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ABSTRACT OF THE DISSERTATION

Characterizing Time Varying Program Behavior for Efficient Simulation

by

Erez Perelman

Doctor of Philosophy in Computer Science

University of California, San Diego, 2007

Professor Bradley Calder, Chair

An essential step in designing a new computer architecture is the care-

ful examination of different design options. It is critical that computer architects

have efficient means by which they may estimate the impact of various design

options on the overall machine. This task is complicated by the fact that differ-

ent programs, and even different parts of the same program, may have distinct

behaviors that interact with the hardware in different ways. Researchers use very

detailed simulators to estimate processor performance, which models every cy-

cle of an executing program. Unfortunately, simulating every cycle of a single

benchmark program takes on the order of months to complete.

To address this problem we develop analysis techniques for characteriz-

ing the time varying program behavior. Using data clustering algorithms from

machine learning to automatically find repetitive patterns in a program’s exe-

cution we can avoid simulating the same behavior many times. By simulating

one representative of each repetitive behavior pattern, simulation time can be

reduced to hours instead of months for standard benchmark programs, with very

little cost in terms of accuracy.

This dissertation describes this important problem and the tool we cre-

ated, called SimPoint, to automatically find simulation points in programs. Addi-

xvi



tionally, we describe data-mining and statistical advances in doing phase analysis

that optimize both the runtime and accuracy of SimPoint as well as target the

overall simulation time. We present an approach that finds a single set of simu-

lation points to be used across all binaries for a single program. This allows for

simulation of the same parts of program execution despite changes in the binary

due to ISA changes or compiler optimizations. Finally, we present a method of

characterizing the behavior of parallel applications and use it to pick simulation

points to guide multi-threaded simulations.

xvii



I

Introduction

Understanding the cycle level behavior of a processor during the execu-

tion of an application is crucial to modern computer architecture research. To

gain this understanding, researchers typically employ detailed simulators that

model each and every cycle of the underlying machine. Unfortunately, this level

of detail comes at the cost of speed. Even on the fastest simulators, modeling

the full execution of a single benchmark can take weeks or months to complete,

and nearly all industry standard benchmarks require the execution of a suite of

programs. For example, the SPEC CPU 2000 benchmark suite consists of 26

different programs, requiring the execution of a combined total of approximately

6 trillion instructions. Still worse, architecture researchers need to simulate each

benchmark over a variety of different architectural configurations and design op-

tions, to find the set of features that provides an appropriate trade-off between

performance, complexity, area, and power. The same program binary, with the

exact same input, may be run hundreds or thousands of times to examine how,

for example, the effectiveness of a given architecture changes with its cache size.

To appreciate the significance of this problem we need a basic understanding of

the benchmarks and the simulator used to model the processor architecture and

estimate its performance.

1



2

I.A Motivation

Processor architecture research quantifies the effectiveness of a design

by executing a program on a software model of the architecture design called an

architecture simulator. It is difficult to accurately compare studies that provide

results for different sets of programs. To set a standard in the community, the

Standard Performance Evaluation Corporation (SPEC) was established to pro-

vide a collection of benchmarks to evaluate processor performance. In the same

manner, the architecture simulator needs to have a common baseline. SMT-

Sim [70] and SimpleScalar [7] are two common cycle level processor simulators

that have become standard models for architecture research. In this dissertation

we will focus on the SimpleScalar simulator as it was used for the majority of

experiments.

I.A.1 SPEC CPU Benchmarks

The SPEC CPU 2000 benchmark suite has 26 programs, of which 12

are integer programs (primary execution is of integer instructions) and 14 are

floating-point programs (primary execution is of floating-point instructions). The

benchmark suite is chosen to stress a processor across its many components in a

rigorous manner. Each program in the suite has 3 different inputs: test, train,

and reference, which respectively correspond to a short test, a more representative

training, and a full reference run. The test, train and reference inputs typically

execute on the order of a few million, a few billion, and hundreds of billions

of instructions respectively. Tables I.1 and I.A.1 show all the SPEC CPU2000

benchmarks, divided into integer and floating-point programs. The tables pro-

vide a high level description of each benchmark, its source language, and the

number of instructions executed (in billions) with the reference and test inputs.

These programs were compiled for the Alpha Instruction Set Architecture (ISA)
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with full optimizations. On average, the reference inputs execute for 223 billion

instructions. The program parser has the maximum instruction count at 546

billion instructions.

Table I.1: SPEC CPU2000 Integer Benchmarks (lengths in billions of instruc-
tions)

Benchmark Ref Length Test Length Language Category

bzip2 143 8.82 C Compression

crafty 191 4.26 C Game Playing: Chess

eon 80 0.09 C++ Computer Visualization

gap 269 1.17 C Group Theory, Interpreter

gcc 46 2.02 C C Programming Language Compiler

gzip 84 3.37 C Compression

mcf 61 0.26 C Combinatorial Optimization

parser 546 4.20 C Word Processing

perlbmk 111 2.0 C PERL Programming Language

twolf 346 0.26 C Place and Route Simulator

vortex 118 9.81 C Object-oriented Database

vpr 84 0.69 C FPGA Circuit placement and routing

Table I.2: SPEC CPU2000 Floating-Point Benchmarks (lengths in billions of
instructions)

Benchmark Ref Length Test Length Language Category

ammp 326 5.49 C Computational Chemistry

applu 223 0.18 Fortran 77 Parabolic / Elliptic Partial Differential Equations

apsi 347 5.28 Fortran 77 Meteorology: Pollutant Distribution

art 41 1.48 C Image Recognition / Neural Networks

equake 131 1.44 C Seismic Wave Propagation Simulation

facerec 211 4.12 Fortran 90 Image Processing: Face Recognition

fma3d 268 0.00 Fortran 90 Finite-element Crash Simulation

galgel 409 4.34 Fortran 90 Computational Fluid Dynamics

lucas 142 3.71 Fortran 90 Number Theory / Primality Testing

mesa 281 2.88 C 3-D Graphics Library

mgrid 419 16.77 Fortran 77 Multi-grid Solver: 3D Potential Field

sixtrack 470 8.59 Fortran 77 High Energy Nuclear Physics Accelerator Design

swim 225 0.43 Fortran 77 Shallow Water Modeling

wupwise 349 3.63 Fortran 77 Physics / Quantum Chromodynamics
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I.A.2 SimpleScalar

SimpleScalar is a program that models the cycle level execution of a pro-

cessor. It takes as input a program-input pair and simulates the execution from

beginning to end, while computing relevant statistics for architecture research,

such as cycles per instruction (CPI), cache miss rates, branch mispredictions,

and power consumption. SimpleScalar has several models to represent different

levels of execution detail. At the coarsest level of detail, sim-fast models only

the functional execution of a program at the instruction level. A more detailed

level, sim-cache, models the memory hierarchy and computes miss rates for those

structures. The level of highest detail, sim-outorder, models the cycle-level out-

of-order execution of a super-scalar processor. It is a superset of all the other

models and provides the highest level of execution detail. The architecture re-

search community uses SimpleScalar extensively, and today it is considered a

standard architecture simulator.

The different models in SimpleScalar each have a stable execution rate.

The fastest model, sim-fast, executes on the order of tens of billion instructions

per hour on a 1 GHz machine. The slowest yet most accurate model, sim-outorder,

executes on the order of hundreds of million instructions per hour, which is sev-

eral orders of magnitude slower than the native hardware. It would take months

of computation time to simulate the entire SPEC benchmark suite with sim-

outorder. What makes matters worse is that researchers need to evaluate many

different hardware configurations to measure the effectiveness of a design. This

enormous turnaround time for a study makes simulating the full benchmark in-

feasible, and the majority of researchers only simulate a few hundred million

instructions from each benchmark.
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I.A.3 Future Trends

SPEC periodically releases a benchmark suite to evaluate current and

future processors. The SPEC CPU benchmarks have steadily increased in exe-

cution length, proportionally to the rate of processor speed increase. Given the

SPEC measurement tools, small changes or fluctuations in the measurements have

significant impacts on the percentage of improvements being seen.1 Therefore,

SPEC designs a benchmark suite that executes the reference input long enough

on native hardware to achieve a valid timing.

Figure I.1 shows a projection of processor rate (in MHZ) and the SPEC

benchmarks average execution length (in billions of instructions) in the years

to come. The y-axis is logarithmic, and the x-axis shows time in SPEC suites

that have been released (SPEC 92, 95, 2000, and 2006). Based on the data that

has already been released, projections are made for the next 5 years with best-fit

curves. It is expected that the rate of increase for the metrics will be exponential.

The SPEC CPU 95 suite instruction count stands out from the trend

of the other SPEC suites. This benchmark suite executes on average 9.5 billion

instructions and had programs that execute for only a few seconds on native

hardware during the years it was active. This is too short an execution time to

achieve valid timing measurements as mentioned above. Consequently the fol-

lowing suite, SPEC CPU 2000, had a substantial increase in instruction count

to an average of 223 billion per benchmark. The recently released SPEC CPU

2006 suite executes on average over a trillion instructions and the longest running

benchmark executes over 4 trillion instructions. We can speculate for the next

generation SPEC CPU suite to execute many trillions of instructions per bench-

mark. Processors will also scale in speed, which means simulators will execute

faster. But, it is also likely that simulators will scale in complexity which will

1http://www.spec.org/cpu2000/press/faq.html



6

Figure I.1: Projection of processor speed and average instruction count for SPEC
benchmark suites.

counteract the processor speedup. This is strong motivation for the continuing

development of accurate, efficient, and robust simulation methodologies.

I.B SimPoint

Researchers need techniques which can reduce the number of machine-

months required to estimate the impact of an architectural modification without

introducing an unacceptable amount of error or excessive simulator complexity.

Until recently researchers would simulate SPEC programs for an arbitrary number

of instructions (e.g. 300 million instructions) from the start of execution, or fast

forward 1 billion instructions to try to get past the initialization part of the

program. These techniques can result in error rates of up to 3736% in predicting

the architecture metrics we wish to measure. We developed a tool, distributed

as a software package called SimPoint, that enables both accurate and efficient

processor simulation. SimPoint achieves this by exploiting the structured way in

which individual programs change behavior over time.

As a program executes its behavior changes. These changes are not ran-

dom, but rather are often structured as sequences of a small number of recurring



7

behaviors, which we term phases. Identifying this repetitive and structured be-

havior can be of great benefit, since it means we only need to sample each unique

behavior once to create a complete representation of the program’s execution.

This is the underlying philosophy of SimPoint [60, 61, 52, 23, 36, 34, 55, 53].

SimPoint intelligently chooses a very small set of samples from an executed pro-

gram called simulation points that, when simulated and weighted appropriately,

provide an accurate picture of the complete execution of the program. Simu-

lating in detail only these carefully chosen simulation points can save hours of

simulation time over a random sampling of the program, while still providing the

accuracy needed to make reliable decisions based on the outcome of the cycle

level simulation. SimPoint achieves very low error rates (within 2% average error

for the SPEC benchmarks) and on average reduces simulation time by a factor

of 1,500, compared to simply simulating the whole program. This approach is

now used by researchers in the architecture community, and companies such as

Intel [48].

I.C Thesis Overview

This dissertation presents how repetitive phase behavior can be found

in programs through machine learning and describes how SimPoint automatically

finds these phases and picks simulation points. This method forms a foundation

that we extend to meet important needs in architecture research.

We describe data-mining and statistical advances in doing phase analy-

sis that optimize both the runtime and accuracy of SimPoint as well as target the

overall simulation time. We present an approach that uses statistical analysis and

sampling to guide choosing the number of clusters and to provide a confidence

and probabilistic error bound for a given clustering. We also present an approach

that finds a single set of simulation points to be used across all binaries for a sin-
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gle program. This allows for simulation of the same parts of program execution

despite changes in the binary due to ISA changes or compiler optimizations. Fi-

nally, we present a method of characterizing the behavior of parallel applications

and use it to pick simulation points to guide multi-threaded simulations.

The remainder of this thesis is laid out as follows. We begin with a

background of efficient simulation techniques and discuss their effectiveness in

Chapter II. Chapter III defines time varying program behavior and presents

the base approach for characterizing this behavior and finding simulation points.

Chapter IV describes statistical and data mining advances that both optimize

the algorithm, calibrate simulation accuracy, and reduce overall simulation time.

Chapter V extends the approach to handle variable length intervals which are

used to find a single set of simulation points across multiple binary versions of

a program. Chapter VI describes how we characterize the execution of parallel

applications and find simulation points across the parallel threads. We summarize

this thesis in Chapter VII and explore future directions.



II

Efficient Simulation Background

The combination of long benchmarks, large design space search, and

slow simulation has motivated research in the area of efficient processor simula-

tion. Until recently it has been accepted to simulate only an arbitrary portion of

a benchmark. For example, the first billion instructions are simulated in detail

to represent the entire run. This technique does a poor job in representing the

entire execution since programs generally have an initialization phase at the start

of the execution. Depending how long the initialization phase is, the first billion

instruction will generally over-represent the initialization phase rather than the

steady state of program execution. A less guaranteed improvement is to skip an

arbitrary number of instructions (e.g. 1 billion) to forgo the initialization period,

and then simulate in detail a billion instructions. In recent studies [60, 61] we

have shown program execution behavior to vary over large regions (billions of

instructions) and capturing the program execution for a billion instructions after

initialization phase can represent only a small fraction in the overall program

behavior. These techniques have been shown to miss-estimate performance by

up to 80% on average.

This chapter surveys current and past techniques proposed to optimize

processor simulation. These techniques can be categorized into three general

9
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types:

1. Reduced input: Reduced input size can reduce execution duration, since the

benchmark inputs have a direct impact on the execution duration.

2. Statistical simulation: Generate a synthetic representation of a benchmark

then simulate it on a statistical model of the processor.

3. Sampling: Simulate only samples of a benchmark.

Of the three simulation optimization types, sampling has received the

most attention. The approaches taken to perform sampling vary widely, and can

be further categorized into three techniques:

1. Statistical sampling: Well known sampling techniques (e.g. random sam-

pling) applied to program execution.

2. Representative sampling: Reduce the sample population by first character-

izing the behavior of execution, then sample from the different behaviors

observed.

3. Sample startup techniques: Means to get to a sample and then warm up

the state of the processor before detailed simulation. A sample may be

deep in the execution and getting to it efficiently is critical for reducing

simulation time. The cold start effect is the state in which a structure such

as the cache or branch predictor start out when a program starts executing.

These structures warm up during the execution with memory accesses and

execution patterns unique to the program, and their performance improves.

The state of these structures can have a significant impact on the overall

performance (CPI).

The remainder of this chapter is outlined as follows. The reduced in-

put techniques are described in Section II.A. Statistical simulation techniques
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are describe in Section II.B. Section II.C describes sampling techniques, in-

cluding statistical, representative sampling, and sample startup techniques. A

comparison of the various techniques is discussed in Section II.D. Conclusions

are summarized in Section II.E.

II.A Reduced Input

Each program in the SPEC 2000 CPU benchmark suite executes more

than 200 billion instructions on average with the reference input. The programs

execute only 3.5 million instructions on average with the test input. This disparity

exposes the potential to reduce execution duration with modified inputs. The

MinneSpec project [27, 31, 30] strives to reduce simulation time with specially

designed inputs that closely represent program execution with the reference input

but at a fraction of execution duration. The goal of the work is to have 3 inputs

similar to the ones SPEC provides, but on a smaller simulation time scale: small

input simulates for a few minutes, medium input simulates for a few hours, and

large input for a few days. The small input is expected to be used as a quick

test without much accuracy in representing the entire benchmark. The medium

input is more representative than the small input. The large input is expected

to closely represent the reference input.

Before generating the reduced input set, a set of profiles are first col-

lected for each benchmark. These profiles are used to measure how representative

a reduced input is. Each benchmark is compiled at four different optimization lev-

els, O0 through O3. Each binary is then simulated with each of the three inputs

(test, train, and reference) using sim-fast to measure instruction counts. The four

different compilations of the binaries are simulated only with the reference input

using sim-profile, a more detailed functional simulator, to collect instruction mix

profiles. These include totals for different instruction classes (e.g. loads, stores,
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conditional/unconditional branches, and integer/floating-point computations) as

well as individual counts for each unique instruction. Memory profiles are col-

lected for a number of different cache configurations with sim-cache, a functional

and memory hierarchy simulator. Finally, the percent of execution spent in each

function is measured using gprof.

After the profiles are collected, the reduced inputs are manually gener-

ated. To generate reduced inputs, several strategies are employed depending on

the benchmark. For benchmarks that have command line inputs, the command

line parameters were varied to shorten execution. If the benchmark does not have

a command line input then the input file can be reduced by sampling. In some

cases an entire input file needs to be created from scratch.

The result of simulating reduced inputs is validated with the chi-squared

test. This test compares the distribution of the reduced input profiles to the

profiles collected for the reference input. The heuristic used for validating the 3

reduced inputs (small, medium, large) is that the inputs have progressively better

chi-square test scores. The small input may have the largest acceptance bound,

the medium input needs a reasonable score, and the large input must have a high

score at 90% confidence level to accept it as a valid reference substitute.

Of the 32 benchmark configurations evaluated, only 18 of the large in-

puts satisfied this requirement. Several other metrics are used for evaluation, in-

cluding the instruction mix and memory behavior (e.g. miss-rate) across different

cache configurations. Most of the reduced input’s instruction mix profiles match

the reference profiles. However, the memory profiles reveal that the footprint of

the reduced inputs is much smaller than the reference ones. This difference has a

significant impact on the cache miss-rates and other memory behaviors. Simula-

tions which are sensitive to memory behavior can produce different results with

the reduced inputs than with the reference inputs. The authors suggest that the
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reduced input set be considered as a separate workload for such experiments, and

not a representative of the SPEC benchmark.

II.B Statistical Simulation

A different approach to reduce simulation time is to target the speed of

detailed simulation. Statistical simulation achieves this by using a probabilistic

model of the processor states. Statistical simulation is not as accurate as discrete

simulation (e.g. SimpleScalar), but is suitable for exploring a large design space.

Due to its probabilistic nature, statistical simulation runs synthetic benchmarks

that are also based on probabilistic models. A synthetic benchmark statistically

represents a real benchmark, based on profiles collected for the real benchmark

using detailed simulation. Various metrics are profiled for benchmark reference-

input pairs, then statistically analyzed and modeled in the synthetic benchmark.

The resulting synthetic benchmark generates similar statistics for each of the

metrics targeted. This section describes several techniques proposed in synthetic

benchmark generation and probabilistic processor models.

II.B.1 Probabilistic Simulation

Noonburg and Shen [45] propose a framework for statistical simulation

of processor performance. Their statistical model uses processor states similar

to those in trace-driven simulators. Instead of discrete time based states, they

compute probabilities for each state. The cycles spent in different states can be

computed from these probabilities.

The first step in this framework is to model the processor with processor

components. A connection is defined as several components (e.g. issue buffers,

pipelines, etc.) that are modeled as blocks, and then connected with edges.

For example a connection can represent an issue buffer component connected to
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several pipeline stages of execution. The component-connection forms the foun-

dation of their framework which can be extended to model complex processor

systems (much like lego pieces combined to make larger models). The number

of instructions moving through a connection at a given time is measured with

the flow. The flow is based on the number of instructions that are ready to be

issued into the connection, the number of instruction that may be blocked by

dependences or structural hazards, and the bandwidth of the connection. The

flow is computed as the minimum of the three parameters. To model the proces-

sor, a Markov model is composed using the processor states and probabilities of

transitions between pairs of states. The transition probabilities between possible

states is computed from a program trace where instruction type and dependency

distance from previous instructions are profiled. This model forms a probabilistic

representation of the processor model.

Estimating performance on the Markov processor model is computed

with the flow and state-transition probabilities. The flow probability distribution

is computed from the probability of the processor being in a given state as well

as the transition probabilities between states. This is similar to the probability

of a number of instructions flowing from one component to another. The CPI is

computed as the weighted average of the flow probability distribution. Experi-

mentally this model performs with reasonable accuracy for the simple processor

models tested. However, there are two main issues with the model. First, the

space required to store the transition probabilities for the Markov model is n2.

Even though the transition probabilities are mostly sparse, this emerges as the

bottleneck when the processor model becomes more complex and more states are

introduced. Second, the accuracy of the model has not been verified on complex

processor models, but on simplistic models it has been shown to arrive within

10% of the true performance.
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II.B.2 Symbolic Execution

A different statistical simulation technique, HLS [47], combines statisti-

cal profiles of applications with symbolic execution. At a high-level this approach

models a baseline architecture similar to the one in SimpleScalar [7], but where

several of the components in the processor are statistically modeled instead of

discretely implemented. These include the level 1 data and instruction cache, the

level 2 unified cache, main memory, and the branch predictor.

HLS creates a synthetic benchmark for each real benchmark. To gen-

erate the synthetic benchmark, profiles are collected of a real benchmark, the

profiles are interpreted, and then a synthetic code sample is generated. The

profile collection process uses SimpleScalar to gather basic block size and distri-

bution as well as a histogram of the distances between dynamic instructions of

different types (integer, floating point, load, store, and branch). A more detailed

profile is collected to measure cache behavior and branch prediction accuracy.

The distance between an instruction and the instructions that depends on it is

a critical parameter in HLS. This parameter characterizes how much parallelism

an application has, and is a major influence on performance. The statistics com-

puted from the profiles collected (e.g. average size of a basic block with standard

deviation) are used to generate the synthetic trace of the application.

Once statistical profiles are generated, the synthetic trace can be con-

structed. The synthetic trace has instructions contained in basic blocks that

are linked together into a static program control-flow graph. Instead of having

specific arguments to be operated on, the instructions contain a set of statisti-

cal parameters. A function unit requirement parameter specifies what functional

unit in the core is required to execute the instruction. This parameter is based on

histograms of the different instruction types profiled. The dynamic instruction

distance parameter defines the distance between the current instruction and the
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previous instruction which it depends on. A constraint is placed on this param-

eter so that any instruction will not have a dependency on a store or a branch,

since these dependencies do not exist in real programs. This parameter quantifies

how many instructions back a data dependency is (e.g. register read-after-write),

and does not provide any more detail as to what kind of dependency it is. Fi-

nally the size of each basic block (and standard deviation) is computed from the

profiles collected. Each basic block terminates with a branch, which has branch

predictability assigned to it based on the branch prediction accuracy of the ap-

plication. The memory is modeled as a normal distribution for each cache, with

an average hit rate equal to that of the simulated hit rate.

The synthetic trace once generated can be executed on the processor

model. As mentioned earlier, the architecture closely resembles the baseline ar-

chitecture in SimpleScalar. The model supports out-of-order execution, and has

five major stages: fetch, dispatch, schedule, execute, and complete. The instruc-

tions in the synthetic trace execute in the model as a conventional instruction

would. Instructions are fetched and sent to dispatch stage. The dispatch inter-

prets the instructions and then they are sent to reservations stations until all their

dependencies are resolved. Instructions then proceed to their parameter specified

functional unit to be executed. Finally, their result is sent to the completion unit

if bus bandwidth is available.

The performance of the HLS model quickly converges during execution.

Experimentally it is shown that after one thousand cycles the IPC is nearly

converged, and after six thousand cycles it has become constant. The accuracy of

HLS is estimated by comparing its performance estimations to detailed simulation

performance estimations using SimpleScalar. The average error in IPC for 8

integer SPEC 95 programs is 2.75% and 4.76% for the test and reference inputs

respectively. It is noted by the authors that performance accuracy is correlated
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to specific hardware component performance (branch prediction accuracy, level

1 data and instruction cache hit rates). The more accurate these components

perform, the higher the accuracy of HLS is in modeling the overall performance

(IPC). It is also noted that while the processor modeled in HLS closely resembles

SimpleScalar, it can be configured to model other processors. The MIPS R10K

processor was modeled, and performance estimations were within 3.2% on average

to the native hardware performance with the SPEC CPU 95 reference input.

II.B.3 Statistical Simulation Optimizations

In Nussbaum and Smith [46] analyze statistical simulation models to

expose sources of error and address them. They propose a refined statistical

model which achieves higher accuracy in modeling processor performance.

Initially a baseline statistical model is implemented using a simple in-

struction mix and interdependency profiles to generate a synthetic trace. There

are 14 instruction types (e.g. nop, integer-alu, integer-multiply, integer-divide,

fp-add/sub, fp-multiply, branch, system call) and their interdependencies are

probabilistically projected into the future. Each instruction has some probability

associated with it for a future instruction being dependent on it, up to the capac-

ity of the instruction window in instructions succeeding it. Instructions further

in the future than the size of the instruction window will not have any depen-

dencies exposed during execution. The processor model is a simplified version of

Simple Scalar [7]. Hardware specific characteristics (e.g. cache and branch pre-

diction behaviors) are input parameters to the statistical simulator, since these

structures are architecture dependent and are not incorporated into the synthetic

benchmark (unlike instruction characteristics that are architecture independent

such as instruction mix).

The baseline statistical simulation model is analyzed by checking accu-
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racy of each statistical component independently and then attributing its effect

on the overall accuracy. To this end, a detailed synthetic simulation is run where

instead of executing a synthetic trace, a real trace is mapped to the simplified

instruction types and simulated cache and branch predictor characteristics are

incorporated to each instruction in the trace. This detailed synthetic simulation

is the upper bound in accuracy a synthetic trace can achieve. Then statistical

modeling was introduced one step at a time. For example, the detailed syn-

thetic simulation was modified with a statistically modeled cache or statistical

branch prediction or statistical instruction dependencies. This is done indepen-

dently with each statistical model and also as a mix of all three. Experimentally

these simulations are compared to a detailed simulation with SimpleScalar, and

the results show that the three statistical models produce different amounts of

error depending on the program. Additionally, there is no reliability in these

errors (e.g. statistical cache does not always produces more error than statis-

tical branch prediction). The trace containing all three statistical liberties (the

mixed trace) is the target of the evaluation, since it is the most efficient synthetic

trace to simulate. The error for the mixed trace varies widely across the Spec 95

benchmarks, where a few programs (e.g. gcc, compress, and tomcatv) have more

than 10% error in IPC. These errors are attributed to particular behaviors in the

programs, for example compress spends a billion instructions in the initializa-

tion phase with an unbalanced ratio of branch mispredictions. Statistically, the

mixed trace targets an agglomerated average of the entire execution behavior,

and it substantially differs from the real execution behavior.

