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THE TOP TRIANGLE MOOSE
∗

R. S. CHIVUKULA, N. D. CHRISTENSEN, B. COLEPPA and E. H. SIMMONS∗

Department of Physics and Astronomy,
Michigan State University

East Lansing, Michigan, 48824, USA
∗E-mail: esimmons@msu.edu

http://www.pa.msu.edu/hep/hept/index.php

We introduce a deconstructed model that incorporates both Higgsless and top-color mechanisms.
The model alleviates the typical tension in Higgsless models between obtaining the correct top quark
mass and keeping ∆ρ small. It does so by singling out the top quark mass generation as arising
from a Yukawa coupling to an effective top-Higgs which develops a small vacuum expectation value,
while electroweak symmetry breaking results largely from a Higgsless mechanism. As a result, the
heavy partners of the SM fermions can be light enough to be seen at the LHC.

I. INTRODUCTION

Higgsless models [1] have recently emerged as a novel way of understanding the mechanism of electroweak symmetry
breaking (EWSB) without the presence of a scalar particle in the spectrum. In an extra dimensional context, these
can be understood in terms of a SU(2) × SU(2) × U(1) gauge theory in the bulk of a finite AdS spacetime [2–5],
with symmetry breaking encoded in the boundary conditions of the gauge fields. One can understand the low energy
properties of such theories in a purely four dimensional picture by invoking the idea of deconstruction [6, 7]. The
“bulk” of the extra dimension is replaced by a chain of gauge groups strung together by non linear sigma model
fields. The spectrum typically includes extra sets of charged and neutral vector bosons and heavy fermions. A general
analysis of Higgsless models [8–13] suggests that to satisfy precision electroweak constraints, the standard model (SM)
fermions must be ‘delocalized’ into the bulk. A useful realization of this idea, “ideal fermion delocalization’” [14],
dictates that the light fermions be delocalized so as not to couple to the heavy charged gauge bosons. The simplest
framework capturing these ideas is the “three site Higgsless model”[? ], with just one gauge group in the bulk and
correspondingly, only one set of heavy vector bosons. The twin constraints of getting the correct value of the top
quark mass and having an admissible ρ parameter push the heavy fermion masses into the TeV regime [? ] in that
model.
This presentation summarizes Ref. [16], in which we seek to decouple these constraints by separating the mechanisms

that break the electroweak symmetry and generate the masses of the third family of fermions. In this way, one
can obtain a massive top quark and heavy fermions in the sub TeV region, without altering tree level electroweak
predictions. To present a minimal model with these features, we modify the three site model by adding a “top Higgs”
field, Φ, that couples preferentially to the top quark. The resulting model is shown in Moose notation [22] in Figure
1; we will refer to it as the “top triangle moose.”
The idea of a top Higgs is motivated by top condensation models (see references in Ref. [16]), and the specific

framework shown here is most closely aligned with topcolor assisted technicolor theories first proposed in Ref. [17],
in which EWSB occurs via technicolor[18, 19] interactions while the top mass has a dynamical component arising
from topcolor [20, 21] interactions and a small component generated by an extended technicolor mechanism. The
dynamical bound state arising from topcolor dynamics can be identified as a composite top Higgs field, and the
low-energy spectrum includes a top Higgs boson. The extra link in our triangle moose that corresponds to the top
Higgs field results in the presence of uneaten Goldstone bosons, the top pions, which couple preferentially to the third
generation. The model can thus be thought of as the deconstructed version of a topcolor assisted technicolor model.

