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Abstract 
 

The advent of high-precision plasma diagnostics tools has created vast amounts of data to be 

processed and, as a result, increased demand for tools that automate data analysis. One common 

task in analyzing plasma data is processing spectrogram data to find structures that correspond to 

physical processes that have occurred, one such example being the toroidal Alfven eigenmode. 

Due to the extreme environments of the plasma, the data collected are often noisy, thus making 

automatic detection of structures in the data difficult. 

This thesis presents a pipeline that takes in raw data from a channel of an Electron Cyclotron 

Emission Imaging (ECEI) system, which then detects and processes any excited Alfven 

eigenmodes. Each detected mode is tagged and individually filtered out in the pipeline. The main 

feature of the pipeline is a deep denoising model. The deep denoising model is created to combat 

the noise in the spectrograms and enhance the detected signal. A deep denoising architecture is 

chosen because of its strong ability to denoise images without blurring, unlike traditional 

denoising models. The architecture used is a Multi-Wavelet Convolutional Neural Network 

which was then trained using synthetic data. Synthetic data were used due to limited availability 

of clean measured ECEI data. When applied to real ECEI data, the denoising model achieves 

significant background denoising, at the cost of occasional hallucinated or spurious structures.  

The pipeline, in total, has nine steps to process and filter the raw ECEI data. The steps of the 

pipeline are: time domain low-pass filtering, short-time Fourier transform, spectrogram 

denoising, thresholding, morphological thinning, trace clustering, trace separation, filter mask 

creation, mask filtering, and inverse short-time Fourier transform. The combination of the 
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operations in the pipeline allows for the automatic detection and filtering of signals in the 

spectrogram with a strong rejection of noise. 
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I. Introduction 
 

Investigating plasma physics phenomena typically requires manual labor in sifting through the 

vast amounts of data modern plasma diagnostics tools generate. Tools that automate aspects of 

the research process are desirable to allow the user to sift through the data quickly. One aspect of 

study in plasma physics is excited “modes” that occur in the plasma for various physical reasons. 

In studying plasma behavior in tokamaks, one class of signals of interest are toroidal Alfven 

eigenmodes[1]. Typically, the modes are detected using spectrograms generated from data 

collected from plasma diagnostic tools such as Electron Cyclotron Emission Imaging (ECEI)[2]. 

In the DIII-I tokamak, the modes are measured using an Electron Cyclotron Emission Imaging 

system [3] that measures 22 poloidal and 8 radial channels, creating a 22x8 pixel image at each 

moment with a time resolution of one microsecond. Each image represents plasma temperature 

in a cross-sectional patch of the plasma column. Individual excited modes in the tokamak data 

can be found by investigating the channel data from the ECEI measurements. Due to the non-

stationary nature of the signals, a time-frequency analysis can be used for signal detection. 

Inherent to the plasma environment, the recorded data are plagued by corruption of the data. As a 

result, techniques for detecting signal events should have a strong level of noise rejection built 

into them. 

The field of time-frequency analysis is rich with many different tactics to approach the problem 

of signal detection. The usual process in signal detection in the time-frequency domain is divided 

into filtering, tracking, and enhancement. Traditionally, Wiener filtering[4] and spectral 

subtraction[5] can generate good denoised signals, which can be extracted by tracking end points 

of detected structures. However, traditional methods perform poorly in noisy environments with 

low Signal-to-Noise Ratio (SNR) and non-stationary random noise. Many other modern 
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techniques can be used to extract signals, such as empirical mode decomposition (EMD)[6], 

blind source separation [7], [8], independent component analysis [9], Maximum Likelihood 

estimators [10], [11], particle filter tracking [12], or gaussian mixture probability hypothesis 

density filter tracking [13]. 

Another method of signal detection is to convert the signals into the time-frequency domain in 

the form of spectrogram images and directly process the images. The spectrograms can visually 

show the signals' time and frequency characteristics, making it easier to distinguish between 

signals. Additionally, image processing techniques can enhance and extract critical features in 

the spectrogram. General techniques include noise filters, image reconstruction, segmentation, 

and morphological operations. Some examples of these image-processing tools applied to 

spectrogram signal extraction include leveraging mathematical morphology [14], edge detectors 

[15], ridge detectors [16], and active contour methods [17]. A benefit of directly processing 

spectrogram images is that after the enhancement and detection of desired signals in the time-

frequency domain, they can be reconstructed back into the time domain resulting in the signal of 

interest in the time domain. 