To address the sources of error in the baseline statistical simulation, a

refined model is designed targeting specific sources of error. One such refinement

addresses the size of basic blocks in the trace. Simplistic models will consider only

the mean and standard deviation of basic block sizes. However, basic block sizes
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often vary across an execution, and are not normally distributed. To improve

the basic block size distribution in a synthetic trace, a set of distributions are

collected based on the history of recent branch outcomes. This ingrains spatial

locality into the distributions, since branch histories will be similar when they

are executing similar regions in the code space. Another refinement improves the

instruction mix distribution. Real applications do not have a random instruction

mix throughout execution, but instruction mix that are structured and dependent

on the code region. To improve the instruction mix distribution in the trace, the

probability of each instruction type is made a function of the distance from the

immediately preceding branch. Another refinement is to keep different instruction

mix distributions for each basic block size. To improve instruction dependency

modeling, similar methods can be taken; make the dependency distribution a

function of basic block size. Similar approaches can also be taken with the cache

and branch prediction modeling. The authors conclude that the basic block size

distribution based on the recent branch history has the greatest improvement in

accuracy. Simplistic models that simulate fast can forgo this refinement as a trade

off for speed. To achieve a model with greater accuracy all the refinements should

be employed at the cost of greater simulation time. The increased simulation time

comes from the extra time it takes for the performance metrics to converge with

the non-normal distribution models.

Eeckhout et al. [16] further optimize the statistical simulation by mod-

eling the control flow. In their approach a statistical flow graph is generated from

basic block history profiles. The graph has a node for each basic block, and edges

between nodes are weighted by the probability that a block will transition to the

other block. A node with edges coming out of it will represent all the possible

transitions out of a basic block, and the sum of the transition probabilities equals

one. This model is incorporated into the synthetic trace and provides a closer
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resemblance to real program behavior.

II.C Sampling Techniques

Sampling is an established method for representing a data set with a

fraction of the data. It is not surprising that sampling has been applied to lengthy

architecture simulation. Sampling techniques are split into two general types,

statistical sampling and representative sampling. Statistical sampling samples

the execution in a random or systematic pattern without special consideration

of what sample is picked. Representative sampling, on the other hand, carefully

picks samples that are used to represent the execution. In either method it is

essential to have good sample startup; efficient means to get to the sample and

warmup the state of the processor to avoid cold start bias. The term sample

is defined here as a contiguous interval of dynamic instructions during program

execution.

II.C.1 Sample Startup

There are two essential components for sampling techniques to be effec-

tive. Getting to the sample must be significantly faster than detailed simulation

otherwise speedup gains will be dampened. Then before a sample is simulated

in detail it is necessary to warmup the caches and branch predictors so that they

perform at a similar level as if they were functioning up to before the sample

start point.

Getting to the Sample

Sampling techniques are effective by simulating only a small fraction of

the entire execution. If a sample is deep in the execution, it is necessary to have

the means to reach it for detailed simulation. It is critical that substantial time is
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not invested in reaching the sample, otherwise that time will reduce the speedup

gain from sampling. Here several methods for efficiently getting to the start of

the sample are described.

Cycle level simulation takes on the order of a thousand times slower

than native hardware. On the other hand, a functional emulator, such as sim-

fast, only emulates instructions and is substantially faster (a couple order of

magnitude) than the cycle level simulator. When emulating the program it is

referred to as fast-forwarding through execution. Fast-forwarding is one method

that can be used to reach the start of a sample before simulating it in detail.

Some benchmarks have hundreds of billions of instructions and if a sample is

deep in execution it can take days to fast forward to it.

An attractive alternative to fast-forwarding is checkpointing. Check-

points are a snapshot of the architecture state at a given point in the execution-

the pipeline, buffers, and structures like the branch predictor are stored in a file.

To generate a checkpoint one first has to get to that point in the execution (e.g.

via fast-forwarding) and then flush the checkpoint. Checkpointing is an attractive

method because once it is created it can be loaded and simulation starts from the

point of the checkpoint without significant time overhead. This can also be done

in parallel resulting in simulation of multiple samples in parallel. It is a speedy

alternative to fast-forwarding, with the trade off of size.

A naive approach to checkpointing requires substantial space since it

stores the entire state of the processor. Several techniques have been proposed

to minimize this overhead in [71]. The Touched Memory Image method only

stores the blocks of memory and their addresses that are to be accessed during a

sample that will be simulated. This technique reduces the storage space required

since it uses a sparse image of the entire architecture state that will be sufficient

for the sample to start execution in a warm state. A further refinement in this
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method is to only store memory blocks that are written to after being read, since

in the read after write case the original data in that memory block will not be

utilized. A second approach, called the Load Value Sequence, stores a log of all

data values loaded from memory during an execution. During execution this

log can be replayed concurrently and provide the loads with the correct data

values. Further optimization on this technique attaches a bit for each load to

decide whether or not the data will be read from the log. This method cuts

out subsequent loads and stores accessing the same memory address or when the

loaded value is zero (the initial memory value in a simulator). Both of these

techniques reduce the storage required for the full checkpoint by two orders of

magnitude.

Several techniques propose to use the native hardware to speed up fast-

forwarding. SimSnap [68] is a technique that leverages the native hardware to

execute between samples of detailed simulation instead of fast-forwarding. This

method transitions from native to detailed simulation and back via checkpoints.

The binary is slightly modified to dump checkpoints at sample entry points with

a specialized compiler. In [20] a direct execution model is used to model processor

behavior and performance directly from the native hardware. In this work a pro-

gram source is translated to an intermediate representation (e.g. assembly) and

then instrumented with timing code to collect timing statistics during execution.

The timings statistics are translated to the modeled hardware to estimate its

performance. This is an involved process since the mapping of native-to-model

timing is required for every instruction type that has different execution time

on the native and modeled processor. Although such a technique is more effi-

cient than simulation, it has several handicaps: the modeled processor is highly

limited by the native processor design. Both SimSnap and the direct execution

model are limited to the same ISA in the simulation model and native hardware.
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One method that is not restricted to the same ISA while exploiting hardware in

simulation is Embra [73]. This technique uses dynamic binary translation (JIT)

to generate code sequences to simulate a benchmark. Instead of interpreting the

benchmark’s instructions as a simulator would, the binary translation converts

the code executed on the native hardware to simulate the execution of the original

instructions. This process is fast, but it suffers from a high level of complexity

when doing the binary translations.

II.C.2 Sample Warm Up

The cache and branch predictor in a processor are structures that require

training before achieving peak performance. When a program starts execution all

the data accesses it performs are likely to miss in the cache the first time they are

referenced. Similarly, the branch predictor is not going to have any branch history

to make an educated prediction the first time each branch is encountered. After

reasonable execution time, both the cache and branch predictor have encountered

sufficient events to make them effective. If a sample begins detailed simulation

in a cold start state (e.g. the caches do not not have any recently accessed data

already loaded or the branch predictor is not trained with the execution control-

flow patterns), it may under represent performance. Several ad hoc techniques

have been employed to address this effect: ignore cold start and assume a cold

state at the start of each sample, which should not impact large enough samples;

preserve the state between samples, the next sample starts with the state at the

end of the last sample; consider every first cold access in the cache or branch

prediction as a hit (e.g. the first time a memory address is accessed consider it

to be already loaded in the cache, or the first time the branch prediction is made

for a branch it is correct); perform function simulation for a constant instruction

window size (e.g. 1 million instructions) before each sample. Function simulation
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is fast because it only models the structures (e.g. cache and branch predictor)

and does not model the cycle detailed behavior or the pipeline.

In the first technique using a long interval length (e.g., more than 100

million instructions) will make warmup unnecessary for many programs. This is

the approach used by Intel’s PinPoint for simulation [48]. They simulate inter-

vals of length 300-500 million instructions so they do not have to worry about

implementing warmup in their simulation infrastructure. With such long inter-

vals the architecture structures are warmed up sufficiently during the beginning

of the interval’s execution to provide accurate simulation results. In the latter

technique it is likely that either too many instructions are being used for warmup

and simulation time is being unnecessarily increased, or that the structures have

not warmed up within the given warmup stage and the sample statistics may not

be accurate. The work done by Haskins and Skadron [24, 25] addresses these

issues and propose a technique to accurately gage how long to warmup to achieve

high accuracy.

In [24] a warmup acceleration technique, Minimal Subset Evaluation, is

proposed to achieve an accurate cache state by computing the number of refer-

ences prior to a sample that must be modeled before detailed simulation. This

technique does not target the secondary cache (unified or split) nor the branch

predictor. A more recent technique, Memory Reference Reuse Latency [25],

applies similar methods that target all caches and the branch predictor. This

technique measures memory reference reuse latencies, the number of completed

instructions between consecutive references to each unique memory location, to

determine at what point prior to the sample warmup should start. This data

is collected for the instruction stream (instruction-cache), data stream (data-

cache), and branch stream (branch-predictor). Statistically analyzing the data

provides probabilistic models that X% (e.g. X=99%) of the addresses will be



25

accessed within an instruction window of size N. The proposed method to use

this warmup period is to reach the point in the execution that is N instructions

before the start of the sample (e.g. via fast-forwarding), then run a function-level

detail simulation to warm up the caches and branch predictor for N instructions.

At this point, the start of the sample is reached and detailed simulation can

begin with warmed up structures. The authors note that for large X%, (where

X = 99.9%) , a disproportionate amount of instructions would need to be warmed

up to compensate for the remaining 0.1% addresses and ignoring these addresses

has insignificant impact on the sample warmup state. This technique reduces sim-

ulation time significantly by achieving 90% of the maximum potential speedup

had no warmup period been used and also accurately models the full detailed

simulation state at the end of the warmup period to within 1%.

II.C.3 Statistical Sampling

Statistical sampling established long before processor architecture re-

search, and benefits from a rigorous mathematical foundation. Conte [11] pi-

oneered the use of statistical sampling in processor simulation. In that work

sampling methods were applied to cache and instruction traces with good ac-

curacy. The drawback in that approach is that it required a full trace a priori

for the sampling analysis. That means that a full trace of the metric considered

(e.g. cache missrates or IPC) needs to be collected with detailed simulation to

completion.

In more recent work, Conte et al. [12] provided a framework to employ

statistical sampling on the fly, thus absolving the need for full trace generation.

First, random samples from the execution are simulated in detail where each

random sample is a contiguous region of dynamic instructions. Statistical metrics

are computed for the samples to predict accuracy of estimated results. The
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metric of interest (e.g. IPC) is statistically analyzed. Standard deviation and

probabilistic error and confidence bounds are computed to estimate the accuracy

of the sample set. At a high level, the more samples collected the more accurate

the estimate will be. This is based in part on the Central Limit Theorem stating

that the sum of variables with a finite variance will have an approximate normal

distribution. We will describe the confidence and statistical error bounds in more

depth in Chapter IV.

The authors specify two sources of error in their sampling technique:

non-sampling bias and sampling bias. Non-sampling bias results from the cold-

start effect. This issue was already discussed in Section II.C.2. Sampling bias on

the other hand is fundamental to the samples, since it quantifies how accurate the

sample average represents the overall average. There are two major parameters

that influence this error: the number of samples and size of each sample in in-

structions. The size of a sample in processor simulation is the number of dynamic

instructions that a sample encompasses. The authors experimentally determine

these parameters for their processor model and conclude that 1,000 samples of

2,000 instructions is sufficient for accurately representing a benchmark. They

also provide a general method to determine the sample count on other models.

This method is based on a heuristic, in which the user determines a particular

accuracy level with which the metric of interest will be estimated. The bench-

mark is then simulated, and N samples are collected. N is an initial value for the

number of samples. Error and confidence bound are computed for the samples,

and if they satisfy the accuracy limit then this estimate is good. Otherwise, more

samples need to be collected ( > N) and the error and confidence bounds are

recomputed for each sample set collected until the accuracy threshold is satisfied.

An automated approach for applying a similar sampling technique is

proposed in the SMARTS [74] framework. This work uses systematic sampling
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and reduces sample startup overhead by maintaining certain structures (cache

and branch predictor) warm throughout the execution. This minimizes the need

to warmup with detailed simulation prior to sample startup. The authors ex-

perimentally determine a smaller sample size of 1,000 instructions. The smaller

sample is due in part to the more effective warming of the processor between sam-

ples. Detailed warming is still essential for the samples. This period is affected

by the processor architecture. Depending on the issue width of the processor,

it is recommended that an 8-way processor have 2,000 instructions for detailed

warming and a 16-way processor have 4,000 instructions prior to each sample. A

similar method as in [12] is proposed to determine the number of samples needed

to satisfy a particular accuracy level. The authors recommend a 10,000 sample

count to achieve a ±3% error bound at 99.7% confidence level on the SPEC CPU

benchmarks.

II.C.4 Representative Sampling

Representative sampling contrasts statistical sampling in that it first

analyzes the data in order to pick a few but highly representative samples. The

key advantage in this approach is that having fewer samples can reduce simula-

tion time and also allow for a simpler simulation infrastructure. The number of

instructions simulated in detail is not the target here, but rather the number of

samples needed for simulation and the total overhead in sample warm up. For

example, for ten samples it is fairly fast and easy to either fast-forward or collect

checkpoints and then simulate them in parallel (in contrast to thousands of small

samples that may be needed with statistical sampling). An instruction interval

in this section is defined to represent a contiguous stream of instructions during

program execution.

The SimPoint method [60, 61, 52, 6, 36, 34, 55, 53] is a representative
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sampling approach that automatically characterizes the behavior of a program

and then samples each unique behavior once. This method is the focus of this

thesis and we will describe related work for doing representative sampling in this

section.

Lafage and Seznec [32] proposed a method for doing representative sam-

pling that uses data stream profiles to pick a handful of samples. In their ap-

proach, metrics to represent temporal and spatial locality of data memory accesses

is profiled across the entire program execution. For example, to measure tempo-

ral locality in data accesses the number of instructions between two accesses for

the same address are measured for each address in the program. To collect the

metrics it is necessary to model the memory hierarchy by simulating the memory

structures (e.g. caches) and additional state to capture multi-configuration be-

havior. This can be done in a single pass through the simulator, but still imposes

a significant overhead. During simulation, statistics are output at intervals of one

million instructions. Each one million instruction interval can be represented as

a vector with the statistics applied to dimensions in the vector.

In vector format, it is possible to compare similarity between vectors

by computing the distance between the vectors. A small distance between two

vectors means they are quite similar to each other and a large distance means the

two vectors differ substantially. With the ability to measure similarity between

vectors, a hierarchical clustering algorithm is applied to classify all the intervals

into a set of clusters. Each cluster will have intervals in it that are similar to each

other, but different from intervals in other clusters. The hierarchical clustering

algorithm starts at the top level in the hierarchy where all the intervals are in

a single cluster. Each progressive level in the hierarchy splits a cluster into two

clusters of equal or greater similarity. Once the clustering hierarchy is complete, a

sample is picked from each cluster as a representative for the cluster. The cluster
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representative is the vector that is closest to the center of the cluster. To pick

a level in the hierarchy a metric measures how close the weighted mean of the

representative samples is to the centroid of the cluster at the top of the hierarchy

(all the vectors in one cluster). A weighted mean is used since the samples

represent clusters of varying size. Each representative sample is weighted by the

size of the cluster it represents. Finally, the set of representative samples is used

to represent the entire execution.

One critical issue in this approach is the use of data stream profiles, an

architecture dependent metric, for choosing representative samples. The repre-

sentative samples picked based on these profiles are dependent on the architecture

configuration that generated the profiles. If a design space exploration spans a

wide spectrum of memory configurations (potentially hundreds or thousands of

configurations), profiles would have to be collected for many different architec-

ture configurations. Scalability of this approach can be highly limited in such

scenarios.

In contrast, the SimPoint technique uses an an architecture independent

metric, code profiles, to characterize program behavior and choose representative

samples. This results in representative samples for the benchmark that are valid

across many different architecture configurations. Additionally, architecture in-

dependent code profiles can be collected efficiently (e.g. with sim-fast), and take

a fraction of the time that functional simulation would require. This method is

described in detail in the next chapter.

II.D Discussion

In this section a comparison between the various techniques is discussed

as well as their effectiveness with future projections of SPEC benchmarks.
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II.D.1 Technique Comparison

Table II.D.1 shows a ranking of the various techniques under the follow-

ing categories:

• Set up overhead: set up overhead such as preprocessing (e.g. collecting

profiles) needed by the technique

• Implementation: overhead of designing and implementing the infrastruc-

ture essential for the simulation technique

• Ease of use: ease with which a simulation can be run using the technique

• Time to simulate: time it takes to complete a simulation as defined by

the technique

• Accuracy: accuracy of technique in representing the full detailed simulation

of the reference input of the benchmark

The following sections compares the different techniques under each of

the categories, and analyze the rankings in table II.D.1.

Set Up Overhead

Set up cost for a technique includes the overhead of collecting profiles

to represent a benchmark or the investigation required before implementation of

the technique. The reduced input technique carries the highest set up costs. This

technique requires extensive understanding of the benchmark to effectively reduce

the execution duration with a modified input that is still representative of the

reference input. This is a manual process that investigates the source code of the

benchmark, and then validates the reduced input with profiles collected for the

reference run. Other techniques, such as statistical simulation and representative

sampling require profiles collected for the complete run and then analysis of the
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profiles. These techniques have a smaller set up cost since the profile collection is

automated, and the time it takes depends on the detail of the profile. The profiles

needed for the HLS [47] statistical simulation technique is more detailed than the

profiles collected with the representative sampling technique proposed in Sim-

Point [60, 61, 52, 23], because they are used to generate a synthetic benchmark.

Finally, the lowest set up cost is with statistical sampling, which can completely

avoid set up cost by collecting profiles on the fly and decide post-simulation if

the accuracy is sufficient.

Implementation

Implementation costs for simulation is a serious consideration since the

overhead in implementing the technique may outweigh the time savings the tech-

nique provides. Statistical simulation is the most difficult technique to implement.

It requires an overhaul of a detailed simulator to incorporate probabilistic mod-

els for certain structures. This overhead is similar in magnitude to the set up

cost required in reduced input technique. Statistical and representative sampling

techniques have an implementation overhead that is described in sample startup

(Section II.C). Representative sampling has lower implementation costs since

the overhead of warming up samples is avoided by using larger samples that are

not vulnerable to the cold start effect. Reduced inputs have no implementation

costs, since it simulates a benchmark-input pair to completion which requires no

modification to the simulator.

Ease of Use

Ease of use measures how easy it is to perform the simulation once

the infrastructure has been designed. Reduced input technique is the easiest

technique to use. That technique requires no modifications to the simulator, and
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has no overhead in pre or post processing the simulation statistics. On the other

extreme the most difficult simulation technique presented is statistical simulation.

Statistical simulation requires two major components: a simulation infrastructure

that probabilistically models the processor and a synthetic benchmark generated

from profiles collected with detailed simulation. Once the processor model is

implemented, each benchmark needs to be synthetically generated. This overhead

outweighs the usage overhead in the other techniques. Sampling techniques need

methods to get to every sample. Checkpointing or fast-forwarding would work

for getting to samples as mentioned in Section II.C. Note that representative

sampling uses orders of magnitude fewer samples than statistical sampling (tens

vs. thousands), which in terms of checkpointing would require substantial less

space. Finally, statistical sampling requires post-processing to determine if a set

of samples satisfies a user-specified accuracy level.

Time to Simulate

What statistical simulation lacks in ease of use and implementation it

makes up in efficiency. It is the fastest technique since performance converges

after only thousands of instructions (a few minutes at most). This is orders of

magnitude faster than the other techniques. The slowest technique is statistical

sampling since it requires to go through the entire execution of the reference run

of a benchmark. Fast-forwarding through some of the benchmarks can take days,

and this outweighs the time spent in detailed simulation. If direct execution is

implemented with statistical sampling, instead of fast-forwarding between sample

the execution is driven on native hardware, then this technique would be much

faster. Representative sampling is faster to simulate than statistical sampling, be-

cause with fewer samples there is less likelihood to have to simulate until the end

of execution. Simulation time can be further reduced in representative sampling
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with checkpoints for each representative interval. It would require substantial

space to have checkpoints for statistical sampling, since there are thousands of

samples. Finally, the time to simulate the reduced input is independent from the

duration of the reference run. Depending on the input (small, medium, or large),

it can take from a few minutes to a few days to complete a simulation.

Accuracy

The most accurate simulation technique is statistical sampling. It can

achieve the best representation of the reference run, since it can increase the

number of samples to match any level of accuracy (at the price of higher simu-

lation time). Representative sampling is a close second in accuracy with better

efficiency since only a handful of samples need to be simulated. Optimizations

in representative sampling, as proposed in [52], which incorporate probabilistic

confidence and error bounds to the SimPoint technique can match the accuracy of

statistical sampling. Statistical simulation is a distant third, since it uses both a

probabilistic processor model and a synthetic benchmark. A lot of optimizations

have improved the accuracy in modeling the discrete simulation, but it still lacks

the detail that sampling techniques have. Finally, reduced input is the least ac-

curate technique, since the reduced inputs exhibit significantly different behavior

from the reference input.

Comparison Summary

The various simulation techniques presented have a wide range of char-

acteristics where each has its own unique strength and weakness. Depending on

the expected use for a simulation, each technique has its niche. For example, in

doing a large design space exploration it may be worth the overhead to implement

statistical analysis to quickly find Pareto Optimal points. If ease of use is an is-



34

sue, then the reduced input technique can also be applied to exploring a design

space, although it is not quite as efficient. Representative sampling with check-

pointing will have comparable efficiency to reduced input, and can also be used

for exploring a large design space. To accurately gage design decisions, statistical

or representative sampling techniques are appropriate. These techniques have

the best accuracy while significantly reducing simulation time from a complete

detailed simulation.

Table II.1: Simulation optimization technique comparison

Technique Set Up Implementation Ease of Use Time to Simulate Accuracy

Reduced Input 4 1 1 2 4

Statistical Simulation 3 4 4 1 3

Statistical Sampling 1 3 3 4 1

Representative Sampling 2 2 2 3 2

Representative sampling has become the method of choice in many cases

because of its combination of strengths. It is both easy to use and implement and

reduces simulation time to hours while achieving very good accuracy (2% error

on average for SimPoint [23]). Intel [48] has embraced representative sampling for

its simulation infrastructure because of these characteristics. It has also become a

methodology standard in the architecture research community for the very same

reasons.

II.D.2 Effectiveness with Future Trends

Future releases of SPEC benchmarks will be longer and processor sim-

ulators will be more complex and slow as was projected in Section I.A.3. It is

important that an efficient simulation technique is scalable to future benchmark

releases. One technique which suffers from scalability is the reduced input tech-

nique (Section II.A). That technique is not automated, and has a high set up
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cost requiring extensive knowledge of each benchmark. That overhead will be

carried over for each new benchmark that is introduced. Statistical simulation

may also suffer from a high implementation cost, since more complex proces-

sor models may need to be probabilistically modeled. It is not as direct of a

drawback though, since the complexity is dependent on the processor and not

the benchmarks. Finally, the sampling techniques are automated enough to be

efficiently applied to new benchmark suites. These techniques have implemen-

tation and set up costs that are independent of the benchmark and processor

complexity. However, statistical sampling may not scale well with longer bench-

marks since it requires complete fast-forwarding with warmup simulation (at low

detail) through the benchmark execution. Innovations in sample startup tech-

niques (such as checkpointing and direct execution) may ameliorate this overhead

for both statistical and representative sampling.

II.E Summary

Simulating the full reference run of a benchmark in detail is no longer

practical. Still, the overall representation of the execution is essential for main-

taining a standard in architecture research. A number of techniques have emerged

to tackle the increase in benchmark execution and slow simulation time. These

techniques are classified in three categories: reduced input, statistical simulation,

and sampling. A comparison between these suggests that certain techniques,

such as reduced input and statistical simulation, are more appropriate for a large

design space search. Sampling techniques are more accurate and should be used

for making more refined design decisions. SPEC benchmarks will execute many

trillions of instructions in the next suite. It is essential to continue the progression

of efficient simulation methodologies to counter the ever increasing benchmark

execution length.



III

Characterizing Program Behavior

and Finding Simulation Points

In this chapter we define the time varying behavior in programs and

observe its highly structured nature. We present our method for automatically

characterizing this behavior into what we call phases and finally describe how

using this approach we can find simulation points to accurately represent the

entire execution of a program.

III.A Defining Time Varying Porgram Behavior and Phases

Since phases are a way of describing the recurring behavior of a program

executing over time, we begin by describing phase analysis with a demonstration

of the time-varying behavior [59] of two programs from the SPEC 2000 benchmark

suite, gcc and gzip. To characterize the behavior of these programs we have

simulated their complete execution from start to finish. Each program executes

many billions of instructions, and gathering these results took several machine-

months of simulation time. The time varying behavior of each program is shown

in the Figures III.1 and III.2. The behavior of each program is measured by

36
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Figure III.1: To illustrate the point that phase changes occur across many metrics
all at the same time, we have plotted the value of these metrics over billions of
instructions executed for the program gzip with input graphic. Each point on
the graph is an average over 10 million instructions. The number of unified L2
cache misses (ul2), the energy consumed by the execution of the instructions, the
number of instruction cache (il1) misses, the number of data cache misses (dl1),
the number of branch mispredictions (bpred) and the average IPC are plotted.

various statistics relating to how the program is interacting with the underlying

architecture over the course of its execution. The metrics shown are the number

of unified L2 cache misses (ul2), the energy consumed by the execution of the

instructions, the number of instruction cache (il1) misses, the number of data

cache misses (dl1), the number of branch mispredictions (bpred), and the average

IPC.

Each point on the graph represents the average value for that metric

(for example cache misses) taken over 10 million instructions worth of execution
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Figure III.2: To illustrate the point that phase changes occur across many metrics
all at the same time, we have plotted the value of these metrics over billions
of instructions executed for the program gcc with input 166. Each point on
the graph is an average over 10 million instructions. The number of unified L2
cache misses (ul2), the energy consumed by the execution of the instructions, the
number of instruction cache (il1) misses, the number of data cache misses (dl1),
the number of branch mispredictions (bpred) and the average IPC are plotted.
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(which we call an interval). There are a couple of important points we can draw

from these graphs. The first is that the average behavior does not sufficiently

characterize the behavior of the programs. For example, in gzip the IPC varies

from 1.2 to 1.7 and the number of data cache misses varies by almost an order

of magnitude. Note that not only do the behaviors of the programs change over

time, they change on the largest of time scales, and even at a large scale one

can find repeating behaviors. Programs may have stable behavior for billions of

instructions and then change suddenly. The final and most important point to

take away from these graphs is that, while the behavior of the program changes

significantly over time, the behavior of all of the metrics tend to change in unison,

though not necessarily in the same direction. This means that we may be able

to extract phase information about how a program changes behavior at a level

more general than any particular hardware metric.

