). It receives a relatively

low slot value score since spans extracted using rules are not robust and compatible. On

SGD where 82 slot types are defined in the ontology, our method induces 50 and DSI

induces 72. The main reason for this low recall is similar slot types with overlapping

values (such as “media-genre” and “movies-genre”), and single-value slots (such as “has-

wifi” with the value “True”). More importantly, SGD has a smaller utterance length,

making it more difficult to map to the correct slot type without considering more context.

With a magnitude more number of clusters, DSI (11992 clusters) has a higher chance to

map predicted slots to target slot types which explains better performance than ours on

schema induction. However, this large number of clusters make it infeasible for humans

to use, and our induced schema is comparable in downstream tasks such as DST.

We also apply our method on internal customer data for both intent (by applying

multi-step clustering directly on utterances) and slot schema induction. Compared to

MultiWOZ and SGD, schema in more realistic scenarios is more complicated and the

slot boundaries are less clear. Nevertheless, our method is still effective in inducing the

majority of the schema to find intents such as “change password” and slot types such as

“devices”. We observe similar findings on the Ubuntu dialog corpus [163].

Ablation studies Table 4.4 illustrates the performance comparisons with different

numbers of clustering steps, as well as input representations. Results demonstrate that

compared to one-step (using masked span representation) and two-step (adding utterance

representation), our three-step clustering method induces a more fine-grained schema,

which is more effective for downstream tasks. The number of steps can be customized to

59

schema DST

method # clusters type value turn joint

Different number of clustering steps

one-step 31 60.87 39.74 23.58 30.68

two-step 99 83.64 46.66 35.21 41.94

Original representation instead of masked

unmasked rep. 284 85.71 53.30 27.93 36.40

Three-step masked clustering

Three-step masked 290 96.67 58.71 39.59 46.69

Table 4.4. Ablation results on MultiWOZ with TOD-Span constrained on PCFG. Us-
ing masked presentation for multi-step clustering improves the performance on schema
induction and DST by a large margin.

real use cases depending on target granularity6. In addition, if we use the original input

rather than the masked phrase representation, the performance drops by a large margin

(85.71 on slot type). This suggests that the surrounding context is more critical than

the surface embeddings for schema induction, especially when the same phrase can serve

different functions even in the same domain (such as locations).

DST Error analysis Suggested by the relatively high span extraction accuracy (68.13

F1 score), we find that the majority of the problems in DST come from cluster mapping.

This is caused by either excessive surrounding information or by the lack of context

from previous turns. For instance, in the utterance “Can I book it for 3 people", the “3

people” can be mapped to either “restaurant-book people” or “hotel-book people”, since

we extract the contextual information from the current turn only. If more context is

considered, the mapping performance including results on downstream tasks is expected

to improve. Another issue is with span boundary. Even though we apply fuzzy matching,

the evaluation still penalizes correct predictions (such as “indian food”) from its ground

truth (“indian”), since we do not have training signals to identify the target boundaries.
6More steps were also conducted but we observed lower Silhouette coefficient and lower quality in

preliminary studies.

60

4.7 Summary
In this chapter, we introduce methods to represent more fine-grained low-level attributes

such as ontology. Illustrated with an example in the task-oriented dialog domain, we

propose a fully unsupervised method for slot schema induction where we propose to learn

attributes such as phrases that are critical to the target task. Compared to previous re-

search, our method can be easily adapted to unseen domains and tasks to extract target

phrases before clustering into fine-grained groups without domain constraints. We con-

duct extensive experiments and show that our proposed approach is flexible and effective

in generating accurate and useful schemas without task-specific rules in both academic

and realistic datasets. We believe that our method could also be applied to other lan-

guages (since no supervised parser is required) and tasks where the target is not explicitly

annotated [164]. One immediate next step would be to extend our method to represent

more complex structures.

61

Chapter 5
Task-specific Attribute Representation

5.1 Overview
Different from high-level and low-level attributes, there are cases where it might be easier

to consider the task itself as an attribute, instead of implicitly learning some intermediate

representation to connect some trained parameters to the output space. Different from

previous chapters, methodologies to represent task-specific attributes are not universal,

as each task may require different optimal modeling methods. In this chapter, we choose

two distant task-specific attributes for illustration.

We first introduce example representation, where examples are considered as attributes

of spans or sentences. Readers may draw some connection to low-level attributes where

we represent spans and ontolgoies in Chapter 4. The main difference is that instead

of learning and extracting the attribute representation implicitly, we can view example

representation as the output space directly by disentangling from the target labels. Then

we introduce problem representation, where the we consider the mostly critical problems in

neural language models including toxicity and inconsistency that are inherently learned

from model pre-training. Although problems can be viewed as high-level attributes as

examined in Chapter 3, we study representing problems as attributes directly, instead of

learning hidden representations towards controlling neural models.

This chapter is based on our works [132, 165] that were published at the NAACL 2021

62

and EMNLP 2021 conference, which I lead as the main author. Luheng He, Yuan Zhang,

Xinya Du, Panupong Pasupat, and Qi Li (from Google), and Kenji Sagae serve in an

advisory capacity.

5.2 Example Representation for Retrieval-based Lan-
guage Understanding

5.2.1 Introduction

Few-shot learning is challenging due to the imbalance in the amount of data between

the source and target domains. Traditional classification methods, even with the recent

advancement of pre-trained language models [6, 7], could suffer from over-fitting [166, 167]

or catastrophic forgetting [168] when incorporating the data-scarce target domain. On

the other hand, metric learning methods [169, 170, 166] have been shown to work well

in few-shot scenarios. These methods are based on modeling similarity between inputs,

effectively allowing the model to be decoupled from the semantics of the output space.

For example, a model would learn that the utterance “I’d like to book a table at black horse

tavern at 7 pm” (from Figure 5.1) is similar to “make me a reservation at 8” and thus

are likely to have similar semantic representations, even without knowing the semantic

schema in use. Unlike learning output labels, which is difficult when examples are scarce,

learning a similarity model can be done on the abundant source domain data, making

such models data-efficient even in few-shot settings.

We focus on retrieval-based methods among other metric learning methods. The most

basic setting of retrieval-based model for few-shot learning is: after training a similarity

model and encoding target domain data into the index, we can retrieve examples most

similar to the given input, and then make a prediction based on their labels. Compared

to methods that do not maintain an index, such as Prototypical Networks [166], retrieval-

based methods are less sensitive to outliers with few data points, and are powerful when

we have abundant data in the source domain [167]. However, applying retrieval-based

models on tasks with a structured output space is non-trivial. For example, even if we

know that the utterance in Figure 5.1 is similar to “make me a reservation at 8”, we cannot

63

directly use its slot values (e.g., the time slot has value “8” which is not in the input), and

not all slots in the input (e.g., “black horse tavern”) have counterparts in the retrieved

utterance. While previous works have exploited token-level similarity methods in a BIO-

tagging framework, they had to separately simulate the label transition probabilities,

which might still suffer from domain shift in few-shot settings [171, 172].

[CLS] I’d like to book a table at black horse tavern at 7 pm ...

[CLS] book a table at the
vertex bar & grill on
alaska day in …
slot name: restaurant_type

[CLS] book a taverna that
serves vichyssoise within
walking distance …
slot name: restaurant_type

[CLS] make me a
reservation at a bar for a
party of 7 in …
slot name: restaurant_type

examples in the support set

query

0.87 0.96 0.97
0.58

[CLS] book a taverna that
serves vichyssoise within
walking distance …
slot name: served_dish

Figure 5.1. Illustration of span-level retrieval for slot filling. For each span (including
spans that are not valid slots such as “book a table”) in the input utterance, we retrieve
its most similar span from the retrieval index, and then assign the slot name as the
prediction with a similarity score. We use modified beam search to decode an output
that maximizes the average similarity score. The gold slots are “black horse tavern”
and “7 pm” in this example.

5.2.2 Setup

We consider two tasks where the input is an utterance x with tokens x1, . . . , xn and

the output is some structure y. For the slot filling task, the output y is a set of non-

overlapping labeled spans {(ri, ℓi)}mi=1 where ri is a span of x (e.g., “7 pm”) and ℓi is a

slot name (e.g., time). For the intent classification task, the output y is simply an intent

label ℓ for the whole utterance x. For notational consistency, we view intent classification

as predicting a labeled span (r, ℓ) where r = x1:n.

In the few-shot setup, examples (x,y) are divided into source and target domains.

Examples in the target domain may contain some labels ℓ that are unseen in the source

domain. The model will be given ample training data from the source domain, but only

a few training examples from the target domain. For instance, the model receives only

K = 5 examples for each unseen label. The model can be evaluated on test data from

both domains.

64

5.2.3 Model

We propose a retrieval-based model, Retriever, for intent classification and slot filling in

the few-shot setting. Figure 5.1 illustrates our approach. At a high level, from examples

(x,y) in the target training data (and optionally the source training data), we construct

a retrieval index consisting of labeled spans (r, ℓ) from y. Given a test utterance x, for

each span of interest in x (all spans xi:j for slot filling; only x1:n for intent classification),

we retrieve the most similar labeled spans (r, ℓ) from the index, and then use them to

decode an output y that maximizes the average span similarity score.

The use of retrieval provides several benefits. For instance, we empirically show in

Section 5.2.5.1 that the model does not suffer from catastrophic forgetting because both

source and target data are present in the retrieval index. Class imbalance can also be

directly mitigated in the retrieval index. Additionally, since the trained model is non-

parametric, we could replace the retrieval index to handle different target domains without

having to retrain the model. This also means that the model does not need access to target

data during training, unlike traditional classification methods.

5.2.3.1 Retriever

The retriever is the only trainable component in our model. Given a query span r′ = xi:j

from the input x, the retriever returns a set of labeled spans (r, ℓ) with the highest

similarity scores s(z, z′), where z = E(r) and z′ = E(r′) are the contextualized embedding

vectors of r and r′, respectively.

Similarity score To compute the contextualized embeddings z and z′ of spans r and r′,

we first apply a Transformer model initialized with pre-trained BERT on the utterances

where r and r′ come from. For slot filling, we follow [173] and define the span embedding as

the concatenated embeddings of the its first and last wordpieces. For intent classification,

we use the embedding of the [CLS] token. We then define s(z, z′) as the dot product

between z and z′.

Training with batch softmax We use examples from the source domain to train

Retriever. Let ℓ1, . . . , ℓN be the N class labels (slot or intent labels) in the source domain.

To construct a training batch, for each class label ℓi, we sample B spans r1i , . . . , r
B
i from

65

the training data with that label, and compute their embeddings z1i , . . . , z
B
i . Then, for

each query span rji , we compute similarity scores against all other spans in the batch to

form a B ×N similarity matrix:

Sj
i =


s(zji , z

1
1) s(zji , z

1
2) . . . s(zji , z

1
N)

s(zji , z
2
1) s(zji , z

2
2) . . . s(zji , z

2
N)

...
...

s(zji , z
B
1) s(zji , z

B
2) . . . s(zji , z

B
N)

 . (5.1)

We now summarize the score between rji and each label ℓi′ by applying a reduction function

(defined shortly) along each column to get a 1×N vector:

Ŝj
i =

[
s(zji , z

∗
1) s(zji , z

∗
2) . . . s(zji , z

∗
N)
]

(5.2)

We use the softmax of Ŝj
i as the model’s probability distribution on the label of rji . The

model is then trained to optimize the cross-entropy loss on this distribution against the

gold label ℓi.

We experiment with three reduction functions, mean (Eq. 5.3), max (Eq. 5.4), and

min-max :

s(zji , z
∗
i′) =

1

B

B∑
j′=1

s(zji , z
j′

i′) = s

(
zji ,

1

B

B∑
j′=1

zj
′

i′

)
(5.3)

s(zji , z
∗
i′) = max

1≤j′≤B;
j′ ̸=j if i=i′

s(zji , z
j′

i′) (5.4)

The mean reduction averages embeddings of the spans with the same label and is

equivalent to Prototypical Networks. Similar to hard negative sampling to increase mar-

gins among classes [174, 175, 176], max takes the most similar span to the query (excluding

the query itself) as the label representation, while min-max takes the least similar span

when considering spans with the same label as the query.

5.2.3.2 Inference

After training, we build a dense retrieval index where each entry (r, ℓ) is indexed by

z = E(r). The entries (r, ℓ) come from examples (x,y) in the support set which, depending

66

on the setting, could be just the target training data or a mixture of source and target

data. For each query span r′ of the input utterance x, we embed the span and compute

the similarity scores against all index entries.

Intent classification For intent classification, both index entries and query spans are

restricted to the whole utterances. The entire process thus boils down to retrieving the

most similar utterance based on the [CLS] token embedding. We simply output the intent

label of the retrieved utterance.

Slot filling In contrast to BIO decoding for token-level similarity models [172], decoding

with span retrieval results poses unique challenges as gold span boundaries are not known

a priori. Hence, we use a modified beam search procedure with simple heuristics to

compose the spans. Specifically, for each of the n × m spans in an utterance of length

n, we retrieve the most similar span from the retrieval index. Then we normalize the

similarity scores by L2-norm so that they are within the range [0, 1]. Since we do not

explicitly predict span boundaries, all n×m spans, including non-meaningful ones (e.g.,

“book a”), will have a retrieved span. Such non-meaningful spans should be dissimilar to

any labeled span in the retrieval index. We thus choose to filter the spans with a score

threshold to get a smaller set of candidate spans, and use beam search to decode a set

of spans with maximum average scores.1 We go through the list of candidate spans in

the descending order of their similarity scores. For each candidate span, we expand beam

states if the span does not overlap with the existing spans in the beam. The search beams

are pruned based on the average similarity score of the spans included so far.

5.2.4 Experiments and Results

We evaluate our proposed approach on two datasets: CLINC [177] for intent classification

and SNIPS [178] for slot filling. Note that we use max (Eq. 5.4) as the reduction function

for both tasks since it empirically yields the best results. The effect of reduction functions

will be analyzed later in Section 5.2.5.1.
1We use beam search for simplicity. Other search methods such as Viterbi algorithm [151] can also be

used.

67

support_set=all support_set=balance support_set=tgt

tgt src avg tgt src avg tgt

Initial BERT

Protofrz 14.07 25.02 21.37 - - - -

Retrieverfrz 8.24 54.76 39.25 22.09 25.29 24.22 37.93

Pre-train on src domain

BERT fine-tune - 96.51 - - - - -

Proto 75.02 95.73 88.83 - - - -

Retriever 62.69 97.08 85.62 75.93 95.44 88.94 88.53

Retriever min-max 66.00 96.64 86.43 71.82 95.14 87.37 86.38

Fine-tune on tgt domain

BERT fine-tune 78.89 43.91 55.57 - - - -

Proto 80.44 95.57 90.53 - - - 90.35

Retriever 66.76 96.95 86.89 79.20 95.50 90.07 91.16

Retriever min-max 67.64 96.84 87.11 77.60 95.35 89.43 89.56

Fine-tune on tgt domain with src data

BERT fine-tune 72.00 95.18 87.45 - - - -

Proto 83.33 94.82 90.99 - - - 90.22

Retriever 69.51 97.04 87.86 84.95 95.41 91.92 90.78

Retriever min-max 71.35 96.96 88.42 81.00 94.55 90.03 89.82

Table 5.1. Intent accuracy on CLINC for nc = 10, ni = 10 with 5-shots. Our retrieval-
based method outperform BERT fine-tune and Prototypical Networks in both target
and source domains. We report results for our method when the support set consists
of all examples in the source and target domains (all), when the support set consists of
balanced few-shot number of examples for intents in both source and target domains
(balance), and when the support set consists of examples of the target domain only
(tgt) which serves as an upper-bound.

5.2.4.1 Intent Classification

The CLINC intent classification dataset [177] contains utterances from 10 intent cate-

gories (e.g., “travel”), each containing 15 intents (e.g., “flight_status”, “book_flight”). To

simulate the few-shot scenario where new domains and intents are introduced, we desig-

68

nate nc categories and ni intents per category as the source domain (with all 100 training

examples per intent), and use the remaining 150− nc × ni intents as the target domain.

We experiment with (nc, ni) = (10, 10), (8, 10), and (5, 15). The target training data

contains either 2 or 5 examples per target intent.

We compare our proposed method Retriever with a classification model BERT fine-tune

and a Prototypical Network model Proto. The former learns a linear classifier on top of

BERT embeddings [7], and the latter learns class representations based on Prototypi-

cal Networks.2 We also show results with the initial BERT checkpoint without training

(Protofrz, Retrieverfrz). We use the same batch size for all models, and tune other

hyperparameters on the development set before testing.

Evaluation We sample domains and intents three times for each (nc, ni) setting, and

report average prediction accuracy. We report accuracy on intents from the target domain

(tgt), source domain (src), and the macro average across all intents (avg).

Moreover, we evaluate the models with the following support set variations: with

target domain data and all data in the source domain (support_set=all), with equal

number of examples (same as the few-shot number) per intent (support_set=balance),

and with only examples from the target domain (support_set=tgt). The last one serves

as an upper-bound for the target domain accuracy.

Results Table 5.1 shows the results for (nc, ni) = (10, 10) and 5 examples per target in-

tent; results on other settings exhibit the same patterns. We observe that Retriever per-

forms the best on the source domain (97.08%) before fine-tuning. Retriever also achieves

the highest accuracy on the target domain (84.95%) after fine-tuning, while maintaining

competitive performance on the source domain (95.41%) among all the methods.

5.2.4.2 Slot Filling

SNIPS [178] is a slot filling dataset containing 39 slot names from 7 different domains:

GetWeather (GW), PlayMusic (PM), AddToPlaylist (ATP), RateBook (RB), FindScreeningEvent

(FSE), BookRestaurant (BR), and SearchCreativeWork (SCW). Following [172], we train
2Previous work show that Prototypical Networks outperforms other optimization-based and metric-

learning models such as MAML in (intent) classification tasks [167, 179].

69

GW PM ATP RB FSE BR SCW Average F1

Classification-based

BERT Tagging 59.41 42.00 46.07 20.74 28.20 67.75 58.61 46.11

Token-level

SimilarTokenfrz 53.46 54.13 42.81 75.54 57.10 55.30 32.38 52.96

MatchingToken 36.67 33.67 52.60 69.09 38.42 33.28 72.10 47.98

ProtoToken 67.82 55.99 46.02 72.17 73.59 60.18 66.89 63.24

L-TapNet+CDT+Proto - - - - - - - 67.27

L-Proto+CDTpw* 74.68 56.73 52.20 78.79 80.61 69.59 67.46 68.58

L-TapNet+CDT+Protopw* 71.64 67.16 75.88 84.38 82.58 70.05 73.41 75.01

Span-level (ours)

Protofrz 39.47 38.35 47.68 69.36 38.60 42.39 19.90 42.25

Proto 64.47 53.97 54.64 73.37 42.89 62.48 27.76 54.23

Retrieverfrz 63.39 46.01 51.11 79.65 62.42 62.13 33.85 56.94

Retriever 82.95 61.74 71.75 81.65 73.10 79.54 51.35 71.72

Table 5.2. Results on SNIPS test data with 5-shot support sets. Our span-based re-
trieval model outperforms previous classification-based and token-level retrieval models
even without label semantics. Classification-based and token-level results are reported
in [172]. *Pair-wise embeddings (marked with pw) are expensive at inference time, so
we do not compare our method with these directly.

models on five source domains, use a sixth one for development, and test on the remaining

domain. We directly use the K-shot split provided by [172], where the support set consists

of the minimum number of utterances such that at least K instances exist for each slot

name. We also set K = 5 in our experiment.