With the vast amounts of data collected, modern machine-learning methods can be used to 

achieve significant results. If large amounts of labeled data corresponding to signals of interest in 

the spectrogram images exist, then supervised machine learning can be used to detect and 

classify the spectrogram images. Convolutional neural networks (CNN) have been used to 

classify signals in a variety of fields, from marine acoustics [18] to ECG processing [19]. Deep 

recurrent neural networks (RNN), a type of neural network architecture designed to handle time-

series data, have also been used to detect signals from time-series data directly. A novel RNN 
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architecture [20] has been used to classify Alfven eigenmodes from ECE diagnostics. However, 

the downside of supervised machine learning is that it requires manually labeled data. 

Machine learning, more specifically deep learning, is also used in denoising or enhancing images 

and signals. Deep learning models trained using noisy images and their corresponding clean 

images can learn how to remove noise from the original noisy images. Models can also be 

trained to sharpen images. Many different architectures are used for enhancement; for example, a 

standard CNN was used for spectrogram enhancement using a multi-metric training approach 

[21]. More advanced methods use deep autoencoders' compressing abilities to learn the data's 

latent representations and use that to separate noise from inputted data [22]. 

This work presents a pipeline to detect and separate individual Alfven eigenmodes from ECEI 

data. The pipeline uses a mix of image processing, filtering, clustering, and deep denoising 

techniques to achieve the task of signal detection. The pipeline takes one channel of ECEI data in 

the form of voltage versus time and outputs all detect modes in the form of voltage versus time. 

The pipeline can be applied to all channels to create a 2D visualization of the mode. The pipeline 

uses minimal parameters, and the deep denoising model is trained using only synthetic data. 

Synthetic data is utilized as it is not practically feasible to manually generate a considerable 

quantity of clean data samples, which are essential for training neural networks. 

The pipeline has nine steps: time domain low-pass filtering, short-time Fourier transform, 

spectrogram denoising, thresholding, morphological thinning, trace clustering, trace separation, 

filter mask creation, mask filtering, and inverse short-time Fourier transform. The novel part of 

this pipeline is the Spectrogram denoising using a multi-level wavelet convolutional neural 

network to remove different types of noise from the spectrogram and enhance the structure in the 

spectrogram. 
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II. Image Denoising and Restoration 
 

Image restoration or denoising is one of the fundamental problems in computer vision and has 

been deeply studied and remains an active field. Generally, noise is injected into the final image 

due to the influence of the environment, transmission, measurement, or other factors. The noisy 

images can significantly hamper the analysis of the images, especially when the SNR is low. 

Thus, it is of great interest to separate or reconstruct the true image from the noisy image. 

The problem of image denoising can be formulated as follows: 

𝑦 = 𝑥 + 𝑛 

where 𝑦 is the noisy image, 𝑥 is the true uncorrupted image, and 𝑛 is the added noise. The noise 

can take on any form but is usually considered a Gaussian. The goal becomes to solve for 𝑥 

given 𝑦 which is an inverse problem and thus many possible solutions exist. Additional 

challenges for denoising are that edges should be preserved without blurring, flat areas should be 

smooth, textures should be preserved, and new artifacts should not be generated [23]. Image 

denoising techniques can be classified into two categories: spatial methods and transform 

methods. 
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II.a. Spatial Filters 
 

The first class of traditional filters is spatial filters. Spatial filters act as low-pass filters on image 

patches taking advantage of the fact that noise is usually distributed over higher frequency 

ranges. To the extent of lowering noise in image patches, spatial filters are reasonable. However, 

they come at the cost of blurring, which means losing information in higher frequencies, such as 

edges and textures. 

Spatial filters modify a pixel value using information in the local region around the specified 

pixel. The spatial filters can be further divided into linear and nonlinear filters. 

A spatial filter consists of a defined neighborhood and the operation that occurs centered at that 

pixel. For linear filters, mathematically, they can be formulated as the convolution of image 

𝑓(𝑥, 𝑦) with impulse response  ℎ(𝑥, 𝑦) to give the output image 𝑔(𝑥, 𝑦) at each pixel. The 

impulse response  ℎ(𝑥, 𝑦)  is also called the kernel. Usually, a square kernel with size 𝑅 × 𝑅 is 

used but other shapes could also be used. Every pixel in the filtered output image is given by the 

relation  

    𝑔(𝑥, 𝑦) =  ∑ ∑ 𝑓(𝑖, 𝑗) ∙ ℎ(𝑥 − 𝑖, 𝑦 − 𝑗)𝑗𝑖   [24] 

 

One primary example of a linear spatial filter is the mean filter which takes the average 

neighborhood pixel value for each pixel to create the filtered image. This class of filter can 

reduce gaussian noise at the cost of over-smoothening sharp features. Additionally, linear spatial 

filters do not handle impulse-like noises. Nonlinear filters can be used to achieve better filtering 

while balancing noise smoothening and detail retention. Bilateral filtering is a popular nonlinear 

spatial filter used for denoising images while preserving edges and details [25]. The bilateral 
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filter works by determining the pixel value of the filtered image using a nonlinear combination of 

neighboring pixel values. 