II. THE MODEL

We now introduce the essential features of the model, which are required in order to understand the LHC phe-
nomenology. Full details are presented in Ref. [16].
The electroweak gauge structure of our model is SU(2)0 × SU(2)1 × U(1)2. This is shown using Moose notation

[22] in Figure 1, in which the SU(2) groups are associated with sites 0 and 1, and the U(1) group is associated with
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FIG. 1: The SU(2) × SU(2) × U(1) gauge structure of the model in Moose notation [22]. The SU(2) coupling g and U(1)
coupling g′ of sites 0 and 2 are approximately the SM SU(2) and hypercharge gauge couplings, while the SU(2) coupling g̃

represents the ’bulk’ gauge coupling.

site 2. The SM fermions deriving their SU(2) charges mostly from site 0 (which is most closely associated with the
SM SU(2)) and the bulk fermions mostly from site 1. The extended electroweak gauge structure of the theory is the
same as that of the BESS models [23, 24], motivated by models of hidden local symmetry [25–29].
The non linear sigma field Σ01 breaks the SU(2)0 × SU(2)1 gauge symmetry down to SU(2), and field Σ12 breaks

SU(2)1 × U(1)2 down to U(1). The left handed fermions are SU(2) doublets residing at sites 0 (ψL0) and 1 (ψL1),
while the right handed fermions are a doublet under SU(2)1(ψR1) and two SU(2)-singlet fermions at site 2 (uR2

and dR2). The fermions ψL0, ψL1, and ψR1 have SM-like U(1) charges (Y ): +1/6 for quarks and −1/2 for leptons.
Similarly, the fermion uR2 (dR2) has an SM-like U(1) charge of +2/3 (−1/3); the right-handed leptons, likewise, have
U(1) charges corresponding to their SM hypercharge values. The third component of isospin, T3, takes values +1/2 for
“up” type fermions and −1/2 for “down” type fermions, just like in the SM. The electric charges satisfy Q = T3 + Y .
We add a ‘top-Higgs’ link to separate top quark mass generation from EWSB. The top quark couple preferentially

to the top Higgs link via the Largangian:

Ltop = −λtψ̄L0 Φ tR + h.c. (1)

When the field Φ develops a non zero vacuum expectation value, Eqn.(1) generates a top quark mass term. Since we
want most EWSB to come from the Higgsless side, we choose the vacuum expectation values of Σ01 and Σ02 to be
F =

√
2 v cosω and the one associated with the top Higgs sector to be f = 〈Φ〉 = v sinω (where ω is small). The

top Higgs sector also includes the uneaten Goldstone bosons, the top pions; we assume they are heavy enough not to
affect electroweak phenomenology.
The mass terms for the light fermions arise from Yukawa couplings of the fermionic fields with the non linear sigma

fields

L = MD

[

ǫLψ̄L0Σ01ψR1 + ψ̄R1ψL1 + ψ̄L1Σ12

(

ǫuR 0
0 ǫdR

)(

uR2

dR2

)]

. (2)

We denote the Dirac mass setting the scale of the heavy fermion masses asMD. Here, ǫL is a flavor-universal parameter
describing delocalization of the left handed fermions. All the flavor violation for the light fermions is encoded in the
last term; the delocalization parameters for the right handed fermions, ǫfR, can be adjusted to realize the masses and
mixings of the up and down type fermions. For our phenomenological study, we will, for the most part, assume that
all the fermions, except the top, are massless and hence will set these ǫfR parameters to zero.
The tree level contributions to precision measurements in Higgsless models come from the coupling of standard

model fermions to the heavy gauge bosons. Choosing the profile of a light fermion bilinear along the Moose to be
proportional to the profile of the light W boson makes the fermion current’s coupling to the W ′ vanish because the
W and W ′ fields are mutually orthogonal. This procedure (called ideal fermion delocalization [14]) keeps deviations
from the SM values of all electroweak quantities at a phenomenologically acceptable level. We find that the ideal
delocalization condition in this model is ǫ2L =M2

W /2M2

W ′ , as in the three-site model.
The top quark mass matrix may be read from Eqns. (1) and (2) and is given by:

(

MDǫtL λtvsinω
MD MDǫtR

)