We compare against two baselines and three models from the previous work. BERT

Tagging is a BERT-based BIO tagging model [7] fine-tuned on the testing domain after

training on the source domains, while SimilarTokenfrz uses BERT embeddings to retrieve

the most similar token based on cosine similarity without any training. MatchingToken

and ProtoToken are two token-level methods that leveraged Matching Networks [170] and

Prototypical Networks [166] respectively. L-TapNet+CDT+proto [172] is an adaptation

70

of TapNet [180] with label semantics, CDT transition probabilities, and Prototypical

Networks.

We experiment with several variants of our proposed method. Proto trains Proto-

typical Networks to compute span class representations. Retriever retrieves the most

similar slot example for each span. Both methods use the same decoding method. Sim-

ilar to SimilarTokenfrz, Protofrz and Retrieverfrz use the original BERT embeddings

without any training. All models are trained on source domains and early stopped based

on performance on the development domains.

Evaluation We report F1 scores for each testing domain in a cross-validation episodic

fashion. Following [172], we evaluate each testing domain by sampling 100 different sup-

port sets and ten exclusive query utterances for each support set. We calculate F1 scores

for each episode and report average F1 scores across 100 episodes.

Results Table 5.2 summarizes the experiment results on the SNIPS dataset. Our span-

level method (Retriever) achieves higher averaged F1 than all five baselines, outper-

forming the strongest token-level method (L-TapNet+CDT+proto) by 4.45%. This shows

that our model is effective at span-level predictions. More importantly, the better per-

formance suggests that our span-level Retriever model is more efficient at capturing

span structures compared to simulated dependencies as our method does not suffer from

the potential discrepancy in the transition probabilities between the target and source

domains.

Although [172] showed that adding pairwise embeddings with cross-attention yielded

much better performance, this method is expensive both in memory and computation at

inference time, especially when the support set is large [181]. For fair comparison, we

do not directly compare with methods using pairwise embeddings (methods with pw in

Table 5.2). Note that our method with pre-computed support example embeddings even

outperforms L-Proto+CDTpw with less memory and computation cost.

5.2.5 Analysis

We conduct further discussion and ablation studies in this section to analyze the variations

of different settings.

71

5.2.5.1 Intent Classification

Models without re-training The pre-train on src domain section in Table 5.1 shows

the results of models that are only pre-trained on the source domains but not fine-

tuned on the target domains. Classification models such as BERT fine-tune cannot

make predictions on target domains in this setting. In contrast, even without seeing

any target domain examples during training, retrieval-based models can still make pre-

dictions on new domains by simply including new examples in the support sets. With

support_set=all, Retriever achieves 97.08% on the source domain while Proto performs

worse than BERT fine-tune, consistent with previous findings [167]. Retriever achieves

the best accuracy (75.93%) on target domains with a balanced support set on all intents

(support_set=balance). More importantly, Retriever also achieves competitive accu-

racy on source domains (95.44%), demonstrating that our proposed model achieves the

best of both worlds even without re-training on new domains.

Varying the support set at inference time The construction of the support set

is critical to retrieval-based methods. In Table 5.1, we present the model performances

under different support settings (all, balance, tgt). The support_set=tgt setting serves as

an upper bound for the target domain accuracy for both Retriever and Proto methods.

In general, Retriever achieve the best performance on the source domain intents when we

use full support sets (support_set=all). In comparison, if we use a balanced support set

(support_set=balance), we can achieve much higher accuracy on the target domain while

having a slight degradation on the source domain intents prediction. This is because full

support sets have more source domain examples to increase confusion over target domains.

Data for fine-tuning The Fine-tune on tgt domain section in Table 5.1 shows dif-

ferent model behaviors when fine-tuned on the target domain data directly. While

BERT fine-tune achieves high accuracy (78.89%) on the target domain, it suffers from

catastrophic forgetting on the source domain (43.91%). On the other hand, Proto and

Retriever can get high accuracy on the target domain (80.44% and 79.20%) while main-

taining high performance on the source domain.

When we combine data from the source domain, we observe performance gains in all

72

the models under the Fine-tune on tgt domain with src data section. Specifically, we add

few-shot source domain examples as contrastive examples for the models to learn better

utterance/class representations for Retriever and Proto. Results show that accuracy

on the target domain increases by over 3% compared to only using target domain data.

This suggests that unlike other retrieval-based methods such as kNN, Retriever does

not require a large support set to guarantee prediction accuracy.

Impact of reduction functions We compare the reduction functions proposed in Sec-

tion 5.2.3.1 and found that max performs the best. Since mean is equivalent to Prototypical

Networks, we compared to Proto directly in the experiments. min-max is more intuitive

in constrasting with least similar examples within the same class compared to max. How-

ever, its performance is worse than max. We speculate the reason to be that we retrieve

the example with the maximum score at inference time so that the boundary margin may

not be utilized.

5.2.5.2 Slot Filling

We note that Retriever outperforms strongest baselines but reaches a low score on the

SCW domain. This may be due to the bigger difference between the test (SCW) and

the development domain (GW) including the size of the support set and their respective

slot names. For error analysis, we found that from all the correctly predicted slot spans,

96.73% predicted the correct slot names. This shows that the majority of the errors

come from querying with invalid spans. We believe that span-based pre-training such as

Span-BERT [147] could make our proposed method achieve better results.

Analyzing Proto From Table 5.2, Retriever outperforms Proto by 17% when training

the span representations. We conjecture that this is caused by Proto learning noisy

prototype. Compared to Retriever, the similarity scores between the spans and their

corresponding class representations are low, indicating that the span-level prototypes may

not be clearly separated.

73

5.2.6 Related Work

Few-shot metric learning Metric learning methods target at learning representations

through distance functions. [182] proposed Siamese Networks which differentiated input

examples with contrastive and triplet loss functions [174] on positive and negative pairs.

While they are more data efficient for new classes than linear classifiers, Siamese Networks

are hard to train due to weak pairs sampled from training batch [183]. In comparison,

Prototypical Networks [166] proposed to compute class representations by averaging em-

beddings of support examples for each class. These methods have been mostly explored

in computer vision and text classification [184, 185], and consistently outperform Siamese

Networks and retrieval-based methods such as k -nearest-neighbors, especially when there

are more classes and fewer annotated examples [167, 186]. However, newly added exam-

ples which are outliers may change the prototypical representations dramatically that can

harm all predictions on the class. In addition, these methods do not perform well when

there are more annotated data available per class [167].

Metric learning in language understanding Utilizing relevant examples to boost

model performance has been applied to various tasks such as language modeling [187]

and question answering [188, 189]. Recently, metric learning has been applied to intent

classification [186, 179]. [179] utilized Prototypical Networks to learn intent and slot name

prototype representations and classified each token to its closest prototype. They showed

better results than meta-learning, another prevalent few-shot learning method [190, 191].

In order to consider label dependencies that are essential in slot tagging tasks [192], [172]

proposed a collapsed dependency transfer (CDT) mechanism by simulating transition

scores for the target domain from transition probabilities among BIO labels in the source

domain, outperforming previous methods on slot filling by a large margin. However, this

simulation is noisy and the difference between the source and target domains can result

in biased transition probabilities.

The most similar approach to ours is a concurrent work from [193], which learns span

boundaries and sentence similarities before retrieving the most similar span, inspired by

question-answering models. Even though this approach predicts spans before retrieving on

74

the span level and thus bypasses the problem of transition probability in previous research,

it only achieves unsatisfactory results. Different from these researches, we propose to learn

span representations using a batch softmax objective without having to explicitly learn

span boundaries. Our method achieves more accurate slot and intent prediction than

previous methods in the few-shot setting.

5.3 Problem Representation for Exposing Safety and
Consistency Issues

5.3.1 Introduction

Language models, including dialog models, greatly benefit from training on large amounts

of data with the objective of mimicking human generated sentences [27, 9, 194, 195, 196].

However, even with carefully pre-processed training data from online sources, neural dialog

models are prone to issues including generic utterances, repetition, contradiction, and lack

of safety [197, 198, 199, 196, 200]. Compared to modularized dialog systems which are

designed to avoid these problems [201, 202], fixing these issues with end-to-end neural

models is more challenging, which may hinder real world use of trained models [203,

204]. We argue that before solving these problems using simulated data from simplified

scenarios, we need to be able to probe the models and expose the problems in a dynamic

way.

Even though crucial limitations of neural dialog models are prevalent, they are mostly

manually identified and categorized through interactions between model designers and

the dialog system during qualitative analysis [196]. Recent work proposes asking annota-

tors to converse with dialog models while goading the model into generating problematic

responses in a black-box attack setting. Although the data collected in this way can

improve the performance of both problem classifiers and model generation, human anno-

tators mostly rely on straightforward and intuitive strategies to collect the dataset, which

may only expose superficial problems. For instance, [205] instructs crowdworkers to trig-

ger dialog systems into responding with unsafe (offensive or otherwise socially undesirable)

utterances, but most of the human messages are either hate speech or controversial state-

75

ments. Similarly, [206] asks Mechanical Turkers to manually write contradicting dialogs

for both humans and bots, or to interact with chatbots, where a frequent strategy is to

ask factual questions intentionally leading to contradiction (e.g. ask “do you speak Span-

ish” after the bot says “I am a Spanish teacher” in previous turns). Although these tricks

are effective, the human inputs are not necessarily coherent with the conversation con-

text, and the difference in the distribution from how humans interact with dialog systems

makes the collected data less useful in practice. In addition, the data collection procedure

is extremely expensive and is not practical for newly trained models. More importantly,

systematic problems are still not revealed.

htrigger hx1 hy1 hx2 hy2 ... hxk-1 hyk-1

Encoder Decoder
xk1

 hx1 hy1 hx2 hy2 .. hxk-1 hyk-1hxk

Encoder Decoder
yk2

Classifier

x1 y1 x2 y2 ... xk-1 yk-1

x1 y1 x2 y2 ... xk-1 yk-1 xk

...
yk-2 I prefer to watch it live, but if it’s on
tv, I only watch big games like the
superbowl

yk-1 I do, the dallas cowboys. Do you
have a favorite team?

xk-1 I do, the dallas cowboys. Do you
have a favorite team?

xk

yk

Figure 5.2. Illustration of our problem exposure task and proposed model. Given
conversation history, our goal is to generate a coherent prompt xk, which will induce a
neural dialog model (encoder-decoder in this example, all its parameters are frozen) to
respond an utterance yk that contains problems such as unsafe and inconsistent. To do
this, we learn hidden states htrigger which will guide the decoder to generate xk through
attention. In the second step, we remove the learned hidden states and append newly
generated utterance xk to generate a response yk. Contextualized yk representation
is sent to a problem classifier to output either gradients for Trigger_weakly (which
requires htrigger in step 2), or a reward for Trigger_PPO. For Trigger_PPO_adv, xk is
also sent to the classifier to obtain a reward.

In this work, we propose to automatically expose problems with neural dialog models

in a more systematic setting. Given a conversation context, the goal is to generate a

coherent utterance to act as a human prompt through self-chat, which will trigger the

dialog system into generating a problematic response. To this end, we propose to learn

some trigger hidden states while freezing the original dialog model. We assume that we

have some problem classifiers which can be from in-domain or out-of-domain collected

data. This is practical because out-of-domain data is relatively easy to collect and we

76

do not require a perfect classifier. Each token can attend to the trigger hidden states

when generating the next tokens so that the generated prompt include systematic signals

regarding target problems. Specifically, we introduce a weakly-supervised method where

we can back-propagate the gradients from the classifier through self-attention and cross-

attention. We also introduce a reinforcement learning method that uses classifier results

on the model responses as rewards.

Compared to sentiment neurons [207], learning trigger hidden states as a problem

switch is a much harder task because our hidden states in a relative shallow model are

not trained with a huge amount of clearly distinguished supervised data. Furthermore,

exposing more subtle problems (such as contradiction) with a coherent prompt that will

indirectly impact on the model response rather than direct conditional text generation is

more challenging, similar to probing models in an adversarial attack setting. However, we

demonstrate the effectiveness of our proposed methods on automatic problem exposure

with the state-of-the-art chatbot Blenderbot [196]. We evaluate with two problems: safety

and consistency. In addition, we show that the generated examples can help to improve

the performance of out-of-domain problem classification as well.

5.3.2 Task Definition

Given the context of a conversation ck−1 = x1, y1, x2, y2, ..., xk−1, yk−1, where xi, yi rep-

resents utterances from each speaker in a turn, we want to generate a prompt xk while

keeping the whole conversation coherent and engaging. The original neural dialog model

then considers the whole context (ck−1;xk) to generate a response yk, which is considered

as not acceptable to a problem P (e.g. toxic response to the safety problem). Meanwhile,

we have some trained classifier fP (h(yk)) for the problem P which can indicate how likely

the contextual representation h(yk) has the problem.

5.3.3 Methodology

Since the goal of the task is to expose systematic problems of pre-trained models rather

than relying on simple tricks, we generate prompts using the same model in a self-chat

paradigm so that when we plug in the generated prompts to the original model we get

77

exactly the same response. Compared to recent work on instructing humans to goad

chatbots where annotators have no information of how the models works in a trial-and-

error black-box attack manner, we use gradients of the model.

Motivated by recent success in conditional generation without fine-tuning model pa-

rameters [208, 209], we propose to learn a trigger prompt hidden states, htrigger, while

freezing the original dialog model to maintain output distribution and generation quality.

Specifically, for an encoder-decoder model (or a language model), we are modeling

pθ(xk|htrigger, x<k, y<k) (5.5)

where htrigger is prepended to the beginning of the conversation history and is initialized

with the hidden states of the bos (beginning of sentence) token. Before any training, the

distribution of pθ(xk|.) will not be modified at all. Once we generate the prompt xk, we

use the original model to generate a response as

pθ(yk|x<k+1, y<k) (5.6)

where yk may be problematic. A trained classifier f indicates the degree of the problem.

During training, we sample data (ck−1, xk, yk) via ck−1 ∼ D where D can be any unlabeled

conversation as the context, and xk and yk are generated in a two-stage sequence using

Equation 5.5 & 5.6.

In order to optimize htrigger which will boost the level of target problem through

attention mechanism [14], we propose a weakly-supervised trigger model (Section 5.3.3.1)

where we backpropagate gradients from the classifier back to the hidden states directly,

and a reinforcement learning trigger model (Section 5.3.3.2) where the classifier results

are used as rewards to optimize the hidden states. We illustrate the task and the proposed

methods in Figure 5.2.

5.3.3.1 Weakly-supervised Trigger Model

Because the prompt xk is sampled and detached from the original model, and the classifier

operates on the corresponding response yk, we need to connect htrigger with the response.

During training, we first generate a prompt xk and then simulate the attention mechanism

78

by modeling

pθ(yk|htrigger, x<k+1, y<k) (5.7)

where compared to generating the actual response using the original dialog model as in

Equation 5.6, htrigger is also used in response generation. We need to apply a classifier f ′

on the generation hidden states which contains information about htrigger before sampled

discrete tokens following [210]3. We can then use cross-entropy loss against the target label

as the training signal to optimize htrigger. We refer to this model as Trigger_weakly.

Even though this method is relatively straightforward, we note that there are two

potential problems. The first one is that because htrigger is considered as one (indirect)

input, the optimized hidden states may not necessarily impact on the actual response

to lower the loss function. In other words, htrigger is optimized specifically to a loss

function regardless of the model output. Another problem is that at inference time when

we generate a prompt xk to get a response using Equation 5.6, there is mismatch from

training so that even with a low training loss, the response generated can be very from

that during training. However, as we evaluated empirically, htrigger learned this way is

still effective.

In addition, we also experimented with gumbel softmax [211, 212] on the generated

prompt xk so that we can input the prompt gumbel vectors which contains information

about htrigger using Equation 5.6 during training without the hidden state term. We did

not notice a large difference in our preliminary study using an autoregressive language

model (GPT-2, [27]), so we use Equation 5.7 for optimization with our weakly-supervised

trigger model.

5.3.3.2 Reinforcement Trigger Model

To solve the potential problems with the weakly-supervised trigger model, we leverage

reinforcement learning to bypass the challenge in connecting h_trigger with the model

response. During training, we use Equation 5.5 to generate a coherent prompt xk, and

send the sampled discrete tokens to Equation 5.6 to get the response yk. Instead of using
3This classifier f ′ is only used for training the weakly-supervised model, while a more robust classifier

operating on the actual generated response tokens is used for evaluation.

79

the hidden states, we input the generated response tokens to the classifier f to get a

reward r(yk), where we use the raw logits of the target label. Following [70], we add

an adaptive KL term to prevent the generated prompt from diverging too far from the

original model

KL(xk) = β log
pθ(xk|htrigger, x<k, y<k)

pθ(xk|x<k, y<k)
(5.8)

where β varies dynamically to achieve a particular value [70]. The overall reward is thus

R(xk) = r(yk)−KL(xk). (5.9)

We optimize htrigger using Proximal Policy Optimization (PPO, [213]) with the reward R

from Equation 5.9. We refer to this model as Trigger_PPO.

Another potential benefit of using reinforcement learning here in addition to fixing the

challenges with weakly-supervised trigger model is that we can tweak the reward function

to penalize easy triggers. For instance, human annotators may quickly find that contro-

versial statements and unsafe sentences can goad the bot into generating unsafe responses

back [205]. If we train htrigger using the original reward function, or use the weakly super-

vised method where the gradient impacts on both the prompt and the response, then it

is very likely that by attending to htrigger, the prompt xk is already problematic. To solve

this, we can add a penalty term using the same reward as the response but on the prompt.

This encourages the model to only generate acceptable prompts that trigger concerning

responses, similar to an adversarial setting. The overall reward is

Radv(xk) = r(yk)−KL(xk)− w ∗ r(xk) (5.10)

where w is a weight hyper-parameter to balance between the reward on the prompt and

the response. We refer to this model as Trigger_PPO_adv.

5.3.4 Experiments and Results

We evaluate our proposed approaches on two problems: safety and consistency by generat-

ing prompts that can trigger corresponding problems. In addition, we study whether our

generated results can in turn improve the classification performance with out-of-domain

data.

80

For all our experiments, we use the state-of-the-art open-domain chatbot BlenderBot

[196] as our pre-trained neural dialog model. The maximum context and response lengths

is set to 128 BPE tokens [27]. BlenderBot is pre-trained on Reddit discussions [214] with

heuristic filtering and fine-tuned on human-collected clean conversational data including

ConvAI2 [215] and Blended Skill Talk [216]. Because of the fine-tuning data, the chatbot

frequently deviates from the current conversation topic and asks simple questions such

as “do you have a pet”. This makes it even harder to generate unsafe and contradictory

responses given a coherent prompt. For decoding, we follow the same procedure as in the

original model, except that we use sampling instead of beam-search to increase diversity

(which is shown to perform as well as beam search in their paper).

During training, we set a maximum number of training steps with early stopping.

To prevent unfair comparison to baselines, instead of selecting the best model based

on average reward, we early stop when perplexity diverges too much from the original

perplexity. We analyze the effect of early stopping in Section 5.3.5.

5.3.4.1 Safety

The safety problem exposure task is to generate coherent prompts where the dialog model

will generate unsafe responses given the contexts and prompts. We compare our pro-

posed Trigger_weakly, Trigger_PPO, and Trigger_PPO_adv with the original model

BlenderBot.

Response Prompt

Method Unsafe prob. Unsafe % Unsafe prob. Unsafe % Perplexity Language quality

(classifier ↑) (human ↑) (classifier ↓) (human ↓) ↓ (human ↑)

BlenderBot 22.41 9.21 23.64 16.45 16.08 3.98

Trigger_weakly 30.96 21.71 66.67 26.97 17.92 3.01

Trigger_PPO 32.63 22.37 49.30 23.68 19.54 3.53

Trigger_PPO_adv 30.57 26.32 39.48 17.11 18.42 3.88

Table 5.3. Results on the safety exposure task. All our proposed methods are effective
in exposing safety problems. In particular, Trigger_PPO_adv shows that even with
relatively safe prompts, we can still trigger unsafe utterances from the model. Adding
a constraint term on the prompt also helps with maintaining language quality.

