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Computationally efficient confidence intervals for cross-
validated area under the ROC curve estimates

Erin LeDell, Maya Petersen†, and Mark van der Laan‡
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Erin LeDell: ledell@berkeley.edu; Maya Petersen: mayaliv@berkeley.edu; Mark van der Laan: laan@berkeley.edu

Abstract

In binary classification problems, the area under the ROC curve (AUC) is commonly used to 

evaluate the performance of a prediction model. Often, it is combined with cross-validation in 

order to assess how the results will generalize to an independent data set. In order to evaluate the 

quality of an estimate for cross-validated AUC, we obtain an estimate of its variance. For massive 

data sets, the process of generating a single performance estimate can be computationally 

expensive. Additionally, when using a complex prediction method, the process of cross-validating 

a predictive model on even a relatively small data set can still require a large amount of 

computation time. Thus, in many practical settings, the bootstrap is a computationally intractable 

approach to variance estimation. As an alternative to the bootstrap, we demonstrate a 

computationally efficient influence curve based approach to obtaining a variance estimate for 

cross-validated AUC.
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1. Introduction

The area under the ROC curve, or AUC, is a ranking-based measure of performance in 

binary classification problems. Its value can be interpreted as the probability that a randomly 

selected positive sample will rank higher than a randomly selected negative sample. AUC is 

a more discriminating performance measure than accuracy [1], and is invariant to relative 

class distributions [2].

In practice, we are generally concerned with how well our results will generalize to new 

data. Cross-validation is a means of obtaining an estimate that is generalizable to data drawn 

from the same distribution but not used in the training set. Common types of cross-

validation procedures include V-fold [3], leave-one-out [21, 7, 3], and leave-p-out [20] 

cross-validation. Given the advantages of AUC as a performance measure, along with the 
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desire to produce generalizable results, cross-validated AUC is frequently used in binary 

classification problems.

An important task in any estimation procedure is rigorously quantifying the uncertainty in 

the estimates. In many cases, specification of a parametric model known to contain the truth 

is not possible, and approaches to inference which are robust to model misspecification are 

therefore needed. Two approaches to robust inference include inference based on resampling 

methods, and inference based on influence curves (also known as influence functions). In 

practice, resampling methods such as the nonparametric bootstrap [11, 12], are commonly 

used due to their generic nature and simplicity. However, when data sets are large or when 

methods for training a prediction model are complex, bootstrapping can quickly become a 

computationally prohibitive procedure.

Although cross-validation lends itself well to parallelization, it can still take a very long time 

to generate a cross-validated performance measure, such as cross-validated AUC, depending 

on the complexity of the algorithm used to train the prediction model or the size of the 

training set. In machine learning, ensemble methods are prediction methods that make use 

of, or combine, several or many candidate learning algorithms to obtain better predictive 

performance. This boost in performance is often accompanied by an increase in the time it 

takes to generate cross-validated predictions. Alternatively, given massive data sets, even 

simple prediction methods can be computationally expensive. In cases where obtaining a 

single estimate of cross-validated AUC requires a significant amount of time and/or 

resources, the bootstrap is either not an option, or at the very least, a undesirable option for 

obtaining variance estimates.

As a response to the computational costs of the bootstrap, variations of the bootstrap have 

been developed that achieve a more desirable computational footprint, such as the “m out of 

n bootstrap” [9] and subsampling [19]. Another recent advancement that has been made in 

this area is the “Bag of Little Bootstraps” (BLB) method [4]. Unlike previous variations, 

BLB simultaneously addresses computational costs, statistical correctness and automation, 

which appears to be a promising generalized method for variance estimation on massive data 

sets.

Regardless of the reduction in computation that different variations of the bootstrap offer, all 

bootstrapping variants require repeated estimation on at least some subset of the original 

data. By using influence curves for variance estimation, we avoid the need to re-estimate our 

parameter of interest, which in the case of cross-validated AUC, requires fitting additional 

models. In order to estimate variance using influence curves, you must first, unsurprisingly, 

calculate the influence curve for your estimator. For complex estimators, it can be a difficult 

task to derive the influence curve. However, once the derivation is complete, variance 

estimation is reduced to a simple and computationally negligible calculation. This is the 

main motivation for our use of influence curves as a means of variance estimation.

The main goal of this paper is to establish an influence curve based approach for estimating 

the asymptotic variance of the cross-validated area under the ROC curve estimator. We first 

define true cross-validated AUC along with a corresponding estimator and then provide a 
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brief overview of influence curve based variance estimation. We derive the influence curve 

for the AUC of both i.i.d. data and pooled repeated measures data (multiple observations per 

independent sampling unit, such as a patient), and demonstrate the construction of influence 

curve based confidence intervals. We conclude with a simulation that evaluates the coverage 

probability of the confidence intervals and provide a comparison to bootstrapped based 

confidence intervals. The methods are implemented in a publicly available R package called 

cvAUC [16].

