
UC Irvine
UC Irvine Previously Published Works

Title
Fluorescence lifetime detection with particle counting devices.

Permalink
https://escholarship.org/uc/item/2jc1m4mg

Journal
Biomedical Optics Express, 10(3)

ISSN
2156-7085

Authors
Hedde, Per Niklas
Abram, Tim
Vu, Tam
et al.

Publication Date
2019-03-01

DOI
10.1364/boe.10.001223
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2jc1m4mg
https://escholarship.org/uc/item/2jc1m4mg#author
https://escholarship.org
http://www.cdlib.org/


Fluorescence lifetime detection with particle 
counting devices 

PER NIKLAS HEDDE,1 TIM ABRAM,2 TAM VU,3 WEIAN ZHAO,3 AND ENRICO 

GRATTON
1,* 

1Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of 
California Irvine, Irvine, CA, USA 
2Velox Biosystems, 5 Mason St, Ste 160, Irvine, CA 92618, USA 
3Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Edwards 
Life Sciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, 
Department of Biological Chemistry, Department of Pharmaceutical Sciences, University of California 
Irvine, Irvine, CA, USA 
*egratton@uci.edu 

Abstract: Fluorescence-based single particle counting devices have become very powerful 
tools for human health-related applications such as the detection of blood-borne pathogens. 
Instead of passing the sample fluid through a thin tube or microfluidic chip, as it is commonly 
practiced in flow cytometers and sorter devices, single particle counters scan the fluid volume 
by rotation and translation of the sample container. Hence, single particle counters are not 
limited by the fluid flow friction and can scan a large volume in a short timeframe while 
maintaining high sensitivity. A single particle can be detected in a milliliter of the fluid 
sample within minutes, and diagnostics are being developed using this principle. Until now, 
signal detection with particle counters has been based on signal intensity and signal 
separation into multiple wavelength bands coupled with multiple detectors, which limits the 
number of species that can be resolved. In this paper, we applied fluorescence lifetime 
detection to single particle counting to increase specificity and enable multiplexing with a 
single detector. We demonstrate how this principle can be used for diagnostic assays based on 
fluorescence quenching. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Single particle counting devices can be very powerful tools for human health centered 
applications due to their capability of detecting particles at extremely low concentrations from 
1 to 10,000 particles per milliliter with exceptional robustness. As an example, it was 
previously demonstrated that bacteria can be detected with single-cell sensitivity in a single-
step, culture- and amplification-free process within 1.5–4 h from milliliters of raw blood [1]. 
Rapid diagnostics such as this have great promise in better management of bloodstream 
infections and antibiotic treatment. In this type of particle counting device, the fluid sample is 
transferred into a cuvette that is rotated and translated in front of a lens focusing the 
illumination beam into the cuvette. The signal from a small observation volume is detected in 
a particular wavelength band with a fast detector such as a photomultiplier [2,3]. Because the 
sample volume is explored by moving the container rather than passing the fluid through a 
tube or channel the specimen is not subjected to turbulence or shear stress and a large volume 
can be processed in a short amount of time. Additionally, since the optical elements are not 
actuated, this technique is well suited for miniaturized, point-of-care instrumentation. While 
scattered light can be used to identify particles passing through the observation volume, the 
most popular approach is fluorescence labeling and detection due to its exceptional specificity 
and signal-to-noise ratio. A positive, fluorescently tagged particle passing through the 
detection volume will be registered as an intensity spike with the peak width proportional to 
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particle size convoluted with instrument parameters (observation volume geometry, cuvette 
rotational velocity and signal integration time). Based on this information the number of 
events can be counted and quantified as particle concentration. In addition, true “hits” can be 
separated from false positive “hits” generated by sample impurities if their sizes and/or 
shapes are sufficiently different. However, particle identification solely by peak width is 
limited, especially when unique targets are of comparable size. In addition, signal intensity, 
i.e., peak amplitude, is not a good criterion either since particles of the same brightness can 
produce very different amplitudes depending on their position within the detection volume 
which is not known unless the spatial information is encoded in the signal [4]. Hence, the 
most common approach to detecting different species is to label them with fluorophores of 
different excitation/emission properties and excite and detect them in multiple wavelength 
bands. The drawback of detecting different species in different color channels is an increase 
of the complexity of the particle counting device and the practical limitation to detection in 
<10 color channels [5]. More importantly, for fluorescence (de)quenching-based assays, 
commonly used in conventional fluorescence assays such as TaqMan PCR, the quenching 
molecule usually does not emit any fluorescence. Hence, without an acceptor fluorophore as 
quencher, target identification by color is not possible. Yet, the ability to detect fluorescence 
(de)quenching can be vital for the identification of DNA/RNA sequences as this is often the 
goal in single particle counting experiments. In such an experiment a DNA/RNA strand 
complementary to the target sequence is tagged with a fluorescent dye quenched by a second 
tag in close proximity to the fluorophore. Upon binding to the target sequence, the strand is 
unfolded or digested, leading to a spatial separation of fluorophore and quencher resulting in 
an increase in fluorescence quantum yield and lifetime. Combined with nucleic acid 
amplification methods such as PCR this enables the detection of pathogens in nucleic acid 
tests for the diagnosis of infectious diseases, hereditary/genetic diseases and cancers. 
Therefore, in this work, we describe the implementation and application of digital frequency 
domain (DFD) based fluorescence lifetime detection with a particle counting device. DFD 
lifetime detection uses the heterodyning principle in which the emission is translated to a 
cross-correlation frequency much lower than the frequency of the modulated illumination 
source allowing to minimize cost and complexity of the detection electronics. At the same 
time, high precision and 100% duty cycle ensures best possible use of the signal available. 
We further demonstrate how lifetime analysis of the data can be used to separate out sample 
impurities, distinguish populations of particles detected in a single color channel and how to 
orchestrate a fluorescence quenching-based assay with a single detector. 