The underlying methodology used in this work is the ability to automat-

ically identify these underlying program changes without relying on architectural

metrics. To ground our discussion in a common vocabulary, the following is a

list of definitions to describe program behavior and its automated classification.

• Interval – To perform our analysis we break a program’s execution up into

non-overlapping intervals of execution. An interval is a section of contiguous

execution (a time slice) of a program’s execution. For example, when using

an interval size of 100 million instructions, the first interval of execution

starts at instruction 0 and ends at the 100 million instruction executed, the

second interval of execution are the instructions 100 million up to 200 million

in the program’s execution, the third interval represents instructions 200 to

300 million, etc. For the results in this chapter all intervals are chosen to

be the same length, as measured in the number of instructions committed

within an interval. This is usually 1, 10, or 100 million instructions, as used
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by [52]. We will explore using variable length intervals in Chapter V.

• Similarity – A similarity metric measures the similarity in behavior between

two intervals of a program’s execution, and is specific to the representation

of those intervals.

• Phase – A set of intervals within a program’s execution that all have similar

behavior, regardless of temporal adjacency. A phase may be made up of

intervals which are disjoint in time; we would call this a phase with a re-

peating behavior. A “well-formed” phase should have intervals with similar

behavior across various architecture metrics (e.g. CPI, cache misses, branch

misprediction). In this thesis we consider the terms ‘cluster’ and ‘phase’ to

be equivalent.

• Phase Classification – Using machine learning to group intervals from a

program/input pair into phases (clusters) with similar behavior.

III.B The Strong Correlation Between Code and Perfor-

mance

In this section we describe how we identify phase behavior in an archi-

tecture independent fashion.

III.B.1 Using an Architecture-Independent Metric for Phase Classi-

fication

To find program phases, we need a notion of how similar are two different

parts of a program’s execution. In creating this metric it is advantageous to not

rely on hardware-based statistics such as cache miss rates or performance (i.e.

CPI), since using one of these metrics can mask some of the underlying behavior

which does not influence that particular metric. The resulting phases from using
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hardware-based metrics will end up grouping intervals together that may appear

similar on one architecture, but can have very different performance on another

architecture. This is not acceptable, since our goal is to find a set of samples that

can be used across an architecture design space exploration, where many of these

parameters may change. To address this, we need a metric that is independent

of any particular hardware-based statistic, but still relates to the fundamental

changes in behavior like those shown in the graphs of Figures III.1 and III.2.

An effective way to design such a metric is to base it on the behavior

of a program in terms of the code that is executed over time. We have shown

that there is a very strong correlation [34] between the set of paths executed in

a program and the time-varying architectural behavior observed. The intuition

behind this is that the executed code determines the behavior of the program.

With this idea it is possible to find the phases in programs using only a metric

related to how the code is being exercised (i.e. both what code is touched and how

often). The central idea behind SimPoint is that it can find the phase behavior

shown in Figures III.1 and III.2 by examining only the frequency with which the

code parts (e.g., basic blocks) are executed over time.

III.B.2 Basic Block Vector

The basic block vector (BBV) [60] is a structure designed to concisely

capture information about how a program is changing behavior over time. A

basic block is a section of code (e.g. a contiguous set of instructions) that is

executed from start to finish with one entry and one exit. The metric we will use

for comparing two time intervals in a program is based on the differences in the

execution frequencies for each basic block executed during those two intervals.

The intuition behind this is that the behavior of the program at a given time is

directly related to the code it is executing during that interval, and basic block
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vectors provide us with this information.

A program, when run for any interval of time, will execute each basic

block a certain number of times. Knowing this information provides a code sig-

nature for that interval of execution, and shows where the application is spending

its time in the code. The basic idea is that knowing the basic block distribution

for two different intervals gives two separate signatures which we can then com-

pare to find out how similar the intervals are to one another. If the signatures

are similar, then the two intervals spend about the same amount of time in the

same code, and the performance of those two intervals should be similar.

We represent a basic block vector as a one-dimensional array, with one

element in the array for each static basic block in the program. Each interval in

an executed program is represented by one BBV, and at the beginning of each

interval, its corresponding BBV has all zeros. During each interval, we count the

number of times each basic block has been entered, and record that number into

the corresponding element in the vector. This number is weighted by the number

of instructions in the basic block, since we want every individual instruction to

have the same influence. Therefore, each element in the array is the count of how

many times its corresponding basic block has been entered during an interval

of execution, multiplied by the number of instructions in that basic block. For

example, if the 50th basic block has one instruction and is executed 15 times

in an interval, then bbv[50] = 15 for that interval. At the end of an interval’s

execution, we normalize the BBV to sum to 1.

We call the vectors used to guide phase analysis Frequency Vectors, of

which basic block vectors are one type. Frequency vectors can represent ba-

sic blocks, branch edges, or any other type of program related structure which

provides a representative summary of a program’s behavior for each interval of

execution. Lau et al. recently examined frequency vector structures other than
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basic block vectors for the purpose of phase classification. They looked at fre-

quency vectors for data, loops, procedures, register usage, instruction mix, and

memory behavior [36]. They found that using register usage vectors, which sim-

ply counts for a given interval the number of times each register is defined and

used, provides similar accuracy to using basic block vectors. In addition, using

only loop and procedure branch execution frequencies performs almost as well as

using the full basic block information. For SPEC 2000 programs, Lau et al. [36]

found that creating frequency vectors by including both code and data access

patterns into the vectors did not improve classification over just using code.

III.B.3 Basic Block Vector Difference

In order to find patterns in a program we must first have some way of

comparing the similarity of two basic block vectors. The operation should take

two basic block vectors and return a single number corresponding to how similar

(or different) they are.

There are several ways of measuring the similarity of two vectors, such as

taking the dot product between the vectors, finding the Euclidean (2-norm) dis-

tance of the connecting vector, or Manhattan (1-norm) distance of the connecting

vector. The Euclidean distance has been shown to be effective for off-line phase

analysis [61, 52]. The SimPoint approach we examine uses Euclidean distance

as the metric for comparing basic block vectors, since it is based on k-means.

For on-the-fly phase analysis (e.g. predicting phases during computation), the

Manhattan distance is more efficiently implemented in hardware. It has been

shown to be useful in previous work in online phase prediction [62, 37].
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Figure III.3: These plots show the relationship between measured performance
(CPI) and code usage for the program gcc-166, and SimPoint’s ability to capture
phase information by only looking at what code is being executed. For each of the
three plots, the horizontal axis represents the execution of the program over time,
and each point plotted represents one 10-million instruction interval. The top plot
shows the CPI for the executing program. The middle plot shows the distance
of each interval’s basic block vector to the “target vector”, which is a basic block
vector (explained in Section III.B) that represents the entire program’s execution.
The target vector is a signature of the program’s overall average behavior, and
this plot shows how similar the code of each part of the program is to the overall
behavior of the program, lower meaning more similar. The bottom plot shows how
SimPoint classifies each interval into one of eight phases. The phase transitions
correspond to changes in the CPI in the top graph, though SimPoint does not
use metrics like CPI to classify intervals.
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Figure III.4: These plots show the relationship between measured performance
(CPI) and code usage for the program gzip-graphic, and SimPoint’s ability to
capture phase information by only looking at what code is being executed. For
each of the three plots, the horizontal axis represents the execution of the program
over time, and each point plotted represents one 10-million instruction interval.
The top plot shows the CPI for the executing program. The middle plot shows
the distance of each interval’s basic block vector (explained in Section III.B)
to the “target vector”, which is a basic block vector that represents the entire
program’s execution. The target vector is a signature of the program’s overall
average behavior, and this plot shows how similar the code of each part of the
program is to the overall behavior of the program, lower meaning more similar.
The bottom plot shows how SimPoint classifies each interval into one of four
phases. The phase transitions correspond to changes in the CPI in the top graph,
though SimPoint does not use metrics like CPI to classify intervals.
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III.B.4 Showing the Correlation Between Code Signatures and Per-

formance

In [34] we demonstrated that there is a strong correlation between exe-

cuted code and real performance. We showed this using the Receiver Operating

Characteristic [51] statistical metric, where we found that changes in CPI and

changes in code signature exhibited a strong correlation. The top two graphs of

Figure III.3 give one illustration of this correlation by showing the time-varying

CPI and BBV distance graphs next to each other for gcc-166. The top graph

plots the CPI for each interval executed (at 10M interval length) showing how the

program’s CPI varies over time. Similarly, the BBV distance graph plots for each

interval the Manhattan distance of the BBV (code signature) for that interval

from the whole program’s target vector. The whole program’s target vector is a

BBV that comes from viewing the whole program as a single interval. The same

information is also provided for gzip in the top two graphs of Figure III.4. These

graphs show that changes in CPI have corresponding changes in code signatures,

which is one indication of strong phase behavior for these applications.

These graphs show a strong correlation between code changes and CPI

changes even for complex programs like gcc. The graphs for gzip show that

phase behavior can be found even if the intervals’ CPIs have small variance. This

brings up an important point about classifying intervals based on code similarity

rather than based on similarity of CPI or some other hardware metric. Assume

we have two intervals with different code signatures but they have very similar

CPIs because both of their working sets fit completely in the cache. During a

design space exploration search, as the cache size changes, their CPIs may differ

dramatically if one of them no longer fits into the cache. This is why it is impor-

tant to perform the phase analysis by comparing the code signatures independent

of the underlying architecture. We have found that the BBV code signatures cor-



47

rectly identify differences like these, which cannot be seen by looking at just the

CPI.

III.B.5 Basic Block Similarity Matrix

Now that we have methods of comparing program execution intervals,

we can use them for finding phase-based behavior. A phase of program behavior

can be defined in several ways. Past definitions were built around the idea of a

phase being a contiguous interval of execution during which a measured program

metric is relatively stable. We extend this notion of a phase to include all similar

sections of execution regardless of temporal adjacency. Thus, a phase may appear

several times in the execution of a program.

A key observation from this thesis is that the phase behavior seen in

any program metric is a function of the code being executed. Because of this we

can use the comparison between the basic block vectors to get an idea of how

closely related any other metrics will be between those two intervals.

To find how all intervals of execution relate to one another we create

a basic block similarity matrix for a program/input pair. The similarity matrix

is an upper-triangular n × n matrix, where n is the number of intervals in the

program’s execution. An entry at (x, y) in the matrix represents the Manhattan

distance between the basic block vector at interval x and the basic block vector

at interval y.

Figures III.5 (left and right) and III.6 (left) shows the similarity matri-

ces for gzip, bzip, and gcc using the Manhattan distance. The diagonal of the

matrix represents the program’s execution over time from start to completion.

The darker the points, the more similar the intervals are (the Manhattan distance

is closer to 0), and the lighter they are the more different they are (the Manhat-

tan distance is closer to the maximum value — which is 2 since each vector is



48

0B

20B

40B

60B

80B

100B

0B

50B

100B

Figure III.5: Basic block similarity matrix for the programs gzip-graphic

(shown left) and bzip-graphic (shown right). The diagonal of the matrix rep-
resents the program’s execution from beginning to end, with units in billions of
instructions. The darker the points, the more similar the intervals are (the Man-
hattan distance is closer to 0), and the lighter the points the more different they
are (the Manhattan distance is closer to 2).

normalized to sum to 1).

Consider the points along the matrix diagonal. The top left corner of

each matrix is the start of program execution (0, 0), and the bottom right is the

point (n− 1, n− 1) (end of execution). Each interval is perfectly similar to itself,

so the points on the diagonal are all dark. Starting from a point on the diagonal,

you can compare how its corresponding interval relates to its neighbors forward

(backward) in execution by tracing horizontally (vertically) from that point. For

example, to compare a given interval x with the interval at x + m, start at the

point (x, x) on the matrix and trace to the right until you reach (x, x + m).

Let us first examine gzip because it has behaviors that are evident at

such a large scale that they are easy to see. An interval taken from 70 billion

instructions into execution in Figure III.5 (left) is directly in the middle of a large

phase shown by the triangle of dark points that surround this point. This means
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Figure III.6: The original similarity matrix for the program gcc-166 (left), and
the similarity matrix for the projection of gcc-166 (right). The figure on the left
uses the original basic block vectors (each of which has over 100,000 dimensions),
and uses the Manhattan distance for calculating the difference. The figure on
the right uses the same data, but projected down to 15 dimensions, and uses the
Euclidean distance for calculating the difference.

that this interval is very similar to its neighbors both forward and backward in

time. We can also see that the intervals at 50 billion and 90 billion instructions are

also very similar to the program behavior at 70 billion instructions. While it may

be hard to see in a printed version, the intervals around 70 billion instructions

are similar to the intervals around 10 billion and 30 billion instructions, and even

more similar to those around 50 and 90 billion instructions.

Overall, Figure III.5 (left) shows that the phase behavior seen in the

similarity matrix lines up quite closely with the behavior of the program seen in

the top graph of Figure III.4, with 5 large regions of self-similar behavior (the

first 2 being different from the last 3) each divided by a small region of self-similar

behavior. All of the small self-similar regions are also very similar to each other.

The similarity matrix for bzip (shown on the right of Figure III.5)

is very interesting. Bzip has complicated behavior, with two large parts to its

execution: compression and decompression. This can readily be seen in the figure
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as the large dark triangular and square patches. The interesting thing about bzip

is that even within each of these sections of execution there is complex behavior.

This, as will be shown later, makes the behavior of bzip impossible to capture

using only one small contiguous section of execution.

An even more complex case for finding phase behavior is gcc, which

is shown on the left of Figure III.6 ( the matrix on the right of that figure

will be explained in more detail in Section III.C.1). The left matrix shows that

gcc does have regular behavior. Even for such a complex program, we see that

there is common code shared between sections of execution, such as the intervals

around 13 billion instructions and 36 billion instructions. In fact the strong

dark diagonal line cutting through the matrix indicates that there is large-scale

repetition between the first half and second half of the program. By analyzing the

graph we can see that code at each interval x is very similar to interval (x+23.6B

instructions).

III.C Automatically Finding Phase Behavior

In this section we describe the algorithms used to automatically detect

patterns using the frequency vectors described in the previous section.

III.C.1 Using Clustering for Phase Classification

A primary goal of SimPoint is to have an automated way of extracting

phase information from programs. Data clustering algorithms from unsupervised

machine learning have been shown to be very effective at breaking the complete

execution of a program into phases that have similar frequency vectors [61]. Be-

cause the frequency vectors correlate to the overall performance of the program,

grouping intervals based on their frequency vectors produces phases that are simi-

lar not only in the distribution of program structures used, but also in every other
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architecture metric measured, including overall performance.

The goal of clustering is to divide a set of points into clusters such that

points within each cluster are similar to one another (by some metric), and points

in different clusters are different from one another. We use the machine learning

term ‘cluster’ and the architecture term ‘phase’ to express the same concept.

The k-means algorithm [41] is an efficient and well-known clustering

algorithm, which we use to split program intervals into phases. Prior to clustering,

we use random linear projection [13] to reduce the dimension of the input vectors.

One drawback of the k-means algorithm is that it requires the number of clusters

k as an input to the algorithm, but we do not know beforehand what value is

appropriate. To address this, we run the algorithm for several values of k, and

then use a penalized likelihood score to guide our final choice for k. Taken to the

extreme, if every interval of execution is given its very own cluster, then every

cluster will have homogeneous behavior. Our goal is to choose a clustering with

a minimum number of clusters that still models the program behavior well.

The following steps summarize the SimPoint phase clustering algorithm

at a high level.

1. Profile the program by dividing the program’s execution into contiguous

intervals of fixed length (e.g., 1 million, 10 million, or 100 million instruc-

tions). For each interval, collect a frequency vector tracking the program’s

use of some program structure (basic blocks, branch edges, loops, register

usage, etc.). Each frequency vector is normalized so that the sum of all the

elements equals 1.

2. Reduce the dimensionality of the frequency vector data to a much smaller

number of dimensions using random linear projection. Using projected data

speeds up the k-means algorithm significantly and reduces the memory re-

quirements by several orders of magnitude while preserving the essential
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similarity information.

3. Run the k-means clustering algorithm on the projected data with values of

k in the range from 1 to K, where K is a user-prescribed maximum number

of phases that can be detected. Each run of k-means produces a clustering,

which is a partition of the data into k different phases/clusters. Each run of

k-means begins with a random initialization step, which requires a random

seed.

4. To compare and evaluate the different clusters formed for different k, we use

the Bayesian Information Criterion (BIC) as a measure of the “goodness of

fit” of a clustering to a dataset. A high BIC score indicates the clustering

is a good fit to the data. For each clustering (k ∈ {1, 2, . . . , K}), the fitness

of the clustering is scored using the BIC.

5. The final step is to choose the clustering with a small k such that its BIC

score is nearly as good as the best observed. The chosen clustering is the

final grouping of intervals into phases.

The above algorithm groups intervals into phases. This algorithm has

several important parameters: interval length, projected dimension, the maxi-

mum number of clusters K, how the BIC is to be used to select the best cluster-

ing, etc. Each must be tuned to create accurate and representative simulation

points using SimPoint. We discuss these parameters in more detail later in this

thesis.

Random Projection

For this clustering problem, we have to address the problem of high

dimensionality. Many clustering algorithms suffer from the so-called “curse of

dimensionality,” which refers to the fact that finding an optimal clustering is in-
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tractable as the number of dimensions increases. For basic block vectors, the

number of dimensions is the number of executed basic blocks in the program,

which ranges from 2,756 to 102,038 for the SPEC benchmark suite, and could

grow into the millions for very large programs. For example, one Microsoft appli-

cation we studied consisted of over 800,000 basic blocks, which is representative

of desktop applications. Another practical problem is that the running time and

memory requirements of k-means depend on the dimension of the data, mak-

ing the algorithm slow if the dimension grows too large. Also, we observe that

k-means tends to get stuck easily in sub-optimal solutions if the dimension is

too high. This is evidenced by the small number of iterations k-means requires

to converge on high-dimensional data, as we have observed on this data. The

algorithm does not improve much over its initialization.

Two broad methods of reducing the dimension of data are dimension

selection and dimension reduction. Dimension selection simply removes some of

the dimensions, based on a measure of goodness of each dimension for describing

the data. However, this can throw away a lot of information in the ignored

dimensions. Also, in finding a measure to select useful dimensions is not as clear

for unsupervised learning as for supervised learning. Dimension reduction reduces

the number of dimensions by creating a new lower-dimensional space and then

projecting each data point into the new space (where the new space’s dimensions

are not necessarily related to the old space’s dimensions).

For this work we use random linear projection [13] to create a new low-

dimensional space into which we orthogonally project the data. This is a simple

and fast technique that is very effective at reducing the number of dimensions

while retaining the essential structure of the data. There are two steps to pro-

jecting a dataset down to a lower-dimensional version. Consider a dataset X,

which is represented as a matrix of n × d real values, where n is the number of
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vectors, and d is the original dimension. We want a low-dimension version X ′,

which is n × d′, where d′ is the projected number of dimensions. To create X ′,

we do the following:

• Create a projection matrix P size d× d′. Fill each entry in the matrix with

a random value chosen uniformly in [−1, 1].

• Use a matrix multiplication to obtain X ′ = X × P .

The analysis given by Dasgupta [13] shows that when using random

linear projection for clustering data, there are two primary theoretical benefits.

The first is that clusters that are very eccentric will become more spherical in

their low-dimensional representation. This is appropriate for the k-means algo-

rithm which searches for spherical clusters. The second is that a mixture of k

Gaussian clusters can be projected into only O(log k) dimensions while retaining

the approximate level of separation between clusters.

Principal components analysis (PCA) is a widely-used method for di-

mension reduction based on directions of high variance. However, performing

PCA on a d-dimensional dataset requires O(d3) operations, which is too expen-

sive for datasets of the size we are considering here that can have hundreds of

thousands of dimensions. Constructing the random projection matrix requires

only O(dd′) time, so it is linear in the original and the new dimension. Dasgupta

further showed that there are many simple examples where PCA is not able to

reliably reduce k well-separated Gaussian clusters to below Ω(k) dimensions and

keep them well-separated in the low-dimensional projection.

For our application, we found that 15 dimensions is low enough to be

computationally tractable, but sufficiently high to discover the different phases

of execution with clustering. We found this by running experiments reported

in [61]. These experiments projected all the datasets we are interested in to a

varying number of dimensions and then recorded the number of clusters found by
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Figure III.7: This plot shows a two-dimensional projection of the basic block
vectors for the program gzip, having 1038 total intervals, and clustered into
three clusters with k-means. The lines show divisions between the three clusters.
Note that SimPoint normally operates in more than two dimensions, but this
illustrates the fact that that program behavior does form natural groups that
can be found through data clustering.

k-means and the BIC. We found that for fewer than 15 dimensions, the number

of clusters found dropped off, but for more than 15 dimensions, the number of

clusters found did not increase significantly.

Figure III.6 shows the similarity matrix for gcc on the left using original

BBVs, whereas the similarity matrix on the right shows the same matrix but

on the data that has been projected down to 15 dimensions. For the reduced

dimension data we use the Euclidean distance to measure differences. Some

information is lost because of the projection, but overall phase behavior we see in

the original data is still easily discernible with only 15 dimensions. A scatterplot

of the program gzip projected to 2 dimensions and clustered into 3 clusters using

k-means is shown in Figure III.7.
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Bayesian Information Criterion

To compare the different clusterings formed for different k, we use the

Bayesian Information Criterion, or BIC [58], as a measure of the “goodness of

fit” of a clustering to a dataset. The BIC is an approximation of the probability

of the clustering, given the data that has been clustered. Thus, the larger the

BIC score, the higher the probability that the clustering being scored is a “good

fit” to the data being clustered. The BIC formulation we use is appropriate for

clustering with k-means, however other formulations of the BIC could also be

used for other clustering models. The BIC is only one method of choosing a

good model from a set of models; other methods such as the Akaike information

criterion (AIC) [1], minimum description length (MDL) [57], and Monte-carlo

cross-validation (MCCV) [65] may also be appropriate.

There are two parts of the BIC: the likelihood and the penalty. The like-

lihood is a measure of how well the clustering models the data. For the k-means

likelihood, each cluster’s model is considered a spherical Gaussian distribution

(which is the assumption k-means makes). The likelihood of a cluster is the

product of the probabilities of each point in the cluster given by the cluster’s

Gaussian. The likelihood for the whole model is just the product of the likeli-

hoods for all clusters. However, the likelihood tends to increase without bound as

more clusters are added. Therefore the second term is a penalty that offsets the

likelihood growth based on the model complexity (i.e. the number of clusters).

The BIC is formulated as

BIC(X, Ck) = L(X|Ck) −
p

2
log(n)

where L(X|Ck) is the log-likelihood of the clustered data X given the clustering

Ck having k clusters, n = |X| is the number of points in the data, and p =

(k−1)+dk+1 = k(d+1) is the number of parameters to estimate: (k−1) cluster

probabilities, k cluster center estimates which each requires d mean estimates,
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and one variance estimate (shared over all clusters). The log-likelihood of the

k-means model given the data is

L(X|Ck) = −nd

2
log(2πσ2) − 1

2σ2

k∑

j=1

∑

i∈Cj

||Xi − cj ||2 +
k∑

j=1

nj log(nj/n)

where nj is the number of points in the jth cluster (so nj/n is the estimated

prior probability of cluster j), and σ2 is the average squared Euclidean distance

from each point to its cluster center. The term Cj represents the set of all

indexes of X that are members of cluster j, Xi is the ith point in dataset X, and

cj = 1
nj

∑
i∈Cj

Xi is the location of the jth cluster center. The center cj is the

maximum likelihood solution for the cluster’s center. The maximum likelihood

estimator for σ2 is:

σ̂2 =
1

nd

k∑

j=1

∑

i∈Cj

||Xi − cj ||2

For the purposes of calculating the BIC, we can substitute this maximum likeli-

hood estimate for σ2 into the log-likelihood formulation, to get a simpler version:

L(X|Ck) = −nd

2
log(2πσ2) − nd

2
+

k∑

j=1

nj log(nj/n)

The BIC formulation we present basically follows that given by [50].

For a given program and inputs, the BIC score is calculated for each

k-means clustering, for K in the range 1 to K. We then choose the clustering

that achieves a BIC score that is close to the highest BIC score seen.

III.C.2 Clusters and Phase Behavior

The bottom plots in Figures III.4 and III.3 show the results of running

our phase-finding clustering algorithm on gzip and gcc. These results use an

interval length of 10 million instructions and the maximum number of phases

(K) is set to 10. The horizontal axis corresponds to the execution of the program
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(in billions of instructions), and each interval is classified to belong to one of the

clusters (labeled on the vertical axis).

For gzip, the program’s execution is partitioned into 4 clusters. Looking

at the middle plot for comparison, the cluster behavior captured by our algorithm

lines up quite closely with the behavior of the program. Clusters 2 and 4 rep-

resent the large sections of execution which are similar to one another. Cluster

3 captures the smaller phase that lies in-between these larger phases. Cluster 1

represents the phase transitions between the three dominant phases. The inter-

vals in cluster 1 are grouped into the same phase because they execute a similar

combination of code, which happens to be part of the code behavior in either

cluster 2 or 4 and part of code executed in cluster 3. These transition points

in cluster 1 also correspond to the same intervals that have large spikes in CPI

seen in the top graph (these spikes are due to increased cache misses for those

regions).

The bottom plot of Figure III.3 shows how gcc is partitioned into 8

clusters. Comparing this to the middle and top plots in the same figure, we see

that even the more complicated behavior of gcc is captured well by SimPoint.

The dominant behaviors in the top two graphs can be seen grouped together in

phases 1, 3, 5,and 7.