2. Cross-validated AUC as a target parameter

In this section, we formally introduce AUC. We then define the estimator for cross-validated 

AUC, as well as the target that it is estimating, the true cross-validated AUC.

Consider some probability distribution, P0, that is known to be an element of a statistical 

model, . Let O = (W, Y) ~ P0 ∈ , where Y is a binary outcome variable, and W 

represents one or more covariates or predictor variables (design matrix). Without loss of 

generality, we will denote Y = 1 as the positive class and Y = 0 as the negative class, and ψ 

as a function that maps W into (0, 1). The quantity, ψ(W), is the predicted value or score of a 

sample. The Area Under the ROC curve can be defined as the following:

(2.1)

Alternatively, we can define AUC as

(2.2)

where (W1, Y1) and (W2, Y2) are i.i.d. samples from P0. The quantity, AUC(P0, ψ), the true 

AUC, equals the probability, conditional on sampling two independent observations where 

one is positive (Y1 = 1) and the other is negative (Y2 = 0), that the predicted value (or rank) 

of the positive sample, ψ(W1), is higher than the predicted value (or rank) of the negative 

sample, ψ(W2).

Consider O1, …, On, i.i.d. samples from P0, such that Oi = (Wi, Yi) for each i, and let Pn 

denote the empirical distribution. Let n0 be the number of observations with Y = 0 and let n1 

be the number of observations with Y = 1. In machine learning, the ψ function is what is 

learned by a binary prediction algorithm using the training data. The AUC of the empirical 

distribution can be written as follows:

where I is the indicator function.
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We focus on estimating cross-validated AUC. We do not require that the cross-validation be 

any particular type; however, in practice, V-fold is common. We will use a generalized 

notation to encode the data splitting procedure, where a binary indicator vector is used to 

specify which observations belong to the validation set at each iteration of the cross-

validation process. Let  be the collection of random splits that define our cross-

validation procedure, where . In the case of V-fold cross-validation, each of the 

 encodes a single fold; the vth validation fold is the set of observations indexed by {i : 

}, and the remaining observations belong to the vth training set, {i : }.

Let  denote a nonparametric model that includes the empirical distribution, Pn, and let 

Ψ̂ :  → ℝ be an estimator of target parameter, ψ0 true cross-validated AUC. We assume 

that Ψ̂(P0) = ψ0.

For each , we define , where  is the empirical distribution of the 

observations contained in the vth training set. The function , which is learned from the 

vth training set, will be used to generate predicted values for the observations in the vth 

validation fold. We define  and  to be the number of positive and negative samples in 

the vth validation fold, respectively. Formally,  and 

, We note that  and  are random variables that depend 

on the value of both  and {Yi : }. The AUC for a single validation fold, {i : 

}, is:

Then the V-fold cross-validated AUC estimator is defined as:

(2.3)

The target, ψ0, of the V-fold cross-validated AUC estimator is defined as:

(2.4)

where (W1, Y1) and (W2, Y2) are i.i.d. samples from P0. In other words, our target parameter, 

the true cross-validated AUC, corresponds to fitting the prediction function on each training 

set, evaluating its true performance (or true probability of correctly ranking two randomly 

selected observations, where one is a positive sample and the other a negative sample) in the 

corresponding validation set, and finally, taking the average over the validation sets. The 
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true value of this target parameter is random, in that it depends on the split of the sampled 

data into training sets and corresponding fits of the prediction function. We now wish to 

construct confidence intervals for our estimator of cross-validated AUC, 

.

3. Influence curves for variance estimation

We provide a brief overview of influence curves and their relation to variance estimation. 

We outline the general procedure for obtaining confidence intervals using the influence 

curve of an estimator. This section serves as a gentle introduction to concepts and notation 

used throughout the paper.

Suppose that O ≡ O1, …, On are i.i.d. samples from a probability distribution, P0, that is 

known to be an element of a statistical model, . Let  be some class of functions of O. 

Throughout this paper, we will use the notation Pf, where P is a probability distribution, to 

denote ∫ f(x)dP (x). We consider the empirical process, (P0f : f ∈ ), which is a “vector” of 

true means. Let Ψ :  → ℝd be a parameter of interest, and let ψ0 = Ψ(P0) ≡ Ψ(P0f : f ∈ ) 

be the true parameter value; ψ0 is a function of true means. Now let  denote a 

nonparametric model that includes the empirical distribution, Pn, of O1, …, On. We consider 

the empirical process, (Pnf : f ∈ ), which is a “vector” of empirical means. Let Ψ̂ :  → 

ℝd be an estimator of ψ0 that maps the empirical distribution, Pn, or rather, a “vector” of 

empirical means, into an estimate Ψ̂(Pn) ≡ Ψ̂(Pnf : f ∈ ). We assume that Ψ̂(P0) = ψ0, so 

that the estimator targets the desired target parameter, ψ0. This estimate is asymptotically 

linear at P0 if

(3.1)

for some zero-mean function, IC(P0), of O (i.e. P0IC(P0) = 0). The function, IC(P0), is 

called the influence curve (or influence function) of the estimator, Ψ. The main task in the 

process of constructing influence curve based confidence intervals is demonstrating the 

asymptotic linearity of your estimator.