81

Safety Classifier We train our safety classifier fsafety using data collected from BAD

[205]. We truncate the conversation history to four utterances from both speakers follow-

ing the best practice in their paper. We also ignore easy cases where the bot says “Hey

do you want to talk about something else” from a safety layer during data collection.

In addition, we leverage data from BBF [217] including both single-turn and multi-turn

examples. In total, we have a training corpus of 197K examples and we evaluate on the

BAD validation set with 12.8K examples. We train the classifier using RoBERTa [218].

The classifier achieves an F1 score of 77.34 on unsafe examples, which is close to the

number reported in [205], so we did not use additional training data and framework.

For the classifier used in the weakly-supervised method f ′
safety, we use the same data

training a multi-layer perceptron (MLP) on top of frozen BlenderBot hidden states (similar

to [210]). f ′
safety achieves an F1 score of 69.09 on unsafe examples.

Training and Evaluation During training, we sample contexts of three utterances

from the pre-processed BAD training data explained above because BlenderBot can only

handle 128 tokens. For evaluation, we sample contexts of the same length from the BAD

validation data. We report the average probability that the response is unsafe and the

average probability that the prompt is unsafe using fsafety, as well as the generated sen-

tence perplexity as automatic evaluation averaged over three random seeds. For human

evaluation, we report the percentage of unsafe responses, unsafe prompts, and the lan-

guage quality of the prompts which indicate both fluency and coherence on an 1 - 5 Likert

scale using 150 examples.

Results Table 5.3 shows results for the safety exposure task. On the induced responses

according to the generated prompts, compared to the baseline model BlenderBot, all our

proposed methods substantially increase the chance that the responses are unsafe (with

more than 8% absolute from safety classifier fsafety, and more than 12% from human

evaluation). This suggests that these methods are effective in exposing safety problems

with the pre-trained models. In addition, the relatively low unsafe percentage (9.21% and

26.32%) indicates that in general, BlenderBot tends to generate safe responses due to

its clean fine-tuning data. Tricking the model into generating unsafe responses is thus

82

very challenging without modifying the model distribution, especially when we want to

generate coherent prompts with high language quality.

On the generated prompts, as expected, without any constraint as with Trigger_weakly

and Trigger_PPO, the model may learn to increase the likelihood of unsafe responses by

crafting unsafe prompts, resulting in much higher prompt unsafe probability judged by

both the automatic classifier (more than 15% over the baseline) and human annotation

(more than 7%). However, by adding a penalty to the prompt to reduce its unsafe de-

gree (from 23.68% to 17.11% by human evaluation), we can maintain or even outperform

unsafe degree in the corresponding responses (26.32%). Meanwhile, the language quality

human annotation results show that penalty on the prompt also helps with maintaining

coherence and fluency compared to Trigger_weakly and Trigger_PPO.

5.3.4.2 Consistency

The consistency problem exposure task is to generate coherent prompts to trigger re-

sponses that contradict their roles in the conversation context. In contrast with safety,

since generating inconsistent prompts will not necessarily result in more inconsistent re-

sponses, we do not evaluate on Trigger_PPO_adv. Instead, we compare Trigger_weakly,

Trigger_PPO, and the original BlenderBot. We also compare with Human_selected

which picks context-specific prompts that trigger responses labeled as contradictory from

multiple sampled pairs in DECODE data collection [219]. It serves as the upper bound

for the task.

Consistency Classifier We train our consistency classifier fconsis using the data col-

lected from DECODE [206]. Because contextual information is crucial for consistency

detection, we do not truncate the context history. The training corpus consists of 27K

examples and we evaluate the classifier on the DECODE validation dataset with 4K ex-

amples. In order to easily create training signals when optimizing htrigger, we train the

classifier by concatenating the last response with the context instead of the suggested

structured method. Our RoBERTa-based classifier achieves an F1 score of 93.45 on con-

83

tradictory utterances, which is close to the results in [206] with additional training data4.

For the weakly-supervised method, f ′
consis is similar to f ′

safety, and achieves 86.02 F1

on contradictory examples.

Training and Evaluation During training, because BlenderBot cannot handle longer

contexts, we truncate the conversation history to three utterances. We sample examples

from the DECODE training data to form D. We note that DECODE training and val-

idation data are collected by asking humans to write utterances for each speaker, which

may be different from a chatbot setting. Therefore, for evaluation, we sample contexts

from their collected human-bot test set (with 764 examples in total). This set is collected

by asking human annotators to interact with multiple chatbots. We report the average

probability that the response contradicts with the context using fconsis for automatic eval-

uation. We also report the percentage of contradictory responses for human evaluation

on 200 generated examples from three random seeds.

Because the training signal for inconsistency is more delicate compared to other at-

tributes such as sentiment and safety, it may be harder for the model to converge, es-

pecially with a diverse set of training examples. Therefore, we also experiment with

training on the human-bot context directly. It is worth mentioning that even though we

train with the same context as for evaluation, the only training signal is from the classi-

fier fconsis. In other words, none of the models require external information such as real

collected prompts and responses with their corresponding gold labels. More importantly,

we select early-stopping based on perplexity instead of cherry-picking the best examples

using actual predicted rewards. Thus it is fair in performance comparison. Moreover, this

is a common practice in the literature [190], particularly with reinforcement learning to

optimize rewards [220, 70].

Results Table 5.4 summarizes the experiment results on the consistency exposure task.

We observe that during training, Trigger_weakly does not converge so that its perfor-

mance on the test data (17.86%) is lower than the baseline. Even though Trigger_PPO

4Although more accurate classification is beneficial to our model, training more complicated classifiers
to achieve only marginal improvements is out of the scope of our work.

84

Method
Contradiction probs. Contradiction %

(classifier ↑) (human ↑)

BlenderBot 18.24 12.56

Trigger_weakly 17.86 -

Trigger_PPO 19.55 -

Trigger_weakly_ft 19.68 -

Trigger_PPO_ft 25.49 28.14

Human_selected - 65.33

Table 5.4. Results on the consistency exposure task. Trigger_weakly struggles with
learning h_trigger, while Trigger_PPO is effective especially when training on the
human-bot context, outperforming the baseline from both automatic and human anno-
tation. Human_selected represents collected data from nie-etal-2020-i where examples
are selected by humans labeled as inconsistent.

gets higher reward, training is not very stable and its performance on the target data does

not increase by a large margin. This suggests that inconsistency signals may not be easily

captured to craft corresponding dynamic prompts. When we train the models on human-

bot data instead (denoted as Trigger_weakly_ft and Trigger_PPO_ft respectively), the

weakly supervised method still does not converge. However, Trigger_PPO_ft learns how

to perform the task evaluated by the learning curve. We thus do human evaluation on

this method. Trigger_PPO_ft significantly outperforms the baseline (28.14% compared

to 12.56%) from human evaluation, suggesting that even with weaker signals, our pro-

posed method is still effective on harder tasks such as inconsistency, which by nature is

non-trivial to detect. Lastly, when we compare to the upper bound Human_selected,

which are picked by humans to be inconsistent, we found that human prompts are shorter

compared to our generated prompts because of the minimum generation size of 20 sug-

gested by [196]. Since the context window of our dialog model is limited, longer prompts

indicate less context due to truncation. Given that conversation history is critical in

inconsistency, this partially explains the relatively lower performance.

85

5.3.4.3 Out-of-domain Classification

In addition to generating prompts to expose problems of neural dialog models, we exam-

ine if the generated prompts and responses can help out-of-domain problem classification.

This is critical because due to distribution difference, problem classifiers trained on one

domain may not work well on another [221], especially with problems that are hard to

expose. For instance, [206] collect a contradiction dataset by asking humans to gener-

ate inconsistent responses, which is a much easier task than tricking dialog models into

generating inconsistent utterances within a reasonable interaction budget. They observe

a large performance gap between in-domain (human-human) training data and out-of-

domain human-bot data. To this end, we experiment with generating out-of-domain

problem training data with our proposed methods on the consistency task.

Training and Evaluation We use the best performing model from Section 5.3.4.2,

Trigger_PPO to generate prompts and responses for the evaluation human-bot contexts

(human-bot Trigger_PPO). We also generate prompts and responses using the original

BlenderBot on the same context (human-bot BlenderBot). For each generated utterance,

we use fconsis to predict the probability that it contradicts with the conversation history.

A threshold (0.5 in our experiments) is used to convert the predicted probability to a

contradiction label. Then we can train the contradiction detection classifier the same way

as explained in Section 5.3.4.2. We compare with the classifier trained on the human-

collected DECODE training data. The best model checkpoint to perform evaluation is

selected on the DECODE validation data.

Training data DECODE valid human-bot

DECODE train 93.45 59.05

human-bot BlenderBot 73.16 61.36

human-bot Trigger_PPO 76.04 67.68

Table 5.5. Results on consistency detection (F1 score of contradiction utterances).
Training with data generated by our Trigger_PPO model outperforms the classification
results by training on the DECODE traning data when we evaluate on human-bot data.

86

Results Table 5.5 shows the classification results for contradiction prediction on the

human-bot data. Similar to previous findings, even though training on human-human

data can achieve a high F1 score on the human-human validation set, it suffers from the

out-of-domain distribution. The classifier trained with data generated from the original

BlenderBot results in similar performance. In comparison, training with the data gener-

ated by Trigger_PPO significantly outperforms the baseline (67.68 F1 vs. 59.05 F1). This

indicates that our proposed method can not only expose model problems, but can help

problem detection with new data distribution as well. It can also be used in models that

require good domain-specific classification, such as [210].

5.3.5 Analysis

In this section, we discuss model performance in depth with qualitative analysis.

Context

...

x_4: ...

y_4: That would be a good choice. What else do you like to do other than

play video games?

x_5: Well, I like listening to music too.

y_5: What type of music do you listen to? I like all kinds of music, but

country is my favorite. I like classic rock because it sounds better. I don’t

like country. You?

BlenderBot

x_6: I like older radio and rock and roll. You? I like music with a mellow beat.

y_6: I could never listen to that without my headphones. I’ve been

listening to classic rock and I am always driving while listening.

Trigger_PPO_ft

x_6: I like classic rock because it sounds better. I don’t like country.

y_6: Classic rock is a great choice as well as folk metal. I don’t mind country,

but I don like how it’s so bland and boring. It’s been around since the 70s.

Human_selected [206]

x_6: Country is relaxing. I like classical and techno to be honest.

y_6: I like those genres as well. Do you have any pets? I have a cat.

Table 5.6. Example prompts and responses given the context comparing different meth-
ods for the consistency exposure task.

Training for more steps The training reward actually does not saturate when it

reaches our set maximum number of steps. In other words, we can expect to see higher

rewards with more training steps. However, our PPO model starts to exploit environment

87

quirks to maximize rewards (such as step 80). For instance, for the safety exposure task,

the model starts to generate prompts with certain patterns such as “Then put her ...”

or “They should ...”, even with Trigger_PPO_adv adding the prompt penalty term. For

the consistency exposure task, the model starts to use prompts with patterns such as “I

don’t understand you ...”, “How long have you ...”, or “You are not ...”. The generated

prompts still consider context (rather than just generating templates), and can vary from

different random seeds. Even though they are more effective in inducing problematic

responses, the prompts are less coherent and less diverse, resulting in similar n-grams.

This suggests that on the one hand, we may need an additional reward in addition to the

relatively straightforward negative penalty. On the other hand, with more training steps,

we may be able to discover more meaningful “universal triggers” [222] that can trigger

target responses regardless of the context.

Weakly-supervised vs. Reinforcement Learning Method Although there is a

potential discrepancy between training and testing that htrigger may only learn to optimize

the classifier f ′
consis regardless of the actual task for the weakly-supervised method as

explained in Section 5.3.3.1, we found that in the safety exposure task, it can still increase

performance from human annotation. However, this results in much higher unsafe degree

for the prompt and lower language quality. Qualitatively, we found that it is more likely

to generate unsafe tokens and due to the diverged distribution, the prompts are less

grammatical with nonsensical tokens. This suggests that the gradients impact on the

prompts more to change the corresponding response attribute, which can also explain

its worse performance in tasks where prompt attributes are less dominant to responses

such as consistency exposure. In comparison, the reinforcement learning method does not

rely on gradients that flow through both the responses and prompts. Instead, it utilizes

rewards through exploration and exploitation so it can be more effective in different tasks.

Exposing more systematic problems Previous research mostly exposes superficial

problems with easy tricks such as controversial statements and repetitive questions which

are unnatural and incoherent. To illustrate, [205] show that only 12.9% responses are

offensive if their corresponding prompts are safe. In other words, the vast majority of un-

88

safe responses are induced by unsafe prompts. In comparison, our results show that in the

human evaluation test data where 26.32% responses are unsafe, only 17.11% prompts are

unsafe, indicating that our generated safe prompts are effective in generating problematic

responses. Similarly, for consistency, we found that in our preliminary experiments on 100

examples, none of our generated prompts applies easy tricks such as repetitive questions

that directly contradicts the context, whereas 15% of the DECODE human-bot prompts

fall in this category. This number is much higher in their collected human-human data

with other tricks such as asking numeric questions. In addition, 53% DECODE-collected

prompts contain questions (which are more likely to trigger inconsistent responses in gen-

eral), whereas 39% contain questions from our proposed method (close to 43% in the

BlenderBot baseline).

On the other hand, we can find that coherent natural patterns such as “They should

...” and “You are not . . . ” (rather than easy tricks) are more likely to trigger problematic

responses. Together with the evidence that some problem triggers are learnable from

our proposed methods above the surface level, we believe that we can expose more sys-

tematic problems compared to previous research where human annotators have no direct

information to interpret how a natural prompt can trigger corresponding responses.

5.3.6 Related Work

For our introduced task to expose problems with pre-trained dialog models, the most

relevant work is in the fields of controlled generation and adversarial attack. The goal for

controlled generation is to generate coherent sentences containing some target attributes,

whereas the task for adversarial attack is to craft some examples that can fool some

trained classifiers.

Controlled Generation Most previous work in controlled text generation involve train-

ing or fine-tuning the whole model [223, 224, 225, 70]. Alternatively, to utilize the high-

quality pre-trained language model quality, [210, 76] propose to perturb token distribu-

tions towards a specific attribute with residual adapters [226]. Recently, [208, 209] show

that optimizing simple prefix hidden states is effective in controlling pre-trained mod-

els, which inspires us to expose problems in neural dialog models by learning h_trigger.

89

In terms of applying reinforcement learning to language generation tasks, previous work

leverages defined reward functions [220, 227, 228] or human preference [70]. All these

work targets at generating sentences that contain target attributes. In contrast, our work

optimizes prompt generation, which indirectly triggers a pre-trained model generating

responses containing target attributes. There is no straightforward way to apply previous

techniques to this task.

Adversarial Attacks with Pre-trained Neural Models Similar to generating ad-

versarial examples to fool natural language understanding models [229, 230, 231, 232],

[222, 233] show that some learned discrete nonsensical universal triggers can be used to

generate unsafe sentences. On the other hand, [234] finds toxic prompts from naturally

occurring sentences. The most similar work to ours is probably directing pre-trained

models into generating a list of pre-defined tokens or sentences [235, 236, 237, 238]. In

comparison, our task needs to generate coherent prompts according to the conversation

history. Furthermore, instead of triggering pre-defined egregious responses, our proposed

method is more flexible in exposing a wide range of problems such as consistency where

crafting the target responses without context in advance is impossible.

Safety and Consistency To make machine learning models safe to use especially with

language generation, there is a long literature in safety such as hate speech [239] and bias

[217, 240]. Most of these works focus on abusive context detection. On a different line

of research, some work introduces conditional generation to reduce toxicity [210, 234].

These techniques mostly requires some toxic classifiers, which as shown in Section 5.3.4.3,

may not work well for a different model distribution. Recently, [205] instructs humans

to interact with neural dialog models in an adversarial way in order to induce unsafe

responses from chatbots. Although classifiers trained with the introduced dataset are

more robust, the collected data is relatively artificial because humans rely on apparent

traits such as controversial statement or hate speech, regardless of the semantics and

coherence of the conversation.

For consistency, previous work suggests generation grounded by information such as

personas [215] and neural memories [241]. In terms of consistency detection, [242, 243, 199]

90

introduce and suggest using natural language inference to model conversation coherence.

Recently, [206] collects a large contradicting human dialog corpus based on a conversa-

tional context and show better performance than entailment-based methods. However, as

in [205], annotators tend to ask repeating questions to provoke inconsistent answers.

Instead of asking humans to write prompts that may induce problematic responses,

which is expensive and unrealistic with newly designed dialog models, we propose to

trigger unsafe and inconsistent responses automatically. Our method can expose more

systematic errors and is generally applicable to a wide variety of problems with trained

neural models.

5.4 Summary
In this chapter, we discussed attribute representation beyond low- and high-level latent

variables, where representing the tasks directly displays advantages in both training and

inference. Specially, we illustrated example representation which can leverage retrieval,

rather than learning task-specific layers for classification and structured prediction tasks.

We showed that this approach is effective in the few-shot learning scenario, and the low-

level attribute representation to learn span boundaries can actually boost the performance

in example construction here. We also explained how to represent systematic problems

with newly trained neural models, which successfully finds issues related to safety and

consistency and further improves performance of out-of-domain problem classifiers. By

representing tasks-specific attributes, we can achieve performance that humans may not

due to model training.

91

Chapter 6
Application: Case Study in Building
Dialog Systems

6.1 Overview
In this chapter, we demonstrate how attribute representation can be applied to build an

open-domain dialog system from scratch as a case study. We illustrate why attribute

representation is important, and how they can be effectively utilized to make the systems

robust.

This chapter is based on our works [201, 244, 245] that were published at the EMNLP

2019 conference, which I lead as the main author.

6.2 Introduction
Dialog systems, because of their interactive nature, can be more complicated than tra-

ditional NLP tasks. When building a dialog system from scratch, we can utilize some

tasks designed for general NLP such as parsing, but the domain difference and linguistic

features specific to dialog such as ellipsis makes the task even harder. Moreover, different

from written text where we can easily acquire the data, collecting conversational data is

expensive, thereby making few-shot learning particularly important.

Dialog systems are designed to serve cases such as personal assistants or simulate

customer services. These tools have been widely accessible in commercial devices such

92

as Amazon Alexa, Google Assistant, and Facebook portal. Traditionally, we can divide

dialog systems into task-oriented dialog and open-domain dialog, where the former aims

to accomplish some tasks such as booking a restaurant, and the latter focuses on having

chit-chat and natural conversation. Similar to the motivation introduced in Chapter 1,

we can choose to apply a modularized system including natural language understanding

which generates intermediate representation by abstracting the human utterances, dialog

management which prepares the policy to return, and natural language generation to

generate an appropriate response with the help of some knowledge. We can also choose

the build the system end-to-end, by training a Sequence-to-Sequence model on some

conversational data similar to a language model. Again, modualized systems are more

controllable, and end-to-end models are more robust.