. (3)
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Diagonalizing the top quark mass matrix perturbatively in ǫtL and ǫtR, we find the mass of the top quark is:

mt = λtv sinω

[

1 +
ǫ2tL + ǫ2tR + 2

a
ǫtLǫtR

2(−1 + a2)

]

, a ≡ λt v sinω

MD

, (4)

Thus, we see that mt depends mainly on v and only slightly on ǫtR, in contrast to the situation in the three-site model
where mt ∝MDǫLǫtR.
Since the bL is the SU(2) partner of the tL, its delocalization is (to the extent that ǫbR ≃ 0) also determined by

ǫtL. Thus, the tree level value of the Zb ¯
LbLcoupling can be used to constrain ǫtL. We find gZbb

L equals its tree-level
SM value if the left-handed top quark is delocalized exactly as the light fermions are: ǫtL = ǫL.
Finally, the contribution of the heavy top-bottom doublet to ∆ρ is of the same form as in the three-site model [?

]: ∆ρ = M2

D ǫ
4

tR/16 π
2 v2. The key difference is that, since the top quark mass is dominated by the vev of the top

Higgs instead of MD, ǫtR can be as small as the ǫR of any light fermion. There is no conflict between the twin goals
of a large top quark mass and a small value of ∆ρ. Thus, the heavy fermions in the top triangle moose can be light
enough to be seen at the LHC.

III. HEAVY QUARKS AT THE LHC

We now summarize our analysis[16] of the possible discovery modes of the heavy quarks at the LHC; this work
employed the CalcHEP package [30].

A. Pair production: pp → QQ̄ → WZqq → lllνjj

Pair production of heavy quarks occurs at LHC via gluon fusion and quark annihilation processes, with the former
dominating for smaller MD. Each heavy quark decays to a vector boson and a light fermion. For MD < MW ′,Z′ , the
decay is purely to the standard model gauge bosons. We study the case where one heavy quark decays to Z + j and
the other decays to W + j, with the gauge bosons subsequently decaying leptonically. Thus, the final state is lllνjj.
To enhance the signal to background ratio, we have imposed a variety of cuts, as shown in Table 1. We note that

the the two jets in the signal should have a high pT (∼ MD/2), since they each come from the 2-body decay of a
heavy fermion. Thus, imposing strong pT cuts on the outgoing jets can eliminate much of the SM background without
affecting the signal too much. We also expect the η distribution of the jets to be largely central, which suggests an η
cut: |η| ≤ 2.5. We impose standard separation cuts between the two jets and between jets and leptons to ensure that
they are observed as distinct final state particles. We also impose basic identification cuts on the leptons and missing
transverse energy.
We identify the leptons that came from the Z by imposing the invariant mass cut (MZ − 2GeV) < Mll < (MZ +

2GeV). We then combine this lepton pair with a leading-pT light jet to reconstruct the heavy fermion mass. Because
one cannot know which light jet came from the Q, we actually combine the lepton pair first with the light jet of largest
pT and then, separately, with the light jet of next-largest pT , and include both reconstructed versions of each event
in our analysis. This yields[16] an invariant mass distribution with a narrow signal peak standing out cleanly at MD

above a tiny “background” from the wrongly-reconstructed signal events.
When generating the signal events, we included the four flavors of heavy quarks, U,D,C, S, that should have

similar phenomenology. We estimate the size of the peak by counting the signal events in the invariant mass window:
(MD − 10GeV) < Mjll < (MD + 10GeV). To analyze the SM background, we fully calculated the irreducible
pp → ZWjj process and subsequently decayed the W and Z leptonically. Imposing the full set of cuts on the final
state lllνjj entirely eliminates the SM background.
We find there are many signal events in the region of parameter space where Q → V q decays are allowed but