By the Central Limit Theorem, we find that , where Σ0 

= P0IC(P0)IC(P0)T. This covariance matrix can be estimated with the empirical covariance 

matrix , i = 1, …, n where  is an estimate of IC(P0). When our target parameter is 

one-dimensional, as in cross-validated AUC, we can write the following:

(3.2)

where Φ2(P0) = ∫ IC(P0)(x)2dP0(x). We can estimate Φ2(P0) as

LeDell et al. Page 5

Electron J Stat. Author manuscript; available in PMC 2015 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3.3)

however, other estimators of the variance of the influence curve can be considered. Letting 

zr denote the rth quantile of the standard normal distribution, it follows that for any estimate 

 of ϕ2(P0), we have that

(3.4)

forms an approximate 100 × (1 − α)% confidence interval for ψ0 ≡ Ψ̂(P0).

In order to assume that asymptotically linear estimators of ψ0 exist, we must assume that the 

parameter Ψ is pathwise differentiable [10]. This method for establishing the asymptotic 

linearity and normality of the estimator is called the functional delta method [22, 14], which 

is a generalization of the classical delta method for finite dimensional functions of a finite 

set of estimators.

4. Confidence intervals for cross-validated AUC

In this section, we establish the influence curve for AUC and show that the empirical AUC 

is an asymptotically linear estimator of the true AUC. Using these results, we follow the 

methodology from Section 3 to derive confidence intervals for cross-validated AUC. Then 

we provide a description of the practical construction of the confidence intervals from an 

i.i.d. data sample.

Theorem 4.1—Let O = (W, Y) ~ P0, where W represents one or more variables and Y is 

binary. Without loss of generality, assume Y ∈ {0, 1} and that ψ is a function that maps W 

into (0, 1). Define AUC(P0, ψ) as

The efficient influence curve of AUC(P0, ψ), evaluated at a single observation, Oi = (Wi, Yi), 

for a nonparametric model for P0 is given by

For each ψ, the empirical AUC(Pn, ψ) is asymptotically linear with influence curve ICAUC 

(P0, ψ). Let Bn ∈ {0, 1}n be a random split of the observations into a training and validation 
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set. Let  and  be the empirical distributions of the validation set, {i : Bn(i) = 1}, 

and training set, {i : Bn(i) = 0}, respectively. We assume that Bn has only a finite number of 

values uniformly in n, as in V-fold cross-validation. We assume that p =Σi Bn(i)/n is 

bounded away from a δ > 0, with probability 1. Define the cross-validated area under the 

ROC curve as

(4.1)

We also define the target of this cross-validated area under the ROC curve as

(4.2)

We assume that there exists a ψ1 ∈ Ψ so that P0{ICAUC (P0, Ψ̂(Pn)) − ICAUC (P0, ψ1)}2 

converges to zero in probability as n → ∞. We also assume that supψ∈Ψ supO |ICAUC (P0, 

ψ)(O)| < ∞, where the supremum over O is over a support of P0. Then,

(4.3)

In particular,  converges to a normal distribution with mean zero 

and variance, σ2 = P0 {ICAUC (P0, ψ1)}2. Thus, one can construct an asymptotically 0.95-

confidence interval for R̃(Ψ̂, Pn) given by , where  is a consistent 

estimator of σ2. A consistent estimator of σ2 is obtained as

(4.4)

Proof: In order to derive influence curve based confidence intervals for cross-validated 

AUC, we must first derive the influence curve for AUC and show that AUC(Pn, ψ) is an 

asymptotically linear estimator of AUC (P0, ψ) with influence curve as specified in the 

theorem. For that purpose we use the functional delta method [22, 14]. The asymptotic 

linearity of AUC(Pn, ψ) is an immediate consequence of the compact differentiability of 

functionals (F1, F2) → ∫ F1(x)dF2(x) for cumulative distribution functions (F1, F2) in Gill 

(1989) so that the functional delta-method can be applied here as well. Therefore it only 

remains to determine the actual influence curve which is defined in terms of the Gateaux 

derivative of P → AUC(P, ψ) in the direction of the empirical distribution for a single 

observation O. We will do that now.