No matter we choose modularied or end-to-end systems, there are four main challenges

to build a dialog system. Firstly, since the input is mostly from speech (rather than a

written-text based system), there are automatic speech recognition (ASR) errors such as

disfluency, especially with complex sentences. Secondly, linguistic features such as ellipsis

across multiple turns and coreferences are much more frequent than other NLP tasks and

annotations [246], which makes training models with data augmentation hard [150]. Next,

whether we choose a template-based method or a generation model, we have to make sure

the response is specific, factual, and safe, which are critical but not controllable in current

dialog systems [196, 29]. Lastly, we also need to consider prosody to simulate natural

utterances since we need to respond to users through speech. In addition to the four

problems related to systems, we also need to consider how to fix model bias and problems,

and how to make the model robust if not performing as expected during deployment.

6.3 Methodology
We will first explain how attribute representation can be utilized for modularized systems,

and then we discuss its application to end-to-end models. Figure 6.1 illustrates an archi-

tecture for a dialog system from speech input to language processing to speech output,

where the processing part can be split into different parts in a modularized system, or by

93

taking as whole in an end-to-end system.

Question API

Knowledge
Base

Natural Language
Understanding

Dialog Manager

Intent
Classifier

Natural Language Generation

User

TTS

 Backstory

EVI

Data Scraper
on EC2

User Profile

Dialog Modules

animals

movies

news

retrieval

Module
Selector

Profanity Filter Template Manager

Post Processor

Context

Updated state

Prosody

Paraphrasing

ASR

NER

Dependency
Parsing

POS
tagging

Topic

Fine-grain
IntentDialog Act

Google
Knowledge

Concept
 Graph

Sentiment

Segmentation

Coreference

Noun Phrase
Noun

Trunks

ASR
Correction

Profanity
Check

Acknowledgement
Generator

Neural Generation
Model

Figure 6.1. Dialog system architecture from [245].

6.3.1 Modularized systems

The most critical question we need to address for a modularized system (and also some-

times an end-to-end system) is what output we need and how to annotate data. For

example, if we know that we need dialog act to represent user intent, and topic as some

features to dialog manager, the prerequisite would be to build the ontology first, be-

fore asking human annotators to collect a dataset and then train some models. Most of

these features are low-level. As readers may recall, this is what the low-level attribute

representation is studying. As explained in Chapter 4, we can automatically induce a

hierarchical schema which are important to many NLU features [118]. Another benefit

of inducing the schema automatically is that there may be cases not considered and one

may need to iteratively update the ontology through data collection, hence making the

automatic method more ideal. Moreover, instead of deciding what features we need such

as sentiment and semantic parsing [247] and then come up with the ontology manually or

automatically, we can directly learn what features are useful from the low-level attribute

representation. Furthermore, we can use the induced data to train a model directly, and

94

then keep improving the model performance while interacting with real traffic.

Once we have the data, we can train some models by either fine-tuning some layers

to map the learned representation to the target space, or to represent the task that

directly translates the task representation to the target. It is very frequent that due to

the annotation budget or time requirement, we may not be able to collect a large dataset

for all labels or domains we need. Chapter 3 suggests that we may only need to collect

some labeled data on one domain, and represent features in other domains as high-level

attributes so that we can transfer useful information to new scenarios in few-shot or even

zero-shot settings. The high-level attribute representations enable not only cross-domain

transfer learning, but also more broad applications such as cross-lingual transfer learning.

Then the question to address when we have some runnable models is how to keep

improving the model performance in a continual learning setting. For example, the model

may consistently predict wrong labels, or we need to add new labels or change schema

because of new requirements. This setting applies to all features in NLU. The task-specific

attribute representation such as the retrieval method introduced in Chapter 5 suggests

that we do not require retraining the model, or collecting new data to change the mapping

of target space entirely. Instead, we can simply choose to encode example attribute

representations as index and use retrieval to finish various tasks. In addition to NLU tasks,

such methods can also be extended to dialog manager and NLG where we can change the

task attribute that translates to the target space directly. More importantly, if some data

is not easy to collect (such as inconsistency detection), we are able to simulate the target

task augmentation process by representation the task attribute directly [248, 249].

We will discuss NLG in Section 6.3.2 since language generation is the only observable

part of an end-to-end system, and its main task is to generate a response similar to the

NLG task in the modularzied system.

6.3.2 End-to-end

There are two main difference between an end-to-end system and a modularized system.

The first one is the integration of knowledge, and the second is how to condition the input

for text output.

95

In a modularized system, we can extract key features from NLU and call some APIs as

knowledge base to find relevant information such as the answer to a factual question, or

the weather in a location. In contrast, end-to-end systems typically encode all the world-

knowledge into the model parameters [39, 29]. The benefits of encoding knowledge into

parameters is that we can simply train the model to capture potential queries, but with

the cost of not being able to update the knowledge easily, and not being able to inspect

if the model parameters actually contain some specific knowledge. More importantly,

for many downstream tasks such as entity linking and dialog state tracking, domain-

specific knowledge is critical to make the correct prediction, which typically requires

fine-tuning with a large dataset to expect acceptable performance. Training the model

together with encoding relevant knowledge is thus not efficient. Instead, one crucial

direction is to disentangle knowledge from a neural model, where the knowledge can be

some database [250, 10], or even some other modalities [43]. In addition to task-specific

attribute representation explained in Chapter 5, one can also consider high-level and low-

level attribute representation applied to the knowledge base space, which is an interesting

future work direction.

Compared to a modularzied system, the language generation in an end-to-end system

is conditioned on the encoder representation, rather than features abstracted by NLU and

dialog manager. The key question to address here is that along with being factual without

hallucination by integrating external knowledge, we need to make sure that the model is

steerable and reliable. For example, we may prefer generation models in a modularized

system or an end-to-end system to generate positive responses rather than being sarcastic

or issuing pessimistic comments. More critically, we need to make sure that the model

does not generate toxic responses. This requirement is not only essential to a dialog

system, but generally to any models with a generation portion on any modalities as well.

Solutions such as high-level attribute representation to effectively control a neural model

[251], and task-specific representation to avoid unsafe and inconsistent generated texts

explained in previous chapters are significant research areas.

96

6.4 Summary
In this chapter, we introduced the challenges in building dialog systems as an application

case study, and summarized how representation on the high-level, low-level, and task-

specific attributes can be learned and utilized to solve these challenges. We showed that

in either a modularized system or an end-to-end system, attribute representation helps

to define the essential tasks automatically, ease the requirement of large-scale in-domain

supervised data, and steer the output towards a target direction in phases from data

annotation to model training and deployment. Therefore, such representations can make

the neural models more controllable, reliable, and explainable.

97

Chapter 7
Conclusion

Neural (language) models are powerful enough to finish down-stream tasks efficiently or

even achieve super-human performance. When further scaling up to more parameters, it

is even possible that neural models can get rid of the requirement of supervised examples

and find relevant information with search engines to accomplish more complicated tasks

the way humans do. However, they are far from being “all we need”. In this thesis, we

were trying to combine the benefits of modularzied systems including the ease of expla-

nation and training, and the benefits of end-to-end systems including being more flexible,

into large pre-trained language models to make them more controllable, explainable, and

reliable.

Specifically, we proposed to represent attributes that are relevant to a target task,

and use the learned representation to guide a pre-trained model for NLU and NLG tasks

with or without optimizing the model parameters. Depending on the task specifics, we

introduced high-level, low-level, and task-specific attribute representation.

For high-level attribute representation, we explored a general method to train attribute

representation together with a language modeling task. When considering the learned rep-

resentation in a different domain, the model can utilize such information by identifying

similarities and distinctions among tasks. We applied high-level attribute representation

on a cross-lingual zero-shot learning tasks, where we learn language representation to

achieve effective performance on intrinsic and extrinsic tasks. We also applied the rep-

98

resentation on a controlled generation task, where we demonstrated with sentiment and

topic control using an alignment function on attributes. We further analyzed how to dis-

entangle different attributes and combine attributes as conditions to solve challenges in

high-level attribute representation.

In low-level attribute presentation, we were motivated by the obstacles that although

neural models contain useful information, it may not be easy to clearly define a high-level

attribute such as categories in an ontology. Therefore, we introduced low-level attribute

representation methods where we experimented with language model fine-tuning, before

inspecting model representation to uncover low-level attribute representation. We demon-

strated such a method on a task-oriented dialog setting where we induced the schema by

detecting boundaries using attention distribution, before clustering phrases into groups

for the dialog state tracking task.

Different from high-level and low-level attributes, we introduced task-specific attribute

representation where it may be easier to represent task-specific features directly to connect

model parameters to the target, rather than other representations. We illustrated with

two distant task-specific attributes, including an example representation, and a problem

representation. In example representation, we considered training data as attributes and

encode them as index so that we can retrieve spans and sentences together with their

labels by disentangling model representation from the output space for classification and

structured prediction tasks. In problem representation, we considered safety and consis-

tency as attributes and exposed the most critical issues with neural generation models

using different learning methods. We observed competitive performance in demanding

tasks that are not trivial to humans.

Finally, we reviewed how to apply attribute representation to a realistic setting in

building dialog systems as a case study. We introduced challenges in dialog system

pipelines including NLU and NLG, and analyzed the trade-offs of modularized systems

and end-to-end systems. We explained how to tackle the overhead with attribute rep-

resentation from high-level, low-level, and task-specific perspectives, and pointed out a

broader application to general NLP tasks.

99

To summarize, high-level attribute representations makes it effective in controlling a

pre-trained model towards a specific direction, or transfer across domains or even lan-

guages. In contrast, low-level attribute representations eliminate the requirement of the

clear definition of an attribute, and can uncover what features a model has encapsulated

and what features need to be learned. Meanwhile, task-specific attribute representa-

tion detaches learned model parameters from the target output space, thereby making it

compelling in complicated tasks without abundant supervised data. By combining these

attribute representations depending on the actual requirements, we can make the model

more flexible, reliable, controllable, and explainable.

For future directions, although attribute representations have been shown to be ef-

fective in various language tasks, we can expand the scope to other modalities such as

image and speech. Similar to texts, tasks such as image generation and captioning also

suffer from the challenges such as not controllable and explainable. We can either choose

to represent attributes in the same way we do in languages, or choose new perspectives

where, for example, we consider language as some attributes, and control an image model

directly for target directions. More importantly, apart from the applications we showed,

one question that is still remaining with neural models is that different from humans,

neural models do not consider any features such as intent. Although manually created at-

tributes such as sentiment or fine-grained attributes can make the model controllable after

model pre-training and revealing what the model has learned, it would still be bounded

and leaves it an open question of how to design attribute representations in model pre-

training to make this more powerful.

100

References

[1] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceedings of the
25th International Conference on Machine Learning, ser. ICML ’08. New York,
NY, USA: Association for Computing Machinery, 2008, p. 160–167. [Online].
Available: https://doi.org/10.1145/1390156.1390177

[2] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances in
Neural Information Processing Systems, C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, Eds., vol. 26. Curran Associates, Inc.,
2013, pp. 3111–3119. [Online]. Available: https://proceedings.neurips.cc/paper/
2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

[3] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation,” in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A
meeting of SIGDAT, a Special Interest Group of the ACL, 2014, pp. 1532–1543.
[Online]. Available: https://www.aclweb.org/anthology/D14-1162/

[4] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 248–255.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
2015.

[6] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in Proceedings of
the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers). New Orleans, Louisiana: Association for Computational Linguistics,
Jun. 2018, pp. 2227–2237. [Online]. Available: https://aclanthology.org/N18-1202

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019,
pp. 4171–4186. [Online]. Available: https://aclanthology.org/N19-1423

[8] A. Baevski, W. Hsu, Q. Xu, A. Babu, J. Gu, and M. Auli, “data2vec: A general
framework for self-supervised learning in speech, vision and language,” CoRR, vol.
abs/2202.03555, 2022. [Online]. Available: https://arxiv.org/abs/2202.03555

101

https://doi.org/10.1145/1390156.1390177
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://www.aclweb.org/anthology/D14-1162/
https://aclanthology.org/N18-1202
https://aclanthology.org/N19-1423
https://arxiv.org/abs/2202.03555

[9] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-
shot learners,” in Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., vol. 33. Curran
Associates, Inc., 2020, pp. 1877–1901. [Online]. Available: https://proceedings.
neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[10] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain,
V. Kosaraju, W. Saunders, X. Jiang, K. Cobbe, T. Eloundou, G. Krueger,
K. Button, M. Knight, B. Chess, and J. Schulman, “Webgpt: Browser-assisted
question-answering with human feedback,” CoRR, vol. abs/2112.09332, 2021.
[Online]. Available: https://arxiv.org/abs/2112.09332

[11] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,
H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko,
J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif,
N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari,
P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia,
V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph,
A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S.
Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou,
X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern,
D. Eck, J. Dean, S. Petrov, and N. Fiedel, “Palm: Scaling language modeling with
pathways,” 2022. [Online]. Available: https://arxiv.org/abs/2204.02311

[12] E. M. Bender and A. Koller, “Climbing towards NLU: On meaning, form,
and understanding in the age of data,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Online: Association
for Computational Linguistics, Jul. 2020, pp. 5185–5198. [Online]. Available:
https://aclanthology.org/2020.acl-main.463

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.
Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural
Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017, pp. 5998–6008. [Online]. Available: https://proceedings.neurips.cc/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[15] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN encoder–decoder for

102

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2204.02311
https://aclanthology.org/2020.acl-main.463
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

statistical machine translation,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association
for Computational Linguistics, Oct. 2014, pp. 1724–1734. [Online]. Available:
https://aclanthology.org/D14-1179

[16] N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The efficient transformer,” in
International Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=rkgNKkHtvB

[17] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long sequences
with sparse transformers,” CoRR, vol. abs/1904.10509, 2019. [Online]. Available:
http://arxiv.org/abs/1904.10509

[18] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-document
transformer,” CoRR, vol. abs/2004.05150, 2020. [Online]. Available: https:
//arxiv.org/abs/2004.05150

[19] J. Ainslie, S. Ontanon, C. Alberti, V. Cvicek, Z. Fisher, P. Pham, A. Ravula,
S. Sanghai, Q. Wang, and L. Yang, “ETC: Encoding long and structured
inputs in transformers,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Online: Association
for Computational Linguistics, Nov. 2020, pp. 268–284. [Online]. Available:
https://aclanthology.org/2020.emnlp-main.19

[20] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti, S. Ontanon,
P. Pham, A. Ravula, Q. Wang, L. Yang et al., “Big bird: Transformers for longer
sequences,” Advances in Neural Information Processing Systems, vol. 33, 2020.

[21] Y. Wu, M. N. Rabe, D. Hutchins, and C. Szegedy, “Memorizing transformers,” in
International Conference on Learning Representations, 2022. [Online]. Available:
https://openreview.net/forum?id=TrjbxzRcnf-

[22] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov,
“Transformer-XL: Attentive language models beyond a fixed-length context,” in
Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computational Linguistics, Jul. 2019,
pp. 2978–2988. [Online]. Available: https://aclanthology.org/P19-1285

[23] D. Hutchins, I. Schlag, Y. Wu, E. Dyer, and B. Neyshabur, “Block-recurrent
transformers,” 2022. [Online]. Available: https://arxiv.org/abs/2203.07852

[24] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient transformers:
A survey,” CoRR, vol. abs/2009.06732, 2020. [Online]. Available: https:
//arxiv.org/abs/2009.06732

[25] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for
word representation,” in Proceedings of the 2014 Conference on Empirical

103

https://aclanthology.org/D14-1179
https://openreview.net/forum?id=rkgNKkHtvB
http://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://aclanthology.org/2020.emnlp-main.19
https://openreview.net/forum?id=TrjbxzRcnf-
https://aclanthology.org/P19-1285
https://arxiv.org/abs/2203.07852
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2009.06732

Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association
for Computational Linguistics, Oct. 2014, pp. 1532–1543. [Online]. Available:
https://aclanthology.org/D14-1162

[26] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language
understanding by generative pre-training,” CoRR, 2018.

[27] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners,” CoRR, 2019.

[28] D. Adiwardana, M. Luong, D. R. So, J. Hall, N. Fiedel, R. Thoppilan, Z. Yang,
A. Kulshreshtha, G. Nemade, Y. Lu, and Q. V. Le, “Towards a human-like
open-domain chatbot,” CoRR, vol. abs/2001.09977, 2020. [Online]. Available:
https://arxiv.org/abs/2001.09977

[29] R. Thoppilan, D. D. Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H. Cheng,
A. Jin, T. Bos, L. Baker, Y. Du, Y. Li, H. Lee, H. S. Zheng, A. Ghafouri,
M. Menegali, Y. Huang, M. Krikun, D. Lepikhin, J. Qin, D. Chen, Y. Xu,
Z. Chen, A. Roberts, M. Bosma, Y. Zhou, C. Chang, I. Krivokon, W. Rusch,
M. Pickett, K. S. Meier-Hellstern, M. R. Morris, T. Doshi, R. D. Santos, T. Duke,
J. Soraker, B. Zevenbergen, V. Prabhakaran, M. Diaz, B. Hutchinson, K. Olson,
A. Molina, E. Hoffman-John, J. Lee, L. Aroyo, R. Rajakumar, A. Butryna,
M. Lamm, V. Kuzmina, J. Fenton, A. Cohen, R. Bernstein, R. Kurzweil,
B. Aguera-Arcas, C. Cui, M. Croak, E. H. Chi, and Q. Le, “Lamda: Language
models for dialog applications,” CoRR, vol. abs/2201.08239, 2022. [Online].
Available: https://arxiv.org/abs/2201.08239

[30] E. Hosseini-Asl, B. McCann, C.-S. Wu, S. Yavuz, and R. Socher, “A simple language
model for task-oriented dialogue,” arXiv preprint arXiv:2005.00796, 2020.