Another method to improve denoising is to formulate the problem as an energy minimizing 

problem where a noisy image has a high energy. These methods are called “Variational” 

denoising methods. The clean image 𝑥̂ is defined as 

𝑥̂ = arg min 𝐸(𝑥) 

𝐸(𝑥) = 𝐹(𝑥) +  𝜆𝑅(𝑥) 

where 𝐸(𝑥) is the “energy” of the image which is the sum of the fidelity term 𝐹(𝑥) and 

regularization term 𝑅(𝑥) with 𝜆 being the regularization parameter. The fidelity term denotes the 

difference between a clean image and a noisy image, while the regularization term is an image 

prior, which narrows the solution space in the optimization to the type of desired solutions, such 

as edge or texture preservation. In variational denoising methods, the goal is to design the image 

prior 𝑅(𝑥) to achieve the desired effect, some examples of image priors are gradient priors, non-

local self-similarity (NSS) priors, sparse priors, and low-rank priors. [23] 

One popular and successful variational method is called “Total Variational” (TV) denoising [26]. 

TV methods aim to achieve image detail preservation and edge sharpness by using an image 

prior based on the local gradient of the image. TV regularization is based on the fact that images 

tend to be locally smooth, and that intensity gradually varies. The gradient regularization thus 

penalizes sharp changes in pixel intensity which may be due to noise. 
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II.b. Transform Based Filters 
 

As image-denoising techniques matured, new methods were created to transform the image into 

another basis that allows filtering while maintaining higher-order details. A basis is chosen or 

created so that when the image is transformed into the new domain, differentiating between 

noisy and clean images becomes substantially more straightforward. Denoising procedures are 

applied in the new domain, and then the result is transformed into the original domain to obtain a 

clean image. The transformation based denoising started with Fourier transform and developed 

into cosine transforms, wavelet transforms, and other sophisticated transforms. Transform-based 

filtering methods can be categorized based on the basis functions they use, and whether they are 

data-adaptive or non-data-adaptive [27]. One of the most widely used and successful transform-

based models is Block Matching and 3D filtering (BM3D) [28]. BM3D is a two-stage filter that 

extends the idea of the non-local means (NLM) variational denoising technique [29]. First, 

similar regions are grouped using a block-matching algorithm and then arranged into 3D data 

structures called “group”. A 3D linear transformation transforms each group, then a transform 

domain shrinkage such as a Wiener filter is applied, and finally, the group is inverted back into 

the original domain. Groups are returned into 2D image segments by weight-averaging 

overlapping segments. This procedure ensures noise is filtered, but structures are not blurred out.  

In the class of data-adaptive transform-based filters, many different statistical and machine-

learning methods have been used. Some classic methods involve using the Principal Component 

Analysis (PCA) [30] or Independent Component Analysis (ICA) [31] to identify the main 

features that comprise the image and separate it from the noise. Other techniques involve 

learning a global dictionary of features using the K-SVD algorithm from a training set to use in 

denoising [32] or using singular value decomposition to obtain local and global basis functions to 
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denoise an image [33]. These methods generally perform poorer than the BM3D algorithm at 

general image denoising. Newer deep learning-based methods are now on-par or surpass the 

BM3D algorithm. 

 

II.c. Deep Denoising 

 

Deep learning methods aim to solve the task of image denoising in an end-to-end fashion by 

learning image priors from a clean image dataset. Neural networks for image processing tasks 

achieve the best performance using convolutional layers, which perform a trainable convolution 

operation on the input data to the layer. Neural networks with convolutional layers are called 

CNNs; stacked convolution layers learn convolutional filters to extract hierarchical structures in 

the inputs. In denoising data, these models are often dubbed “Denoising Convolutional Neural 

Networks” (DnCNN).  

Another method is the use of deep autoencoders. Deep autoencoders consist of two components: 

encoder and decoder. The encoder compresses the input feature down to a lower dimensional 

latent space representation by successively down-sampling between layers. The decoder then 

learns how to reconstruct the input from the latent representations and, in the process, up-

sampling back into the original dimensions. Figure 1 shows the general architecture of an 

autoencoder.  

Deep autoencoders are great at nonlinear dimensionality reductions to learn complex features 

from high-dimensional inputs such as images. Deep autoencoders are trained by minimizing the 

loss between the reconstructed and original images. For image processing tasks, the performance 

of convolutional layers can be used to improve the compression and reconstruction of the 
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autoencoders. One successful implementation of a deep learning model using autoencoder 

architecture with a convolutional layer for denoising is called the Residual Encoder-Decoder 

network (RED-net). RED-net achieves performance by introducing residual learning, skip-

connections and batch normalizations to improve learning rate and learning convergence [34]. 