III.D Methodology

For this study, we performed our analysis for the complete set of SPEC

CPU2000 programs for multiple inputs using the Alpha binaries from the Sim-

pleScalar website. We collect all of the frequency vector profiles, described in

Section III.B, using SimpleScalar. To generate our baseline results, we executed

all programs from start to completion using SimpleScalar, gathering the hardware

metrics. The baseline microarchitecture model is detailed in Table III.1.
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Table III.1: Baseline Simulation Model.

I Cache 16k 2-way set-associative, 32 byte blocks, 1 cycle latency

D Cache 16k 4-way set-associative, 32 byte blocks, 2 cycle latency

L2 Cache 1Meg 4-way set-associative, 32 byte blocks, 20 cycle latency

Main Memory 150 cycle latency

Branch Pred hybrid - 8-bit gshare w/ 8k 2-bit predictors + a 8k bimodal predictor

O-O-O Issue out-of-order issue of up to 8 operations per cycle, 128 entry re-order buffer

Mem Disambig load/store queue, loads may execute when all prior store addresses are known

Registers 32 integer, 32 floating point

Func Units 8-integer ALU, 4-load/store units, 2-FP adders, 2-integer MULT/DIV, 2-FP

MULT/DIV

Virtual Mem 8K byte pages, 30 cycle fixed TLB miss latency after earlier-issued instructions

complete

To examine the accuracy of our approach we provide results in terms of

CPI prediction error. The CPI prediction error is the percent difference between

CPI predicted using only simulation points chosen by SimPoint and the baseline

(true) CPI of the complete execution of the program. The CPI error is computed

in the following manner:

CPI Error =
|True CPI − SimPoint Estimated CPI|

True CPI

III.E Choosing Simulation Points from the Phase Classi-

fication

After the phase classification algorithm has done its job, intervals with

similar code usage will be grouped together into the same phases (clusters). Then

from each phase, SimPoint chooses one representative interval that will be sim-

ulated in detail to represent the behavior of the whole phase. Therefore, by

simulating only one representative interval per phase, we can extrapolate and

capture the behavior of the entire program.
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To choose a representative for a cluster, SimPoint picks the interval that

is closest (Euclidean distance) to the cluster’s k-means center. The center can be

viewed as a pseudo-interval which behaves most like the average behavior of the

entire phase. Most likely there is no interval that exactly matches the center, so

SimPoint chooses the closest interval. The selected interval is called a simulation

point for that phase [52, 61]. We can then perform detailed simulation on the set

of simulation points.

As part of its output SimPoint also gives a weight for each simulation

point. Each weight is a fraction: it is the total number of instructions represented

by the intervals in the cluster from which the simulation point was taken divided

by the number of instructions in the program. With the weights and the detailed

simulation results of each simulation point, we can compute a weighted average

for the architecture metric of interest (CPI, cache miss rate, etc.) for the entire

program’s execution.

These simulation points are chosen once for a program/input combina-

tion because they are chosen based only on how the code is executed, and not

based on architecture metrics. Therefore, they only need to be calculated once

for a binary/input combination and can be used repeatedly across all of the runs

for an architecture design space exploration.

The number of simulation points that SimPoint chooses has a direct

effect on the simulation time that will be required for those points. The maximum

number of clusters, K, along with the interval length, represents the maximum

amount of simulation time that will be needed. When fixed length intervals are

used, (K ∗ interval length) is a limit on the number of simulated instructions.

SimPoint allows users to trade off simulation time with accuracy. Re-

searchers in architecture tend to want to keep simulation time to below a fixed

number of instructions (e.g., 300 million) for a run. If this is a goal, we find
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that an interval length of 10 million instructions with K = 30 provides very good

accuracy (as we show later in this thesis) with reasonable simulation time (220

million instructions on average). If even more accuracy is desired, then decreasing

the interval length to 1 million and setting K = 300 performs well for the SPEC

2000 programs, as does setting K =
√

n (where n is the number of clustered

intervals). Empirically we discovered that as the granularity becomes finer, the

number of phases discovered increases at a sub-linear rate. The upper bound

defined by this square-root heuristic works well for the SPEC benchmarks.

The length of the interval chosen by users of SimPoint depends upon

their simulation infrastructure and how much they want to deal with warmup.

Warmup is the process of initializing the simulator’s state (caches, branch predic-

tor, etc.) at the start of a simulation point so that it is the same as if we simulated

from the beginning of the program to that point. For many programs, using a

long interval length (e.g., more than 100 million instructions) will make warmup

unnecessary. This is the approach used by Intel’s PinPoint for simulation [48].

They simulate intervals of length 300-500 million instructions so they do not have

to worry about implementing warmup in their simulation infrastructure. With

such long intervals the architecture structures are warmed up sufficiently during

the beginning of the interval’s execution to provide accurate simulation results.

In comparison, short interval lengths can be used, but this requires having an

approach for warming up the architecture state. One way to do this is with an

architecture checkpoint, which stores the potential contents of the major archi-

tecture components at the start of the simulation point [5]. This can significantly

reduce warmup time, since warmup consists of just reading the checkpoint from a

file and using it to initialize the architecture structures. It may also be desirable

to use only a single sample to represent a program. This would allow for a simpler

simulation infrastructure, since only one segment of the execution would need to
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be simulated in detail.

III.E.1 Accuracy of SimPoint

Figure III.8 shows the simulation accuracy results using SimPoint (and

other methods) for the SPEC 2000 programs when compared to the complete

execution of the programs. For these results we use an interval length of 100

million instructions and limit the number of simulation points to no more than

10. With the above parameters SimPoint finds 4 phases for gzip, and 8 for gcc.

As described above, one simulation point is chosen for each cluster, so this means

that a total of 400 million instructions were simulated for gzip. The results show

that this results in only a 4% error in performance estimation for gzip.

For these results, we compare this estimated IPC using SimPoint to

the baseline IPC. IPC (Instructions Per Cycle) is the inverse of CPI, and often

used instead of CPI when describing performance. The baseline was gathered

from spending months of simulation time to simulate the entire execution of each

SPEC program. The results in Figure III.8 compare SimPoint to how architecture

researchers use to choose where to simulate before SimPoint. The first technique

was to just simulate the first N million instructions of a benchmark’s execution.

The second technique was to blindly skip the first billion instructions of execution

to get past the initialization of the program’s execution, and then simulate for N

million instructions. The results show that simulating from the start of execution,

for the exact same number of instructions as simulated with SimPoint, results in

a median error of 58%. If instead, we fast forwarded for 1 billion instructions and

then simulate for the same number of instructions as chosen by SimPoint, we see

a median 23% IPC error. When using SimPoint to create multiple simulation

points we have a median IPC error of 2%. Note that the maximum error seen

for the prior techniques are significant for the SPEC programs, but it is very
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Figure III.8: Simulation accuracy for the SPEC 2000 benchmark suite when per-
forming detailed simulation for several hundred million instructions compared
to simulating the entire execution of the program. Results are shown for sim-
ulating from the start of the program’s execution, for fast-forwarding 1 billion
instructions before simulating, and for using SimPoint to choose at most ten
100-million-instruction intervals to simulate. The results are shown as percent
error of predicted IPC, which is how much the estimated IPC using SimPoint is
different from the complete execution of the program. IPC is the inverse of CPI.
The median and maximum results are for the complete SPEC 2000 benchmarks.
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reasonable (only 8%) for SimPoint.

III.E.2 Relative Error During Design Space Exploration

The absolute error of a program/input run on one hardware config-

uration is not as important as tracking the change in metrics across different

architecture configurations. There is a lot of discussion and research into getting

lower simulation error rates. But what often is not discussed is that a low error

rate for a single configuration is not as important as achieving the same relative

error rates across the design space search and having them all biased in the same

direction.

We now examine how SimPoint tracks the relative change in hardware

metrics across several different architecture configurations. To examine the inde-

pendence of the simulation points from the underlying architecture, we used the

simulation points for the SimPoint algorithm with an interval length of 1 million

instructions and the maximum K set to 300. For the program/input runs exam-

ined, we performed full program simulations while varying the memory hierarchy,

and for every run we used the same set of simulation points when calculating the

SimPoint estimates [52].

We varied the configurations and the latencies of the L1 and L2 caches.

As we increased the size and the associativity of the caches we increased their

latency to model the effect of architecture scaling. We chose L1 instruction

and data cache sizes between 4 KBytes and 64 KBytes, varied the associativity

between direct mapped and 4-way associative, and varied their latency from 1

to 3 cycles. At the same time we varied the size of the unified L2 cache from

500 KBytes to 2 MBytes, its associativity from 4-way to 8-way associative, and

varied the latency from 10 to 40 cycles.

Figure III.9 shows the results across 19 different architecture configura-
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Figure III.9: This plot shows the true and estimated IPC and cache miss rates
for 19 different architecture configurations for the program gcc. The left y-axis
is for the IPC and the right y-axis is for the cache miss rates for the L1 data
cache and unified L2 cache. Results are shown for the complete execution of the
configuration and when using SimPoint.

tions for gcc-166. The left y-axis represents the performance in Instructions Per

Cycle (IPC) and the x-axis represents different memory configurations from the

baseline architecture. The right y-axis shows the miss rates for the data cache

and unified L2 cache, and the L2 miss rate is a local miss rate. For each metric,

two lines are shown: “True” for the true metric from the complete detailed sim-

ulation, and the “SP” for the estimated metric using our simulation points. For

the results, the configurations on the x-axis are sorted by the IPC of the full run.

This figure shows that the simulation points, which are chosen by only

looking at code usage, can be used across different architecture configurations

to make accurate architecture design trade-off decisions and comparisons. The

simulation points are able to track the relative changes in performance metrics

between configurations. This means we are able to make the same decision be-

tween two architectures, in terms of which one is better, using SimPoint as the

complete simulation of the program. One interesting observation is that although
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the simulation results from SimPoint have a bias in its predictions, this bias is

consistent across the different configurations for a given program/input. This is

true for both IPC and cache miss rates. We believe one reason for the bias is that

SimPoint chooses the most representative interval from each phase, and intervals

that represent phase change boundaries are less likely to be fully represented

across the chosen simulation points.

III.F Summary

Understanding the cycle level behavior of a processor running an ap-

plication is crucial to modern computer architecture research, and gaining this

understanding can be done efficiently by judiciously applying detailed cycle level

simulation to only a few simulation points. By targeting only one or a few care-

fully chosen samples for each of the small number of behaviors found in real pro-

grams, the cost of simulation can be reduced to a reasonable level while achieving

very accurate performance estimates.

The main idea behind SimPoint is the realization that programs typi-

cally only exhibit a few unique behaviors that are interleaved with one another

through time. By finding these behaviors and then determining the relative im-

portance of each one, we can maintain both a high level picture of the program’s

execution and at the same time quantify the cycle level interaction between the

application and the architecture. The key to being able to find these phases in

an efficient and robust manner is the development of a metric that can detect the

underlying shifts in a program’s execution that result in the changes in observed

behavior. In this Chapter we have discussed one such method of quantifying ex-

ecuted code similarity, and use it to find program phases through the application

of unsupervised learning techniques.

SimPoint automates the process of picking simulation points using an
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off-line phase classification algorithm based on k-means clustering, which signifi-

cantly reduces the amount of simulation time required. Selecting and simulating

only a handful of intelligently picked sections of the full program provides an

accurate picture of the complete execution of a program, which gives a highly

accurate estimate of performance. The SimPoint software can be downloaded at:

http://www.cse.ucsd.edu/users/calder/simpoint/

For the industry-standard SPEC programs, SimPoint has less than a 6%

error rate (2% on average) for the results in this chapter, and is 1,500 times faster

on average than performing simulation for the complete program’s execution.

Because of this time savings and accuracy, our approach is currently used by

architecture researchers and industry companies (e.g. [48] at Intel) to guide their

architecture design exploration.
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IV

Data Mining and Statistical

Advances in Phase Analysis

In this chapter we describe data-mining and statistical advances in do-

ing phase analysis. These advances optimize both the runtime and accuracy

performance of SimPoint as well as target the overall simulation time.

First we explore the primary parameters that have influence on how

SimPoint and the k-means clustering algorithm behave. We focus on how we

achieve a reasonable running time for k-means, and how the dominant param-

eters affect this runtime. These include the number of intervals to cluster, the

dimension of the intervals being clustered, and the number of iterations it takes to

perform a clustering. We also present a method to sub-sample the vectors during

clustering, which enables the clustering of a very large data set. Additionally, we

examine how to search over k to find a good clustering efficiently. We describe

a binary search method over k clusterings that achieves comparable accuracy to

an exhaustive search, but at a fraction of the time.

Secondly, we present an algorithm for choosing the number of clusters

to use by augmenting the BIC with confidence information called Variance Sim-

68
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Point. We use statistical analysis to guide the picking of a clustering to provide

a given level of confidence and probabilistic error bound. In addition, this same

analysis can be used as a post step if desired to provide a confidence and error

bound for a clustering derived using the original SimPoint BIC algorithm.

The final contribution presented in this chapter deals with picking ear-

lier simulation points to decrease simulation time. For a given clustering, our

prior algorithms focus on picking the most representative point from a cluster,

since we assumed a simulation environment with check-pointing. Check-pointing

is the process of storing the state of a simulator so that simulation can continue

from that point at a later time. If the start of all of the simulation points are

check-pointed, then the full program can be simulated in parallel very quickly

simulating each checkpoint independently. In practice, not all simulation envi-

ronments have the support for check-pointing, and instead the simulator must

fast-forward (perform functional emulation) between the simulation points. This

can take a significant amount of time, especially if the simulation point is at

the end of execution. Therefore, we created algorithms for picking simulation

points that are earlier in the program to significantly reduce the fast-forward

time needed for these simulation environments.

IV.A Clustering Analysis

In this section we describe the primary parameters that have influence

on how SimPoint and the k-means algorithm behave. We first focus on how we

achieve a reasonable running time for k-means, and then examine how to search

over k to find a good clustering. For the experiments in this section, we use basic

block vectors with 100 million instruction intervals. Where it is not specified, we

also use k = 30 clusters and 15 projected dimensions.
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IV.A.1 Methods for Reducing the Run-Time of k-Means

Even though SimPoint only needs to be run once per binary/input com-

bination, we still want a fast clustering algorithm that produces accurate simula-

tion points. To address the run-time of SimPoint, we first look at the three parts

that have the largest effect on the running time of a single run of k-means. The

three parts are the number of intervals to cluster, the dimension of the intervals

being clustered, and the number of iterations it takes to perform a clustering.

We first examine how the number of intervals affects the running time of

the SimPoint algorithm. Figure IV.1 shows the time (in seconds) for running Sim-

Point on different numbers of intervals as we vary the number of clusters. For this

experiment, the clustered vectors are randomly generated from uniformly random

noise in 15 dimensions. We use random data in these experiments because it does

not bias these results based on a particular benchmark and it gives comparable

results across a wide range of parameter settings. But more importantly, prior

theoretical work by [28] suggests that it is most difficult to accelerate clustering

algorithms on data without structure, such as uniformly random data. This is

supported by experiments by [43] and [17]. So these experiments form a compa-

rable set of challenging results for the per-iteration run-time of SimPoint. The

number of iterations will vary depending on the structure of the data, however.

For example, using k-means to cluster data from very well-separated clusters is

likely to converge in a low number of iterations, while clusters that overlap are

likely to require more iterations.

The first graph shows that for 100,000 vectors and k = 128, it took

about 3.5 minutes for SimPoint 3.0 to perform the clustering. It is clear that the

number of vectors clustered and the value of k both have a large effect on the

run-time of SimPoint. The run-time changes linearly with the number of clusters

and the number of vectors, as expected. Also, we can see that the time per basic
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Figure IV.1: These plots show how varying the number of vectors and clusters
affects the amount of time required to cluster with SimPoint 3.0. For this experi-
ment we generated uniformly random data in 15 dimensions. The first plot shows
total time, the second plot shows the time normalized by the number of iterations
performed, and the third plot shows the time normalized by the number of basic
operations performed. Both the number of vectors and the number of clusters
have a linear influence on the run-time of k-means. The bottom plot shows a
decreasing trend due to optimizations in k-means which are more beneficial for
larger k.



72

operation actually goes down as k increases. This is due to a simple optimization

called partial distance search [42, 10] that allows the algorithm to avoid calculating

the full distance from a point (interval) to every cluster center in the first step of

k-means. The goal of this step is to find the closest cluster center to the point,

so that the interval may be assigned to that center. To find this closest center, a

simple loop searches for the cluster center with the minimum squared Euclidean

distance. The squared distance calculation sums the squared dimension difference

between the point and the cluster center over all dimensions. While searching for

the minimum squared distance from a point to all centers, partial distance search

keeps the smallest squared distance seen thus far. When calculating the distance

to another center, it may find that the intermediate squared distance result (after

processing some of the dimensions) is larger than the smallest squared distance

seen to a different center. If this is the case, the distance we are calculating cannot

be minimal, so the current calculation is stopped short of calculating the entire

squared distance over all of the dimensions. This optimization does not change

the correctness of the algorithm. Partial distance search is most beneficial when

there are many clusters, since the more centers there are, the more it is likely

that there will be a close center that can give a good lower bound for the partial

search. Partial distance search is also useful in high dimensional data, since work

is saved when computing per-dimension differences, and the more dimensions

there are the more computations can potentially be avoided.

Number of Intervals and Sub-sampling

Each iteration of the k-means algorithm has a run-time that is linear in

the number of clusters, the number of intervals, and the dimensionality. However,

since k-means is an iterative algorithm, many iterations may be required to reach

convergence. We found that we can reduce the number of dimensions down
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Table IV.1: This table shows the running times (in minutes) by SimPoint 3.0
without using binary search (SP3-All) and SimPoint 3.0 using binary search (SP3-
BinS). SimPoint is run searching for the best clustering from k=1 to 100, uses
5 random seeds per k, and projects the vectors to 15 dimensions. The second
column shows how many vectors and the size of the vector (static basic blocks)
the programs have.

Program # Vecs × # B.B. SP3-All SP3-BinS

gcc-166 4692 × 102038 9 min 3.5 min

crafty 19189 × 16970 84 min 10.7 min

to 15 and still maintain SimPoint’s accuracy. Therefore, the main influence on

execution time for SimPoint is the number of intervals.

To show this effect, Table IV.A.1 shows the SimPoint running time for

gcc-166 and crafty-ref, which shows the lower and upper limits for the number

of intervals and basic block vectors seen in SPEC 2000 with an interval length

of 10 million instructions. The second and third columns show the number of

intervals and original number of dimensions for each basic block vector. The last

two columns show the time it took to execute SimPoint 3.0 searching for the best

clustering from k=1 to 100, with 5 random initializations (seeds) per k. The

fourth column shows the time it took to run SimPoint when searching over all k,

and the last column shows clustering time when using a binary search described

in Section IV.A.2. The results show that increasing the number of intervals by 4

times increased the running time of SimPoint around 10 times. The results also

show that the number of intervals clustered has a large impact on the running

time of SimPoint, since it can take many iterations to converge, which is the case

for crafty. We used 15 dimensions during clustering for these results.

The effect of the number of intervals on the running time of SimPoint

becomes critical when using very small interval lengths like 1 million instructions

or fewer, which can create millions of intervals to cluster. To speed the execution
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of SimPoint on these very large inputs, we sub-sample the set of intervals that will

be clustered, and run k-means on only this sample. To sample with SimPoint, the

user specifies the number of desired interval samples, and then SimPoint chooses

that many intervals (without replacement). The probability of each interval being

chosen is proportional to the weight of its interval (the number of dynamically

executed instructions it represents). For vectors that represent the same interval

length (as we consider in this chapter), this weight is uniform. If vectors represent

non-uniform interval lengths (called variable-length intervals, or VLIs), then each

vector’s weight is proportional to its interval length. We describe our work with

variable length intervals in Section V.A.

Sampling is common in clustering for datasets that are too large to fit

in main memory [18, 56]. After clustering the dataset sample, we have a set

of clusters with centers found by k-means. SimPoint then makes a single pass

through the unclustered intervals and assigns each interval to the cluster that

has the nearest center (centroid) to that interval. This then represents the final

clustering from which the simulation points are chosen.

The experiments shown in Figure IV.2 show the effects of sub-sampling

across all the SPEC 2000 benchmarks using an interval length of 10 million in-

structions, 30 clusters, and 15 projected dimensions. Results are shown for cre-

ating the initial clustering using sub-sampling with only 1/8, 1/4, 1/2, and all of

the execution intervals in each program, as described above. The first two plots

show the effects of sub-sampling on the CPI errors and k-means variance, both

of which degrade gracefully when smaller samples are used. The average SPEC

INT (integer) and SPEC FP (floating point) results are shown. It is standard to

break the results into these two groupings for architecture results.

The average k-means variance is the average squared distance between

every frequency vector and its closest cluster center. Lower variances are better.
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Figure IV.2: These three plots show how sub-sampling before clustering affects
the CPI errors, k-means variance, and the run-time of SimPoint. The first plot
shows the average CPI error across the integer and floating-point SPEC bench-
marks. The second plot shows the average k-means clustering variance relative to
clustering with all the vectors. The last plot shows a scatter plot of the run-time
to cluster the full benchmarks and sub-sampled versions, and a logarithmic curve
fit with least squares.
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When sub-sampling, we still report the variance based on every vector (not just

the sub-sampled ones). The relative k-means variance reported in the experiments

is measured on a per-input basis as the ratio of the k-means variance for clustering

on a sample to that of clustering on the whole input.

As shown in the second graph of Figure IV.2, sub-sampling a program

can cause k-means to find a slightly less representative clustering, which results

in higher k-means variance on average. Note that the k-means variance for these

experiments are reported on all the input vectors, not just the sampled ones.

Even so, when sub-sampling, we found in some cases that it can reduce the k-

means variance and/or CPI error (compared to using all the vectors), because

sub-sampling can remove outliers in the dataset that k-means may be trying to

fit. This is a benefit noted in the work of [19] when they use sub-sampling to

initialize iterative clustering algorithms.

It is interesting to note the difference between floating point and integer

programs, as shown in the first two plots. The results shown in the first plot show

we can capture the behavior of the SPEC floating point programs more easily, that

is, without using all the original data. In addition, the second plot suggests that

SPEC floating point programs are also easier to cluster than the SPEC INT, as

we can do quite well (in terms of k-means variance) even with only small samples.

This suggests that they have more regular or uniform code usage patterns than

integer programs. The third plot shows the effect of the number of vectors on the

running time of SimPoint. This plot shows the time required to cluster all of the

benchmark/input combinations and their 3 sub-sampled versions. In addition,

we have fit a logarithmic curve with least-squares to the points to give a rough

idea of the growth of the run-time. Note that two different datasets with the

same number of vectors may require different amounts of time to cluster due to

the number of k-means iterations required for the clustering to converge.
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Figure IV.3: These two plots show the effects of changing the number of projected
dimensions when using SimPoint. The default number of projected dimensions
SimPoint uses is 15, but here we show results for 1 to 100 dimensions. The left
plot shows the average CPI error, and the right plot shows the average time
relative to 100 dimensions. Both plots are averaged over all the SPEC 2000
benchmarks, for a fixed k = 30 clusters.

Number of Dimensions and Random Projection

Along with the number of vectors, the other most influential aspect in

the running time of k-means is the number of dimensions of the data. Figure IV.3

shows the effect of changing the number of projected dimensions on both the CPI

error (left) and the run-time of SimPoint (right). For this experiment, we varied

the number of projected dimensions from 1 to 100. As the number of dimensions

increases, the time to cluster the vectors increases linearly, as expected. It is
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more interesting that the run-time also increases for very low dimensions. This is

because the points are more “crowded” and the clusters are less well-separated,

so k-means requires more iterations to converge.

If we use too few dimensions, the data does not retain sufficient in-

formation to cluster the data well. This is reflected by the fact that the CPI

errors increase rapidly for very low dimensions. However, we can see that at

15 dimensions, the SimPoint default, the CPI errors are quite low, and using a

higher number of dimensions does not improve them significantly but requires

more computation. Using too many dimensions is also a problem in light of the

well-known “curse of dimensionality” [3], which implies that as the number of

dimensions increases, the number of vectors that would be required to densely

populate that space grows exponentially. This means that using a higher di-

mension makes it more likely that a clustering algorithm will converge to a poor

solution, since the input space is not very densely filled. Therefore, it is wise to

choose a dimension that is low enough to allow k-means to find a good clustering,

but not so low that critical information is lost. We find that 15 dimensions works

well in these regards.

Number of Iterations Needed

The final aspect we examine for affecting the running time of the k-

means algorithm is the number of iterations it takes for a run to converge. We

provide this analysis to illustrate typical requirements of running SimPoint on a

set of benchmarks, and because finding a tight upper-bound on the number of

iterations required by k-means is an open problem [14], we must rely on evidence

to show us what to expect.

The k-means algorithm iterates either until it hits a user-specified max-

imum number of iterations, or until it reaches convergence. In SimPoint, the
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default limit is 100 iterations, but this can easily be changed. More iterations

may be required, especially if the number of intervals is very large compared to

the number of clusters. The interaction between the number of intervals and the

number of iterations required is the reason for the large SimPoint running time

for crafty-ref in Table IV.A.1.

For our results, we observed that only 1.1% of all runs on all SPEC

2000 benchmarks reach 100 iterations. This experiment was with 10-million in-

struction intervals, k=30, 15 dimensions, and with 10 random initializations of

k-means. Figure IV.4 shows the number of iterations required for all runs in

this experiment. Out of all of the SPEC program and input combinations run,

only crafty-ref, gzip-program, perlbmk-splitmail had runs that had not

converged by 100 iterations. The longest-running clusterings for these programs

reached convergence in 160, 126, and 101 iterations, respectively. If desired,

SimPoint can always run k-means to convergence (with no iteration limit).

IV.A.2 Searching for a Small k with a Good Clustering

We suggest setting the maximum number of clusters K as appropriate

for the maximum amount of simulation time a user will tolerate for a single

simulation. SimPoint uses three techniques to search over the possible clusterings,

which we describe here. The goal is to try to pick a small k so that the number

of simulation points is also small, thereby reducing the simulation time required.

Setting the BIC Percentage

As we examine several clusterings and values of k, we need to have a

method for choosing the best clustering. The Bayesian Information Criterion

(BIC) [50] gives a score of how well a clustering represents the data it clustered.