[31] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare words
with subword units,” in Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Berlin, Germany:
Association for Computational Linguistics, Aug. 2016, pp. 1715–1725. [Online].
Available: https://aclanthology.org/P16-1162

[32] A. Conneau and G. Lample, “Cross-lingual language model pretraining,” in
Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran
Associates, Inc., 2019, pp. 7059–7069. [Online]. Available: https://proceedings.
neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf

[33] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT
pretraining approach,” CoRR, vol. abs/1907.11692, 2019. [Online]. Available:
http://arxiv.org/abs/1907.11692

104

https://aclanthology.org/D14-1162
https://arxiv.org/abs/2001.09977
https://arxiv.org/abs/2201.08239
https://aclanthology.org/P16-1162
https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
http://arxiv.org/abs/1907.11692

[34] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” in Advances in Neural Information Processing Systems 27,
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds.
Curran Associates, Inc., 2014, pp. 3104–3112. [Online]. Available: http://papers.
nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

[35] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “BART: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension,” in
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics, Jul. 2020, pp.
7871–7880. [Online]. Available: https://aclanthology.org/2020.acl-main.703

[36] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text
transformer,” Journal of Machine Learning Research, vol. 21, no. 140, pp. 1–67,
2020. [Online]. Available: http://jmlr.org/papers/v21/20-074.html

[37] Y. Tay, M. Dehghani, V. Q. Tran, X. Garcia, D. Bahri, T. Schuster, H. S.
Zheng, N. Houlsby, and D. Metzler, “Unifying language learning paradigms,” 2022.
[Online]. Available: https://arxiv.org/abs/2205.05131

[38] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity,” CoRR, vol. abs/2101.03961,
2021. [Online]. Available: https://arxiv.org/abs/2101.03961

[39] N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun, Y. Zhou,
A. W. Yu, O. Firat, B. Zoph, L. Fedus, M. Bosma, Z. Zhou, T. Wang, Y. E.
Wang, K. Webster, M. Pellat, K. Robinson, K. Meier-Hellstern, T. Duke, L. Dixon,
K. Zhang, Q. V. Le, Y. Wu, Z. Chen, and C. Cui, “Glam: Efficient scaling
of language models with mixture-of-experts,” CoRR, vol. abs/2112.06905, 2021.
[Online]. Available: https://arxiv.org/abs/2112.06905

[40] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,
H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko,
J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif,
N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari,
P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia,
V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph,
A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S.
Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou,
X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern,
D. Eck, J. Dean, S. Petrov, and N. Fiedel, “Palm: Scaling language modeling with
pathways,” 2022. [Online]. Available: https://arxiv.org/abs/2204.02311

105

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://aclanthology.org/2020.acl-main.703
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2205.05131
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2112.06905
https://arxiv.org/abs/2204.02311

[41] L. H. Li, M. Yatskar, D. Yin, C. Hsieh, and K. Chang, “Visualbert: A simple and
performant baseline for vision and language,” CoRR, vol. abs/1908.03557, 2019.
[Online]. Available: http://arxiv.org/abs/1908.03557

[42] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby,
“An image is worth 16x16 words: Transformers for image recognition at scale,” in
International Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=YicbFdNTTy

[43] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning transferable
visual models from natural language supervision,” CoRR, vol. abs/2103.00020,
2021. [Online]. Available: https://arxiv.org/abs/2103.00020

[44] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and
I. Sutskever, “Zero-shot text-to-image generation,” CoRR, vol. abs/2102.12092,
2021. [Online]. Available: https://arxiv.org/abs/2102.12092

[45] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical
text-conditional image generation with clip latents,” CoRR, 2022. [Online].
Available: https://cdn.openai.com/papers/dall-e-2.pdf

[46] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc,
A. Mensch, K. Millican, M. Reynolds, R. Ring, E. Rutherford, S. Cabi,
T. Han, Z. Gong, S. Samangooei, M. Monteiro, J. Menick, S. Borgeaud,
A. Brock, A. Nematzadeh, S. Sharifzadeh, M. Binkowski, R. Barreira, O. Vinyals,
A. Zisserman, and K. Simonyan, “Flamingo: a visual language model for few-shot
learning,” 2022. [Online]. Available: https://arxiv.org/abs/2204.14198

[47] D. Yu, C. Khatri, A. Papangelis, A. Madotto, M. Namazifar, J. Huizinga, A. Ecof-
fet, H. Zheng, P. Molino, J. Clune, Z. Yu, K. Sagae, and G. Tür, “Commonsense
and semantic-guided navigation through language in embodied environment,” in
ViGIL@NeurIPS, 2019.

[48] D. Yu, T. He, and K. Sagae, “Language embeddings for typology and cross-lingual
transfer learning,” in Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers). Online: Association
for Computational Linguistics, Aug. 2021, pp. 7210–7225. [Online]. Available:
https://aclanthology.org/2021.acl-long.560

[49] D. Yu, Z. Yu, and K. Sagae, “Attribute alignment: Controlling text generation from
pre-trained language models,” in Findings of the Association for Computational
Linguistics: EMNLP 2021. Punta Cana, Dominican Republic: Association
for Computational Linguistics, Nov. 2021, pp. 2251–2268. [Online]. Available:
https://aclanthology.org/2021.findings-emnlp.194

106

http://arxiv.org/abs/1908.03557
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2102.12092
https://cdn.openai.com/papers/dall-e-2.pdf
https://arxiv.org/abs/2204.14198
https://aclanthology.org/2021.acl-long.560
https://aclanthology.org/2021.findings-emnlp.194

[50] Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and Q. V. Le, “Xlnet:
Generalized autoregressive pretraining for language understanding,” CoRR, vol.
abs/1906.08237, 2019. [Online]. Available: http://arxiv.org/abs/1906.08237

[51] B. Zoph, D. Yuret, J. May, and K. Knight, “Transfer learning for low-
resource neural machine translation,” in Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing. Austin, Texas: Association
for Computational Linguistics, Nov. 2016, pp. 1568–1575. [Online]. Available:
https://www.aclweb.org/anthology/D16-1163

[52] T. Pires, E. Schlinger, and D. Garrette, “How multilingual is multilingual BERT?”
in Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computational Linguistics, Jul. 2019,
pp. 4996–5001. [Online]. Available: https://aclanthology.org/P19-1493

[53] N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher, “CTRL: A
conditional transformer language model for controllable generation,” CoRR, vol.
abs/1909.05858, 2019. [Online]. Available: http://arxiv.org/abs/1909.05858

[54] A. Holtzman, J. Buys, M. Forbes, A. Bosselut, D. Golub, and Y. Choi, “Learning
to write with cooperative discriminators,” in Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Melbourne, Australia: Association for Computational Linguistics, Jul. 2018, pp.
1638–1649. [Online]. Available: https://aclanthology.org/P18-1152

[55] S. Dathathri, A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino, J. Yosinski,
and R. Liu, “Plug and play language models: A simple approach to controlled
text generation,” in International Conference on Learning Representations, 2020.
[Online]. Available: https://openreview.net/forum?id=H1edEyBKDS

[56] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat, F. B.
Viégas, M. Wattenberg, G. Corrado, M. Hughes, and J. Dean, “Google’s multilingual
neural machine translation system: Enabling zero-shot translation,” CoRR, vol.
abs/1611.04558, 2016. [Online]. Available: http://arxiv.org/abs/1611.04558

[57] W. Ammar, G. Mulcaire, M. Ballesteros, C. Dyer, and N. A. Smith, “Many
languages, one parser,” Transactions of the Association for Computational
Linguistics, vol. 4, pp. 431–444, 2016. [Online]. Available: https://aclanthology.
org/Q16-1031

[58] P. Littell, D. R. Mortensen, K. Lin, K. Kairis, C. Turner, and L. Levin,
“URIEL and lang2vec: Representing languages as typological, geographical, and
phylogenetic vectors,” in Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 2, Short Papers.
Valencia, Spain: Association for Computational Linguistics, Apr. 2017, pp. 8–14.
[Online]. Available: https://www.aclweb.org/anthology/E17-2002

107

http://arxiv.org/abs/1906.08237
https://www.aclweb.org/anthology/D16-1163
https://aclanthology.org/P19-1493
http://arxiv.org/abs/1909.05858
https://aclanthology.org/P18-1152
https://openreview.net/forum?id=H1edEyBKDS
http://arxiv.org/abs/1611.04558
https://aclanthology.org/Q16-1031
https://aclanthology.org/Q16-1031
https://www.aclweb.org/anthology/E17-2002

[59] J. Bjerva, R. Östling, M. H. Veiga, J. Tiedemann, and I. Augenstein, “What do
language representations really represent?” Computational Linguistics, vol. 45,
no. 2, pp. 381–389, Jun. 2019. [Online]. Available: https://aclanthology.org/
J19-2006

[60] R. Östling and J. Tiedemann, “Continuous multilinguality with language vectors,”
in Proceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Papers. Valencia, Spain:
Association for Computational Linguistics, Apr. 2017, pp. 644–649. [Online].
Available: https://aclanthology.org/E17-2102

[61] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat,
F. Viégas, M. Wattenberg, G. Corrado, M. Hughes, and J. Dean, “Google’s
multilingual neural machine translation system: Enabling zero-shot translation,”
Transactions of the Association for Computational Linguistics, vol. 5, pp. 339–351,
2017. [Online]. Available: https://aclanthology.org/Q17-1024

[62] M. de Lhoneux, J. Bjerva, I. Augenstein, and A. Søgaard, “Parameter sharing
between dependency parsers for related languages,” in Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. Brussels,
Belgium: Association for Computational Linguistics, Oct.-Nov. 2018, pp.
4992–4997. [Online]. Available: https://www.aclweb.org/anthology/D18-1543

[63] E. Dinan, S. Roller, K. Shuster, A. Fan, M. Auli, and J. Weston, “Wizard
of wikipedia: Knowledge-powered conversational agents,” in International
Conference on Learning Representations, 2019. [Online]. Available: https:
//openreview.net/forum?id=r1l73iRqKm

[64] S. Prabhumoye, A. W. Black, and R. Salakhutdinov, “Exploring controllable text
generation techniques,” in Proceedings of the 28th International Conference on
Computational Linguistics. Barcelona, Spain (Online): International Committee
on Computational Linguistics, Dec. 2020, pp. 1–14. [Online]. Available:
https://aclanthology.org/2020.coling-main.1

[65] C. D. V. Hoang, T. Cohn, and G. Haffari, “Incorporating side information
into recurrent neural network language models,” in Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. San Diego, California: Association
for Computational Linguistics, Jun. 2016, pp. 1250–1255. [Online]. Available:
https://www.aclweb.org/anthology/N16-1149

[66] Z. Fu, X. Tan, N. Peng, D. Zhao, and R. Yan, “Style transfer in text: Exploration and
evaluation,” in AAAI Conference on Artificial Intelligence, 2018. [Online]. Available:
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17015/15745

[67] S. R. Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz, and S. Bengio,
“Generating sentences from a continuous space,” in Proceedings of The 20th

108

https://aclanthology.org/J19-2006
https://aclanthology.org/J19-2006
https://aclanthology.org/E17-2102
https://aclanthology.org/Q17-1024
https://www.aclweb.org/anthology/D18-1543
https://openreview.net/forum?id=r1l73iRqKm
https://openreview.net/forum?id=r1l73iRqKm
https://aclanthology.org/2020.coling-main.1
https://www.aclweb.org/anthology/N16-1149
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17015/15745

SIGNLL Conference on Computational Natural Language Learning. Berlin,
Germany: Association for Computational Linguistics, Aug. 2016, pp. 10–21.
[Online]. Available: https://www.aclweb.org/anthology/K16-1002

[68] W. Wang, Z. Gan, H. Xu, R. Zhang, G. Wang, D. Shen, C. Chen,
and L. Carin, “Topic-guided variational auto-encoder for text generation,”
in Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association
for Computational Linguistics, Jun. 2019, pp. 166–177. [Online]. Available:
https://www.aclweb.org/anthology/N19-1015

[69] J. Ficler and Y. Goldberg, “Controlling linguistic style aspects in neural language
generation,” in Proceedings of the Workshop on Stylistic Variation. Copenhagen,
Denmark: Association for Computational Linguistics, Sep. 2017, pp. 94–104.
[Online]. Available: https://www.aclweb.org/anthology/W17-4912

[70] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei,
P. F. Christiano, and G. Irving, “Fine-tuning language models from human
preferences,” CoRR, vol. abs/1909.08593, 2019. [Online]. Available: http:
//arxiv.org/abs/1909.08593

[71] E. M. Smith, D. Gonzalez-Rico, E. Dinan, and Y. Boureau, “Controlling style
in generated dialogue,” CoRR, vol. abs/2009.10855, 2020. [Online]. Available:
https://arxiv.org/abs/2009.10855

[72] A. Romanov, A. Rumshisky, A. Rogers, and D. Donahue, “Adversarial
decomposition of text representation,” in Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, Jun. 2019, pp. 815–825.
[Online]. Available: https://www.aclweb.org/anthology/N19-1088

[73] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe,
A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-efficient transfer learning
for NLP,” in Proceedings of Machine Learning Research, ser. Proceedings of
Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97.
Long Beach, California, USA: PMLR, 09–15 Jun 2019, pp. 2790–2799. [Online].
Available: http://proceedings.mlr.press/v97/houlsby19a.html

[74] A. Bapna and O. Firat, “Simple, scalable adaptation for neural machine
translation,” in Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association
for Computational Linguistics, Nov. 2019, pp. 1538–1548. [Online]. Available:
https://aclanthology.org/D19-1165

109

https://www.aclweb.org/anthology/K16-1002
https://www.aclweb.org/anthology/N19-1015
https://www.aclweb.org/anthology/W17-4912
http://arxiv.org/abs/1909.08593
http://arxiv.org/abs/1909.08593
https://arxiv.org/abs/2009.10855
https://www.aclweb.org/anthology/N19-1088
http://proceedings.mlr.press/v97/houlsby19a.html
https://aclanthology.org/D19-1165

[75] Z. M. Ziegler, L. Melas-Kyriazi, S. Gehrmann, and A. M. Rush, “Encoder-agnostic
adaptation for conditional language generation,” CoRR, vol. abs/1908.06938, 2019.
[Online]. Available: http://arxiv.org/abs/1908.06938

[76] A. Madotto, E. Ishii, Z. Lin, S. Dathathri, and P. Fung, “Plug-and-play
conversational models,” in Findings of the Association for Computational
Linguistics: EMNLP 2020. Online: Association for Computational Linguistics,
Nov. 2020, pp. 2422–2433. [Online]. Available: https://aclanthology.org/2020.
findings-emnlp.219

[77] A. Chan, Y.-S. Ong, B. Pung, A. Zhang, and J. Fu, “Cocon: A
self-supervised approach for controlled text generation,” in International
Conference on Learning Representations, 2021. [Online]. Available: https:
//openreview.net/forum?id=VD_ozqvBy4W

[78] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski, “Plug & play
generative networks: Conditional iterative generation of images in latent space,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[79] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case of neural
text degeneration,” in International Conference on Learning Representations, 2020.
[Online]. Available: https://openreview.net/forum?id=rygGQyrFvH

[80] B. Krause, A. D. Gotmare, B. McCann, N. S. Keskar, S. R. Joty, R. Socher, and
N. F. Rajani, “Gedi: Generative discriminator guided sequence generation,” CoRR,
vol. abs/2009.06367, 2020. [Online]. Available: https://arxiv.org/abs/2009.06367

[81] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts for
generation,” in Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers). Online: Association
for Computational Linguistics, Aug. 2021, pp. 4582–4597. [Online]. Available:
https://aclanthology.org/2021.acl-long.353

[82] A. N. Little, “Connecting documentation and revitalization: A new approach
to language apps,” in Proceedings of the 2nd Workshop on the Use of
Computational Methods in the Study of Endangered Languages. Honolulu:
Association for Computational Linguistics, Mar. 2017, pp. 151–155. [Online].
Available: https://aclanthology.org/W17-0120

[83] D. Wang and J. Eisner, “Fine-Grained Prediction of Syntactic Typology:
Discovering Latent Structure with Supervised Learning,” Transactions of the
Association for Computational Linguistics, vol. 5, pp. 147–161, Dec. 2017. [Online].
Available: https://www.mitpressjournals.org/doi/abs/10.1162/tacl_a_00052

110

http://arxiv.org/abs/1908.06938
https://aclanthology.org/2020.findings-emnlp.219
https://aclanthology.org/2020.findings-emnlp.219
https://openreview.net/forum?id=VD_ozqvBy4W
https://openreview.net/forum?id=VD_ozqvBy4W
https://openreview.net/forum?id=rygGQyrFvH
https://arxiv.org/abs/2009.06367
https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/W17-0120
https://www.mitpressjournals.org/doi/abs/10.1162/tacl_a_00052

[84] R. Östling, “Word order typology through multilingual word alignment,” in
Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers). Beijing, China: Association for
Computational Linguistics, Jul. 2015, pp. 205–211. [Online]. Available: https:
//aclanthology.org/P15-2034

[85] C. Malaviya, G. Neubig, and P. Littell, “Learning language representations
for typology prediction,” in Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. Copenhagen, Denmark: Association
for Computational Linguistics, Sep. 2017, pp. 2529–2535. [Online]. Available:
https://aclanthology.org/D17-1268

[86] X. Tan, J. Chen, D. He, Y. Xia, T. Qin, and T.-Y. Liu, “Multilingual neural machine
translation with language clustering,” in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong
Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 963–973.
[Online]. Available: https://aclanthology.org/D19-1089

[87] J. Bjerva and I. Augenstein, “From phonology to syntax: Unsupervised linguistic
typology at different levels with language embeddings,” in Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers). New
Orleans, Louisiana: Association for Computational Linguistics, Jun. 2018, pp.
907–916. [Online]. Available: https://aclanthology.org/N18-1083

[88] J. Bjerva, Y. Kementchedjhieva, R. Cotterell, and I. Augenstein, “A probabilistic
generative model of linguistic typology,” in Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, Jun. 2019, pp. 1529–1540.
[Online]. Available: https://aclanthology.org/N19-1156

[89] E. Rabinovich, N. Ordan, and S. Wintner, “Found in translation: Reconstructing
phylogenetic language trees from translations,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Vancouver, Canada: Association for Computational Linguistics, Jul. 2017, pp.
530–540. [Online]. Available: https://aclanthology.org/P17-1049

[90] P. Koehn, “Europarl: A Parallel Corpus for Statistical Machine Translation,”
in Conference Proceedings: the tenth Machine Translation Summit, AAMT.
Phuket, Thailand: AAMT, 2005, pp. 79–86. [Online]. Available: http:
//mt-archive.info/MTS-2005-Koehn.pdf

111

https://aclanthology.org/P15-2034
https://aclanthology.org/P15-2034
https://aclanthology.org/D17-1268
https://aclanthology.org/D19-1089
https://aclanthology.org/N18-1083
https://aclanthology.org/N19-1156
https://aclanthology.org/P17-1049
http://mt-archive.info/MTS-2005-Koehn.pdf
http://mt-archive.info/MTS-2005-Koehn.pdf

[91] M. Baker, G. Francis, and E. Tognini-Bonelli, ’Corpus Linguistics and Translation
Studies: Implications and Applications’. Netherlands: John Benjamins Publishing
Company, 1993.

[92] G. Toury, Descriptive Translation Studies and beyond. Amsterdam /Philadelphia:
John Benjamins, 1995.

[93] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán,
E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov, “Unsupervised cross-
lingual representation learning at scale,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Online: Association
for Computational Linguistics, Jul. 2020, pp. 8440–8451. [Online]. Available:
https://aclanthology.org/2020.acl-main.747

[94] K. K, Z. Wang, S. Mayhew, and D. Roth, “Cross-lingual ability of multilingual bert:
An empirical study,” 2019.

[95] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and com-
posing robust features with denoising autoencoders,” in Proceedings of the 25th
international conference on Machine learning. ACM, 2008, pp. 1096–1103.

[96] F. Ginter, J. Hajič, J. Luotolahti, M. Straka, and D. Zeman, “CoNLL
2017 shared task - automatically annotated raw texts and word embeddings,”
2017, LINDAT/CLARIN digital library at the Institute of Formal and Applied
Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.
[Online]. Available: http://hdl.handle.net/11234/1-1989

[97] G. Lample, A. Conneau, M. Ranzato, L. Denoyer, and H. Jégou, “Word
translation without parallel data,” in 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018. [Online]. Available:
https://openreview.net/forum?id=H196sainb

[98] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[99] M. S. Dryer and M. Haspelmath, Eds., WALS Online. Leipzig: Max
Planck Institute for Evolutionary Anthropology, 2013. [Online]. Available:
https://wals.info/

[100] A. Conneau, R. Rinott, G. Lample, A. Williams, S. Bowman, H. Schwenk,
and V. Stoyanov, “XNLI: Evaluating cross-lingual sentence representations,” in
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing. Brussels, Belgium: Association for Computational Linguistics, Oct.-
Nov. 2018, pp. 2475–2485. [Online]. Available: https://aclanthology.org/D18-1269

[101] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classification, vol. 2,
no. 1, pp. 193–218, 1985.