We define Fa(c) = P0(ψ(W) < c | Y = a) for a ∈ {0, 1}. Therefore, we can alternatively 

express true AUC as
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(4.5)

The Gateaux derivative of Φ(F0, F1) in direction (h0, h1) is given by:

Therefore, we have the following linear approximation:

Let F0n, F1n be the empirical distributions of F0, F1. Next we derive the linear 

approximations of F1n − F1 and F0n − F0. Note that for a ∈ {0, 1},

(4.6)

It follows that Fan(c) − Fa(c) ~

So the influence curve of Fan(c) for a single observation, Oi = (Wi, Yi), is:

(4.7)

We can substitute this for ha in the linear approximation above resulting in the desired 

influence curve ICAUC (P0, ψ) as presented in the theorem. For that, it is helpful to observe 

that:

(4.8)

(4.9)

This is the influence curve for AUC(Pn, ψ), and, since the model  for P0 is nonparametric, 

this is also the efficient influence curve of parameter AUC(P0, ψ) on a nonparametric model.

Using the notation that was defined in Section 2, it follows that
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At the first equality we apply the previously established asymptotic linearity of 

, conditional on the training sample, which proves that each Bn-specific 

remainder  is . Since there are only a finite number of possible 

Bn, this also proves the next equivalence stating that the average across the different Bn-

splits of the remainder is also . In the third equality, we just carry out a simple 

split of the empirical process in two terms. In the statement of the theorem, we assume that 

P0{ICAUC (P0, Ψ̂(Pn)) − ICAUC (P0, ψ1)}2 converges to zero in probability as n → ∞ for 

some ψ1. Using a result from [23] involving the application of empirical process theory 

(specifically Lemma 2.14.1 in [22]), the term, 

, is shown to be , 

which results in the fourth equality.

Finally, , proving the asymptotic 

linearity of the cross-validated AUC estimator as stated in the final equality. In particular,

converges to a normal distribution with mean zero and variance, σ2 = P0 {ICAUC (P0, ψ1)}2. 

A consistent estimator of σ2 is obtained as

For , we estimate the unknown conditional probabilities of the influence curve ICAUC with 

the empirical distribution of the validation set, so that  will be 

consistent at  under no conditions on the estimator Ψ̂. This is why we replaced 

P0 in ICAUC (P0, ψ) by the empirical distribution of the validation set. However, the 

probabilities P0(Y = 1) and P0(Y = 0) can be estimated using the whole sample.

Thus, one can construct an asymptotically 0.95-confidence interval for 

 given by .
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4.1. A practical implementation for i.i.d. data

For further clarity, we provide a description of the practical construction of the confidence 

intervals from an i.i.d. data set, as implemented in our software package. Consider an i.i.d. 

sample of size n with a binary outcome Y. For each observation, Oi = (Wi, Yi), we have a d-

dimensional numeric vector Wi (design matrix) and a binary outcome, Yi. Without loss of 

generality, let Yi ∈ {0, 1}, for all i = 1, …, n, however, Y can be any ordered two-class 

variable. In this example, we will use V-fold cross-validation and define the the splits as 

, as defined previously. Calculating the V-fold cross validated AUC estimate 

corresponds to:

1. Building or fitting the prediction function on each of V validation sets.

2. Generating a predicted outcome for each observation in the vth validation set. The 

predictions are generated using a fit that was trained on the {1, …, V} \ v folds.

3. For each validation fold, using these predicted values, together with the observed 

outcomes for each observation, to generate an estimate of the AUC for that 

validation fold.

4. Average these estimates across the V validation folds to calculate the cross-

validated AUC.

Recall that  and  are the empirical distributions of the vth validation and training 

set, respectively and Pn is the empirical distribution of the whole data sample. The V-fold 

cross-validated AUC estimate, denoted R̂(Ψ̂, Pn), is given by . In 

order to construct influence curve based confidence intervals for R̂(Ψ̂, Pn), we estimate the 

asymptotic variance as:

(4.10)

(4.11)

where , and for each v ∈ {1, …, V} and i ∈ {1, …, n}, we have
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Despite the density of the notation above, each of the components in the influence curve can 

be calculated very easily from the data. The terms,  and 

, are the proportions of positive and negative samples, 

respectively, in the empirical distribution. Let  be the 

number of positive samples in the vth validation set and let 

be the number of negative samples in the vth validation set. Also, recall that  is the 

function learned by the vth training set, which maps a vector, W, of covariates, to a predicted 

value, . For a given sample, Oi = (Wi, Yi), we calculate the predicted value, 

, and note that whether Yi is labeled as positive (Yi = 1) or negative (Yi = 0). Above, 

each of the terms in the expression for the influence curve contains an indicator function, 

conditional on the value of Yi. Therefore, given the value of Yi, we need only to evaluate the 

non-zero part of the expression.