However, we have observed that the BIC score often increases as the number of
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Figure IV.5: These plots show how the CPI error and number of simulation points
chosen are affected by varying the BIC threshold. Bars labeled “max-1” show
the second largest value observed.

clusters increase. Thus choosing the clustering with the highest BIC score can

lead to often selecting the clustering with the most clusters. Therefore, we look

at the range of BIC scores, and select the score that attains some high percentage

of this range. The SimPoint default BIC threshold is 90%. When the BIC rises

and then levels off as k increases, this method chooses a clustering with the fewest

clusters that is near the maximum BIC value. Choosing a lower BIC threshold

would prefer fewer clusters, but at the risk of less accurate simulation.

Figure IV.5 shows the effect of changing the BIC threshold on both

the CPI error (left) and the number of simulation points chosen (right). These

experiments are for using binary search (explained in Section IV.A.2) with K =
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30, 15 dimensions, and 5 random seeds. BIC thresholds of 70%, 80%, 90% and

100% are examined. As the BIC threshold decreases, the average number of

simulation points decreases, and similarly the average CPI error increases. At

the 70% BIC threshold, perlbmk-splitmail has the maximum CPI error in the

SPEC suite. This anomaly is an artifact of the low threshold. Since higher BIC

scores point to better clusterings and better error rates, we recommend the BIC

threshold to be set at 90%.

Varying the Number of Random Seeds, and k-means initialization

The k-means clustering algorithm starts from a randomized initializa-

tion, which requires a random seed. Because of this, running k-means multiple

times can produce very different results depending on the initializations, so k-

means can sometimes converge to a locally-good solution that is poor compared

to the best clustering on the same data for that number of clusters. Therefore,

conventional wisdom suggests that it is good to run k-means several times us-
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ing a different randomized starting point each time, and take the best clustering

observed, based on the k-means variance or the BIC. SimPoint does this, using

different random seeds to initialize k-means each time. Based on our experience,

we have found that using 5 random seeds works well.

SimPoint allows users to provide their own k-means initialization, or it

will choose an initialization based on one of two methods: sampling and furthest-

first [21, 26]. The sampling method chooses k random locations for the initial clus-

ter centers from the input data without replacement. The furthest-first method

chooses one input point at random, and then repeatedly chooses a point that is

furthest away from all the already-chosen points, until k points are chosen. This

has the tendency to spread the initially chosen points out along the convex hull

of the input space, and subsequently chosen points in the interior.

Figure IV.6 shows the effect on CPI error of using two different k-means

initialization methods (furthest-first and sampling) along with different numbers

of initial k-means seeds. These experiments are for using binary search with

K = 30, 15 dimensions, and a BIC threshold of 90%. When multiple seeds are

used, SimPoint runs k-means multiple times with different starting conditions

and takes the best result.

Based on these results we see that sampling outperforms furthest-first

k-means initialization. This can be attributed to the data we are clustering,

which can have a large number of outlying points, which furthest-first initializa-

tion pays special attention to. The furthest-first method is likely to pick those

anomaly points as initial centers since they are the furthest points apart. It is

also beneficial to try multiple seed initializations in order to avoid a locally min-

imal solution. The results in Figure IV.6 shows that 5 seed initializations should

be sufficient in finding good clusterings.
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Binary Search for Picking k

SimPoint 3.0 makes it much faster to find the best clustering and sim-

ulation points for a program trace over earlier versions. Since the BIC score

generally increases as k increases, SimPoint 3.0 uses this knowledge to perform a

binary search for the best k. For example, if the maximum k desired is 100,

with earlier versions of SimPoint one might search in increments of 5: k =

5, 10, 15, . . . , 90, 100, requiring 20 clusterings. With the binary search method,

we can ignore large parts of the set of possible k values and examine only about

7 clusterings.

The binary search method first clusters 3 times: at k = 1, k = K, and

k = (K + 1)/2. It then proceeds to divide the search space and cluster again

based on the BIC scores observed for each clustering and the user-specified BIC

threshold. Thus the binary search method requires the user only to specify the

maximum number of clusters K, and performs at most log2(K) clusterings.

Figure IV.7 shows the comparison between the new binary search method

for choosing the best clustering, and the old method, which searched over all k

values in the same range. The top graph shows the CPI error for each program,

and the bottom graph shows the number of simulation points (clusters) chosen.

These experiments are for using binary search with K = 30, 15 dimensions, 5

random seeds, and a BIC threshold of 90%. Exhaustive search performs slightly

better than binary search, since it searches all k values. Using the binary search,

it possible that it will not find a clustering with as few clusters as found by the

exhaustive search. This is shown in the bottom graph of Figure IV.7, where

the exhaustive search picked 19 simulation points on average, and binary search

chose 22 simulation points on average. In terms of CPI error rates, the average is

about the same across the SPEC programs between exhaustive and binary search.

Recall that the binary search method operates many times faster than the brute
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force search method (see Table IV.A.1 for some timing results).

As we can see from the graphs in Figure IV.7, SimPoint is able to

achieve a 1.5% CPI error rate averaged across all SPEC 2000 benchmarks, with a

maximum error of around 6%. These results require an average simulation time

of about 220 million instructions per program (for the binary search method).

These error rates are sufficiently low to make design decisions, and the simulation

time is small enough to do large-scale design space explorations.

IV.B Picking Simulation Points Using Statistical Analysis

In this section we first show how to find a probabilistic error bound for

a given level of confidence for a single set of simulation points. This can be used

to estimate the confidence and error for a given clustering. We then show how

to use this same analysis to create a new algorithm for picking k (the number of

clusters to use). We then compare the results of this algorithm with statistical

sampling.

IV.B.1 Statistical Validation of Simulation Points

Given a set of simulation points derived from SimPoint, a user may want

to know the confidence and error for this set of simulation points. We use the

following approach for estimating what the expected error is for a given level of

statistical confidence for a single set of simulation points. We then show how to

use this technique to guide picking k (the cluster to use) for SimPoint.

To establish the error bounds, we must find the variance of the estimator.

A very simple and intuitive way to do this is to repeatedly take estimates from

the program. This sampling technique is known as a parametric bootstrap [8,

p. 480], where the parametric form is the clustering structure we have learned.

Recall from Section III.E that for the clustering k chosen by SimPoint,
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one simulation point (interval) is chosen to represent the entire cluster. This set

of simulation points for all the clusters is then used to represent the complete

execution of the program. To find the error bound for one set of simulation

points, we do the following:

1. Find a clustering using the BIC heuristic

2. Do the following N times:

(a) Choose one interval (sample) at random from each cluster.

(b) Compute an estimated CPI by combining the CPIs from each chosen

interval, weighted by the size of each cluster.

3. The probabilistic error bound on one set of simulation points is zσ/µ.

Here µ is the average of the N estimated CPIs, and σ is the standard de-

viation of the computed estimate CPIs. The value z is the “confidence multiplier”

that comes from a table of the normal distribution; α = F (z), where F is the

cumulative distribution function of the normal distribution, so that z = F−1(α).

Thus, z is the value such that the area under the Gaussian curve to the left of z is

α, the desired confidence. Then e is the probabilistic error bound for a given level

of confidence α, where e is zσ/µ. For a choice of one set of simulation points, we

expect the true CPI to be within zσ/µ of the estimate µ.

The value of N is the number of times to compute estimates. Larger

N gives a more accurate and tighter measurements of the standard deviation;

N = 10 or larger is reasonable; for our measurements we have used N = 100. Note

that gathering all the simulation points for the N CPI estimates only requires

one run through the program. We first choose N random samples from every

cluster, and then run the program once fast-forwarding between the samples to

gather all of the results. Then, the above analysis can be used to determine for

a given confidence level a probabilistic error bound for any SimPoint clustering.
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IV.B.2 Picking K using Variance Analysis

We now describe a new SimPoint algorithm where the user enters a de-

sired confidence and a probabilistic error bound, and then the smallest clustering

k is picked that matches these constraints. The first priority of the algorithm is to

ensure that candidate clusterings are chosen first according to the homogeneity of

their clusters based on code usage, and then second based upon a confidence and

probabilistic error bound. This is because the confidence and error are calculated

with respect to CPI and sampling a particular architecture configuration. If we

did not choose a clustering based first upon code usage and instead only on con-

fidence and error, then the clustering may not be representative across different

hardware configurations.

In this algorithm we cluster the data for all possible values of K from

1 to max K that is specified by the user. To ensure that a clustering is picked

that would be representative and independent of the underlying architecture we

first apply the BIC heuristic to all of the clusterings. The new algorithm starts

to differ here. We trim down the possible set of clusterings from K down to

B. These B clusterings have a BIC score greater than a specified threshold

(80% for the results in this section). We then search this candidate set of B

clusterings for the smallest k that meets the desired confidence and error. Picking

a subset of clusterings based on BIC and then a final clustering based on Variance

in this manner ensures that the given set of simulation points chosen will be

representative of the complete execution regardless of the underlying architecture.

Our Variance SimPoint algorithm allows the user to calibrate the ac-

curacy that is expected for a given clustering. For example, the error bounds

can be set to be within 5% of the true value with a 95% confidence level. The

algorithm uses sampling to determine an appropriate number of clusters for that

desired error.
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1. Choose a desired error e and confidence level α.

2. For each k = {1, . . . , K}, find a clustering of the Basic Block Vectors with

k clusters using the k-means algorithm. Here K is the maximum number of

clusters to consider, also specified by the user.

3. Trim K down to B candidate clusterings. Candidate clusterings are those

with a BIC score that is at least 80% as good as the best BIC score. This

insures that we only examine clusterings that are well formed, by first only

considering the similarities in the code executed between intervals. This

results in a set B of candidate clusters and only these clusters will be con-

sidered in the rest of the algorithm.

4. From each candidate clustering, choose N samples randomly from each clus-

ter. This results in a total of S samples to gather.

5. Run the program/input pair gathering architecture results for each of the S

samples.

6. For each candidate clustering k, calculate the estimated CPI µk the standard

deviation σk, and error as described above in Section IV.B.1. For the desired

confidence level α, the probabilistic error e is calculated to be e = zσk/µk.

7. Select the smallest k, from the set of candidate clusterings B such that

zσk/µk ≤ e. This picks the smallest k that has a small enough standard

deviation to satisfy the desired error bound at the given confidence level.

The above algorithm determines a set of candidate clusterings B that

satisfy the above BIC heuristic. This ensures that we are only considering clus-

terings that are well formed. To perform the Variance analysis, we need to gather

samples from the candidate clusterings. For each clustering in B, we randomly

select N points from each cluster to sample. For example, assume we start with a
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max K = 20, then after applying the BIC score we are left with only three candi-

date clusterings, which are k = 18, 19, 20 (remember that k = 18 has 18 clusters,

k = 19 has 19 clusters, and so on). We then have to gather (18 + 19 + 20) ∗ N

samples to calculate the confidence and error analysis for each of these three clus-

terings. Once the sample locations are chosen, the program/input pair is then

simulated once to gather all of the samples (fast-forwarding between samples and

detailed simulation for each sample). Once this is done, we can then calculate the

probabilistic error bound for the given input confidence level for each clustering

k. We then choose the smallest candidate k such that zσk/µk ≤ e, using the

statistical analysis described above in Section IV.B.1.

For some programs it may be that for the max K used (limit on the

number of clusters) that σk never reaches a small enough value to allow any

clusterings to be acceptable at the desired error and confidence. In this case,

several options can be followed. One option is to increase the maximum K to

consider, and repeat the above process, which will cause the σk to decrease for

the new, larger possible values of k. Another option is to use the clustering k

with the lowest σk, understanding that the desired error will not be achieved;

rather, the expected error will be within cσk/µk percent of the true value.

IV.B.3 Variance SimPoint Results

Figure IV.8 shows the results for the Variance SimPoint algorithm using

an interval (sample) size of 1 million instructions, and a max K of 300 clusters, so

at most 300 million instructions would be detailed simulated. The desired confi-

dence level used for these results is for α = 0.95, or 95% confidence with an error

less than 5%. For this method, we gathered results for 43 SPEC program/input

combinations. Figure IV.8 shows the results for all of these for the Variance

SimPoint algorithm. The percent error is shown when compared to the complete
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execution of the program/input, and top of the stem shows the probabilistic error

bound.

Figures IV.9 and IV.10 show the number of clusters used and the number

of instructions the program had to fast-forward through to get to the last simula-

tion point chosen for the Variance SimPoint results in Figure IV.8. In these two

figures, detailed results are shown for a subset of 10 programs, avg-rest shows

the average for all the 33 programs not shown in detail, and then an avg-all

shows the overall average for all 43 programs. The results show that on average

100 million instructions are simulated in detail, and there is usually a simulation

point chosen somewhere near the end of the program, so the fast-forward distance

is almost equal to the full execution of the program.

The second and third bars in Figure IV.8 show results for random sam-

pling with (1) the same number of intervals chosen as for the Variance SimPoint

algorithm, and (2) when using 1000 samples. The sample size used is also 1 mil-

lion instructions. For these results, we use a form of random sampling instead of

systematic sampling. To perform our random sampling, we divide the program

up into N consecutive sections, where N is the number of samples we are going

to take. We then randomly choose one point from each of the N sections. This

guarantees that we get a random distribution of samples across the complete ex-

ecution of the program/input. For the program/inputs examined, we found this

to provide tighter probabilistic error bounds and lower errors than pure random

sampling or systematic sampling.

The results show that Variance SimPoint is able to achieve tighter prob-

abilistic error bounds than Sampling, when using the same number of samples.

Variance SimPoint ensure that at least one sample is being used from each clus-

ter, and the purpose of clustering is to group program behavior such that each

cluster potentially represents different program behavior. Therefore, obtaining a
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sample of all of the different behaviors in a program allows Variance SimPoint to

achieve tight error bounds when using a small number of samples (on average 100

as shown in Figure IV.9). In comparison, when using the same number of sam-

ples for each program, random sampling has a worse probabilistic error bound.

This is because random sampling can oversample some of the program’s behavior

while under-sampling other parts of the program. When using 1000 samples, less

than a 2% average error is seen with under a 3% probabilistic error bound.

IV.C Early Simulation Points

In the standard SimPoint algorithm [61], the goal is to pick a single

simulation point from each cluster that best represents all of the intervals in

that cluster. This may pick simulation points that are at the very end of a

program’s execution. If the simulator supports checkpointing, then simulation

can be started very quickly at a point at the end of the program. But, for

simulation environments that do not support checkpointing, it can require up

to several days to fast-forward to the latter part of execution to reach a late

simulation point.

The goal in this section is to find simulation points that are earlier in

the program’s execution that still accurately represent the overall execution of

the program. These early simulation points can then be used to significantly

reduce the time spent fast-forwarding to reach all of the simulation points for a

program.

IV.C.1 Early SimPoint Algorithm

This section focuses on a simulation environment that relies upon us-

ing fast-forwarding to simulate a program. In this environment, the program is

simulated once interleaving fast-forwarding with detailed simulation. The last
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simulation point in a program’s execution determines how much of the program

the simulator will have to fast-forward through, and this greatly determines the

total simulation time. Therefore, to reduce the time required for fast-forwarding,

we only care about the location of the last simulation point. If we pick the earliest

point from each cluster, then the earliest the last simulation point in the program

will occur is the location of the latest starting cluster.

Our Early SimPoint algorithm focuses on choosing a clustering that is

both representative of the program’s execution and has some feasible simulation

points early in the program for all clusters. This might not be achievable for all

programs, since an important phase of execution may only appear at the end of

execution. We therefore still give priority in our algorithm to ensure that the

clustering groups together intervals of execution that are similar to one another.

Once a clustering is chosen, we pick representative simulation points early in the

execution from all the clusters.

Picking a Clustering

As described in Chapter III, the standard SimPoint algorithm uses k-

means to perform several clusterings for different values of k. It then uses the

BIC score to choose a clustering, and then from each cluster the point nearest the

centroid is picked to represent that cluster. For the Early SimPoint algorithm, we

perform the exact same k-means clustering algorithm as in the original SimPoint

algorithm. The Early algorithm differs in how it chooses which clustering to use,

and then how it selects a representative point from each cluster.

In picking a cluster (k), the Early SimPoint algorithm takes into consid-

eration where the intervals for a given cluster are located over time (the execution

of the program). The goal is to pick a clustering, where all clusters have some

intervals early in the program’s execution, while still clustering together similar
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intervals of execution.

To guide this we introduce a new metric, EarlySP, which is the BIC

score weighted by the first encounter of the last cluster: EarlySP = BIC ×
(1 − (StartLastCluster/w)). The intuition behind EarlySP is that we reward

the clusterings that have representatives from every cluster near the start of the

program. StartLastCluster is the percent into execution of the program that

the last cluster is first encountered. For example, if for a clustering we have a

StartLastCluster of 40%, this means that one of the clusters has its first interval

of execution occurring 40% into execution, and all of the rest of the clusters have

at least one interval earlier in the execution than this. The StartLastCluster is

critical for picking early simulation points, since it will be the minimum distance

required to fast-forward.

The variable w is a weight to influence the impact of how early the last

cluster is on the BIC. Since we prioritize accurate program representation over

early simulation, the variable w limits how much the BIC can be influenced by the

StartLastCluster term. Setting w to 10 guarantees that we remain within 10%

of the true BIC, ensuring representative scoring is maintained for the clusterings.
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Figure IV.10: The number of instructions in Billions needed for fast-forwarding
to reach the last simulation point for the different SimPoint algorithms. The
results for Full show the length of the complete execution of each program/input
run. The goal of Early SimPoint is to reduce the amount of fast-forwarding by
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The EarlySP score provides us with a goodness of fit of the clustering

weighted by how early the last cluster starts. We score each clustering generated

and then pick the smallest k that achieves at least 80% of the spread between

the largest and smallest EarlySP scores. We can set the threshold higher if want

tighter clusters, at the cost of having more simulation points. This tradeoff is

illustrated in the following Section IV.C.2.

Picking Simulation Points

After Early SimPoint picks a clustering, we determine a cutoff point in

the program’s execution and we consider picking simulation points only from the

start of the program to this cutoff point. No intervals of execution after this

cutoff point will be considered for simulation points. This bounds the amount of

overhead due to fast-forwarding.

The cutoff point for a program/input is determined by first picking an

early simulation point for the cluster that starts the latest in execution. The cutoff

simulation point is then picked for the last cluster choosing the earliest simulation

point in the cluster that has a distance within 1% of the centroid of the cluster.

Once this cutoff simulation point has been determined, the simulation points for

the remaining clusters are selected from all the potential intervals from the start

of the program up to the cutoff interval. For a given cluster, a simulation point

is chosen from these candidate intervals that is closest to the original centroid of

the cluster.

IV.C.2 Early SimPoint Results

To examine the performance of Early SimPoint we compare the results

from five different algorithms. To evaluate these different algorithms, Figure IV.9

shows the number of clusters (the value chosen for k) that was picked for each
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algorithm, and this equals the number of simulation points. Figure IV.10 shows

the number of instructions (in billions) it will take from the beginning of exe-

cution to reach the last simulation point. This number, minus the number of

detailed instructions simulated, is the number of instructions fast-forwarded to

simulate each program. Finally, Figure IV.11 shows the error rates for the differ-

ent algorithms.

Different algorithms have results shown using an interval size of 1 mil-

lion (1M), 10 million (10M), and 100 million (100M) instructions. Recall from

Chapter III, that this interval size is the granularity in which the basic block

vector (code) profile is collected and the clustering is performed. It is also the

length of the simulation point when performing detailed simulation. We show a

variety of different combinations of algorithm and interval size.

The 100 million interval size results show the performance when using

the standard BIC SimPoint algorithm from [61] and the Early SimPoint algorithm

described in this section. For both results max K is set to be 10 intervals to put a

limit on detailed simulation time. We provide results for the standard SimPoint

algorithm using a BIC threshold of 80%. For Early SimPoint results, we use

an EarlySP threshold of 100%. Setting EarlySP to have a threshold of 100%

picks the clustering that achieves the highest EarlySP score. We use this for the

100M interval results, since only a small number of clusterings (max K = 10)

are examined. With having at max 10 clusters, complex programs will be noisier

within a cluster, so picking the best scoring clustering ensures that the clusters

are as well formed as possible with early simulation points. The results show that

the number of instructions required for fast-forwarding for Early SimPoint is 3.6

times smaller than using the original SimPoint algorithm. This comes at the cost

of increasing the average error from 2.6% to 3.1%.

We also provide results for Early SimPoint using an interval size of 10
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million and 1 million. For both of these results, a EarlySP threshold of 80% was

used. The results for 1 million intervals shows that it has a fast-forward length

5 times longer than the 10 million interval size. This is because there are more

clusters, which creates a greater chance of a cluster showing up only late in the

execution. The 10 million interval size results show that they require the least

amount of fast-forward time, with the fast-forward length being only 13% into

the program/input run’s execution on average. These results show a delicate

trade-off between speed and accuracy, as well as choosing an appropriate interval

size.

All of the results we have talked about to this point (Standard SimPoint

and Early SimPoint algorithms) in this section are based only on the BIC, and

do not use any confidence or probabilistic error bounds to guide the choosing

of a clustering. We now look at using the Early SimPoint approach with the

Variance SimPoint algorithm. When using EarlySP with the Variance algorithm

in Section IV.B, we use the Variance algorithm for picking k just as before, and

then use the approach described in Section IV.C.1 to pick the simulation points.

The Variance SimPoint is performed, and then simulation points are only chosen

from intervals that occur from the start of execution to the simulation point of

the latest starting cluster.

Figure IV.11 shows that picking early simulation points in the Variance

SimPoint algorithm achieves an error rate of 3.4%, which is close to the non-

early Variance SimPoint algorithm error of 2.1%. We also found that it had a

very similar error bound (not shown on the figure) of 3.9% on average for 95%

confidence. Figure IV.10 shows that the non-early Variance SimPoint algorithm

has a fast-forward length 1.5 times longer than when picking early points for

the Variance SimPoint algorithm. With 100 simulation points chosen on average

for these results, the likelihood of clusters appearing only in the latter portion
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of execution is significant. Even with 40 samples, as is the case for the early

BIC approach at 1M interval size, the ability to find all the clusters early in the

execution is low.

IV.D Summary

In this chapter we explored the primary parameters that have influence

on how SimPoint and the k-means clustering algorithm behave. We described

how we achieve a reasonable running time for k-means while maintaining a high

accuracy by calibrating the number of clustering iterations, number and type of

random seeds used, and the number of dimensions needed. We showed that its

possible to sub-sample the vectors during clustering to enable the clustering of

very large data sets. We also presented a binary search method over k clusterings

that achieves comparable accuracy to an exhaustive search, but at a fraction of

the time.

Additionally, we presented the Variance SimPoint algorithm that uses a

user defined confidence and probabilistic error bound to guide the picking of

k. This algorithm first gives priority to choosing a clustering that has well

formed (based upon the code frequencies) clusters. This is to make sure that

the clustering is representative across different architecture configurations. The

Variance SimPoint clustering for picking samples shows that tighter probabilistic

error bounds are seen when compared to random sampling when using the same

amount of samples as there are simulation points. This is due to Variance Sim-

Point always choosing a representative sample from each cluster to make sure all

the unique/different behavior in the program is captured. In comparison, for a

small number of samples, random sampling tends to over/under sample some of

the program’s behavior resulting in looser probabilistic error bounds.

The final contribution in this chapter is the Early SimPoint algorithm
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whose goal is to find representative simulation points early in a program’s exe-

cution to reduce fast-forward simulation time. The amount of fast-forward time

required for a simulation is the number of instructions it takes to reach the last

simulation point for a program/input run. When using an execution interval size

of 100 million instructions, we found that Early SimPoint had a 3.6 times shorter

fast-forwarded length on average than the standard SimPoint algorithm. When

using an interval size of 10 million, we found the fast-forward length to be only

12% of the full execution on average, with an average CPI error of 4%. These

results show that these early simulation points can be used to significantly reduce

the time spent fast-forwarding to reach all of the simulation points for a program,

while still providing accurate results.
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V

Variable Length Intervals and

Cross Binary Simulation Points

Architectures are usually compared by running the same workload on

each architecture and comparing performance. We showed in Chapter III that

SimPoint can find a small set of samples to accurately represent a program even

across many different architecture configurations. Architectures can be compared

by simulating their behavior on the code samples selected by SimPoint, to quickly

determine which architecture has the best performance.

Architectural design space exploration becomes more difficult when dif-

ferent binaries must be used for the same program. There are three main scenarios

we have encountered where it is necessary to compare multiple binaries during

architecture simulation. In these scenarios, we are using the same source code for

a program, producing different binaries from the source, and running the binaries

with the same input. The binaries are created using different compilers and/or

different optimization levels. All three scenarios involve quickly evaluating archi-

tecture design decisions, which requires representative architecture simulation.

The first area deals with ISA extensions, where a new binary is created

102
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that uses some ISA extensions, such as the 64-bit x86 extensions. In this case,

we must compare the performance of the original binary, which does not use the

extensions, to the performance of the new binary, which does use the extensions.

For example, one of the questions Intel architects want to answer is how their

new processors will perform with 32-bit (IA32) and 64-bit (Intel64) binaries, and

what is the difference in performance. This requires comparing the simulated

performance of two different binaries. The second case deals with examining

completely different architectures, such as Itanium and 64-bit x86. In this case,

different compilers will be used, and it is important to identify the same parts of

execution for the simulation samples. Finally, for a new architecture, the compiler

team needs to evaluate the performance effects of compiler optimizations using

simulation, before working prototypes of the processor are available. In this case,

a compiler may use the same ISA but produce different binaries as optimizations

are enabled, disabled, and reordered.

We consider two approaches for representative simulation for multiple

binaries compiled from the same source. One approach applies the standard Sim-

Point approach separately on each binary. SimPoint examines an execution trace

and groups similar portions of execution into phases (clusters). The most repre-

sentative interval from each phase is chosen as the simulation point to represent

that cluster. This approach provides very accurate results when a single binary

is used across different architectures, because the same simulation points are be-

ing simulated for each architecture (as was shown in Section III.E.2), and each

simulation point always represents the same portion of execution.

Using SimPoint with multiple binaries for a single program can result

in different clusterings for each binary. This means that part of a program’s

execution in one binary may be assigned to a different phase in another binary for

the same program, so phases may be weighted inconsistently. More importantly,
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the simulation points chosen in each binary might represent different behaviors.

Results in Section V.D.2 show the effects of these issues, which are especially

important when determining which (binary, architecture) pair performs the best.