2. Lifetime detection with a particle counting device 

Our particle counting setup for lifetime detection is based on a Quanta particle counting 
system (ISS, Champaign, IL, USA) and a FastFLIM data acquisition card (ISS). The 
individual components and data acquisition and analysis procedure are described in the 
following subsections. 

2.1 Optics and mechanics 

The system is based on a Quanta particle counter (ISS) with laser diode illumination (472 nm, 
ISS) and detection with photomultipliers (65816, Hamamatsu) as previously described [1]. 
Briefly, a motorized stage holds the cylindrical sample cuvette that can be rotated as well as 
translated at variable speeds. The excitation/detection unit is movable as well to optimize the 
position of the observation volume in the sample cuvette. The excitation beam is spectrally 
cleaned with a band pass filter (473/10 nm, Chroma), reflected off a dichroic mirror and 
focused into the sample cuvette by an objective lens (20x, NA 0.4, Newport). Fluorescence is 
collected with the same lens, split from the incident light by the dichroic mirror and filtered 
with a band pass filter (535/40 nm, Chroma) to exclude scattered excitation light. The 
fluorescence is then focused onto an aperture/pinhole (0.1-1 mm diameter) with a lens of 50 
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2.3 Digital frequency domain principle and data analysis 

To measure the fluorescence lifetime we applied the principle of heterodyning in the digital 
frequency domain (DFD). As in the analog frequency domain approach a pulsed/modulated 
light source is used to illuminate the sample for a DFD lifetime measurement. However, 
instead of modulating the detector by, for example, time gating or gain modulation, the entire 
signal is collected. Instead, a time gate is applied digitally by splitting the detected signal into 
several windows, covering a certain time span of the excitation pulse period (here: four 
windows). This way a 100% duty cycle can be maintained. The frequency of those windows, 

sf , is adjusted to be slightly different from the excitation pulse frequency, exf , resulting in a 

shift in window position with respect to the excitation signal as a function of time (Fig. 2(A)). 
This cross-correlation frequency, cc s exf f f= − , is much lower than the frequency of the 

excitation signal and thus requires less bandwidth. For each photon counted, a bin number, p

, will be assigned depending on window number, nw , and phase offset, ccp , between 

sampling and excitation clocks, 

 ( ) ( )1 mod ,p n
p cc p

w

n w
p n p n

n

  
= − − +  

   
 (1) 