When Yi = 1, we need to evaluate:

This sum counts the number of negative samples in the validation set that have a predicted 

value less than , the predicted value for sample i. Then, we divide by the total 

number of negative samples in the validation set. Similarly, when Yi = 0, we need to 

evaluate:

This sum counts the number of positive samples in the validation set that have a predicted 

value greater than , the predicted value for sample i. Then, we divide by the total 

number of positive samples in the validation set. The remaining term in the expression for 

the influence curve is simply , given in Section 3, multiplied by inverse 

probability of Pn(Y = 1) or Pn(Y = 0), depending on the value of the indicator function at Yi. 

Thus, for fixed v ∈ {1, …, V} and i ∈ {1, …, n}, we have demonstrated how to calculate the 

quantity, , from an i.i.d. data set. Then we square this term 

and sum over i.i.d. samples, i, and cross-validation folds, v, to get
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an estimate for the asymptotic variance of R̂(Ψ̂, Pn), our V-fold cross-validated AUC 

estimator. The target of this estimator is

the true V-fold cross-validated AUC. Then, as in Theorem 4.1, one can construct an 

asymptotically 0.95-confidence interval for R̃(Ψ̂, Pn) as .

5. Generalization to pooled repeated measures data

Above, we derived a consistent influence curve based estimator of the asymptotic variance 

of cross-validated AUC for the simple setting in which there are n i.i.d. observations. Each 

of these observations, Oi has a predictor variable, Wi, coupled with a binary outcome 

variable, Yi, that we wish to predict. Now we consider the common setting in which there are 

repeated measures for each observation. This data structure arises frequently in medical 

studies, where each patient is measured at multiple time points. We focus on the case where 

the order of these measures is not meaningful, and one simply wishes to obtain a single 

summary of classifier performance pooled over all measures. We begin by providing a 

formal definition of the target parameter, the pooled cross-validated AUC, for such cases. 

We then extend the results presented in the previous sections to derive an influence curve 

based variance estimator for the cross-validated AUC of a pooled repeated measures data 

set.

As before, we let P0 ∈  and Ψ:  → Ψ. We denote the target parameter Ψ(P0) as ψ0. Let 

O = (W (t), Y (t): t ∈ τ) ~ P0 for a possibly random index set τ ⊂ {1, …, T}, where t 

corresponds to a single time-point observation. Here Y (t) is binary for each t. We observe n 

i.i.d. copies Oi = (Wi(t), Yi(t): t ∈ τi), i = 1, …, n of O. Let  denote a nonparametric 

model that includes the empirical distribution, Pn, of O1, …, On and let Ψ̂:  → ℝ be an 

estimator of ψ0. We assume that Ψ̂(P0) = ψ0. We consider the case where t is not a 

meaningful index, and that either ψ0(t, w) = E0 (Y (t) | W (t) = w) does not depend on t, or 

that the investigator has no interest in understanding the dependence on t. Consider the 

distribution,

This represents the limit distribution of the empirical distribution P̄
n of the pooled sample:
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One could define as a measure of interest for evaluation a predictor ψ, the area under the 

ROC curve one would obtain if one treats the pooled sample as N i.i.d. observations. That is, 

we define

(5.1)

where, without loss of generality, we let the positive class be represented by Y = 1 and the 

negative class be represented by Y = 0. The pooled repeated measures AUC can be 

interpreted as the probability that, after pooling over all independent sampling units and all 

time points, a randomly sampled positive outcome will be ranked more highly than a 

randomly sampled negative outcome.

The AUC for the empirical distribution of the pooled sample can be expressed explicitly as 

follows. Let  and let . Then we 

have

Now we consider the cross-validated AUC of a pooled repeated measures data set. Let Bn ∈ 

{0, 1}n be a random split of the n independent observations into a training and validation set. 

Let  and  be the empirical distributions of the pooled data within the validation 

set, {i: Bn(i) = 1}, and training set, {i: Bn(i) = 0}, respectively. We assume that Bn has only a 

finite number of values uniformly in n, as in V -fold cross-validation. Given a random split, 

Bn, we define .

As in the i.i.d. example in the previous section, we will walk through the case of V -fold 

cross-validation. Let  be the collection of random splits that define our cross-

validation procedure. In the case of V-fold cross-validation, each of the  encodes a single 

fold; the vth validation fold is {i : }, and the remaining samples belong to the vth 

training set, {i : }. Note that since our independent units are collections of pooled 

time points, Oi = (Wi(t), Yi(t): t ∈ τi), that all pooled samples from each i.i.d. sample, Oi will 

be contained within the same validation fold.

For each , we define , where  is the empirical distribution of the 

pooled data contained in the vth training set. The function , which is learned from the vth 

training set, will be used to generate predicted values for the observations in the vth 

validation fold. We define  and  to be the number of positive and negative samples in 

the vth validation fold, respectively. Formally, 
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and . We note that  and  are random variables 

that depend on the value of both  and {Yi : }.