112

https://aclanthology.org/2020.acl-main.747
http://hdl.handle.net/11234/1-1989
https://openreview.net/forum?id=H196sainb
https://wals.info/
https://aclanthology.org/D18-1269

[102] J. Bjerva, E. Salesky, S. J. Mielke, A. Chaudhary, G. G. A. Celano,
E. M. Ponti, E. Vylomova, R. Cotterell, and I. Augenstein, “SIGTYP
2020 shared task: Prediction of typological features,” in Proceedings of the
Second Workshop on Computational Research in Linguistic Typology. Online:
Association for Computational Linguistics, Nov. 2020, pp. 1–11. [Online]. Available:
https://aclanthology.org/2020.sigtyp-1.1

[103] D. Zeman, J. Nivre, M. Abrams, E. Ackermann, N. Aepli, Ž. Agić, L. Ahrenberg,
C. K. Ajede, G. Aleksandravičiūtė, L. Antonsen, K. Aplonova, A. Aquino,
M. J. Aranzabe, G. Arutie, M. Asahara, L. Ateyah, F. Atmaca, M. Attia,
A. Atutxa, L. Augustinus, E. Badmaeva, M. Ballesteros, E. Banerjee, S. Bank,
V. Barbu Mititelu, V. Basmov, C. Batchelor, J. Bauer, K. Bengoetxea, Y. Berzak,
I. A. Bhat, R. A. Bhat, E. Biagetti, E. Bick, A. Bielinskienė, R. Blokland,
V. Bobicev, L. Boizou, E. Borges Völker, C. Börstell, C. Bosco, G. Bouma,
S. Bowman, A. Boyd, K. Brokaitė, A. Burchardt, M. Candito, B. Caron, G. Caron,
T. Cavalcanti, G. Cebiroğlu Eryiğit, F. M. Cecchini, G. G. A. Celano, S. Čéplö,
S. Cetin, F. Chalub, E. Chi, J. Choi, Y. Cho, J. Chun, A. T. Cignarella,
S. Cinková, A. Collomb, Ç. Çöltekin, M. Connor, M. Courtin, E. Davidson,
M.-C. de Marneffe, V. de Paiva, E. de Souza, A. Diaz de Ilarraza, C. Dickerson,
B. Dione, P. Dirix, K. Dobrovoljc, T. Dozat, K. Droganova, P. Dwivedi, H. Eckhoff,
M. Eli, A. Elkahky, B. Ephrem, O. Erina, T. Erjavec, A. Etienne, W. Evelyn,
R. Farkas, H. Fernandez Alcalde, J. Foster, C. Freitas, K. Fujita, K. Gajdošová,
D. Galbraith, M. Garcia, M. Gärdenfors, S. Garza, K. Gerdes, F. Ginter,
I. Goenaga, K. Gojenola, M. Gökırmak, Y. Goldberg, X. Gómez Guinovart,
B. González Saavedra, B. Griciūtė, M. Grioni, L. Grobol, N. Grūz̄ıtis, B. Guillaume,
C. Guillot-Barbance, T. Güngör, N. Habash, J. Hajič, J. Hajič jr., M. Hämäläinen,
L. Hà Mỹ, N.-R. Han, K. Harris, D. Haug, J. Heinecke, O. Hellwig, F. Hennig,
B. Hladká, J. Hlaváčová, F. Hociung, P. Hohle, J. Hwang, T. Ikeda, R. Ion,
E. Irimia, O. . Ishola, T. Jelínek, A. Johannsen, H. Jónsdóttir, F. Jørgensen,
M. Juutinen, H. Kaşıkara, A. Kaasen, N. Kabaeva, S. Kahane, H. Kanayama,
J. Kanerva, B. Katz, T. Kayadelen, J. Kenney, V. Kettnerová, J. Kirchner,
E. Klementieva, A. Köhn, A. Köksal, K. Kopacewicz, T. Korkiakangas, N. Kotsyba,
J. Kovalevskaitė, S. Krek, S. Kwak, V. Laippala, L. Lambertino, L. Lam, T. Lando,
S. D. Larasati, A. Lavrentiev, J. Lee, P. Lê Hồng, A. Lenci, S. Lertpradit, H. Leung,
M. Levina, C. Y. Li, J. Li, K. Li, K. Lim, Y. Li, N. Ljubešić, O. Loginova,
O. Lyashevskaya, T. Lynn, V. Macketanz, A. Makazhanov, M. Mandl, C. Manning,
R. Manurung, C. Mărănduc, D. Mareček, K. Marheinecke, H. Martínez Alonso,
A. Martins, J. Mašek, H. Matsuda, Y. Matsumoto, R. McDonald, S. McGuinness,
G. Mendonça, N. Miekka, M. Misirpashayeva, A. Missilä, C. Mititelu, M. Mitrofan,
Y. Miyao, S. Montemagni, A. More, L. Moreno Romero, K. S. Mori, T. Morioka,
S. Mori, S. Moro, B. Mortensen, B. Moskalevskyi, K. Muischnek, R. Munro,
Y. Murawaki, K. Müürisep, P. Nainwani, J. I. Navarro Horñiacek, A. Nedoluzhko,
G. Nešpore-Bērzkalne, L. Nguyễn Thi., H. Nguyễn Thi. Minh, Y. Nikaido,
V. Nikolaev, R. Nitisaroj, H. Nurmi, S. Ojala, A. K. Ojha, A. Olúòkun,

113

https://aclanthology.org/2020.sigtyp-1.1

M. Omura, E. Onwuegbuzia, P. Osenova, R. Östling, L. Øvrelid, Ş. B. Özateş,
A. Özgür, B. Öztürk Başaran, N. Partanen, E. Pascual, M. Passarotti, A. Patejuk,
G. Paulino-Passos, A. Peljak-Łapińska, S. Peng, C.-A. Perez, G. Perrier,
D. Petrova, S. Petrov, J. Phelan, J. Piitulainen, T. A. Pirinen, E. Pitler,
B. Plank, T. Poibeau, L. Ponomareva, M. Popel, L. Pretkalnin, a, S. Prévost,
P. Prokopidis, A. Przepiórkowski, T. Puolakainen, S. Pyysalo, P. Qi, A. Rääbis,
A. Rademaker, L. Ramasamy, T. Rama, C. Ramisch, V. Ravishankar, L. Real,
P. Rebeja, S. Reddy, G. Rehm, I. Riabov, M. Rießler, E. Rimkutė, L. Rinaldi,
L. Rituma, L. Rocha, M. Romanenko, R. Rosa, V. Ros,ca, D. Rovati, O. Rudina,
J. Rueter, S. Sadde, B. Sagot, S. Saleh, A. Salomoni, T. Samardžić, S. Samson,
M. Sanguinetti, D. Särg, B. Saul̄ıte, Y. Sawanakunanon, S. Scarlata, N. Schneider,
S. Schuster, D. Seddah, W. Seeker, M. Seraji, M. Shen, A. Shimada, H. Shirasu,
M. Shohibussirri, D. Sichinava, A. Silveira, N. Silveira, M. Simi, R. Simionescu,
K. Simkó, M. Šimková, K. Simov, M. Skachedubova, A. Smith, I. Soares-Bastos,
C. Spadine, A. Stella, M. Straka, J. Strnadová, A. Suhr, U. Sulubacak, S. Suzuki,
Z. Szántó, D. Taji, Y. Takahashi, F. Tamburini, T. Tanaka, S. Tella, I. Tellier,
G. Thomas, L. Torga, M. Toska, T. Trosterud, A. Trukhina, R. Tsarfaty, U. Türk,
F. Tyers, S. Uematsu, R. Untilov, Z. Urešová, L. Uria, H. Uszkoreit, A. Utka,
S. Vajjala, D. van Niekerk, G. van Noord, V. Varga, E. Villemonte de la Clergerie,
V. Vincze, A. Wakasa, L. Wallin, A. Walsh, J. X. Wang, J. N. Washington,
M. Wendt, P. Widmer, S. Williams, M. Wirén, C. Wittern, T. Woldemariam,
T.-s. Wong, A. Wróblewska, M. Yako, K. Yamashita, N. Yamazaki, C. Yan,
K. Yasuoka, M. M. Yavrumyan, Z. Yu, Z. Žabokrtský, A. Zeldes, H. Zhu,
and A. Zhuravleva, “Universal dependencies 2.6,” 2020, LINDAT/CLARIAH-CZ
digital library at the Institute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles University. [Online]. Available:
http://hdl.handle.net/11234/1-3226

[104] T. Dozat and C. D. Manning, “Deep Biaffine Attention for Neural Dependency
Parsing,” arXiv:1611.01734 [cs], Nov. 2016, arXiv: 1611.01734. [Online]. Available:
http://arxiv.org/abs/1611.01734

[105] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.
Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural
Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017, pp. 5998–6008. [Online]. Available: https://proceedings.neurips.cc/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[106] J. Hu, S. Ruder, A. Siddhant, G. Neubig, O. Firat, and M. Johnson, “XTREME:
A massively multilingual multi-task benchmark for evaluating cross-lingual
generalisation,” in Proceedings of the 37th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, H. D. III and A. Singh,
Eds., vol. 119. PMLR, 13–18 Jul 2020, pp. 4411–4421. [Online]. Available:
http://proceedings.mlr.press/v119/hu20b.html

114

http://hdl.handle.net/11234/1-3226
http://arxiv.org/abs/1611.01734
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://proceedings.mlr.press/v119/hu20b.html

[107] A. Williams, N. Nangia, and S. Bowman, “A broad-coverage challenge corpus for
sentence understanding through inference,” in Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers). New Orleans, Louisiana:
Association for Computational Linguistics, Jun. 2018, pp. 1112–1122. [Online].
Available: https://aclanthology.org/N18-1101

[108] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text
transformer,” Journal of Machine Learning Research, vol. 21, no. 140, pp. 1–67,
2020. [Online]. Available: http://jmlr.org/papers/v21/20-074.html

[109] Y. Liu and M. Lapata, “Learning structured text representations,” Transactions of
the Association for Computational Linguistics, vol. 6, pp. 63–75, 2018. [Online].
Available: https://www.aclweb.org/anthology/Q18-1005

[110] J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan, “A diversity-promoting
objective function for neural conversation models,” in Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. San Diego, California: Association
for Computational Linguistics, Jun. 2016, pp. 110–119. [Online]. Available:
https://www.aclweb.org/anthology/N16-1014

[111] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng,
and C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing. Seattle, Washington, USA: Association
for Computational Linguistics, Oct. 2013, pp. 1631–1642. [Online]. Available:
https://www.aclweb.org/anthology/D13-1170

[112] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text
classification,” in Proceedings of the 28th International Conference on Neural Infor-
mation Processing Systems - Volume 1, ser. NIPS’15. Cambridge, MA, USA: MIT
Press, 2015, p. 649–657.

[113] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning
word vectors for sentiment analysis,” in Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies.
Portland, Oregon, USA: Association for Computational Linguistics, June 2011, pp.
142–150. [Online]. Available: http://www.aclweb.org/anthology/P11-1015

[114] D. Yu, M. Wang, Y. Cao, I. Shafran, L. E. Shafey, and H. Soltau, “Unsupervised
slot schema induction for task-oriented dialog,” 2022.

[115] M. Eric, R. Goel, S. Paul, A. Sethi, S. Agarwal, S. Gao, A. Kumar, A. Goyal,
P. Ku, and D. Hakkani-Tur, “MultiWOZ 2.1: A consolidated multi-domain

115

https://aclanthology.org/N18-1101
http://jmlr.org/papers/v21/20-074.html
https://www.aclweb.org/anthology/Q18-1005
https://www.aclweb.org/anthology/N16-1014
https://www.aclweb.org/anthology/D13-1170
http://www.aclweb.org/anthology/P11-1015

dialogue dataset with state corrections and state tracking baselines,” in Proceedings
of the 12th Language Resources and Evaluation Conference. Marseille, France:
European Language Resources Association, May 2020, pp. 422–428. [Online].
Available: https://aclanthology.org/2020.lrec-1.53

[116] X. Zang, A. Rastogi, S. Sunkara, R. Gupta, J. Zhang, and J. Chen, “MultiWOZ
2.2 : A dialogue dataset with additional annotation corrections and state tracking
baselines,” in Proceedings of the 2nd Workshop on Natural Language Processing for
Conversational AI. Online: Association for Computational Linguistics, Jul. 2020,
pp. 109–117. [Online]. Available: https://aclanthology.org/2020.nlp4convai-1.13

[117] Q. Min, L. Qin, Z. Teng, X. Liu, and Y. Zhang, “Dialogue state induction
using neural latent variable models,” in Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI-20, C. Bessiere, Ed.
International Joint Conferences on Artificial Intelligence Organization, 7 2020, pp.
3845–3852, main track. [Online]. Available: https://doi.org/10.24963/ijcai.2020/532

[118] D. Yu and Z. Yu, “MIDAS: A dialog act annotation scheme for open domain
HumanMachine spoken conversations,” in Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume.
Online: Association for Computational Linguistics, Apr. 2021, pp. 1103–1120.
[Online]. Available: https://aclanthology.org/2021.eacl-main.94

[119] Y.-N. Chen, W. Y. Wang, and A. I. Rudnicky, “Unsupervised induction and filling of
semantic slots for spoken dialogue systems using frame-semantic parsing,” in 2013
IEEE Workshop on Automatic Speech Recognition and Understanding, 2013, pp.
120–125.

[120] V. Hudeček, O. Dušek, and Z. Yu, “Discovering dialogue slots with weak
supervision,” in Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers). Online: Association
for Computational Linguistics, Aug. 2021, pp. 2430–2442. [Online]. Available:
https://aclanthology.org/2021.acl-long.189

[121] P. Budzianowski, T.-H. Wen, B.-H. Tseng, I. Casanueva, S. Ultes, O. Ramadan,
and M. Gašić, “MultiWOZ - a large-scale multi-domain Wizard-of-Oz dataset
for task-oriented dialogue modelling,” in Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. Brussels, Belgium: Association
for Computational Linguistics, Oct.-Nov. 2018, pp. 5016–5026. [Online]. Available:
https://aclanthology.org/D18-1547

[122] A. Rastogi, X. Zang, S. Sunkara, R. Gupta, and P. Khaitan, “Towards scalable multi-
domain conversational agents: The schema-guided dialogue dataset,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, pp. 8689–8696, Apr.
2020. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/6394

116

https://aclanthology.org/2020.lrec-1.53
https://aclanthology.org/2020.nlp4convai-1.13
https://doi.org/10.24963/ijcai.2020/532
https://aclanthology.org/2021.eacl-main.94
https://aclanthology.org/2021.acl-long.189
https://aclanthology.org/D18-1547
https://ojs.aaai.org/index.php/AAAI/article/view/6394

[123] I. Klasinas, E. Iosif, K. Louka, and A. Potamianos, “SemEval-2014 task 2:
Grammar induction for spoken dialogue systems,” in Proceedings of the 8th
International Workshop on Semantic Evaluation (SemEval 2014). Dublin, Ireland:
Association for Computational Linguistics, Aug. 2014, pp. 9–16. [Online]. Available:
https://aclanthology.org/S14-2002

[124] G. Athanasopoulou, I. Klasinas, S. Georgiladakis, E. Iosif, and A. Potamianos, “Us-
ing lexical, syntactic and semantic features for non-terminal grammar rule induction
in spoken dialogue systems,” in 2014 IEEE Spoken Language Technology Workshop
(SLT), 2014, pp. 596–601.

[125] Y.-N. Chen, W. Y. Wang, and A. I. Rudnicky, “Leveraging frame semantics and
distributional semantics for unsupervised semantic slot induction in spoken dialogue
systems,” in 2014 IEEE Spoken Language Technology Workshop (SLT), 2014, pp.
584–589.

[126] ——, “Learning semantic hierarchy with distributed representations for unsuper-
vised spoken language understanding,” in Proceedings of The 16th Annual Meeting
of the International Speech Communication Association (INTERSPEECH 2015),
2015, pp. 1869–1873.

[127] Y.-N. Chen, W. Y. Wang, and A. Rudnicky, “Jointly modeling inter-slot
relations by random walk on knowledge graphs for unsupervised spoken language
understanding,” in Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies. Denver, Colorado: Association for Computational Linguistics, May–
Jun. 2015, pp. 619–629. [Online]. Available: https://aclanthology.org/N15-1064

[128] C. F. Baker, C. J. Fillmore, and J. B. Lowe, “The Berkeley FrameNet project,”
in COLING 1998 Volume 1: The 17th International Conference on Computational
Linguistics, 1998. [Online]. Available: https://aclanthology.org/C98-1013

[129] D. Das, N. Schneider, D. Chen, and N. A. Smith, “Probabilistic frame-semantic
parsing,” in Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics. Los
Angeles, California: Association for Computational Linguistics, Jun. 2010, pp.
948–956. [Online]. Available: https://aclanthology.org/N10-1138

[130] C. Shi, Q. Chen, L. Sha, S. Li, X. Sun, H. Wang, and L. Zhang, “Auto-dialabel:
Labeling dialogue data with unsupervised learning,” in Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. Brussels,
Belgium: Association for Computational Linguistics, Oct.-Nov. 2018, pp. 684–689.
[Online]. Available: https://aclanthology.org/D18-1072

[131] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep embedding:
An unsupervised and generative approach to clustering,” in Proceedings of the

117

https://aclanthology.org/S14-2002
https://aclanthology.org/N15-1064
https://aclanthology.org/C98-1013
https://aclanthology.org/N10-1138
https://aclanthology.org/D18-1072

Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17,
2017, pp. 1965–1972. [Online]. Available: https://doi.org/10.24963/ijcai.2017/273

[132] D. Yu, L. He, Y. Zhang, X. Du, P. Pasupat, and Q. Li, “Few-shot
intent classification and slot filling with retrieved examples,” in Proceedings of
the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Online: Association
for Computational Linguistics, Jun. 2021, pp. 734–749. [Online]. Available:
https://aclanthology.org/2021.naacl-main.59

[133] R. Campos, V. Mangaravite, A. Pasquali, A. M. Jorge, C. Nunes, and A. Jatowt,
“Yake! collection-independent automatic keyword extractor,” in Advances in In-
formation Retrieval, G. Pasi, B. Piwowarski, L. Azzopardi, and A. Hanbury, Eds.
Cham: Springer International Publishing, 2018, pp. 806–810.

[134] K. Bennani-Smires, C. Musat, A. Hossmann, M. Baeriswyl, and M. Jaggi, “Simple
unsupervised keyphrase extraction using sentence embeddings,” in Proceedings of
the 22nd Conference on Computational Natural Language Learning. Brussels,
Belgium: Association for Computational Linguistics, Oct. 2018, pp. 221–229.
[Online]. Available: https://aclanthology.org/K18-1022

[135] X. Wan and J. Xiao, “Single document keyphrase extraction using neighborhood
knowledge,” in Proceedings of the 23rd National Conference on Artificial Intelligence
- Volume 2, ser. AAAI’08. AAAI Press, 2008, p. 855–860.