To address this issue, we propose a technique we call Cross Binary

SimPoint. This approach finds simulation regions that are semantically the same

across multiple binaries, and uses those regions to compare program performance.

For this approach, we profile each binary with the input used for simulation, and

identify a set of points in each binary that can be mapped to any other binary

in the set. These mappable points are instructions in each binary corresponding

to procedure calls and loop branches that can be consistently found in all of the

binaries examined. These mappable points are potential boundaries for simu-

lation regions. We break the execution intervals passed to SimPoint on these

mappable points, and we use SimPoint to choose a set of simulation points we

can map across all of the binaries. Then we use these mapped simulation points

to compare performance across binaries.

One problem in picking a single set of simulation points to represent

execution across multiple binaries is that a simulation point in binary A may

start at dynamic instruction count X, but the semantically equivalent part of

execution in binary B starts at dynamic instruction count Y (and X 6= Y ).

The other problem is that the semantically-equivalent sample for binary A may

execute a different number of instructions than the same sample in binary B.

Therefore, we cannot use dynamic instruction counts to identify the beginning

and end of a sample. Instead, we must find samples whose boundaries correlate

with source code so we can find the same sample across the execution of two

different binaries.

The use of source code to define interval boundaries results in intervals

that execute a variable number of instructions. For example, if we use a proce-
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dure call C to define the start and end of certain intervals, it is possible that a

different number of dynamic instructions will execute between call invocations

of C. This leads us to explore a new method in how we partition program exe-

cution. Rather than break down the execution into Fixed Length Intervals (e.g.

every interval spans 100 million instructions) we are faced with Variable Length

Intervals (e.g. one interval spans 85 million instructions and another spans 113

million instructions, etc.). For SimPoint to handle (VLIs) we need to modify the

clustering engine and BIC scoring algorithm to consider a dataset that can have

elements with variable weights.

In this chapter we will first discuss some of the benefits of having Vari-

able Length Intervals and then present the modifications required for enabling

SimPoint to handle VLIs. We will then examine the two approaches for finding

simulation points across multiple binary versions of a program and compare their

accuracy for design space exploration.

V.A Variable Length Intervals

Up to now we have concentrated on using fixed length intervals for

doing phase classification. In this section we will explore some of the benefits in

using variable length intervals. First we will show theoretically that fixed length

intervals can result in sub-optimal phase classification. In phase classification,

intervals are the building blocks for forming phases and identifying changes in

phase behavior. At this level, any noise accumulated in the intervals will have

ramifications on the quality of the phases detected. Fixed length intervals can

result in phases that do not accurately represent the behaviors of the program.

We will present real program data sets that exemplify this and motivate variable

length intervals.
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V.A.1 Interval Dissonance and Harmony

To illustrate the ramifications of interval length on the representation of

time-series data, we present a simple example. Figure V.1 shows what happens

when a simple sinusoid is sampled at different interval durations. The top figure

shows the signal, a sine wave with a constant period equal to 25.

We now consider the effects of dissonance between a fixed interval length

and the period of the signal. The central figure shows what happens when we split

the signal into fixed length intervals of length 11. Here we see the original signal in

the background, with vertical dashed lines depicting where the intervals are split.

The signal average for each interval is plotted as a point at the end of that interval,

and the solid line in this figure connects these averages to show the interval-based

representation of the signal. In this figure the solid line is very jagged, because the

length of the interval is out of sync with the period length of the cyclical signal.

Using fixed length intervals may require many intervals (and thus potentially

result in many phases) to accurately represent the signal. We can quantify the

number of intervals required to accurately represent a signal as the ratio of Least

Common Multiple between the interval length and the period of the signal, and

the length of the interval: (LCM(|interval|, |signalperiod|)/|interval|). In this

example, it would require a total of 25 intervals to accurately represent the signal

using intervals of fixed length 11. If we try to cluster these intervals to understand

the phase behavior of this signal, we can end up with many phases that are

composed of intervals that are similar because they capture similar portions of

the signal. It is not hard to see how this can be detrimental when trying to

characterize the phases of real programs.

On the other hand, let us consider harmony between an interval length

and the period of the signal. The bottom figure shows an interval length of

25, equal to the period of the signal. The same format is used as in the central
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Figure V.1: An example of what happens to a signal (top figure) when it is
sampled with different interval lengths. The signal in this example is a sinusoid,
shown in the top figure, and the intervals it is broken into are drawn vertically
in the lower two figures. The average signal for each interval is shown as the
straight line within an interval. When the interval is dissonant with the period
of the signal, it results in a jagged and unstable characterization as can be seen
in the central figure. The optimal interval duration, shown in the bottom figure,
captures exactly one cycle of the repetitive behavior, which results in a concise
and stable characterization of the signal.
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figure. Here we see intervals capturing entire cycles of the signal, and the resulting

behavior of the intervals is constant. This is the ideal situation, since it would

require exactly 1 phase to represent this signal accurately.

In this simple example, fixed intervals with length 25 can accurately

represent the signal. But most programs do not exhibit simple fixed-frequency

phase behavior. For example, gzip exhibits low-frequency phase behavior in its

low-IPC phases, and high-frequency phase behavior in its high-IPC phases. It is

unlikely that a single fixed interval length can accurately capture phase behavior

at both these frequencies. Additionally, there are some benchmarks where the

period changes over time. For example, vpr-route exhibits behavior patterns

corresponding to each routing it tries. As it is simulated the annealing algorithm

converges on a solution and it spends less and less time evaluating each solution.

V.A.2 Program Behavior in 3D

The previous section presented a simple example where fixed length

interval lengths can have significant impact on the representation of the signal.

Here we examine actual program execution data, and see how it is even more

susceptible to representation problems when using fixed length intervals.

To display program behavior we start with fixed length basic block vec-

tors of the complete execution. We take this set of BBVs and reduce the number

of dimensions down to three using random linear projection [61]. Then we plot

each 3-dimensional vector as a point in space, and draw lines between the tempo-

rally adjacent points to show the execution order. This provides a visual portrait

of how the program executes over time, through its code space. An almost con-

stant pattern should show up as a tight cluster in space. In theory, if the bound-

aries between BBVs always fell perfectly on a phase transition, then we would

expect to see a set of interconnected tight clusters with a lot of BBVs placed on
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Figure V.2: The three dimensional non-accumulated representation of
gzip-graphic and bzip2-source. Each point represents an interval during exe-
cution, and the line connecting the points represents the execution order in time.
The right figure of bzip2-source has two points labeled A and B, which indicate
two temporally adjacent intervals of program execution. The figure on the left
plots the entire execution, while the figure on the right zooms in on a looping
region in the execution. The looping structures are traversed once for each block
of data compressed or decompressed.
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top of each other. If the boundaries are not aligned with the periodic program

behavior, then we should see oscillations as discussed in the prior section. The

oscillations should show up as rings or tori (“donuts”) if we plot these paths in

3-d space. Figure V.2 shows a 3-dimensional representation of the execution of

two benchmarks: gzip-graphic and bzip2-source. A fixed length interval size

of 100 million instructions was used. In both gzip and bzip there are interesting

cycles that appear. For each program we zoom in on one of the cyclic regions.

In SPEC2000, the gzip benchmark repeatedly compress and decom-

presses the data a total of 5 times, at compression levels 1, 3, 5, 7, and 9. At

compression levels 1 and 3, a faster version of the deflate algorithm is used.

This time-varying program structure is clearly visible from the gzip graphs

shown in Figure V.2. For example we see that execution bounces back and

forth between deflate fast and inflate 3 times (deflate fast → inflate

→ deflate fast → inflate), corresponding to compression and decompres-

sion at levels 1 and 3. There are 5 bounces between deflate and inflate,

corresponding to compression and decompression at levels 5, 7, and 9. The vec-

tors exhibited by each deflation and inflation phase form a torus. Each cycle

around the torus corresponds to the compression or decompression of a block of

data. If correctly sized variable length intervals were used, then each cycle around

the region should become a single interval, instead of a series of intervals forming

a torus. But because the interval length was too small, we have a large number of

intervals composing this cyclical behavior. In addition, the fixed length interval

is out of sync with the actual period of the phase, because different points in

space are sampled on subsequent iterations around the torus.

Similarly, SPEC2000’s bzip compresses and decompresses the data twice,

at compression levels 7 and 9. Thus, execution bounces between compression and

decompression three times, as seen in Figure V.2. Each iteration around the loop-
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ing structures corresponds to compression of a block of data, as seen in the gzip

plots. There are two looping structures within the compression phase - these cor-

respond to compressing blocks with different entropy properties. bzip performs

run-length encoding on its front end, and more time is spent in the run-length

encoder on blocks with more contiguous sequences of repetitive bytes.

As seen from these two examples, the majority of a program’s execu-

tion is spent in loops. The average number of instructions per loop iteration

can change over time. For example, fewer instructions are typically needed to

decompress a block of data than to compress a block of data. This means that

the period lengths are not stable over time. An ideal fixed interval length for one

section of execution (compression) may be dissonant with another portion of the

program’s execution (decompression). Since no single interval length will do a

good job representing the program, we need variable length interval lengths that

adjust to the period of the program’s current behavior pattern.

V.A.3 Supporting Variable Length Intervals in SimPoint

The SimPoint algorithm was originally designed for fixed length inter-

vals, so modifications are required to handle variable length intervals. Here we

describe the changes which allow SimPoint to handle variable length intervals.

The changes come primarily in two areas: handling an increased number of in-

tervals, and dealing with the weights associated with variable length intervals.

Different variable length intervals can represent different proportions of

a program’s execution, as opposed to fixed length intervals which each represent

the same proportion. Each variable length interval has an associated weight we

denote wi, which represents the percentage of the total program execution for

that interval. We have modified several parts of SimPoint so that it handles

these weights.
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The k-means clustering algorithm has two steps that it repeats: deter-

mining which cluster each interval belongs to (called the expectation step), and

repositioning each cluster center to the mean of the intervals that it owns (called

the maximization step). The expectation step is not changed by variable length

intervals. The maximization step handles weights wi by applying them during

the recomputation of the cluster centers. Cluster j is computed as the weighted

mean of the variable length intervals xi that belong to that cluster:

cj =

∑n
i=1 wiximij∑n
i=1 wimij

Here mij = 1 if interval i belongs to cluster j, and 0 otherwise, and mij is de-

termined during the expectation step. The resulting k-means algorithm behaves

just like the k-means algorithm for fixed length intervals, but larger intervals have

more influence than smaller intervals over the cluster center locations.

The BIC criterion that we use to choose the best clustering also needs

modification to handle variable length intervals. The BIC is the log likelihood

of the clustering minus a complexity penalty. We adjust the log likelihood, but

keep the penalty the same. The likelihood calculation sums a contribution from

each interval, so larger intervals should have greater influence. The weighted log

likelihood becomes:

L =
n

∑n
i=1 wi log Pr(xi)∑n

i=1 wi

where Pr(xi) is the probability of interval xi. In our case, this probability comes

from the k-means clustering model of a mixture of spherical Gaussians:

Pr(xi) =
w(i)∑n
i=1 wi

exp( −1
2σ2 ||xi − c(i)||2)
(2πσ2)d/2

Here c(i) is the cluster center that xi belongs to (the center closest to xi), and

w(i) is the weight associated with cluster c(i) (the sum of the weights of all points

belonging to the cluster; this is the denominator in the earlier equation for cj).
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The total weighted log likelihood function then simplifies to:

L =
n

∑n
i=1 wi log w(i)∑n

i=1 wi

− n log
n∑

i=1

wi −
dn

2
log(2πeσ2)

We must also compute the variance σ2 of the clustered intervals in a way that

accounts for the weights:

σ2 =

∑n
i=1 wi||xi − c(i)||2

d
∑n

i=1 wi

All these general equations can be simplified in the common case that
∑n

i=1 wi =

1.

These changes do not change the algorithms with respect to fixed length

intervals. In other words, setting all wi = 1/n (as in fixed length intervals) would

produce the same results as the former SimPoint algorithm. Thus these changes

allow SimPoint to smoothly handle both fixed length and variable length intervals.

V.B Selecting Simulation Points Across Binaries

The focus of this chapter is on architecture studies we encountered

that require to compare multiple binaries for the same program (no source code

changes) for the same input using detailed simulation. In this section we present

two approaches for representative simulation for multiple binaries compiled from

the same source. The first approach uses the standard SimPoint approach for

finding simulation points for each binary, which we term Per-Binary Simulation

Points. The second approach we call Cross Binary Simulation Points because it

finds a single set of simulation points to be used across multiple binary versions.

V.B.1 Per-Binary Simulation Points

In this section we examine an approach that finds a separate set of

simulation points for each binary being compared for a program. We apply
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the standard SimPoint method described in Chapter III to every binary version

of a program. This results in a unique set of simulation points belonging to

each binary version. By weighting and combining the simulation points for a

given binary we can accurately estimate its overall performance. By estimating

the performance of each binary using its unique set of simulation points we can

compare the performance between the binaries. In this manner, this approach

can be used to compare simulation results across binaries of the same program,

but issues can arise, as described below.

SimPoint tries to capture the majority of behaviors during execution to

create a faithful estimate of the complete execution, but it cannot capture every

behavior. This creates bias (error). We have shown the bias is low in Chap-

ter III, but for studies involving multiple binaries, the bias across the different

binaries examined must be consistent. We have also shown that this bias (relative

error) is consistent for a single binary across many different architectures in Sec-

tion III.E.2, but that work only considered the case where the same simulation

points are used with the same binary across different architectures.

The focus of this work is to use different binaries (compiled from the

same source) across different architectures. If we choose different simulation

points for each binary, then the same behaviors may not be captured in the

simulation points across the different binaries. This can result in different bi-

ases used for each binary, which can cause additional inaccuracies when trying

to compare the performance of many architecture/binary combinations.

Related to this is a problem of representing all the unique behaviors

a program exhibits with a small number of phases (each phase having a single

simulation point representative). If there are more unique behaviors than allowed

phases (since an architect may limit the number of simulation points used), then

SimPoint cannot represent all the behaviors as separate phases. Therefore, some
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unique behaviors must be grouped into the same phase. If these groupings are not

performed consistently across different binaries, then simulation points from one

binary will represent different combinations of unique behaviors than simulation

points from another binary. Simulation results using different simulation points

can not be meaningfully compared, since the different simulation points may

focus on different behaviors.

Both of these issues are addressed by the next approach we examine,

which finds a single set of simulation points that can be used across all of the

binaries, ensuring that the same behaviors are simulated for each binary.

V.B.2 Cross Binary Simulation Points

In this section we describe our approach for picking the same simulation

points across a set of binaries for a program/input pair, and how we use these

cross binary simulation points and weight them appropriately. We begin with a

description at a high level of our cross binary simulation point algorithm, which

has the following steps:

1. Create Call and Branch Profile for Each Binary: Generate a pro-

file for each binary for the input being examined. This along with symbol

information will be used to find the set of mappable points.

2. Find a Set of Mappable Points that Exist in All Binaries: Use

symbol information, the profile counts, and source line information to find

a set of instructions in the binaries that exist in all of the binaries, and

serve the same purpose (procedure entry points, loop back edges, loop entry

points, etc).

3. Create Variable Length Intervals Using Mappable Points: Use the

mappable points to partition execution for one input into variable length
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intervals (VLIs), where both the start and end of each VLI are mappable

points. This allows us to accurately map the intervals across all of the

binaries.

4. Pick Simulation Points for the Primary Binary: Pick a set of sim-

ulation points by running SimPoint on variable-length frequency vectors

collected from one of the binaries (the “primary binary”).

5. Map the Simulation Points to All Binaries: Map the simulation points

chosen from the primary binary to all of the other binaries, creating cross

binary simulation points across all of the binaries that semantically represent

the same part of execution.

6. Recalculate Weights for Mapped Simulation Points: Simulation re-

sults for each cross binary simulation point in each binary must be appro-

priately weighted by the size of its cluster in each binary.

We now go through each of these steps in more detail.

Create Call and Branch Profile for Each Binary

We generate a profile for each binary for the input being examined

using Pin [40], a dynamic instrumentation system. We then find instructions in

the binaries that are mappable; i.e. they exist across all binaries that mark the

same exact point of execution. This will be used to locate the mappable points

for each binary.

For each binary we profile all procedure entry points and loop branches

and keep track of the total number of times each code structure is executed. For

procedures we simply keep track of how many times each procedure is executed for

the entire execution. Loops on the other hand can be considered as two entities:

a loop entry point and the loop body. For the loop entry points we capture how



117

many times the loop has been entered regardless of how many iterations the loop

executes each time it is entered. This provides a coarse representation of loops,

similar to procedures.

We also keep track of how many times the loop body executes. This

is the number of times the loop has iterated over the entire execution. Each

time a loop is entered we increment the loop entry count once and increment the

loop body count by the number of times the loop iterates. The loop body count

provides a much more detailed picture of the loop execution and is typically much

larger than the loop entry count.

We want to break down loops like this so we can use either the entry

point into a loop or specific loop iteration branches as mappable points. This

provides a larger set of mappable points to choose from as will become apparent

in the following step.

Find a Set of Mappable Points that Exist in All Binaries

We use the mappable points to partition the execution of a single input

into variable length intervals (VLIs), where each interval starts and ends at a

mappable point. This allows us to accurately map the intervals across all of the

binaries.

The mappable points consist of (a) procedure entry points and (b) loop

branches in the binaries. The notion is that if we can find the exact same loop

branches and procedure entry points across all of the binaries then we can use

these mappable points to define interval boundaries and pick simulation points

which start and end at these mappable points. These simulation points can then

be mapped to any other binary in the set of binaries considered.

For all the binaries being considered for a program, we first match up the

procedure entry points with the same procedure names across all of the binaries,
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using debug symbol information. These procedure entry points represent the

same exact point in execution across all of the binaries.

We also identify matching loop branches across all the binaries. For this

we use two pieces of information: execution counts from the profiles collected

in the previous step, and debug line number information associated with each

branch. If the execution counts and line numbers for a branch match across

all binaries, then that branch represents the same part of execution across all

binaries.

For both procedure entry points and loop branches, the execution count

across all binary versions must match. This guarantees that the mappable points

will execute the same number of times across all binaries, which allows us to

specify regions in the execution of any binary in the set by using mappable points

as delimiters - for example, a simulation region can start at mappable point A

after it has executed X times and end when mappable point B has executed

Y times. This representation allows us to capture the same regions across the

executions of different binaries.

Create Variable Length Intervals Using Mappable Points

We want to partition the execution into intervals that are close to a

desired size specified by the user. The user can specify a size range (e.g. between

10 million and 100 million instructions) or a specific target size (e.g. 100 million

instructions). The mappable points (markers) selected in the prior step are used

to break execution into variable length intervals that attempt to satisfy the users

desired interval size. Since we are dealing with program source code constructs to

define interval boundaries, we do not expect to find precise fixed length intervals

for a given target size; rather we expect to find intervals that are close to the target

size that are also harmonic with the periodic nature of the program behavior. In
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this manner, we will generate variable length intervals that are both manageable

for simulation time and be in sync with the program periodic behavior.

For each variable length interval we collect a basic block frequency vec-

tor, which is given to SimPoint in the following step. Only one binary (the

primary binary) is profiled in this step. As the program executes, we keep track

of how often each mappable marker is encountered, because any mappable marker

could be used as an interval boundary. For example, if the desired interval size is

100 million instructions, and we have just executed 100 million instructions, we

need to create an interval boundary on the next mappable marker we encounter

(rather than force a hard boundary as is done with fixed length intervals). When

the next mappable marker is reached, we record its marker ID and the number

of times it has executed since the start of execution to bound the interval. We do

this from the start of execution, ending intervals every time we reach the desired

interval size at the next mappable marker encountered during execution. The

execution count is critical, since markers can execute many times. Each (marker

ID, execution count) pair uniquely identifies a specific point in execution that

can be mapped to other binaries.

Pick Simulation Points for the Primary Binary

Next we run SimPoint on the basic block vectors collected for the map-

pable intervals from the primary binary to pick simulation points. We use Sim-

Point with the modifications described in Section V.A.3, which supports variable

length intervals and considers the number of instructions in each interval during

the clustering process and the search for simulation points.

For the primary binary, SimPoint generates simulation points, weights

for each simulation point, and phase labels for every interval. Each simulation

point represents a unique phase, and the weight associated with the simulation
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point reflects the fraction of executed instructions in that phase.

The primary binary can be selected arbitrarily from the set of bina-

ries available, but it should be noted that interval sizes can expand or contract

depending on which binary is chosen as the primary. One interval is created

approximately every 100M instructions executed by the primary binary, so if the

other binaries execute more or fewer instructions between interval boundaries,

the mapped intervals can be bigger or smaller in the other binaries.

The simulation points chosen from the primary binary are intrinsically

mappable to the other binaries. The start and end of each simulation point is de-

fined by a (marker ID, execution count) pair. This pair represents the simulation

point across all binaries since it is based on mappable markers, and can be used

during simulation to represent the start and end of that simulation point when

executing each binary. These simulation points are then used across all binaries

to represent the same part of execution.

Recalculate Weights for Mapped Simulation Points

Finally, we need to appropriately weight the simulation points relative

to the size of the clusters for each binary. Weights must be readjusted because

the amount of execution in each phase can change across binaries.

A simulation point’s weight is the fraction of the total dynamic instruc-

tions that the program executes in the phase it represents. For example, if a

program executes 60% of its dynamic instructions in phase P , the simulation

point for phase P will have a weight of 60%. We calculate the correct weight for

each simulation point in each binary by running each binary, and counting the

number of dynamic instructions executed in each phase.
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Table V.1: Memory System Configuration

Cache Level Capacity Associativity Line Size Hit Latency Type

FLC(L1D) 32KB 2-way 64 bytes 3 cycles WriteBack

MLC(L2D) 512KB 8-way 64 bytes 14 cycles WriteBack

LLC(L3D) 1024KB 16-way 64 bytes 35 cycles WriteBack

DRAM 250 cycles

V.B.3 Dealing With Optimized Code Regions

Compiler optimizations may modify a binary’s call-loop structure. A

procedure that has been inlined in the optimized version of a binary will not

be mappable, since it will no longer have the procedure name and entry point

associated with it. Although the process mentioned above for mapping points

across the binaries does not handle this case, we have extended the mapping of

points to handle some of these optimization cases.

We can detect inlined procedures by their parent nodes and the loop

structure within the procedure. Consider a procedure that has a loop that ex-

ecutes N times, which is called from another procedure that has a loop that

executes M times. If this procedure has been inlined and its loop structure

maintained, we expect the caller to now have two loops, executing N and M

times respectively. We can still map the loop of the inlined procedure because

we can identify it based on its call count. Of course, if N = M , we can not

determine which loop belongs to the inlined procedure based on the call counts.

V.C Methodology

We evaluate our approach for selecting cross binary simulation points

using CMP$im [29], a Pin [40] based multi-core simulator. CMP$im models

an in-order processor and can simulate the performance of applications run to



122

completion. CMP$im is configured to model a single-core processor with a three-

level non-inclusive cache hierarchy with parameters as shown in Table V.1. All

caches use a 64B line-size and LRU replacement policy.

To evaluate our approach, we compiled the SPEC2000 programs with

debug information (-g compiler flag) on 32- bit (x86) and 64-bit (x86 64) Linux.

The programs were compiled using version 9.0 of Intel’s C/C++ and Fortran

compilers. For each program we also compiled unoptimized and optimized ver-

sions, for a total of four binaries per SPEC program: 32-bit Optimized, 32-bit

Unoptimized, 64-bit Optimized, and 64-bit Unoptimized. We then compare the

performance of these binaries and examine how well the SimPoint based tech-

niques estimate the speedup between the different binaries. We selected a subset

of benchmarks from the SPEC2000 suite that would provide a representative

sample and also include a wide range of programs with interesting behaviors. For

each of the programs we selected we provide results using the reference inputs.

Simulation regions are represented with PinPoints files [49], which is a

Pin tool chain that generates basic block vectors for each interval and then runs

them through SimPoint to get the simulation points and weights. We ran each

binary under CMP$im configured as above with the PinPoints file describing the

simulation regions for the binary for the given input. Using statistics (reported

by CMP$im) and weights (reported by SimPoint) for each simulation region, we

compute a prediction for whole-program statistics and compare the results of the

prediction to the actual whole-program statistics reported by CMP$im.

V.D Results

In this section we evaluate SimPoint’s performance estimates across dif-

ferent binaries compiled from the same program source. We show that our pro-

posed Cross Binary SimPoint technique is an improvement over the Per-Binary
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Figure V.3: Number of SimPoints for Per-Binary SimPoint (FLI) and Cross
Binary SimPoint (VLI). Each bar shows the average across all four binaries.

SimPoint approach because it allows us to simulate the same regions across dif-

ferent binaries.

V.D.1 SimPoint Performance Estimation

SimPoint can be run with different configurations which may result with

different simulation points being selected. To fairly compare the two SimPoint

methods we used the same SimPoint configurations for both techniques. We

used SimPoint to find up to 10 simulation points per program since that usually

achieves good accuracy in representing programs. However, SimPoint generally

picks fewer simulation points than the upper limit because it usually finds a good

phase characterization with fewer clusters.

Figures V.3 and V.4 show the number of simulation points picked and

the average interval size respectively for each benchmark we examined. Fig-

ures V.3 shows results for Per-Binary SimPoint (FLI) and Cross Binary SimPoint

(VLI), while Figure V.4 only shows results for Cross Binary SimPoint, because

the interval size for Per-Binary SimPoint is fixed at 100 million instructions. We

compiled four different binaries for each benchmark, and for each benchmark we
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Figure V.4: Interval Size for Cross Binary SimPoint (VLI). Each bar shows the
average across all four binaries. The size of each interval in Per-Binary SimPoint
(using FLIs) is constant at 100 million instructions.

are showing the average across these four binaries.

Figure V.3 shows that both techniques select a similar number of sim-

ulation points on average. This is expected since the binaries all represent the

same program, so we are still observing the same behaviors.

To understand the interval size differences between Per-Binary SimPoint

and Cross Binary SimPoint shown in Figure V.4, recall that Per-Binary SimPoint

and Cross Binary SimPoint split executions into intervals differently. Per-Binary

SimPoint splits every execution of a program binary into fixed length 100 million

instruction intervals, while the Cross Binary SimPoint approach produces inter-

vals of at least 100 million instructions. In Cross Binary SimPoint, an interval

ends only when a mappable marker is reached, so intervals can be larger than

100 million instructions.