The AUC for a single validation fold, {i : }, for pooled repeated measures data, is

(5.2)

where h(n, v, i, t, j, s) =

In other words, it is the probability that, after pooling over units and time, a randomly drawn 

positive sample will be assigned a higher predicted value than a randomly drawn negative 

sample in the same validation fold by the prediction model fit using the corresponding 

training set.

Then the V -fold cross-validated AUC estimator, for pooled repeated measures data, is 

defined as

(5.3)

(5.4)

We also define the target, ψ0, of the V -fold cross-validated AUC estimate as

(5.5)

(5.6)

where (W1, Y1) ≡ (W1(t), Y1(t)) and (W2, Y2) ≡ (W2(t), Y2(t)) are single time-point 

observations. The following theorem is the pooled repeated measures analogue to Theorem 

4.1.

Analogous to i.i.d. data version, this target represents the average across validation folds of 

the true probability (under P0) that a randomly sampled positive observation would be 

ranked higher than a randomly sampled negative observation in the same validation fold by 
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the prediction function fit in the corresponding training set. Again, the true value of this 

target parameter is random – it depends on the random split of the sample into V folds and 

corresponding fits of the prediction function. However, it nonetheless provides a meaningful 

measure of the performance of the prediction function on independent data.

Theorem 5.1—The efficient influence curve of , evaluated at Oi = (Wi(t), 

Yi(t)): t ∈ τi), for a nonparametric model for P0 is given by:

where

Directly above, (W, Y) ≡ (W(s), Y (s)) represents a single time-point observation. For each 

ψ, the estimator  obtained by plugging in the pooled empirical distribution P̄
0, 

is asymptotically linear with influence curve .

Let Bn ∈ {0, 1}n be a random split and let  and  be the empirical distributions of 

the validation {i: Bn(i) = 1} and training set {i: Bn(i) = 0}, respectively. Let  be the 

empirical distribution of the pooled data within the validation set. We assume that Bn has 

only a finite number of values uniformly in n, as in V-fold cross-validation. We assume that 

p = Σi Bn(i)/n is bounded away from a δ > 0, with probability 1. Define the cross-validated 

area under the ROC curve as

(5.7)

We also define the target of this cross-validated area under the ROC curve as

(5.8)

We assume that there exists a ψ1 ∈ Ψ so that 

converges to zero in probability as n → ∞. We also assume that 

, where the supremum over O is over a support of P0. 

Then,
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(5.9)

In particular,  converges to a normal distribution with mean zero 

and variance, . Thus, one can construct an asymptotically 0.95-

confidence interval for R̃(Ψ̂, Pn) given by  where  is a consistent 

estimator of σ2. A consistent estimator of σ2 is obtained as

(5.10)

Proof: This is the pooled repeated measures analogue of Theorem 4.1, so the proof follows 

the exact same format and arguments as the proof of Theorem 4.1.

6. Software

We implemented the influence curve based confidence intervals for cross-validated AUC for 

i.i.d. data as well as for pooled repeated measures data, as an R package. The package, called 

cvAUC [16], has the same function interface as the popular ROCR package [6].

For each observation, the user provides a cross-validated predicted value, as generated by a 

binary prediction algorithm, and a corresponding binary class label. If the user has pooled 

repeated measures data instead of i.i.d. data, then the user must also provide an id for each 

observation. The user must also indicate which observations belong to each cross-validation 

fold. To be clear, the user must provide for each observation, i:

1. The value of the outcome, Yi.

2. The validation fold, v ∈ {1, …, V }, that observation, i, is associated with.

3. The predicted probability of the outcome, ψ(Wi), based on plugging in that 

observation’s covariates, Wi, into a fit trained on the observations associated with 

folds: {1, …, V }\v.

The main functions of the package calculate the confidence intervals (confidence level 

supplied by the user; defaults to 95%) for cross-validated AUC and AUC estimates 

calculated using i.i.d. and pooled repeated measures training data. The package also includes 

utility functions to compute AUC and cross-validated AUC from a set of predicted values 

and associated true labels.

To provide some context to the computational efficiency of our methods, the influence curve 

based CV AUC variance calculation for i.i.d. data takes less than half a second to execute 

for a sample of 100,000 observations on a 2.3 GHz Intel Core i7 processor (package version 

1.0.3). For 1 million observations, it currently takes 13 seconds. More information and code 

examples can be found in the user manual for the package, and we provide a simple code 
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example in Appendix A. The cvAUC R package is available on CRAN at http://cran.r-

project.org/web/packages/cvAUC/index.html.