[136] Z. Liu, P. Li, Y. Zheng, and M. Sun, “Clustering to find exemplar
terms for keyphrase extraction,” in Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing. Singapore: Association
for Computational Linguistics, Aug. 2009, pp. 257–266. [Online]. Available:
https://aclanthology.org/D09-1027

[137] Y. Li, L. Liu, and K. Yao, “Neural sequence segmentation as determining the
leftmost segments,” in Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies. Online: Association for Computational Linguistics, Jun. 2021, pp.
1476–1486. [Online]. Available: https://aclanthology.org/2021.naacl-main.116

[138] D. Klein and C. D. Manning, “A generative constituent-context model for
improved grammar induction,” in Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics. Philadelphia, Pennsylvania, USA:
Association for Computational Linguistics, Jul. 2002, pp. 128–135. [Online].
Available: https://aclanthology.org/P02-1017

[139] D. Klein and C. Manning, “Corpus-based induction of syntactic structure: Models
of dependency and constituency,” in Proceedings of the 42nd Annual Meeting of the
Association for Computational Linguistics (ACL-04), Barcelona, Spain, Jul. 2004,
pp. 478–485. [Online]. Available: https://aclanthology.org/P04-1061

118

https://doi.org/10.24963/ijcai.2017/273
https://aclanthology.org/2021.naacl-main.59
https://aclanthology.org/K18-1022
https://aclanthology.org/D09-1027
https://aclanthology.org/2021.naacl-main.116
https://aclanthology.org/P02-1017
https://aclanthology.org/P04-1061

[140] Y. Shen, Z. Lin, C. wei Huang, and A. Courville, “Neural language modeling
by jointly learning syntax and lexicon,” in International Conference on Learning
Representations, 2018. [Online]. Available: https://openreview.net/forum?id=
rkgOLb-0W

[141] A. Drozdov, P. Verga, Y.-P. Chen, M. Iyyer, and A. McCallum, “Unsupervised
labeled parsing with deep inside-outside recursive autoencoders,” in Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Hong Kong, China: Association for Computational Linguistics, Nov.
2019, pp. 1507–1512. [Online]. Available: https://aclanthology.org/D19-1161

[142] S. Zhang, L. Song, L. Jin, K. Xu, D. Yu, and J. Luo, “Video-aided unsupervised
grammar induction,” in Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies. Online: Association for Computational Linguistics, Jun. 2021, pp.
1513–1524. [Online]. Available: https://aclanthology.org/2021.naacl-main.119

[143] T. Kim, J. Choi, D. Edmiston, and S. goo Lee, “Are pre-trained language
models aware of phrases? simple but strong baselines for grammar induction,” in
International Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=H1xPR3NtPB

[144] J. Herzig and J. Berant, “Span-based semantic parsing for compositional
generalization,” in Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers). Online: Association
for Computational Linguistics, Aug. 2021, pp. 908–921. [Online]. Available:
https://aclanthology.org/2021.acl-long.74

[145] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning, “What does BERT look
at? an analysis of BERT’s attention,” in Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Florence,
Italy: Association for Computational Linguistics, Aug. 2019, pp. 276–286. [Online].
Available: https://aclanthology.org/W19-4828

[146] Y. Kim, C. Dyer, and A. Rush, “Compound probabilistic context-free grammars
for grammar induction,” in Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics. Florence, Italy: Association
for Computational Linguistics, Jul. 2019, pp. 2369–2385. [Online]. Available:
https://aclanthology.org/P19-1228

[147] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy, “SpanBERT:
Improving pre-training by representing and predicting spans,” Transactions of
the Association for Computational Linguistics, vol. 8, pp. 64–77, 2020. [Online].
Available: https://aclanthology.org/2020.tacl-1.5

119

https://openreview.net/forum?id=rkgOLb-0W
https://openreview.net/forum?id=rkgOLb-0W
https://aclanthology.org/D19-1161
https://aclanthology.org/2021.naacl-main.119
https://openreview.net/forum?id=H1xPR3NtPB
https://aclanthology.org/2021.acl-long.74
https://aclanthology.org/W19-4828
https://aclanthology.org/P19-1228
https://aclanthology.org/2020.tacl-1.5

[148] C.-S. Wu, S. C. Hoi, R. Socher, and C. Xiong, “TOD-BERT: Pre-trained natural
language understanding for task-oriented dialogue,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP).
Online: Association for Computational Linguistics, Nov. 2020, pp. 917–929.
[Online]. Available: https://aclanthology.org/2020.emnlp-main.66

[149] M. Henderson and I. Vulić, “ConVEx: Data-efficient and few-shot slot labeling,”
in Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies.
Online: Association for Computational Linguistics, Jun. 2021, pp. 3375–3389.
[Online]. Available: https://aclanthology.org/2021.naacl-main.264

[150] S. Davidson, D. Yu, and Z. Yu, “Dependency parsing for spoken dialog
systems,” in Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association
for Computational Linguistics, Nov. 2019, pp. 1513–1519. [Online]. Available:
https://aclanthology.org/D19-1162

[151] G. D. Forney, “The viterbi algorithm,” Proc. of the IEEE, vol. 61, pp. 268 – 278,
March 1973.

[152] L. McInnes, J. Healy, and S. Astels, “hdbscan: Hierarchical density based
clustering,” Journal of Open Source Software, vol. 2, no. 11, p. 205, 2017. [Online].
Available: https://doi.org/10.21105/joss.00205

[153] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20,
pp. 53–65, 1987. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/0377042787901257

[154] K. Yamada, R. Sasano, and K. Takeda, “Semantic frame induction using masked
word embeddings and two-step clustering,” in Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 2: Short Papers).
Online: Association for Computational Linguistics, Aug. 2021, pp. 811–816.
[Online]. Available: https://aclanthology.org/2021.acl-short.102

[155] J. Michael, J. A. Botha, and I. Tenney, “Asking without telling: Exploring latent
ontologies in contextual representations,” in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Online: Association
for Computational Linguistics, Nov. 2020, pp. 6792–6812. [Online]. Available:
https://aclanthology.org/2020.emnlp-main.552

[156] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky,
“The Stanford CoreNLP natural language processing toolkit,” in Proceedings of

120

https://aclanthology.org/2020.emnlp-main.66
https://aclanthology.org/2021.naacl-main.264
https://aclanthology.org/D19-1162
https://doi.org/10.21105/joss.00205
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://aclanthology.org/2021.acl-short.102
https://aclanthology.org/2020.emnlp-main.552

52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations. Baltimore, Maryland: Association for Computational Linguistics,
Jun. 2014, pp. 55–60. [Online]. Available: https://aclanthology.org/P14-5010

[157] W. Lei, X. Jin, M.-Y. Kan, Z. Ren, X. He, and D. Yin, “Sequicity: Simplifying
task-oriented dialogue systems with single sequence-to-sequence architectures,” in
Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association
for Computational Linguistics, Jul. 2018, pp. 1437–1447. [Online]. Available:
https://aclanthology.org/P18-1133

[158] Y. Zhang, Z. Ou, and Z. Yu, “Task-oriented dialog systems that consider
multiple appropriate responses under the same context,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 05, pp. 9604–9611, Apr. 2020.
[Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/6507

[159] E. Hosseini-Asl, B. McCann, C.-S. Wu, S. Yavuz, and R. Socher, “A
simple language model for task-oriented dialogue,” in Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp.
20 179–20 191. [Online]. Available: https://proceedings.neurips.cc/paper/2020/file/
e946209592563be0f01c844ab2170f0c-Paper.pdf

[160] W. Chen, J. Chen, P. Qin, X. Yan, and W. Y. Wang, “Semantically
conditioned dialog response generation via hierarchical disentangled self-attention,”
in Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computational Linguistics, Jul. 2019,
pp. 3696–3709. [Online]. Available: https://aclanthology.org/P19-1360

[161] X. Du, L. He, Q. Li, D. Yu, P. Pasupat, and Y. Zhang, “QA-driven zero-shot
slot filling with weak supervision pretraining,” in Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 2: Short Papers).
Online: Association for Computational Linguistics, Aug. 2021, pp. 654–664.
[Online]. Available: https://aclanthology.org/2021.acl-short.83

[162] H. Shi, J. Mao, K. Gimpel, and K. Livescu, “Visually grounded neural
syntax acquisition,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence, Italy: Association for
Computational Linguistics, Jul. 2019, pp. 1842–1861. [Online]. Available:
https://aclanthology.org/P19-1180

[163] R. Lowe, N. Pow, I. Serban, and J. Pineau, “The Ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dialogue systems,” in Proceedings of
the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue.
Prague, Czech Republic: Association for Computational Linguistics, Sep. 2015, pp.
285–294. [Online]. Available: https://aclanthology.org/W15-4640

121

https://aclanthology.org/P14-5010
https://aclanthology.org/P18-1133
https://ojs.aaai.org/index.php/AAAI/article/view/6507
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://aclanthology.org/P19-1360
https://aclanthology.org/2021.acl-short.83
https://aclanthology.org/P19-1180
https://aclanthology.org/W15-4640

[164] S. Min, D. Chen, H. Hajishirzi, and L. Zettlemoyer, “A discrete hard EM approach
for weakly supervised question answering,” in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong,
China: Association for Computational Linguistics, Nov. 2019, pp. 2851–2864.
[Online]. Available: https://aclanthology.org/D19-1284

[165] D. Yu and K. Sagae, “Automatically exposing problems with neural dialog
models,” in Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Online and Punta Cana, Dominican Republic: Association
for Computational Linguistics, Nov. 2021, pp. 456–470. [Online]. Available:
https://aclanthology.org/2021.emnlp-main.37

[166] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,”
in Advances in Neural Information Processing Systems 30, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds. Curran Associates, Inc., 2017, pp. 4077–4087. [Online]. Available:
http://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning.pdf

[167] E. Triantafillou, T. Zhu, V. Dumoulin, P. Lamblin, K. Xu, R. Goroshin, C. Gelada,
K. Swersky, P. Manzagol, and H. Larochelle, “Meta-dataset: A dataset of datasets
for learning to learn from few examples,” CoRR, vol. abs/1903.03096, 2019.
[Online]. Available: http://arxiv.org/abs/1903.03096

[168] C.-S. Wu, A. Madotto, E. Hosseini-Asl, C. Xiong, R. Socher, and P. Fung,
“Transferable multi-domain state generator for task-oriented dialogue systems,”
in Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computational Linguistics, Jul. 2019,
pp. 808–819. [Online]. Available: https://aclanthology.org/P19-1078

[169] K. Q. Weinberger, J. Blitzer, and L. Saul, “Distance metric learning for
large margin nearest neighbor classification,” in Advances in Neural Information
Processing Systems, Y. Weiss, B. Schölkopf, and J. Platt, Eds., vol. 18. MIT
Press, 2006, pp. 1473–1480. [Online]. Available: https://proceedings.neurips.cc/
paper/2005/file/a7f592cef8b130a6967a90617db5681b-Paper.pdf

[170] O. Vinyals, C. Blundell, T. Lillicrap, k. kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in Advances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, Eds. Curran Associates, Inc., 2016, pp. 3630–3638. [Online]. Available:
http://papers.nips.cc/paper/6385-matching-networks-for-one-shot-learning.pdf

[171] S. Wiseman and K. Stratos, “Label-agnostic sequence labeling by copying
nearest neighbors,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence, Italy: Association for
Computational Linguistics, Jul. 2019, pp. 5363–5369. [Online]. Available:
https://aclanthology.org/P19-1533

122

https://aclanthology.org/D19-1284
https://aclanthology.org/2021.emnlp-main.37
http://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning.pdf
http://arxiv.org/abs/1903.03096
https://aclanthology.org/P19-1078
https://proceedings.neurips.cc/paper/2005/file/a7f592cef8b130a6967a90617db5681b-Paper.pdf
https://proceedings.neurips.cc/paper/2005/file/a7f592cef8b130a6967a90617db5681b-Paper.pdf
http://papers.nips.cc/paper/6385-matching-networks-for-one-shot-learning.pdf
https://aclanthology.org/P19-1533

[172] Y. Hou, W. Che, Y. Lai, Z. Zhou, Y. Liu, H. Liu, and T. Liu,
“Few-shot slot tagging with collapsed dependency transfer and label-enhanced
task-adaptive projection network,” in Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. Online: Association for
Computational Linguistics, Jul. 2020, pp. 1381–1393. [Online]. Available:
https://aclanthology.org/2020.acl-main.128

[173] S. Toshniwal, H. Shi, B. Shi, L. Gao, K. Livescu, and K. Gimpel,
“A cross-task analysis of text span representations,” in Proceedings of the
5th Workshop on Representation Learning for NLP. Online: Association
for Computational Linguistics, Jul. 2020, pp. 166–176. [Online]. Available:
https://aclanthology.org/2020.repl4nlp-1.20

[174] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face
recognition and clustering,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015.

[175] K. Roth, T. Milbich, S. Sinha, P. Gupta, B. Ommer, and J. P. Cohen, “Revisiting
training strategies and generalization performance in deep metric learning,” 2020.

[176] Y. Yang, G. Hernandez Abrego, S. Yuan, M. Guo, Q. Shen, D. Cer, Y.-h. Sung,
B. Strope, and R. Kurzweil, “Improving multilingual sentence embedding using
bi-directional dual encoder with additive margin softmax,” in Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19.
International Joint Conferences on Artificial Intelligence Organization, 7 2019, pp.
5370–5378. [Online]. Available: https://doi.org/10.24963/ijcai.2019/746

[177] S. Larson, A. Mahendran, J. J. Peper, C. Clarke, A. Lee, P. Hill, J. K.
Kummerfeld, K. Leach, M. A. Laurenzano, L. Tang, and J. Mars, “An evaluation
dataset for intent classification and out-of-scope prediction,” in Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp.
1311–1316. [Online]. Available: https://aclanthology.org/D19-1131

[178] A. Coucke, A. Saade, A. Ball, T. Bluche, A. Caulier, D. Leroy, C. Doumouro,
T. Gisselbrecht, F. Caltagirone, T. Lavril, M. Primet, and J. Dureau, “Snips voice
platform: an embedded spoken language understanding system for private-by-design
voice interfaces,” 2018.

[179] J. Krone, Y. Zhang, and M. Diab, “Learning to classify intents and slot
labels given a handful of examples,” in Proceedings of the 2nd Workshop
on Natural Language Processing for Conversational AI. Online: Association
for Computational Linguistics, Jul. 2020, pp. 96–108. [Online]. Available:
https://aclanthology.org/2020.nlp4convai-1.12

123

https://aclanthology.org/2020.acl-main.128
https://aclanthology.org/2020.repl4nlp-1.20
https://doi.org/10.24963/ijcai.2019/746
https://aclanthology.org/D19-1131
https://aclanthology.org/2020.nlp4convai-1.12

[180] S. W. Yoon, J. Seo, and J. Moon, “TapNet: Neural network augmented with
task-adaptive projection for few-shot learning,” in Proceedings of Machine Learning
Research, ser. Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. Long Beach, California, USA: PMLR, 09–15
Jun 2019, pp. 7115–7123. [Online]. Available: http://proceedings.mlr.press/v97/
yoon19a.html

[181] S. Humeau, K. Shuster, M. Lachaux, and J. Weston, “Real-time inference in multi-
sentence tasks with deep pretrained transformers,” CoRR, vol. abs/1905.01969,
2019. [Online]. Available: http://arxiv.org/abs/1905.01969

[182] G. R. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot
image recognition,” in ICML Deep Learning workshop, 2015.

[183] D. Gillick, S. Kulkarni, L. Lansing, A. Presta, J. Baldridge, E. Ie, and D. Garcia-
Olano, “Learning dense representations for entity retrieval,” in Proceedings of the
23rd Conference on Computational Natural Language Learning (CoNLL). Hong
Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 528–537.
[Online]. Available: https://aclanthology.org/K19-1049

[184] R. Geng, B. Li, Y. Li, X. Zhu, P. Jian, and J. Sun, “Induction networks for few-shot
text classification,” in Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association
for Computational Linguistics, Nov. 2019, pp. 3904–3913. [Online]. Available:
https://aclanthology.org/D19-1403

[185] M. Yu, X. Guo, J. Yi, S. Chang, S. Potdar, Y. Cheng, G. Tesauro, H. Wang, and
B. Zhou, “Diverse few-shot text classification with multiple metrics,” in Proceedings
of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers). New Orleans, Louisiana: Association for Computational Linguistics,
Jun. 2018, pp. 1206–1215. [Online]. Available: https://aclanthology.org/N18-1109

[186] S. Sun, Q. Sun, K. Zhou, and T. Lv, “Hierarchical attention prototypical
networks for few-shot text classification,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong
Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 476–485.
[Online]. Available: https://aclanthology.org/D19-1045

[187] U. Khandelwal, O. Levy, D. Jurafsky, L. Zettlemoyer, and M. Lewis,
“Generalization through memorization: Nearest neighbor language models,” in
International Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=HklBjCEKvH

124

http://proceedings.mlr.press/v97/yoon19a.html
http://proceedings.mlr.press/v97/yoon19a.html
http://arxiv.org/abs/1905.01969
https://aclanthology.org/K19-1049
https://aclanthology.org/D19-1403
https://aclanthology.org/N18-1109
https://aclanthology.org/D19-1045
https://openreview.net/forum?id=HklBjCEKvH

[188] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M.-W. Chang, “Realm: Retrieval-
augmented language model pre-training,” 2020.

[189] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler,
M. Lewis, W. tau Yih, T. Rocktäschel, S. Riedel, and D. Kiela, “Retrieval-augmented
generation for knowledge-intensive nlp tasks,” 2020.

[190] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in Proceedings of the 34th International Conference
on Machine Learning, ser. ICML’17, vol. 70. JMLR.org, 2017, pp. 1126–1135.
[Online]. Available: https://dl.acm.org/doi/10.5555/3305381.3305498

[191] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural attentive
meta-learner,” in International Conference on Learning Representations, 2018.
[Online]. Available: https://openreview.net/forum?id=B1DmUzWAW

[192] Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF models for
sequence tagging,” CoRR, vol. abs/1508.01991, 2015. [Online]. Available:
http://arxiv.org/abs/1508.01991

[193] M. Ziyadi, Y. Sun, A. Goswami, J. Huang, and W. Chen, “Example-based named
entity recognition,” 2020.