In addition, Cross Binary SimPoint constructs intervals from the exe-

cution of one binary and maps the intervals to the other binaries. The same
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interval in another binary may not execute the same number of dynamic instruc-

tions. Suppose, for example, that an unoptimized binary executes 10 times more

instructions than an optimized binary. If we use the unoptimized binary as the

primary binary, we will construct mappable 100 million instruction intervals, but

when the intervals are mapped to the optimized binary, the intervals will shrink

to 10 million instructions on average.

This is why we see a smaller average simulation point size in Figure V.4.

The intervals we constructed for the primary binary, when mapped to the other

binary versions became smaller in most cases.

applu has a much larger interval size because our technique was unable

to find mappable markers across all four binaries for large execution regions. In

these execution regions, a loop calls five procedures that each solve a partial

differential equation. Each of the five procedures has a similar looping structure

since they are doing a similar operation. In the optimized version of this binary,

all five procedures are inlined into the loop. Furthermore, the loops were split

by the optimizer, and code was moved within this loop. While our technique can

deal with simple cases of inlining, in this case there was not enough structure left

after optimization to map the optimized code to the unoptimized code.

Figure V.5 shows the relative error in estimated CPI for each bench-

mark. As in the previous figure, each bar in this graph is the average across four

binaries. For each binary we calculate the CPI error for that binary using the sim-

ulation points compared to a full simulation of the program. We then averaged

this CPI error across the four binaries for the results shown. On average we see

that both techniques accurately estimate the performance of the programs. The

per-binary technique accurately estimate the performance for each binary when

compared to the full execution of that binary, using a different set of simulation

points for each binary. Figure V.5 also shows that cross binary simulation points
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Figure V.5: CPI Error for Per-Binary SimPoint (FLI) and Cross Binary SimPoint
(VLI). Each bar shows the average across all four binaries.

Figure V.6: Speedup error for Per-Binary SimPoint (fli) and Cross Binary Sim-
Point (vli). Speedup is computed across different binary pair configurations on
the same platform and the error is based on how closely the estimated speedup
is to the true speedup. 32U is 32-bit Unoptimized, 32O is 32-bit Optimized, etc.
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Figure V.7: Speedup error for Per-Binary SimPoint (fli) and Cross Binary Sim-
Point (vli). Speedup is computed across different binary pair configurations across
different platforms (32-bit and 64-bit) and the error is based on how closely the
estimated speedup is to the true speedup. 32U is 32-bit Unoptimized, 32O is
32-bit Optimized, etc.

achieve accurate performance estimates, but the figure does not show that the

biases are consistent in the errors across the binaries, which is the focus of the

next result.

V.D.2 Speedup Comparison

When using sampled simulation for design space exploration, it is very

important to have a consistent bias across the experiments to make meaningful

performance comparisons. Here we calculate the actual speedup between different

binaries and compare how the two SimPoint methods perform in estimating the

speedup. We find that the Cross Binary SimPoint method has a more consistent

bias than the Per-Binary SimPoint method, and is more accurate when comparing

results across different binaries.

Figures V.6 and V.7 show the error in speedup estimation across several

binary pair configurations. Figure V.6 shows binary pair configurations on the



128

same platform varying the optimization levels, while Figure V.7 shows binary

pair configurations across platforms for the same optimization level. Each Figure

shows how closely the estimated speedup of either Per-Binary or Cross Binary

SimPoint is to the true speedup. We compute the error in speedup as the follow-

ing: |(TrueSpeedup−EstimatedSpeedup)/TrueSpeedup|. The TrueSpeedup is

computed as the ratio of total cycles executed for two binary versions. For ex-

ample, the TrueSpeedup for 32u32o configuration is the ratio of the number of

cycles executed with the 32-bit unoptimized version and the 32-bit optimized ver-

sion. The EstimatedSpeedup is computed just like the TrueSpeedup but instead

of using the true number of cycles that execute we are estimating the number

of cycles using sampled simulation. The error in speedup tells us how close our

speedup estimates are to the actual speedup seen between the two binaries.

For each benchmark in these figures we show 4 pairs of configurations for

speedup analysis: 32-bit unoptimized to 32-bit optimized and 64-bit unoptimized

to 64-bit optimized in Figure V.6 and 32-bit unoptimized to 64-bit unoptimized

and 32-bit optimized to 64-bit optimized in Figure V.7. For each configuration we

estimate the speedups using the Per-Binary and Cross Binary SimPoint methods

and compute the speedup error as described above.

The results in these figures show that Cross Binary SimPoint results in

a lower error in speedup estimation on average than Per-Binary SimPoint, for

the binaries we examine. This result can be explained by the lack of behavioral

consistency in samples that are chosen as simulation points across the different

binaries for the per-binary approach. Whenever we use simulation on a small

portion of a program to estimate the performance of the whole program, there

will be some unavoidable error for behaviors that are not well-represented in the

simulation. We call this a bias in the simulation, and it occurs because it is

impossible to simulate a behavior that is not represented by a simulation point.
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Table V.2: Phase comparison across 32-bit unoptimized and 64-bit unoptimized
gcc binary versions

gcc/166

32-bit Unoptimized 64-bit Unoptimized

Phase Weight True CPI SP CPI CPI Error Phase Weight True CPI SP CPI CPI Error

1 0.35 3.16 3.15 0.2% 1 0.28 2.97 2.97 -0.1%

VLI 2 0.26 3.99 2.93 27% 2 0.21 4.11 2.93 29%

3 0.14 4.47 5.17 -16% 3 0.17 5.49 6.34 -16%

1 0.36 3.16 3.16 0% 1 0.22 2.98 2.97 0.5%

FLI 2 0.31 6.54 2.90 56% 2 0.18 6.04 7.04 -17%

3 0.09 5.00 4.04 19% 3 0.16 6.66 7.19 -8.0%

Because Cross Binary SimPoint uses the same execution regions across different

binaries, errors in performance estimation due to lack of representation will oc-

cur consistently across all the binary executions. Thus the error that occurs due

to bias is consistent across all our estimates. This consistency allows us to ob-

tain performance estimates that are more accurate when comparing performance

across binaries, allowing us to make better design decisions.

Phase Bias Comparisons

In the Per-Binary SimPoint approach we are picking a different set of

simulation points for each binary version. Each set of simulation points will

be accurate in representing the overall execution for that binary. However, a

particular program behavior may be more representative in one binary (since

a simulation point may be chosen directly from that behavior), and less repre-

sentative in another binary. Thus the unavoidable error due to using a small

fraction of program execution to represent the whole program execution will not

be consistent across all the binary versions using the Per-Binary SimPoint ap-

proach. Per-Binary SimPoint can give semantically similar simulation points that

represent common program behaviors across binaries, but it is not guaranteed.
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Table V.3: Phase comparison across 32-bit optimized and 64-bit optimized apsi

binary versions

apsi/ref

32-bit Optimized 64-bit Optimized

Phase Weight True CPI SP CPI CPI Error Phase Weight True CPI SP CPI CPI Error

1 0.52 3.04 2.91 4.5% 1 0.52 2.59 2.44 5.9%

VLI 2 0.19 3.57 3.10 13% 2 0.18 3.16 2.66 16%

3 0.05 4.66 4.70 -0.9% 3 0.05 3.64 3.63 0.3%

1 0.71 3.50 3.00 14% 1 0.65 2.77 2.50 0.9%

FLI 2 0.05 4.58 4.61 -0.7% 2 0.08 5.34 3.39 37%

3 0.05 4.60 4.63 -0.7% 3 0.06 7.61 7.55 0.8%

As a particular example of the benefits of consistent bias for making

design decisions, we consider two benchmarks in detail: gcc and apsi. Both

benchmarks have higher speedup error using Per-Binary SimPoint than our Cross

Binary SimPoint technique. Tables V.D.2 and V.D.2 compare phase statistics

across two binary versions for gcc and apsi respectively. Table V.D.2 com-

pares the largest three phases found with Per-Binary SimPoint and Cross Binary

SimPoint across 32-bit unoptimized and 64-bit unoptimized gcc binary versions.

Table V.D.2 compares the largest three phases found with Per-Binary SimPoint

and Cross Binary SimPoint across 32-bit optimized and 64-bit optimized apsi

binary versions. Both tables show for each phase the phase ID, the weight of the

phase (the percentage of executed instructions in that phase), the true CPI of

the phase (the average CPI across all intervals in that phase), the estimated CPI

using the SimPoint techniques, and the relative error between the true CPI and

the SimPoint CPI.

Table V.D.2 shows the problem of picking simulation points for each

binary using the per-binary (FLI) approach. For gcc we see that the weights for

the three phases for FLI changes from 36% to 22% for phase 1, then from 31%

to 18% for phase 2, and then from 9% to 16% for phase 3. This shows that for
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the 64-bit binary, a large portion of execution is grouped into different phases

compared to the 32-bit binary. This is further shown by the significant changes in

CPI error for the phases between the two binaries. These weights and CPI errors

are the bias that SimPoint introduces. This bias is perfectly fine to have when

using a single binary to compare options across a design exploration, because the

bias is consistent and does not change.

When different binaries are used to explore a design space, the biases

can change, but they must be consistent. Table V.D.2 shows that per-phase

biases can change significantly between the binaries when using the Per-Binary

(FLI) SimPoint approach. For example, when using FLI the second phase in gcc

has an error of 56% for the 32-bit binary and -17% for the 64-bit binary. Similarly

the 32-bit binary has 19% error and the 64-bit binary has -8% error. This change

in bias is the reason for the 38% error in speedup for gcc in Figure V.7.

In comparison, the Cross Binary (VLI) SimPoint approach proposed

in this chapter has a consistent bias across the phases. This is because the

simulation points chosen across the binaries represent the same part of execution.

The weights have slightly changed for VLI, but this is to be expected due to

differences in compilation. Similar results can be seen for apsi in Table V.D.2.

For apsi the bias for the per-binary FLI approach for phase 2 changes from -0.7%

to 37%, whereas the bias is kept consistent across the phases for our Cross Binary

SimPoint approach.

Finally, we want to emphasize that the error seen for SimPoint for a

given phase in Tables V.D.2 and V.D.2 is to be expected. The error can occur

because the single simulation point used for the phase did not represent all of the

behavior in that phase, just the majority of the behavior for the phase. SimPoint

is used to find a small set of the most representative behaviors, and because of this

not every behavior can be appropriately represented. From our several years of
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using SimPoint, our experience has shown that the majority of behaviors will be

captured, and this allows us to perform accurate architecture design comparisons.

This is achievable when using a single binary for design exploration, since the

same simulation points are used, which results in a consistent bias and error across

the architectures examined. When using multiple binaries, our Cross Binary

SimPoint is needed in order to capture the same representative part of execution

for the simulation points across the different binaries. This maintains a consistent

bias and error for the cross binary simulation points.

V.E Related Work

We now briefly compare our approach to a prior technique in simulation

that use procedure and call boundaries to define intervals of program execution.

Huang et al. [39] considered procedures and loops to partition a pro-

gram’s execution. The partitioning determined where and when statistical sam-

ples should be taken during architecture simulation. Their analysis broke up a

program’s execution at static call sites, and if a procedure executed for too long,

they divided the procedure’s execution into its major loops. To determine the

sample rate, they examine the variability of several architecture metrics for each

program region.

Our approach focuses on a simulation scenario not addressed in the

above research. The above research examined only applying their approach to

one binary for a single program/input combination, whereas we are focusing on

how to effectively compare multiple binaries for a single program/input combi-

nation. The difference in our approach is that we need to (a) perform analysis to

find mappable points across all of the binaries, even in the face of compiler opti-

mizations, whereas the prior techniques break intervals at any arbitrary branch

point, and (b) we have to correctly calculate the weights of the mapped simu-
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lation points for each binary, which the prior techniques did not have to deal

with.

V.F Summary

In this chapter we explored variable length intervals and presented a

new simulation technique to compare multiple binaries of a program.

First, we showed using real program datasets that the majority of a

program’s execution is spent in loops. The average number of instructions per

loop iteration can change over time. This means that the period lengths are not

stable over time. An ideal fixed interval length for one section of execution may

be dissonant with another portion of the program’s execution. Since no single

interval length will do a good job representing the program, we presented the

concept of variable length interval lengths that can capture the varying period of

the program’s behavior pattern. We also modified SimPoint to consume variable

length intervals, which is essential for our Cross Binary Simulation Points.

Researchers testing a new ISA extension, examining a new architec-

ture, or trying a new compiler optimization may need to analyze and evaluate

performance across different binaries of a program. Due to the slow nature of

performance simulators, it has become a standard practice to use representative

sampling simulation techniques. We examined two approaches for simulation

when there are multiple binaries for a single program/input.

The first approach simply applies the existing SimPoint approach sepa-

rately on each binary, creating a different set of simulation points for each binary.

This approach can accurately estimate the performance for each binary by using

different simulation points for each binary, but the approach can have significant

error when comparing performance across binaries, since the different simulation

points may emphasize different behaviors.
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The second approach identifies simulation points that represent the same

behaviors across all binary representations of a program. This allows us to simu-

late the same parts of execution as we change the ISA or compiler optimizations

during design space exploration. Our approach finds phase transitions during ex-

ecution that are identifiable in all of the binaries considered. We use these phase

markers along with SimPoint to pick simulation points to represent the full exe-

cution of the program, and to identify the exact same start and end of execution

for the simulation points in each binary. Our results show that this method does

not suffer from changing biases that can occur with the first approach, so cross-

binary simulation points can be used to accurately compare performance across

binaries.
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VI

Phase Analysis on Parallel

Applications

In this chapter we examine applying the phase analysis algorithms and

how to adapt them to parallel applications running on shared memory processors.

Our approach relies on a separate representation of each thread’s activity. We first

focus on showing its ability to identify similar intervals of execution across threads

for a single run. We then show that it is effective at identifying similar behavior

of a program when the number of threads is varied between runs. This can be

used by developers to examine how different phases scale across different number

of threads. Finally, we examine using the phase analysis to pick simulation points

to guide multi-threaded simulation.

VI.A Methodology and Metrics

The data presented in this chapter was collected on a 4-node Itanium

II. This platform has four Intel TMItanium II processors at 1 GHz with a 256KB

L2 cache and a 3MB L3 cache, an 870 Intel TMchipset, and a 400MHz front side

bus. This is a multi-processor system, and each processor has its own L2 and L3

135
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cache, and only main memory is shared across the processors. For this work we

only run one thread per processor node.

Our data collection methodology utilizes the commercially available In-

tel VTune Performance Analyzer [72]. Our phase analysis framework processes

the VTune output file collected from the execution of a program on any platform

for which VTune is available.

The applications examined in this work are a selection from an extensive

set of experiments we ran. We experimented with both OpenMP and p-thread,

and on task-parallel applications. We found the definition of phases proved to be

coherent even when different threads clearly do not execute the same phase at the

same time. To show the range of parallel phase behavior found we provide results

for the OpenMP C version of the NAS parallel Benchmarks (NPB) [44], which

are derived from computational fluid dynamics (CFD) applications, consisting of

five kernels and three pseudo-applications, and two more benchmarks OpenMP-

parallelized:

• SNP (Single Nucleotide Polymorphism) is capable of detecting structure

around a single nucleotide polymorphism in a DNA chain. This application

has been coded by using Intel’s Open Source Probabilistic Network Library

(PNL) [67]

• SVM RFE (Support Vector Machine Recursive Feature Elimination [22]) is

based on the state of the art Support Vector Machine classification algorithm

and is used for eliminating gene redundancy in micro-array data analysis.

Both of these applications repeatedly access very large databases, and

apply general purpose machine learning and data mining algorithms to bioinfor-

matics applications.
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VI.A.1 Metrics for Evaluating Phase Classification

Phase detection is performed in a completely performance-independent

fashion, solely based on code signatures as described in Section III.B.1. A major

assumption underlying this and most of the phase analysis related work is that

similar code execution intervals yield similar performance. To this end, we decide

to also collect performance data at runtime using VTune while collecting the code

signature. This allows us to later verify the assumption and validate our work.

The metrics we examined from VTune are CPI, together with L2 and

L3 Hits and Hit-Rates. We have found that these are the key metrics to analyze

in order to understand the performance of a multi-threaded application, which is

often bounded by issues such as data-reuse and conflicts between caches.

We measure the effectiveness of our phase classifications by examining

the similarity of program metrics within each phase. After classifying a pro-

gram’s intervals into phases, we compute the phase based standard deviation for

each metric (e.g., CPI, data cache hit rates). This is computed by combining

the weighted standard deviation from each phase. We weight each phase’s stan-

dard deviation by the relative size the phase represents from the entire execution,

since phases can have significantly different execution spans. We compare this

phase-based standard deviation to the standard deviation seen when looking at

all of the intervals of the program’s execution. Better phase classifications will

exhibit lower per-phase standard deviation for an architecture metric when com-

pared to the standard deviation of the complete execution. For example, if all of

the intervals in the same phase have exactly the same CPI, then the per-phase

standard deviation will be zero.
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VI.B Profiling Program Behavior

In this section we provide a description of the basic structure we use in

order to represent code execution in a given interval.

VI.B.1 Extended Instruction Pointers

Davies et al. [15] proposed using hardware sampling of instruction point-

ers to represent code signatures for finding phase behavior, and such an approach

was also used by Annavaram et al. [2] to try to find phase behavior in database

workloads.

In this work we also use Extended Instruction Pointers (EIPs) to find

phase behavior. An EIP is the memory address of an instruction, analogous to

PC. The EIPs are extracted while running an application on native hardware.

VTune, a commercially available software performance analyzer for IntelTM ar-

chitectures [72] is used to collect the EIPs. We focus on this approach, instead

of instrumentation, since VTune has the ability to non-intrusively analyze any

application running on native hardware with negligible overhead. The underlying

VTune driver monitors a large number of performance/code execution attributes

stored in the embedded event counters of the Intel processors while a program is

being executed on real hardware. It collects information, such as EIPs and CPI,

which are then used to perform code clustering, phase analysis, and validation.

VTune interrupts execution at regular intervals of instructions executed

and records the EIP and event counter totals (e.g. clock tick count, instruction

count.) Sampling at a high frequency can significantly increase execution over-

head. Conversely, too low a sampling frequency will lead to sparse data that

could compromise phase analysis. Based on our experimental data, we set the

VTune sampling rate to be once every hundred thousand instructions. It proved

to be a good trade-off between execution overhead and collecting adequate sam-
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pling data. At this sampling rate, the typical overhead of using VTune is not

more than 2%.

Annavaram et al. [2] used the EIPs to create an Extended Instruction

Pointer Vector (EIPV), which is a one dimensional array where each element

in the array corresponds to one Extended Instruction Pointer in the program

execution (similar to a Basic Block Vector as described in Chapter III). The

EIPV contains all zeroes at the beginning of each interval of execution. During

each interval, the number of times each EIP occurs during sampling with VTune

is recorded, and each EIP’s final interval count is stored in the EIPV.

The intuition behind this is that the behavior of the program at a given

time is directly related to the code executed during that interval as was discussed

in Chapter III. The EIP vectors can be used as code signatures for each interval

of execution: each vector tells us which portions of code are executed, and how

frequently. For a suitably chosen sampling frequency, the sampled information

gives a sufficiently accurate estimate of the frequency of execution of significant

EIPs within a given interval. By comparing the EIPVs of two intervals, we can

evaluate the similarity of those two intervals. If the distance between the EIPVs

is small, then the two intervals spend about the same amount of time in roughly

the same code, and therefore the performance of those two intervals should be

similar.

VI.B.2 Sampled Basic Block Vectors

The construction of EIPVs has been proposed in [15] as an alternative

to Basic Block Vectors (BBVs). Because we are sampling the execution we are

capturing only a small fraction of the EIPs that execute. This is necessary to

maintain low overhead with VTune and not bias the performance of the applica-

tion we are monitoring. This means that the EIPVs can be very sparse and this
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can generate sampling noise similarity measurements. For example, if we have

two intervals that execute the same code regions but we are sampling different

EIPs in each interval, then the EIPVs for those intervals will not be considered

similar.

To address this issue we present a method to map EIPs to basic blocks

in order to reduce some of the sampling noise [35]. From the definition of a

basic block we know that if we execute one instruction in the basic block we

will execute all instructions in it. The mapping of EIPs to basic blocks means

that if we sampled different EIPs in the same basic block, both will show up as

the same dimension. This helps reduce the artificial noise between two EIPV

code signatures that are classified as different because there are different counts

between the two vectors for EIPs from the same basic block.

In this chapter we map the EIPs down to basic blocks to create sampled

basic block vectors. We implemented mapping EIPs to basic blocks using the

Itanium version of Pin. We statically process a binary, marking every instruction

as a conditional branch, a conditional branch target, both, or neither, and then

use these markings as boundaries in assigning a block ID to every instruction in

the binary. We then use this ID mapping (a dimension in the sampled BBV) to

coalesce all dimensions in the EIPV that map to the same block-ID into a single

dimension with weight equal to the summation of the weights of the remapped

EIP dimensions, producing a sampled BBV. For the results in this chapter we

use the sampled BBVs to find the phase behavior in parallel programs.

VI.C Discovering Phases for a Single Parallel Run

Parallel applications can have multiple threads executing different parts

of the binary at the same time. This presents new challenges in program charac-

terization and phase analysis. In this section we provide a detailed description of
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the algorithm we use that characterizes parallel applications. In this section we

focus on analyzing a single parallel run, and in Section VI.D we describe how to

extend this to examine behavior varying the number of threads.

VI.C.1 Phase Analysis Merging All Threads Together

The foundation of parallel application characterization relies on preserv-

ing the parallel structure of execution during phase analysis. The thread level

behavior of the application is the framework through which the parallel structure

is perceived. Hence, the representation of the thread level behavior is a critical

component in the analysis.

One possible thread representation is an agglomerated (combined) view

of all the activity across the different threads to create intervals of execution.

This is achieved by agglomerating the execution samples collected from individ-

ual threads into a single execution trace and creating fixed length intervals from

that. For this approach the different thread behaviors would be intermingled into

one trace as they occur during execution. This trace can be run through existing

phase analysis techniques, but has the following drawback: the phases discovered

in this trace do not apply to any individual threads, but instead apply to the

combination of behaviors from all threads. This provides the following issues:

(1) it is difficult to interpret the behavior of individual threads and (2) it is hard

to validate the behavior of an agglomerated interval, since it represents a com-

bination of parts of several threads of execution. If threads execute at different

rates relative to each other, then the phase representation will not be consistent

across the intervals formed. We tried the agglomerated method, and found it

does not provide enough per thread information to understand the parallel phase

behavior.
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VI.C.2 Keeping the Thread Data Separate

Instead of agglomerating the behavior of the threads, we found that

representing each individual thread in the application independently is the key

to parallel phase analysis. For this approach each thread has its own set of

sampled BBVs for its execution. In this manner each thread is an independent

entity. We do this, because we want to find phase similarities across threads.

VI.C.3 General Algorithm

The parallel phase analysis algorithm is similar to the standard SimPoint

algorithm at a high level (Chapter III). The execution of the application is broken

down into intervals, which are then clustered into a set of phases. It is different,

however, in how it handles the data from multiple threads at different stages in

the algorithm. Several modifications are essential to ensure that the phases found

between the threads are consistent and can be compared across the threads. The

algorithm is described in the following steps:

1. We first collect code execution frequencies of EIPs for each thread in the

application. This data is partitioned into intervals of 100 million instruc-

tions, where each thread has a unique set of intervals representing its own

execution.

2. For each thread we have a trace of intervals that represents its execution.

We then generate a large combined trace for all the threads by concatenating

the interval traces from each thread. This step does not contaminate the

per thread execution behavior, since each thread occupies a non-overlapping

sub-section in the trace. The purpose of this step is to find intervals of

execution that are similar across the different threads.

3. We then cluster all the intervals into a set of phases. For this step we use
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the k-means [41] algorithm of SimPoint. SimPoint determines the number

of phases by clustering over a range of values, and then use the Bayesian

Information Criterion (BIC) [50] to quantify the goodness of each clustering.

In this work we considered a range of up to 10 phases, and a larger range

can be used for attaining higher accuracy.

This algorithm finds the phases in a parallel execution. Each phase

defines a particular code behavior in the parallel execution that is independent

of the multi-thread interaction, since we are only looking at the code signatures

for the intervals on a per thread basis.

We also find similar execution across threads, since we cluster all of

the threads’ intervals together at the same time. The vectors are formed on a

per-thread basis, but the clustering is performed looking at all of the intervals

from all of the threads at once. Therefore, the phases discovered are applicable

across all threads, where similar behavior observed across multiple threads will

be captured and characterized as one behavior. A method similar to this was

independently developed and briefly examined in [49].

VI.C.4 Thread Execution Reconstruction

The phase analysis described above discovers the phase behavior across

threads by clustering the BBVs collected in all thread executions in terms of

instruction count. We now describe how to map the phase information found to

the threaded program’s execution over time. In a parallel execution there may be

synchronization points, where some threads are waiting for other threads before

continuing execution or certain threads are spawned in the middle of execution.

We take this into consideration when forming the fixed length interval, so that an

interval does not span across these types of stalls. In addition, we need to take

this into consideration when mapping the phase classification back to a parallel
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execution trace.

The goal here is to identify visually for a user what phase of execution

each part of a thread’s execution is in. VTune outputs EIP samples in the order

they were collected across the multiple processors and threads. This provides

a complete sequential ordering and EIP trace among the threads of execution.

We use this trace to reconstruct a total count of instructions retired (global

instruction count) across all threads of execution. This allows us to correlate when

a fixed length interval, which was assigned to a phase for a thread, occurs during

execution relative to the intervals from other threads. We can then examine

cross-thread phase behavior over time, since intervals from different threads can

be grouped into the same phase. Note, since the intervals were formed using

only per-thread instruction counts, the start and end of the intervals may not

be synchronized across all threads. This leads us to the step of reconstructing

exactly when each interval starts and stops in terms of the overall execution time.

Figure VI.1 graphically shows the phase classification for the NAS bench-

mark ft.B when using 4 threads with respect to instructions retired over time.

The top most sub-figure shows the phases color coded across the entire execution.