with the number of phase bins, pn , and the number of windows, wn  [6]. From the 

accumulated photon counts, a phase histogram of the lifetime response can be reconstructed 
(Fig. 2(B)). This phase histogram is a convolution of the lifetime decay, the square sampling 
window, the system jitter and the excitation pulse. To account for these parameters, a 
calibration data set with a fluorophore of known lifetime is measured. From this data, the 
position of the lifetime phase and modulation can be calculated and presented as a position on 
the phasor plot (Fig. 2(C)). The uncertainty of this position scales with the inverse of the 
square root of the number of photons collected. In a particle counting device the signal is 
recorded as a function of time. Particles crossing the observation volume create a peak in 
signal intensity (Fig. 2(D)). For peak identification, the data stream is analyzed with a cross-
correlation filter as described previously [2]. In the data presented here we used a Gaussian 
model for the filter but it can be of any shape. For the photons accumulated during each peak 
extent the phase histogram is constructed (Fig. 2(E)) and the lifetime phase and amplitude is 
calculated for each particle (Fig. 2(F)). The lifetime data can then be used to discern between 
populations. 
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trajectory as indicated by the dotted line where the fully unquenched position is determined 
by the lifetime of the free dye. From the position of each event along the quenching 
trajectory, the fraction of unquenched probes can be determined as shown in Fig. 6(C). It can 
be seen that the distribution of lifetimes is very different from the distributions of intensity. 
Although still overlapping, the presence of two populations (quenched/unquenched) is 
suggested by the dip in frequency of “hits” at the center of the distribution (indicated by 
arrows). To compare the results obtained by fluorescence lifetime with the results obtained by 
intensity, the two parameters are plotted against each other in Fig. 6(D). From the events 
detected in the negative sample (all quenched), the median values and standard deviations 
(SDs) of the fraction unquenched determined by lifetime (0.502 ± 0.063) as well accumulated 
counts per event (669 ± 159) were calculated. The median values plus SDs (fraction 
unquenched: 0.565, accumulated counts: 828) could serve as thresholds to distinguish 
positive from negative events in the positive sample and are plotted as dotted lines dividing 
Fig. 6(D) into four quadrants. As both lifetime and intensity increase during a transition from 
the quenched to the unquenched state, the distribution of events should follow a linear 
trajectory from quadrant 1 to quadrant 3. This is not the case. Instead, the distribution shows a 
curvature where events with a lower intensity but longer lifetime (quadrant 2) are much more 
frequent than events of high intensity but shorter lifetime (quadrant 4). This shows that the 
intensity value is compromised by the particle position within the observation volume while 
the lifetime is not. Hence, for this sample, the fluorescence intensity alone is not a reliable 
criterion to analyze fluorescence quenching. By adding lifetime analysis, on the other hand, it 
is possible to identify the different states with higher specificity. To quantify this difference in 
specificity we calculated the number of events residing in quadrants 2 and 4. Assuming that 
either a higher intensity or a longer lifetime indicate the presence of an unquenched dye 
droplet (positive “hit”), we counted 66 positive events detected by intensity but missed by 
lifetime versus 179 positive events detected by lifetime but missed by intensity resulting in a 
ratio of 2.7 for the detection of otherwise false negative events by intensity versus lifetime. 
This would be very useful for the design of an assay in which false negative events are 
important to exclude. On the other hand, for a test demanding low false positives, the events 
located in quadrant 3 are of interest as a positive event is confirmed by both, high 
fluorescence intensity and long lifetime lowering the probability of a false positive. We 
noticed that the phasor plot position of the negative, quenched droplet sample was relatively 
far from the position expected for a fully quenched probe. While this is in agreement with the 
frequent occurrence of “hits” representing quenched droplets during particle counting, we 
acquired fluorescence lifetime microscopy (FLIM) images for further investigation. A small 
volume of positive sample was loaded onto a counting slide and subjected to FLIM. The 
intensity image is presented in Fig. 6(E). The corresponding FLIM image with the pixels 
color coded according to their phasor plot positions is shown in Fig. 6(F). The two cursors in 
Fig. 6(G) mark the positions of the negative (cyan) and positive (magenta) droplets. Pixels 
within the perimeter of those cursors were painted accordingly in the FLIM image. It can be 
seen that the phasor plot position of the negative droplets measured by FLIM is in excellent 
agreement with the data obtained by particle counting and the relatively high signal from 
negative droplets is a consequence of the probe design. This underlines the strength of 
lifetime detection with particle counting devices. 
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properties. By pulsing the lasers in an alternating fashion, crosstalk between detection 
channels can be avoided [11]. Hence, the presence of two dyes on the same target can be 
identified. Further, we propose that instead or in addition to lifetime measurements, spectrally 
resolved detection could be used with particle counting devices including spectral phasor-
based analysis. While fluorescent markers of similar emission spectrum are difficult to 
distinguish by fluorescence intensity or color, they can be clearly separated by lifetime if 
significantly different. With phasor-based analysis even small differences can be resolved 
with only little fluorescence signal. Hence, we propose unmixing of a large number of species 
(3-10) by lifetime. Fluorescence resonance energy transfer (FRET) is a special form of 
fluorescence quenching in which the energy of one dye, the donor, is transferred to another 
dye, the acceptor, over short distances (0.1-1 nm). Since FRET affects the fluorescence 
lifetime, we propose to use FRET dye pairs as sensors for biomedical applications with 
particle counting devices. 
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