[194] Y. Zhang, S. Sun, M. Galley, Y. Chen, C. Brockett, X. Gao, J. Gao, J. Liu,
and B. Dolan, “Dialogpt: Large-scale generative pre-training for conversational
response generation,” CoRR, vol. abs/1911.00536, 2019. [Online]. Available:
http://arxiv.org/abs/1911.00536

[195] D. Adiwardana, M. Luong, D. R. So, J. Hall, N. Fiedel, R. Thoppilan, Z. Yang,
A. Kulshreshtha, G. Nemade, Y. Lu, and Q. V. Le, “Towards a human-like
open-domain chatbot,” CoRR, vol. abs/2001.09977, 2020. [Online]. Available:
https://arxiv.org/abs/2001.09977

[196] S. Roller, E. Dinan, N. Goyal, D. Ju, M. Williamson, Y. Liu, J. Xu, M. Ott,
E. M. Smith, Y.-L. Boureau, and J. Weston, “Recipes for building an open-domain
chatbot,” in Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume. Online: Association
for Computational Linguistics, Apr. 2021, pp. 300–325. [Online]. Available:
https://aclanthology.org/2021.eacl-main.24

[197] J. Li, M. Galley, C. Brockett, G. Spithourakis, J. Gao, and B. Dolan, “A
persona-based neural conversation model,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Berlin, Germany: Association for Computational Linguistics, Aug. 2016, pp.
994–1003. [Online]. Available: https://aclanthology.org/P16-1094

125

https://dl.acm.org/doi/10.5555/3305381.3305498
https://openreview.net/forum?id=B1DmUzWAW
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1911.00536
https://arxiv.org/abs/2001.09977
https://aclanthology.org/2021.eacl-main.24
https://aclanthology.org/P16-1094

[198] S. Welleck, I. Kulikov, S. Roller, E. Dinan, K. Cho, and J. Weston, “Neural text
generation with unlikelihood training,” in International Conference on Learning
Representations, 2020. [Online]. Available: https://openreview.net/forum?id=
SJeYe0NtvH

[199] M. Li, S. Roller, I. Kulikov, S. Welleck, Y.-L. Boureau, K. Cho, and J. Weston,
“Don’t say that! making inconsistent dialogue unlikely with unlikelihood training,”
in Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics, Jul. 2020, pp.
4715–4728. [Online]. Available: https://aclanthology.org/2020.acl-main.428

[200] C. Xu, W. Zhou, T. Ge, K. Xu, J. McAuley, and F. Wei, “Beyond
preserved accuracy: Evaluating loyalty and robustness of BERT compression,” in
Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing. Online and Punta Cana, Dominican Republic: Association for
Computational Linguistics, Nov. 2021, pp. 10 653–10 659. [Online]. Available:
https://aclanthology.org/2021.emnlp-main.832

[201] D. Yu, M. Cohn, Y. M. Yang, C. Y. Chen, W. Wen, J. Zhang, M. Zhou,
K. Jesse, A. Chau, A. Bhowmick, S. Iyer, G. Sreenivasulu, S. Davidson,
A. Bhandare, and Z. Yu, “Gunrock: A social bot for complex and engaging long
conversations,” in Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP): System Demonstrations. Hong Kong,
China: Association for Computational Linguistics, Nov. 2019, pp. 79–84. [Online].
Available: https://aclanthology.org/D19-3014

[202] A. Paranjape, A. See, K. Kenealy, H. Li, A. Hardy, P. Qi, K. R. Sadagopan, N. M.
Phu, D. Soylu, and C. D. Manning, “Neural generation meets real people: Towards
emotionally engaging mixed-initiative conversations,” CoRR, vol. abs/2008.12348,
2020. [Online]. Available: https://arxiv.org/abs/2008.12348

[203] M. J. Wolf, K. Miller, and F. S. Grodzinsky, “Why we should have seen that
coming: Comments on microsoft’s tay "experiment," and wider implications,”
SIGCAS Comput. Soc., vol. 47, no. 3, p. 54–64, Sep. 2017. [Online]. Available:
https://doi.org/10.1145/3144592.3144598

[204] T. Simonite, “It began as an ai-fueled dungeon game. it got much
darker,” May 2021. [Online]. Available: https://www.wired.com/story/
ai-fueled-dungeon-game-got-much-darker/

[205] J. Xu, D. Ju, M. Li, Y. Boureau, J. Weston, and E. Dinan, “Recipes for safety
in open-domain chatbots,” CoRR, vol. abs/2010.07079, 2020. [Online]. Available:
https://arxiv.org/abs/2010.07079

[206] Y. Nie, M. Williamson, M. Bansal, D. Kiela, and J. Weston, “I like fish, especially
dolphins: Addressing contradictions in dialogue modeling,” in Proceedings of the

126

https://openreview.net/forum?id=SJeYe0NtvH
https://openreview.net/forum?id=SJeYe0NtvH
https://aclanthology.org/2020.acl-main.428
https://aclanthology.org/2021.emnlp-main.832
https://aclanthology.org/D19-3014
https://arxiv.org/abs/2008.12348
https://doi.org/10.1145/3144592.3144598
https://www.wired.com/story/ai-fueled-dungeon-game-got-much-darker/
https://www.wired.com/story/ai-fueled-dungeon-game-got-much-darker/
https://arxiv.org/abs/2010.07079

59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers). Online: Association for Computational Linguistics, Aug. 2021, pp.
1699–1713. [Online]. Available: https://aclanthology.org/2021.acl-long.134

[207] A. Radford, R. Józefowicz, and I. Sutskever, “Learning to generate reviews and
discovering sentiment,” CoRR, vol. abs/1704.01444, 2017. [Online]. Available:
http://arxiv.org/abs/1704.01444

[208] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts for
generation,” in Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers). Online: Association
for Computational Linguistics, Aug. 2021, pp. 4582–4597. [Online]. Available:
https://aclanthology.org/2021.acl-long.353

[209] D. Yu, K. Sagae, and Z. Yu, “Attribute alignment: Controlling text generation
from pre-trained language models,” CoRR, vol. abs/2103.11070, 2021. [Online].
Available: https://arxiv.org/abs/2103.11070

[210] S. Dathathri, A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino, J. Yosinski,
and R. Liu, “Plug and play language models: A simple approach to controlled
text generation,” in International Conference on Learning Representations, 2020.
[Online]. Available: https://openreview.net/forum?id=H1edEyBKDS

[211] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution: A continuous
relaxation of discrete random variables,” in International Conference on Learning
Representations, 2017. [Online]. Available: http://arxiv.org/abs/1611.00712

[212] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-
softmax,” in International Conference on Learning Representations, 2017. [Online].
Available: https://arxiv.org/abs/1611.01144

[213] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” CoRR, vol. abs/1707.06347, 2017. [Online]. Available:
http://arxiv.org/abs/1707.06347

[214] J. Baumgartner, S. Zannettou, B. Keegan, M. Squire, and J. Blackburn, “The
pushshift reddit dataset,” CoRR, vol. abs/2001.08435, 2020. [Online]. Available:
https://arxiv.org/abs/2001.08435

[215] S. Zhang, E. Dinan, J. Urbanek, A. Szlam, D. Kiela, and J. Weston, “Personalizing
dialogue agents: I have a dog, do you have pets too?” in Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Melbourne, Australia: Association for Computational Linguistics, Jul.
2018, pp. 2204–2213. [Online]. Available: https://aclanthology.org/P18-1205

127

https://aclanthology.org/2021.acl-long.134
http://arxiv.org/abs/1704.01444
https://aclanthology.org/2021.acl-long.353
https://arxiv.org/abs/2103.11070
https://openreview.net/forum?id=H1edEyBKDS
http://arxiv.org/abs/1611.00712
https://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2001.08435
https://aclanthology.org/P18-1205

[216] E. M. Smith, M. Williamson, K. Shuster, J. Weston, and Y.-L. Boureau, “Can
you put it all together: Evaluating conversational agents’ ability to blend skills,”
in Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics, Jul. 2020, pp.
2021–2030. [Online]. Available: https://aclanthology.org/2020.acl-main.183

[217] E. Dinan, S. Humeau, B. Chintagunta, and J. Weston, “Build it break it fix it for
dialogue safety: Robustness from adversarial human attack,” in Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp.
4537–4546. [Online]. Available: https://aclanthology.org/D19-1461

[218] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT
pretraining approach,” CoRR, vol. abs/1907.11692, 2019. [Online]. Available:
http://arxiv.org/abs/1907.11692

[219] Y. Nie, A. Williams, E. Dinan, M. Bansal, J. Weston, and D. Kiela, “Adversarial
NLI: A new benchmark for natural language understanding,” in Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics. Online:
Association for Computational Linguistics, Jul. 2020, pp. 4885–4901. [Online].
Available: https://aclanthology.org/2020.acl-main.441

[220] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser,
S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil,
W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado,
M. Hughes, and J. Dean, “Google’s neural machine translation system: Bridging
the gap between human and machine translation,” CoRR, vol. abs/1609.08144,
2016. [Online]. Available: http://arxiv.org/abs/1609.08144

[221] S. Gururangan, A. Marasović, S. Swayamdipta, K. Lo, I. Beltagy, D. Downey, and
N. A. Smith, “Don’t stop pretraining: Adapt language models to domains and tasks,”
in Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics, Jul. 2020, pp.
8342–8360. [Online]. Available: https://aclanthology.org/2020.acl-main.740

[222] E. Wallace, S. Feng, N. Kandpal, M. Gardner, and S. Singh, “Universal adversarial
triggers for attacking and analyzing NLP,” in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong,
China: Association for Computational Linguistics, Nov. 2019, pp. 2153–2162.
[Online]. Available: https://aclanthology.org/D19-1221

[223] J. Ficler and Y. Goldberg, “Controlling linguistic style aspects in neural language
generation,” in Proceedings of the Workshop on Stylistic Variation. Copenhagen,

128

https://aclanthology.org/2020.acl-main.183
https://aclanthology.org/D19-1461
http://arxiv.org/abs/1907.11692
https://aclanthology.org/2020.acl-main.441
http://arxiv.org/abs/1609.08144
https://aclanthology.org/2020.acl-main.740
https://aclanthology.org/D19-1221

Denmark: Association for Computational Linguistics, Sep. 2017, pp. 94–104.
[Online]. Available: https://aclanthology.org/W17-4912

[224] N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher, “CTRL: A
conditional transformer language model for controllable generation,” CoRR, vol.
abs/1909.05858, 2019. [Online]. Available: http://arxiv.org/abs/1909.05858

[225] B. Peng, C. Zhu, C. Li, X. Li, J. Li, M. Zeng, and J. Gao, “Few-shot
natural language generation for task-oriented dialog,” in Findings of the
Association for Computational Linguistics: EMNLP 2020. Online: Association
for Computational Linguistics, Nov. 2020, pp. 172–182. [Online]. Available:
https://aclanthology.org/2020.findings-emnlp.17

[226] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe,
A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-efficient transfer learning
for NLP,” in Proceedings of Machine Learning Research, ser. Proceedings of
Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97.
Long Beach, California, USA: PMLR, 09–15 Jun 2019, pp. 2790–2799. [Online].
Available: http://proceedings.mlr.press/v97/houlsby19a.html

[227] J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and J. Gao, “Deep
reinforcement learning for dialogue generation,” in Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing. Austin, Texas:
Association for Computational Linguistics, Nov. 2016, pp. 1192–1202. [Online].
Available: https://aclanthology.org/D16-1127

[228] I. V. Serban, C. Sankar, M. Germain, S. Zhang, Z. Lin, S. Subramanian,
T. Kim, M. Pieper, S. Chandar, N. R. Ke, S. Mudumba, A. de Brébisson,
J. Sotelo, D. Suhubdy, V. Michalski, A. Nguyen, J. Pineau, and Y. Bengio, “A
deep reinforcement learning chatbot,” CoRR, vol. abs/1709.02349, 2017. [Online].
Available: http://arxiv.org/abs/1709.02349

[229] Y. Zhang, J. Baldridge, and L. He, “PAWS: Paraphrase adversaries from word
scrambling,” in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association
for Computational Linguistics, Jun. 2019, pp. 1298–1308. [Online]. Available:
https://aclanthology.org/N19-1131

[230] D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits, “Is bert really robust? a strong baseline
for natural language attack on text classification and entailment,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, pp. 8018–8025, Apr.
2020. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/6311

[231] D. Li, Y. Zhang, H. Peng, L. Chen, C. Brockett, M.-T. Sun, and B. Dolan,
“Contextualized perturbation for textual adversarial attack,” in Proceedings of

129

https://aclanthology.org/W17-4912
http://arxiv.org/abs/1909.05858
https://aclanthology.org/2020.findings-emnlp.17
http://proceedings.mlr.press/v97/houlsby19a.html
https://aclanthology.org/D16-1127
http://arxiv.org/abs/1709.02349
https://aclanthology.org/N19-1131
https://ojs.aaai.org/index.php/AAAI/article/view/6311

the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Online: Association
for Computational Linguistics, Jun. 2021, pp. 5053–5069. [Online]. Available:
https://aclanthology.org/2021.naacl-main.400

[232] L. Song, X. Yu, H.-T. Peng, and K. Narasimhan, “Universal adversarial
attacks with natural triggers for text classification,” in Proceedings of the
2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. Online: Association
for Computational Linguistics, Jun. 2021, pp. 3724–3733. [Online]. Available:
https://aclanthology.org/2021.naacl-main.291

[233] E. Sheng, K.-W. Chang, P. Natarajan, and N. Peng, “Towards Controllable Biases in
Language Generation,” in Findings of the Association for Computational Linguistics:
EMNLP 2020. Online: Association for Computational Linguistics, Nov. 2020, pp.
3239–3254. [Online]. Available: https://aclanthology.org/2020.findings-emnlp.291

[234] S. Gehman, S. Gururangan, M. Sap, Y. Choi, and N. A. Smith, “RealTox-
icityPrompts: Evaluating neural toxic degeneration in language models,” in
Findings of the Association for Computational Linguistics: EMNLP 2020. Online:
Association for Computational Linguistics, Nov. 2020, pp. 3356–3369. [Online].
Available: https://aclanthology.org/2020.findings-emnlp.301

[235] T. He and J. R. Glass, “Detecting egregious responses in neural sequence-
to-sequence models,” CoRR, vol. abs/1809.04113, 2018. [Online]. Available:
http://arxiv.org/abs/1809.04113

[236] H. Liu, T. Derr, Z. Liu, and J. Tang, “Say what I want: Towards the dark side
of neural dialogue models,” CoRR, vol. abs/1909.06044, 2019. [Online]. Available:
http://arxiv.org/abs/1909.06044

[237] H. Liu, Z. Wang, T. Derr, and J. Tang, “Chat as expected: Learning to manipulate
black-box neural dialogue models,” CoRR, vol. abs/2005.13170, 2020. [Online].
Available: https://arxiv.org/abs/2005.13170

[238] T. He and J. Glass, “Negative training for neural dialogue response generation,”
in Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics, Jul. 2020, pp.
2044–2058. [Online]. Available: https://aclanthology.org/2020.acl-main.185

[239] M. Zampieri, P. Nakov, S. Rosenthal, P. Atanasova, G. Karadzhov, H. Mubarak,
L. Derczynski, Z. Pitenis, and Ç. Çöltekin, “SemEval-2020 task 12: Multilingual
offensive language identification in social media (OffensEval 2020),” in Proceedings
of the Fourteenth Workshop on Semantic Evaluation. Barcelona (online):
International Committee for Computational Linguistics, Dec. 2020, pp. 1425–1447.
[Online]. Available: https://aclanthology.org/2020.semeval-1.188

130

https://aclanthology.org/2021.naacl-main.400
https://aclanthology.org/2021.naacl-main.291
https://aclanthology.org/2020.findings-emnlp.291
https://aclanthology.org/2020.findings-emnlp.301
http://arxiv.org/abs/1809.04113
http://arxiv.org/abs/1909.06044
https://arxiv.org/abs/2005.13170
https://aclanthology.org/2020.acl-main.185
https://aclanthology.org/2020.semeval-1.188

[240] E. Dinan, A. Fan, L. Wu, J. Weston, D. Kiela, and A. Williams, “Multi-dimensional
gender bias classification,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Online: Association
for Computational Linguistics, Nov. 2020, pp. 314–331. [Online]. Available:
https://aclanthology.org/2020.emnlp-main.23

[241] S. Sukhbaatar, a. szlam, J. Weston, and R. Fergus, “End-to-end memory networks,”
in Advances in Neural Information Processing Systems, C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28. Curran Associates,
Inc., 2015. [Online]. Available: https://proceedings.neurips.cc/paper/2015/file/
8fb21ee7a2207526da55a679f0332de2-Paper.pdf

[242] N. Dziri, E. Kamalloo, K. Mathewson, and O. Zaiane, “Evaluating coherence
in dialogue systems using entailment,” in Proceedings of the 2019 Workshop on
Widening NLP. Florence, Italy: Association for Computational Linguistics, Aug.
2019, pp. 146–148. [Online]. Available: https://aclanthology.org/W19-3646

[243] S. Welleck, J. Weston, A. Szlam, and K. Cho, “Dialogue natural language inference,”
in Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Florence, Italy: Association for Computational Linguistics, Jul. 2019,
pp. 3731–3741. [Online]. Available: https://aclanthology.org/P19-1363

[244] C.-Y. Chen, D. Yu, W. Wen, Y. M. Yang, J. Zhang, M. Zhou, K. Jesse, A. Chau,
A. Bhowmick, S. Iyer, G. Sreenivasulu, R. Cheng, A. Bhandare, and Z. Yu, “Gun-
rock: Building a human-like social bot by leveraging large scale real user data,” in
2nd Proceedings of Alexa Prize, 2018.

[245] K. Liang, A. Chau, Y. Li, X. Lu, D. Yu, M. Zhou, I. Jain, S. Davidson,
J. Arnold, M. Nguyen, and Z. Yu, “Gunrock 2.0: A user adaptive social
conversational system,” CoRR, vol. abs/2011.08906, 2020. [Online]. Available:
https://arxiv.org/abs/2011.08906

[246] X. Zhang, C. Li, D. Yu, S. Davidson, and Z. Yu, “Filling conversation ellipsis
for better social dialog understanding,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 05, pp. 9587–9595, Apr. 2020. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/6505

[247] D. Yu and K. Sagae, “UC Davis at SemEval-2019 task 1: DAG semantic
parsing with attention-based decoder,” in Proceedings of the 13th International
Workshop on Semantic Evaluation. Minneapolis, Minnesota, USA: Association
for Computational Linguistics, Jun. 2019, pp. 119–124. [Online]. Available:
https://aclanthology.org/S19-2017

[248] Y. Du, Q. Fang, and D. Nguyen, “Assessing the reliability of word embedding
gender bias measures,” in Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing. Online and Punta Cana, Dominican Republic:

131

https://aclanthology.org/2020.emnlp-main.23
https://proceedings.neurips.cc/paper/2015/file/8fb21ee7a2207526da55a679f0332de2-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/8fb21ee7a2207526da55a679f0332de2-Paper.pdf
https://aclanthology.org/W19-3646
https://aclanthology.org/P19-1363
https://arxiv.org/abs/2011.08906
https://ojs.aaai.org/index.php/AAAI/article/view/6505
https://aclanthology.org/S19-2017

Association for Computational Linguistics, Nov. 2021, pp. 10 012–10 034. [Online].
Available: https://aclanthology.org/2021.emnlp-main.785

[249] J. Zhao, R. Gupta, Y. Cao, D. Yu, M. Wang, H. Lee, A. Rastogi, I. Shafran,
and Y. Wu, “Description-driven task-oriented dialog modeling,” CoRR, vol.
abs/2201.08904, 2022. [Online]. Available: https://arxiv.org/abs/2201.08904

[250] S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Millican,
G. van den Driessche, J. Lespiau, B. Damoc, A. Clark, D. de Las Casas, A. Guy,
J. Menick, R. Ring, T. Hennigan, S. Huang, L. Maggiore, C. Jones, A. Cassirer,
A. Brock, M. Paganini, G. Irving, O. Vinyals, S. Osindero, K. Simonyan,
J. W. Rae, E. Elsen, and L. Sifre, “Improving language models by retrieving
from trillions of tokens,” CoRR, vol. abs/2112.04426, 2021. [Online]. Available:
https://arxiv.org/abs/2112.04426

[251] E. Perez, S. Huang, H. F. Song, T. Cai, R. Ring, J. Aslanides, A. Glaese,
N. McAleese, and G. Irving, “Red teaming language models with language models,”
CoRR, vol. abs/2202.03286, 2022. [Online]. Available: https://arxiv.org/abs/2202.
03286

132

https://aclanthology.org/2021.emnlp-main.785
https://arxiv.org/abs/2201.08904
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2202.03286
https://arxiv.org/abs/2202.03286

	Abstract
	Acknowledgments
	Introduction
	Modularized to End-to-End Models
	Omnipotent Large Neural Models
	Motivation
	Outline

	Background
	Overview
	Model Architecture
	Recuent Neural Networks
	Transformers

	Language Models
	Causal Language Modeling
	Masked Language Modeling
	Sequence-to-Sequence Model

	Multi-modal Neural Model

	High Level Attribute Representation
	Overview
	Introduction
	Related Work
	Controlled Text Generation
	Language Representation

	Methodology
	Language Representation for Cross-lingual Language Understanding
	Generating Language Representations
	Experiments
	Results and Analysis

	Feature Representation for Controlled Language Generation
	Learning representation
	Experiments
	Results and Analysis

	Summary

	Low-level Attribute Representation
	Overview
	Schema Induction
	Related Work
	Methodology
	Overview
	Candidate span extraction
	Clustering candidate spans

	Experiments
	Slot schema induction
	Application in DST
	Application in response generation

	Analysis
	Summary

	Task-specific Attribute Representation
	Overview
	Example Representation for Retrieval-based Language Understanding
	Introduction
	Setup
	Model
	Experiments and Results
	Analysis
	Related Work

	Problem Representation for Exposing Safety and Consistency Issues
	Introduction
	Task Definition
	Methodology
	Experiments and Results
	Analysis
	Related Work

	Summary

	Application: Case Study in Building Dialog Systems
	Overview
	Introduction
	Methodology
	Modularized systems
	End-to-end

	Summary

	Conclusion