In this plot, the x-axis shows the total number of instructions (global instruc-

tion count) retired for all the threads. The global instruction count, which is

across all threads being executed, was also gathered along with the EIPs during

VTune sampling. The global instruction count was not used to perform the phase

classification, we just use it to map the per-thread phase intervals to execution

time (represented by global instruction count). The y-axis is partitioned into 4

sections, 1 per thread. Each phase has a particular color (or shade). If a thread

has an interval of white it means that no instructions were retired during that

interval. The lower sub-figures are showing L3 cache references, and L3 cache

hit rates. The x-axis in these sub-figures are showing the number of instructions
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Figure VI.1: Phase classifications and L3 performance metrics for a four-threaded
run of ft.B. Phase classifications are applied to each thread independently.

retired, and are equivalent to the x-axis in the top sub-figure for phases.

When mapping a per-thread’s intervals to the global instruction count,

if there is a large gap (greater than an interval size) in a per-thread’s execution

with respect to the global instruction count, then a blank (white) interval is shown

representing that the thread was stalled or context switched out during that part

of execution. It is interesting to see how the phase analysis, performed ignoring

any time or similarity information among threads, does indeed automatically

detect phases coherently with the execution flow across threads. The benchmark

ft.B represented in Figure VI.1 is a data-parallel application, and the phase
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analysis correctly places all threads in the same phases at the same time for the

majority of the execution. However, occasionally different roles for the different

threads are also seen; this occurs in the figure whenever one thread is in charge of

initialization or collecting results. When this occurred the code signature formed

clearly identified that execution as different.

White intervals visible in the picture represent intervals of execution

where one or more threads are stalled because a portion of the code is not paral-

lelized or requires a smaller number of threads than the available thread-count.

It can also happen for other synchronization issues, or OS activity; note that this

naturally happens at the beginning or end of a short serial phase.

VI.C.5 Single Parallel Run Results

We now examine the performance of our parallel phase analysis on the

NAS benchmark suite and two data mining benchmarks. The programs and

methodology used are described in Section V.C.

Reduction of Variance

The goal of parallel phase analysis is to group together program execu-

tion across the different threads by only looking at code signatures. If the phase

classification worked well, then the variance in CPI, L2 and L3 cache hit rates

should decrease between all of the intervals within a phase when compared to the

variance seen across the complete execution of the program. For all of the results

an interval size of 100 million instructions and a maximum limit of 10 phases

(clusters) was used when performing the phase analysis.

Table VI.1 shows the mean and standard deviation for CPI (cycles per

instruction), and L2 and L3 caches hit rates for the full execution. The number

in parenthesis is the standard deviation. Results are shown for each program for
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a 2-thread parallel run and a 4-thread run. The last column is the number of

phases chosen by our analysis for that run. Note, all of the CPI and hit rate

results are the average and standard deviation seen across all of the intervals of

execution. For example, svm 2-thread has a CPI of 0.87 with a standard deviation

of 0.32 over all of the intervals of execution, its L3 hit rate is 48% with a standard

deviation of 21%, and its execution was clustered into 6 phases.

The NAS benchmark suite shows several different potential program

behaviors, where ep.B and is.B are at the two extremes. In Table VI.1, the pro-

gram is.B has a huge standard deviation in CPI (+/- 10) for 4-threads because

there are intervals of execution that have a spike greater than 10 CPI. The serial

part of the code for is.B covers approximately 80% of the execution (instructions

retired), and this makes it a very peculiar one among the NAS benchmarks. In

comparison, the results for ep.B show that across all of execution there is a low

standard deviation across all of the metrics.

Table VI.1 shows that the CPI can be stable or increase when going

from 2-threads to 4-threads. This happens whenever the speedup obtained by

executing the benchmark in parallel does not scale linearly with the thread count,

and the parallelization introduces overhead. The CPI shown is calculated on a

per-thread basis, and does not represent a measure of speed of execution of the

overall program on the machine, but rather a measure of speed of execution of

instructions on each single thread.

We now examine how well the phase classification, based on code, worked

in terms of the underlying architecture metrics. If the phase analysis groups the

intervals correctly, then we should see reductions in the standard deviation of

these architecture metrics, when examining them across all of the intervals within

a phase. Figures VI.2, VI.3 and VI.4 show the reduction in the standard deviation

of CPI, L2 and L3 hit rates over the baseline values shown in Table VI.1 for the
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Table VI.1: Full execution CPI, L2 and L3 hit rates with standard deviation
across all intervals of execution for each benchmark with 2 and 4 threads (#T).
The number of phases (#P) is equivalent to the number of simulation points.

BM #T CPI L2 HR L3 HR #P

bt.A 2 0.9 (+/- 0.40) 0.98 (+/- 0.02) 0.51 (+/- 0.10) 6

4 1.1 (+/- 0.44) 0.98 (+/- 0.01) 0.53 (+/- 0.10) 5

cg.B 2 1.4 (+/- 0.60) 0.65 (+/- 0.02) 0.87 (+/- 0.03) 7

4 1.5 (+/- 1.05) 0.66 (+/- 0.02) 0.87 (+/- 0.02) 5

ep.B 2 1.0 (+/- 0.01) 0.99 (+/- 0.00) 0.98 (+/- 0.04) 5

4 1.0 (+/- 0.01) 0.99 (+/- 0.00) 1.00 (+/- 0.01) 5

ft.B 2 0.7 (+/- 1.58) 0.95 (+/- 0.04) 0.87 (+/- 0.14) 6

4 0.8 (+/- 2.60) 0.97 (+/- 0.05) 0.75 (+/- 0.25) 9

is.B 2 3.0 (+/- 5.77) 0.83 (+/- 0.13) 0.75 (+/- 0.33) 8

4 4.2 (+/- 10.0) 0.82 (+/- 0.12) 0.74 (+/- 0.33) 4

lu.B 2 1.1 (+/- 0.24) 0.95 (+/- 0.02) 0.49 (+/- 0.10) 4

4 1.0 (+/- 0.20) 0.95 (+/- 0.01) 0.69 (+/- 0.11) 4

mg.B 2 0.8 (+/- 1.27) 0.99 (+/- 0.01) 0.49 (+/- 0.08) 6

4 0.9 (+/- 1.90) 0.99 (+/- 0.01) 0.46 (+/- 0.08) 8

sp.A 2 1.6 (+/- 0.25) 0.96 (+/- 0.00) 0.47 (+/- 0.05) 9

4 2.2 (+/- 0.34) 0.96 (+/- 0.00) 0.46 (+/- 0.02) 7

snp 2 1.0 (+/- 0.09) 0.95 (+/- 0.02) 0.06 (+/- 0.07) 8

4 0.9 (+/- 0.05) 0.94 (+/- 0.03) 0.36 (+/- 0.21) 6

svm 2 0.9 (+/- 0.32) 0.91 (+/- 0.05) 0.48 (+/- 0.21) 6

4 1.4 (+/- 0.41) 0.90 (+/- 0.04) 0.48 (+/- 0.18) 5

Avg 1.4 (+/- 1.38) 0.92 (+/- 0.03) 0.61 (+/- 0.12) 6
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2-thread and 4-thread runs. This is computed by first computing the difference

between the standard deviation of the baseline and the weighted standard devi-

ation of the phases, and then dividing it by the baseline standard deviation. A

large reduction in standard deviation means that the phase analysis succeeds in

breaking varying program behavior into homogeneous phases. The results show

that when looking at the program’s execution in terms of phases that on average

the standard deviation for CPI is reduced by 50%, the L2 hit rate by 60% and

the L3 hit rate by 45%. The reason why there is little reduction in the stan-

dard deviation for ep.B for L2 and L3 hit rates is that there was little standard

deviation to begin with as shown in Table VI.1.

VI.D Discovering Phases Across Parallel Runs

One of the motivations for us to perform phase analysis for parallel

programs it to be able to examine the same behavior and performance when

using a different number of threads. This can be used by programmers and

scientists to study where they should tune their code and to better understand

the implications of increasing the number of processors to run an application

on. For example, to analyze the benefit of parallelizing a program we would like

to take a representative slice of the program’s execution when using 2 threads,

and that same exact slice for 3 threads, 4 threads, etc... and compare how the

program’s CPI or cache hit rates change as we vary the number of threads. Prior

work on the scalability of parallel applications [9, 64, 66] has focused on how

the overall execution of the program scales as the number of threads varies. In

comparison, we are instead focusing on the scalability of the program in terms of

how each of its phases scales as the number of threads varies.

In this section, we describe how we achieve this “thread-varying” phase

analysis by extending the parallel phase analysis described in Section VI.C.
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Figure VI.2: Percent reduction in standard deviation for CPI with phase analysis
for 2 and 4 threads (T)
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Figure VI.3: Percent reduction in standard deviation for L2 hit rate with phase
analysis for 2 and 4 threads (T)
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analysis for 2 and 4 threads (T)
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Figure VI.5: Phases discovered across 4 different parallel executions of snp: serial,
2, 3, and 4 threads. The x-axis shows the phase classification results over the
global count of all instructions executed across all threads.
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VI.D.1 Phase Analysis Varying the Number of Threads

The prior section described how to find phases in a single parallel run

of a program. The goal of this analysis is to find similar intervals of execution

between different runs as the number of threads is varied. We call this thread-

varying phase analysis.

We want to perform this analysis on a parallel program running a specific

input varying the number of threads. We start by combining all of the sampled

BBVs for each thread for a given run as described in Section VI.C. We then

concatenate each of these run’s sampled BBVs together, where the number of

threads has been varied, for a specific parallel binary/input. SimPoint phase

analysis is then run over this vector trace. This results in a clustering that

successfully groups together not only intervals from separate threads of the same

run, as shown in the prior section, but also intervals from different runs, where

the number of threads were varied.

VI.D.2 Thread-Varying Phase Analysis Results

In this work we applied our thread-varying phase analysis on four sep-

arate runs for each program: serial, 2 threads, 3 threads, and 4 threads. We

combined the runs as described, and computed the phases across the threads and

runs. In doing this thread-varying phase analysis, we verified that the intervals

grouped within the same phase from the same run had similar architecture met-

rics as found in the previous section. But intervals from different runs (different

number of threads) grouped into the same phase will not have the same architec-

ture metrics. This is exactly what we want to analyze. We use this thread-varying

analysis to see for similar code regions how the architecture metrics varied for a

phase as the number of threads was varied.

To show this, we will examine the execution of snp running with a
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single thread (serial execution), as well as 2, 3, and 4 threads. We then combine

the threads in each of the parallel runs and perform our thread-varying phase

analysis. Note that the number of phases chosen is different from Section VI.C

since we are performing the thread-varying clustering.

Figure VI.5 shows the phases discovered across four different parallel

executions for snp. The top most sub-figure displays the phases in a single

threaded run of snp. The next two sub-figures below show phases in a two

threaded run. The next three sub-figures are for a three threaded run, and

the last four sub-figures are a four threaded run. The x-axis shows the phase

classification results over the global count of all instructions executed across all

threads. Each phase is denoted by a different color or gray-scale (as shown on the

right side of the Figure), and the same phase colors are used across the different

runs. White means that no instructions are executed during that interval due to

synchronization or serialization.

Figure VI.5 shows that even though each run has a different number of

threads, we are able to identify the same regions of execution across the different

runs. The initialization phase for snp is the shade of the first phase in the single

threaded execution. Exactly one thread has that color and all other threads are

inactive during that part of execution for the multi-threaded runs. It is also

worth noting that the phases also line up along the x-axis. In this figure the

x-axis is the number of instructions retired across all threads in a run, and this

means that the phases found between different runs execute a similar number of

instructions.

Figure VI.6 shows the number of cycles per phase across 4 different

parallel executions of sp.A. The y-axis is the number of cycles and x-axis is the

different runs varying the number of threads 1, 2, 3 and 4. In this Figure, the

number of cycles (y-axis) is the actual time spent executing the benchmark. Cy-
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cles are not accounted for on a per-thread basis, as it was in the CPI computation

of Section VI.C, but actually represent the time elapsed while one or more threads

is in a specific phase. If two or more threads are in two different phases during a

part of execution, the time elapsed is split among them with appropriate weights.

For example, Phase 2 (the top line) accounts for 11 billion cycles of execution

with one thread, and only 3.8 billion cycles when four threads are used.

This Figure is an example of the coherency of our phase definition. In-

creasing thread-count improves the performance of each phase for this application.

An intuitive downward trend is visible for each phase, however the trend varies

from phase to phase. One can see that Phase 2 and Phase 4 (the top 2 lines)

benefit the most from the parallelization, and one can go back to the code to

analyze why this is the case. It also shows that more significant speedups can be

achieved by parallelizing Phase 2 and 4 up to four threads, whereas Phase 5 has

diminishing returns from parallelization once two threads are used. This is a con-

firmation that it is worthwhile to perform phase analysis on parallel benchmarks,

as each phase exhibits different parallelization potential and performance.

Figure VI.7 shows the number of instructions retired that are classified

into each of the phases across 4 different parallel runs (again, 1, 2, 3, and 4

threaded executions). This shows that across the different runs, each phase oc-

cupies a similar number of executed instructions. For example, for Phase 2 (the

top line), the total number of instructions executed is 80 billion with one thread,

and about 85 billion for 4 threads.

The important observation here is that the proportion of intervals as-

signed to each phase is the same across the different runs when varying the

threads. This shows that phase behaviors coherently correspond to the execution

of different paths in the code. The thread-count increase changes the distribution

of the execution of these paths among different threads, but does not significantly



155

1.0E+10

2.0E+10

3.0E+10

4.0E+10

5.0E+10

6.0E+10

7.0E+10

8.0E+10

9.0E+10

1.0E+11

1.1E+11

1 2 3 4

Thread Count

C
y

c
le

s

Phase1
Phase2
Phase3
Phase4
Phase5

Figure VI.6: Number of cycles per phase across 4 different parallel executions of
sp.A: serial, 2, 3, and 4 threads.
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alter their nature nor the amount of executed instructions in each phase. It is

therefore to be expected and required for a good definition of phases that a given

phase behavior occupies approximately the same number of instructions retired,

independently from the thread-count, as the number of threads is varied.

VI.E Parallel SimPoint

We now examine using the phase groupings described in Section VI.C

for Parallel SimPoint. The goal is to choose a small set of simulation points

(on a per thread basis) that when simulated on a deterministic multi-thread

simulator [38, 63] provide an accurate representation of the complete parallel

run.

For Parallel SimPoint, we use the phase clustering algorithm described

in Section VI.C. A simulation point is chosen for each phase, which is the interval

for a specific thread with its sampled basic block vector closest to the centroid

of the phase. Remember for our approach, phases can represent intervals from

different threads after clustering. Each simulation point is assigned a weight

equal to the percent of the program’s execution (in terms of intervals) its phase

represents (no matter what thread the interval came from). The architecture

metrics for these simulation points are then gathered during simulation, and

the results are combined with the weights to create an overall estimate of the

program’s execution in terms of architecture metrics.

Figure VI.8 shows the relative error rates for CPI and L2 hit rate for

the 2-thread and 4-thread runs when comparing the parallel SimPoint estimated

metric to the overall program’s baseline metric. The number of simulation points

used for each program is shown in Table VI.1. The results show that the CPI

error is 15% or less, with an average of 3% for the 2-thread runs, and similar

results are seen for the cache hit rate. Lower error rates are seen for the 4-thread
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Figure VI.8: SimPoint relative error rates for CPI, L2 and L3 hit rates

runs. Programs like is.B have higher error rates due to the huge deviation in

program behavior between the parallel and sequential part of execution. Even

so, the error rate is small (less than 4%) for 4-threads. This result, along with

the reduction in standard deviation as shown in Section VI.C, shows that our

approach groups similar parts of execution together based only on the sampled

code signatures.

VI.F Related Work

Efficient simulation techniques are more difficult to apply in parallel

execution models. In this section we describe related work that focused on parallel

simulation.

Van Biesbrouck et al. [4] used phase behavior to guide simulation for

Simultaneous Multithreading [69]. A co-phase matrix is generated to represent

the per-thread performance for each potential combination of the single-threaded

phase behaviors that can be found when multiple programs are run together. The

co-phase matrix is populated by collecting samples of the programs’ phase com-

binations, and is used to guide fast forwarding between samples. This approach

is effective in guiding SMT simulation and significantly reduces the simulation
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time.

Our approach is different in that we are focusing on parallel applica-

tions instead of multiple applications running in parallel. Our approach focuses

on identifying the unique phase behaviors seen, and then taking one sample (sim-

ulation point) of each phase behavior with whatever else is executing with it at

that time to represent that phases execution.

VI.G Summary

In this chapter we focus on discovering phases in parallel applications

running on shared memory systems. We start by describing how to recognize

similar activities performed by different threads for a program’s execution. The

results showed that this can be used with SimPoint to accurately represent the

program’s parallel behavior with an average error less than 4% for CPI, and L2

and L3 hit rates, as well as significantly reduce the standard deviation of these

metrics within a phase.

We also showed that we can perform thread-varying phase analysis

across different runs of a program as the number of threads used varies from

1 to 4 threads. We found that thread-varying phase analysis can be used to

examine the effect on specific parts of the program’s execution as the number

of threads are varied. This can be used by researchers to better understand a

parallel program’s execution for different number of threads/processors. Finally

we showed that using the parallel phase analysis can be used to accurately pick

simulation points to guide multi-threaded simulation.
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VII

Summary and Future Directions

This dissertation presents techniques for characterizing time varying

program behavior for efficient simulation. Understanding the cycle level behav-

ior of a processor running an application is crucial to modern computer archi-

tecture research. Cycle detail simulation is prohibitively slow while benchmarks

are exceedingly long. By representatively sampling only the unique behaviors we

observe in real programs, simulation overhead can be reduced to a reasonable

level and achieve very accurate performance estimates.

The main idea behind SimPoint is the realization that programs typi-

cally only exhibit a few unique behaviors that are interleaved with one another

through time. By finding these behaviors and then determining the relative im-

portance of each one, we can maintain both a high level picture of the program’s

execution and at the same time quantify the cycle level interaction between the

application and the architecture. The key to being able to find these phases in

an efficient and robust manner is the development of a metric that can detect the

underlying shifts in a program’s execution that result in the changes in observed

behavior. In this thesis we have discussed one such method of quantifying exe-

cuted code similarity, and use it to find program phases through the application

of unsupervised learning techniques.

160
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SimPoint automates the process of picking simulation points using an

off-line phase classification algorithm based on k-means clustering, which signifi-

cantly reduces the amount of simulation time required. Selecting and simulating

only a handful of intelligently picked sections of the full program provides an

accurate picture of the complete execution of a program, which gives a highly

accurate estimate of performance. The SimPoint software can be downloaded at:

http://www.cse.ucsd.edu/users/calder/simpoint/

For the industry-standard SPEC programs, SimPoint has less than a 6%

error rate (2% on average) for the results in this thesis, and is 1,500 times faster

on average than performing simulation for the complete program’s execution.

Because of this time savings and accuracy, our approach is currently used by

architecture researchers and industry companies (e.g. [48] at Intel) to guide their

architecture design exploration.

In this thesis we presented the following contributions for efficient sim-

ulation using the baseline SimPoint model:

• Explore data-mining and statistical advances in doing phase analysis that

optimize both the runtime and accuracy of SimPoint as well as target the

overall simulation time.

• Present an approach that finds a single set of simulation points to be used

across all binaries for a single program. This allows for simulation of the

same parts of program execution despite changes in the binary due to ISA

changes or compiler optimizations.

• Present a method of characterizing the behavior of parallel applications and

use it to pick simulation points to guide multi-threaded simulations.

We now summarize each of these contributions.
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Optimizing Runtime, Accuracy and Simulation Overhead

We explored the primary parameters that have influence on how Sim-

Point and the k-means clustering algorithm behave. We described how we achieve

a reasonable running time for k-means while maintaining a high accuracy by cal-

ibrating the number of clustering iterations, number and type of random seeds

used, and the number of dimensions needed. We showed that its possible to sub-

sample the vectors during clustering to enable the clustering of very large data

sets. We also presented a binary search method over k clusterings that achieves

comparable accuracy to an exhaustive search, but at a fraction of the time.

Additionally, we presented the Variance SimPoint algorithm that uses a

user defined confidence and probabilistic error bound to guide the picking of

k. This algorithm first gives priority to choosing a clustering that has well

formed (based upon the code frequencies) clusters. This is to make sure that

the clustering is representative across different architecture configurations. The

Variance SimPoint clustering for picking samples shows that tighter probabilistic

error bounds are seen when compared to random sampling when using the same

amount of samples as there are simulation points. This is due to Variance Sim-

Point always choosing a representative sample from each cluster to make sure all

the unique/different behavior in the program is captured. In comparison, for a

small number of samples, random sampling tends to over/under sample some of

the program’s behavior resulting in looser probabilistic error bounds.

We also presented the Early SimPoint algorithm whose goal is to find

representative simulation points early in a program’s execution to reduce fast-

forward simulation time. The amount of fast-forward time required for a sim-

ulation is the number of instructions it takes to reach the last simulation point

for a program/input run. When using an execution interval size of 100 million

instructions, we found that Early SimPoint had a 3.6 times shorter fast-forward
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length on average than the standard SimPoint algorithm. When using an interval

size of 10 million, we found the fast-forward length to be only 12% of the full

execution on average, with an average CPI error of 4%. These results show that

these early simulation points can be used to significantly reduce the time spent

fast-forwarding to reach all of the simulation points for a program, while still

providing accurate results.

Variable Length Intervals and Cross Binary Simulation Points

Using real program datasets we showed that the majority of a program’s

execution is spent in loops. The average number of instructions per loop iteration

can change over time. This means that the period lengths are not stable over time.

An ideal fixed interval length for one section of execution may be dissonant with

another portion of the program’s execution. Since no single interval length will do

a good job representing the program, we presented the concept of variable length

interval lengths that can capture the varying period of the program’s behavior

pattern. We also modified SimPoint to consume variable length intervals, which

is essential for our Cross Binary Simulation Points.

Researchers testing a new ISA extension, examining a new architec-

ture, or trying a new compiler optimization may need to analyze and evaluate

performance across different binaries of a program. Due to the slow nature of

performance simulators, it has become a standard practice to use representative

sampling simulation techniques. We examined two approaches for simulation

when there are multiple binaries for a single program/input.

The first approach simply applies the existing SimPoint approach sepa-

rately on each binary, creating a different set of simulation points for each binary.

This approach can accurately estimate the performance for each binary by using

different simulation points for each binary, but the approach can have significant
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error when comparing performance across binaries, since the different simulation

points may emphasize different behaviors.

The second approach identifies simulation points that represent the same

behaviors across all binary representations of a program. This allows us to simu-

late the same parts of execution as we change the ISA or compiler optimizations

during design space exploration. Our approach finds phase transitions during ex-

ecution that are identifiable in all of the binaries considered. We use these phase

markers along with SimPoint to pick simulation points to represent the full exe-

cution of the program, and to identify the exact same start and end of execution

for the simulation points in each binary. Our results show that this method does

not suffer from changing biases that can occur with the first approach, so cross-

binary simulation points can be used to accurately compare performance across

binaries.

Characterizing Parallel Applications

We presented a method that characterizes phases in parallel applications

running on shared memory systems. We showed how to recognize similar activi-

ties performed by different threads for a program’s execution. The results showed

that this can be used with SimPoint to accurately represent the program’s paral-

lel behavior with an average error less than 4% for CPI, and L2 and L3 hit rates,

as well as significantly reduce the standard deviation of these metrics within a

phase.

We also showed that we can perform thread-varying phase analysis

across different runs of a program as the number of threads used varies from

1 to 4 threads. We found that thread-varying phase analysis can be used to

examine the effect on specific parts of the program’s execution as the number

of threads are varied. This can be used by researchers to better understand a
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parallel program’s execution for different number of threads/processors. Finally

we showed that using the parallel phase analysis can be used to accurately pick

simulation points to guide multi-threaded simulation.

VII.A Future Work

The SPEC CPU 2006 suite executes on the order of a trillion instruc-

tions per benchmark. Conservative projections estimate an exponential trend

in the SPEC CPU instruction counts, and future generation suites will execute

many trillions of instructions per benchmark. At the same time, processors are

becoming more intricate and their simulations are running slower. These oppos-

ing trends will drive the need for efficient simulation techniques even more in the

future.

The granularity of intervals used to split a program execution have a

significant impact on the phases discovered in a program. While big intervals

capture large scale behavior, smaller intervals can capture detailed regions of

complex behavior. In many programs there is some periodic behavior, which the

right interval size can cleanly capture.

In SimPoint we want to find this ideal interval size for any given pro-

gram. This interval size may lead to a cleaner phase characterization and more

accurate yet shorter simulation time. Modeling the tradeoff between interval

granularity and resulting accuracy and simulation time is needed. Signal pro-

cessing has many tools that can analyze the program behavior trace and extract

useful information regarding fundamental periodic behavior. An analysis to de-

termine an ideal interval size for a particular program would be a significant

contribution to SimPoint.

Machine learning is an active field with a continuous flow of improving

techniques. SimPoint utilizes several data mining methods, for example clustering
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with K-Means, dimension reduction with Random Projection, and cluster rating

with the Bayesian Information Criterion. New developments in clustering can

lead to more accurate simulation samples being picked. One attractive approach

is the Expectation-Maximization (EM) soft clustering algorithm which we have

started examining. It assigns a probability distribution for a point corresponding

to its similarity (distance) for each possible centroid (cluster center) in the data

set. This can be very useful if we have an interval spanning multiple behaviors

during the execution. The EM algorithm can detect these unique behaviors

within the interval and assign the appropriate weight distribution for the interval

across multiple phases. There are many other algorithms out there to try that

can provide new opportunities for improvement.

The demand for efficient simulation techniques has driven this area of

research into the spotlight. With efficient simulation techniques such as SimPoint

more researchers are now considering how to exploit these in their methodology.

An improved methodology will have far reaching benefits on architecture research.

Greater efficiency in evaluating a study will reduce the turnaround time between

hypothesis and experimental evaluation. More importantly, the validity of the

experimental evaluation will be sound using techniques that accurately represent

the complete program-processor execution model. Looking ahead we can expect

longer benchmarks and slower simulators as well as new unforeseen challenges.

It is crucial for researchers to continue addressing these challenges with efficient

simulation techniques.
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