7. Coverage probability of the confidence intervals

In this section, we describe and present results from a simulation which demonstrates the 

coverage probability of our influence curve based confidence intervals as implemented in 

our R package, cvAUC [16]. The coverage probability of a confidence interval is the 

proportion of the time, over repetitions of the identical experiment, that the interval contains 

the true value of interest. Our true value of interest is true cross-validated AUC, defined in 

equation 2.4. In the simulation below, we consider a variety of training set sizes. We show 

that when n is small, the coverage probability of the influence curve based confidence 

interval may drop below the specified rate. Therefore, if you have a small sample size, 

bootstrapping may serve as a computationally-reasonable alternative variance estimation 

technique. To quantify the computational advantage of the influence curve approach, we 

evaluate the required number of bootstrap replicates that are required in order to achieve 

95% coverage.

7.1. Simulation to evaluate coverage probability

Let n × k represent the dimensions of our training set design matrix, X. We considered 

training sets where n = {500, 1000, 5000, 10000, 20000} and k = {10, 50, 100, 200}. The 

the number of covariates that are correlated with the outcome is fixed at 10. The remaining k 

– 10 covariates are random noise. For the 10 informative covariates, we generate 100,000 

points from (μ, Σ), and for each these observations, we let Y = 0. Similarly, we generate 

100,000 observations from (ν, Σ) and let Y = 1 for all these observations. For this 

simulation, we let μi = 0 and νi = 0.3, for i ∈ {1, …, 10} and we let Σ represent the identity 

covariance matrix. These combined 200,000 observations represent our true data 

distribution, P0. We note that our target parameter, true cross-validated AUC, is itself 

random, but that it represents a true target. We are interested in the confidence interval that 

contains this random target 95% of the time. The samples were generated using the 

mvrnorm function of the R package, MASS [5].

To calculate the coverage probability of our influence curve based confidence intervals, we 

generate the CV AUC and corresponding confidence intervals 5,000 times and report the 

proportion of times that the confidence interval contains the true CV AUC. For each 

iteration, we sample n points from the same distribution as our population data and use that 

as a training set.

We perform 10-fold cross-validation by splitting these n observations into 10 validation 

folds, stratifying by outcome, Y. For each validation fold, we train a Lasso-regularized 

logistic regression fit using the glmnet R package [13] using the observations from the 

remaining 9 folds. Using the fit model, we then generate predictions for each of the samples 

in the validation fold and calculate the empirical AUC. We will call this the fold AUC. We 

also calculate the true AUC by generating predicted values for all of the 200,000 data points 

in our population data and calculating the empirical AUC among this population.
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This process is repeated for each of the 10 validation folds, at which point we average the 

fold AUCs to get the estimate for cross-validated AUC. We also average the 10 true AUCs 

to get the true cross-validated AUC. We then calculate a 95% confidence interval for our 

CV AUC estimate and note whether or not the true CV AUC falls within the confidence 

interval.

For each value of k ∈ {10, 50, 100, 200}, this process is repeated 5,000 times to obtain an 

estimate of the coverage probability of our confidence intervals. The coverage probability is 

the proportion times that the true CV AUC fell within our confidence interval. For 95% 

confidence intervals, we expect the coverage probability to be close to 0.95. The coverage 

probabilities for each training set is shown in Table 1.

The results of the simulation indicate that for a relatively small sample size (e.g. n = 1, 000), 

the coverage probability of the confidence intervals are slightly lower (92–93%) than 

specified (95%). However, when n ≥ 5, 000, we have coverage between 94–95%. These 

simulations use just one particular data generating distribution, but the results can serve as a 

rough benchmark of coverage probability rates over various n.

In Table 2, we summarize the standard errors estimated using the influence curve based 

variance estimation technique, as implemented in the cvAUC package. For comparison, in 

Table 3 we report the standard deviation of the CV AUC estimates across the 5,000 

iterations of the simulation. We see that for n ≥ 5, 000, the standard errors and standard 

deviations are identical, however, for smaller n, the influence curve based standard errors 

are slightly conservative compared to the standard deviation across the 5,000 iterations. This 

is expected, based on the coverage probabilities reported in Table 4.

For reference, we provide the average CV AUC estimate across 5,000 iterations for training 

sets of various dimensions in Table 4. A total of 20 × 5, 000 = 500, 000 cross validated AUC 

estimates were generated for the entire simulation. The number of individual models that 

were trained across all 10 folds was 500, 000 × 10 = 5 million.