Q → V ′q decays are kinematically forbidden. The precise number is controlled by the branching ratio of the heavy
fermion into the SM vector bosons. Since the SM background is negligible, if we assume the signal events are Poisson-
distributed, then we can take 10 events to represent a 5σ signal at 95% c.l. Figure 2 shows the results, recast in the
form of the integrated luminosity required to achieve a 5σ discovery signal. We see that the pair-production process we
have studied spans almost the entire parameter space. However, in the region where MD ≥ 900 GeV and MW ′ ≤MD

there will not be enough signal events for the discovery of the heavy quark since the decay channel Q→W ′q becomes
significant. To explore this region, we now investigate the single production channel where the heavy quark decays to
a heavy gauge boson.
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TABLE I: Cuts employed in the pair (left) and single (right) production channels for the heavy quarks. ∆Rjj =
√

∆ηjj +∆φjj

refers to the separation between the two jets; ∆Rjl refers to the angular separation between a lepton and a jet.

Variable Cut

pTj >100 GeV

pTl >15 GeV

Missing ET >15 GeV

|ηj | < 2.5

|ηl| < 2.5

∆Rjj >0.4

∆Rjl >0.4

Mll 89 GeV< Mll < 93 GeV

Variable Cut

p
Tj hard >200 GeV

p
Tj soft >15 GeV

pTl >15 GeV

Missing ET >15 GeV

|η
j hard| < 2.5

|η
j soft| 2< |η| < 4

|ηl| < 2.5

∆Rjj >0.4

∆Rjl >0.4

B. Single production: pp → Qq → W ′qq′ → WZqq′

While the single production channel is electroweak, the smaller cross section is compensated by the fact that the u
and d are valence quarks, and their parton distribution functions fall less sharply than the gluon’s. Also, there is less
phase space suppression in the single production channel than in the pair production case. We analyze the processes
[u, u→ u, U ], [d, d→ d,D] and [u, d→ u,D or U, d], which occur through a t channel exchange of a Z and Z ′. Since
we want to look at the region of parameter space where MW ′ is smaller than MD, we let the heavy quark decay to a
W ′. The W ′ decays 100% of the time to a W and Z, because its coupling to two SM fermions is zero in the limit of
ideal fermion delocalization. We constrain both the Z and W to decay leptonically so the final state is lllνjj.
Again, we expect the jet from the decay of the heavy quark to have a large pT , and we impose a strong pT cut

on this “hard jet”. As before, this jet should be central, so we impose the same η cut on the hard jet. We expect
the η distribution of the “soft jet” arising from the light quark in the production process to be in the forward region,
2 < |η| < 4. We impose the same ∆R jet separation and jet-lepton separation cuts as before, along with basic
identification cuts on the leptons and missing transverse energy. The complete set of cuts is in the right side of Table
1.
The leptonic W decay introduces the usual two fold ambiguity in determining the neutrino momentum and hence,

we have performed a transverse mass analysis of the process, defining the transverse mass variable [31] of interest as:

M2

T =

(

√

M2(lllj) + p2T (lllj) + |pT (missing)|
)2

− |−→pT (lllj) +−→pT (missing)|2 (5)

We expect the distribution to fall sharply at MD in the narrow width approximation, and indeed we find that there
are typically few or no events beyond MD + 20 GeV in the distributions. Thus, we take the signal events to be those
in the transverse mass window: (MD − 200GeV) < MT < (MD + 20GeV).
The SM background for this process, pp → WZjj → jjlνll, was calculated summing over the u, d, c, s and gluon

jets and the first two families of leptons. Since we apply a strong pT cut on only one of the jets (unlike in the pair
production case), there is a non zero SM background, as plotted in Ref. [16]. The luminosity necessary for a 5σ
discovery at 95% c.l. can be calculated by requiring (Nsignal/

√
Nbkrnd) ≥ 5, as per a Gaussian distribution. Figure

2) shows the results, again recast in the form of the integrated luminosity required to achieve a 5σ discovery signal.
Almost the entire parameter space is covered, with the pair and single production channels nicely complementing
each other.
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