7.2. Comparison to bootstrapped confidence intervals

We implemented quantile (or percent) bootstrapped confidence intervals in Julia [8] (version 

0.0.3) to compare the coverage probability of bootstrap derived confidence intervals to 

influence curve derived confidence intervals. The same data generating distributions [18] as 

the influence curve based simulations were used, and again we used Lasso-regularized 

logistic regression [15]. For each iteration of the experiment, we generate an original 

training set and B bootstrapped replicates of the this training set. Using the B training sets, 

we generate B cross-validated AUC estimates [17]. We use the 0.025 and 0.975 quantiles of 

the B cross-validated AUCs to estimate the 95% confidence intervals. In this simulation, the 

computation time for bootstrapped confidence intervals is o(B) times greater than the 

runtime of the influence curve based confidence intervals since each bootstrap replicate 

requires a complete re-calculation of CV AUC. Some methods of bootstrapping (e.g. m of 

out n bootstrap [9] and “Bag of Little Bootstraps” [4]) make computational improvements 

on o(B), however all bootstrapping methods require you to make repeated estimations of CV 

AUC.
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On a training set of n = 1,000 observations, we evaluated how many bootstrapped replicates, 

B, are required to obtain 95% coverage. In this simulation, we found that at least 400 

bootstrap replicates were required to obtain a coverage probability of 0.95. The coverage 

probabilities for increasing values of B are shown in Table 5.

Since the bootstrap confidence interval coverage probability estimate converged after 

approximately 1,000 iterations of the experiment, the coverage probability estimates in 

Table 5 are averaged over 1,000 iterations instead of 5,000.

8. Conclusion

Cross-validated AUC represents an attractive and commonly used measure of performance 

in binary classification problems. However, resampling based approaches to constructing 

confidence intervals for this quantity can be computationally expensive. In this paper, we 

established the asymptotical linearity of the cross-validated AUC estimator and derived its 

influence curve for both the i.i.d. and pooled repeated measures cases. We then presented a 

computationally efficient approach to constructing confidence intervals based on estimating 

this influence curve, which is implemented as a publicly available R package called cvAUC. 

A simulation demonstrated that we were able to achieve the expected coverage probability 

for our confidence intervals, however, for small sample sizes, the coverage probability can 

dip below the desired rate. We have demonstrated a computationally efficient alternative to 

bootstrapping for estimating the variance of cross-validated AUC estimates.
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Appendix A: Appendix

A.1. Code example

Below is a simple example of how to use the cvAUC R package. This i.i.d. data example 

does the following:

1. Load a data set with a binary outcome. For the i.i.d. case we use a simulated data 

set of 500 observations, included with the package, of graduate admissions data.

2. Divide the indices randomly into 10 folds, stratifying by outcome. Stratification is 

not necessary, but is commonly performed in order to create validation folds with 

similar distributions. Store this information in a list called folds.

3. Define a function to fit a model on the training data and to generate predicted 

values for the observations in the validation fold, for a single iteration of the cross-

validation procedure. We use a logistic regression fit.

4. Apply this function across all folds to generate predicted values for each validation 

fold. The concatenated version of these predicted values is stored in vector called 

predictions. The outcome vector, Y, is the labels argument.
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# Create CV folds (stratify by outcome)

.cvFolds <- function(Y, V){

  Y0 <- split(sample(which(Y==0)),

          rep(1:V, length=length(which(Y==0))))

  Y1 <- split(sample(which(Y==1)),

         rep(1:V, length=length(which(Y==1))))

  folds <- vector(“list”, length=V)

  for (v in seq(V)) {folds[[v]] <- c(Y0[[v]], Y1[[v]])}

  return(folds)

}

# Train/test glm for each fold

.doFit <- function(v, folds, data){

  fit <- glm(Y~., data=data[-folds[[v]],], family=binomial)

  pred <- predict(fit, newdata=data[folds[[v]],], type=“response”)

  return(pred)

}

iid_example <- function(data, V=10){

  # Create folds

  folds <- .cvFolds(Y=data$Y, V=V)

  # CV train/predict

  predictions <- unlist(sapply(seq(V), .doFit,

                      folds=folds, data=data))

  # Re-order pred values

  predictions[unlist(folds)] <- predictions

  # Get CV AUC and confidence interval

  out <- ci.cvAUC(predictions=predictions, labels=data$Y,

           folds=folds, confidence=0.95)

  return(out)

}

# Run example

library(cvAUC)

data(admissions)

set.seed(1)

out <- iid_example(data=admissions, V=10)

# The output is given as follows:

# > out

# $cvAUC

# [1] 0.9046473
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#

# $se

# [1] 0.01620238

#

# $ci

# [1] 0.8728913 0.9364034

#

# $confidence

# [1] 0.95
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Fig 1. 
Plots of the coverage probabilities for 95% confidence intervals generated by our simulation 

for training sets of 1,000 (left) and 5,000 (right) observations. In the case of a 95% 

confidence interval, the coverage probability should be close to 0.95. For the smaller dataset 

of n = 1, 000 observations, we see that the coverage is slightly lower (92–93%) than 

specified, whereas for n = 5, 000, the coverage is closer to 95%.
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Table 5

Bootstrap confidence interval coverage probability using B bootstrapped replicates of a training set of n = 

1,000 observations.

B = 100 B = 200 B = 300 B = 400

k = 10 0.906 0.930 0.929 0.958
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