 

 

 

 

 

 

 

 

 

The task of denoising images can be achieved by using denoising autoencoders [35]. Denoising 

autoencoders use the same architecture as the normal autoencoder but use a different training 

procedure. Instead of feeding the true images as inputs, a corrupted version of the input is fed 

through. Then, the reconstructed image is compared with the true uncorrupted image. By 

minimizing the loss between the reconstructed image resulting from a corrupted input with the 

original uncorrupted image, the network learns the latent representation of the possible true 

structures in the images. The resulting model can then, in essence, denoise and enhance given 

noisy and corrupted images. 

Figure 1 Example of an autoencoder [52] 
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Many modifications have been made to deep autoencoders to improve their reconstruction and 

learning convergence performance. One successful architecture is called the U-Net [22], a Fully 

Convolutional Network (FCN) autoencoder consisting of contracting and expanding portions. 

The contracting segment learns the context of the image and consists of groups of convolutional 

layers with a kernel size of (3x3) followed by (2x2) max pooling operations with a stride of 2 for 

down-sampling, which doubles the number of features at each time. The convolutional layers are 

each followed by a ReLU activation function. The expanding partition is almost symmetric to the 

contracting layer, consisting of the same groups of convolutional networks followed by a (2x2) 

up-convolution that halves the features. After each up-convolution, features from the 

corresponding contracting layer are concatenated with up-sampled features. The residual 

connections aid the model in maintaining the structure of the image fed into it. The final layer is 

a convolutional layer with a kernel size of 1x1 and a filter number of 1 to reconstruct the 

grayscale input image. Figure 2 [22] shows the architecture of the U-Net model.  
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The up-sampling procedure allows the network to learn to not only reconstruct the input image, 

but to sharpen it as well. The U-Net architecture is used primarily for image segmentation, but 

can easily be modified for denoising purposes by changing the training method. 

The receptive field of a model, in the context of CNNs, is the area of a patch on the input that 

affects features further down the network. For image denoising, a sizeable receptive field is 

desired to capture images' small- and large-scale features. For an FCN without a max pooling 

layer, to increase the receptive field of the network, either the network depth can be increased, or 

the number of convolutional filters used can be increased. Both methods increase the 

computational cost dramatically in training and live deployment. Architectures like the U-Net 

can achieve large receptive fields without sacrificing too much computation cost by using 

Figure 2 U-Net architecture. Each blue block corresponds to the feature map of the convolutional layers. The blue arrows 
correspond to the convolutional operations followed by ReLU activation function. The red and green arrows correspond to the 
max pooling and up [22] 
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dilating or down-sampling layers. However, due to the gridded sampling, the down-sampling 

procedure comes at the cost of inherent checkerboard patterns. In the dilation step, instead of a 

standard NxN kernel, the kernel will sample NxN points but with a gap between the sampled 

points specified by how much down-sampling is desired. The artifacts introduced by dilation 

through the increasing of the receptive field may lower the SNR of the model. As a result, a 

balance should be met while increasing the dilation. 

A novel model dubbed “multi-level wavelet CNN” (MWCNN) was introduced [36] to achieve a 

larger receptive field while avoiding the computational cost and artifact generation of the U-Net 

architecture. The model uses the same architecture as U-Net, but instead of down-sampling using 

a pooling layer in the contracting portion of the model, they employ a discrete wavelet transform 

(DWT). The DWT has the benefit of being invertible through an inverse wavelet transform 

(IWT) and thus does not lose information in the down-sampling. Additionally, wavelet 

transforms capture spatial and frequency information, which can aid in better representation of 

the image in feature space.   

The DWT for a 2D image consists of four filters, 𝑓𝐿𝐿 , 𝑓𝐿𝐻, 𝑓𝐻𝐿 , 𝑎𝑛𝑑 𝑓𝐻𝐻 , convolved with an 

image 𝑋 to result in a decomposition into four sub-banded images 𝑋𝐿𝐿 , 𝑋𝐿𝐻, 𝑋𝐻𝐿 , 𝑎𝑛𝑑 𝑋𝐻𝐻. The 

filters correspond to the horizontal and vertical filtering by high-pass and lowpass filters; Fig. 3 

shows the DWT decomposition. The filters have fixed parameters based on the wavelet basis and 

a convolutional stride 2 used in the transformation. An important property of the wavelet’s filters 

is that they are orthogonal to each other. In general, the DWT operation can be written as: 

𝑋𝐿𝐿 = (𝑓𝐿𝐿⨂𝑋) ↓2 , 𝑋𝐿𝐻 = (𝑓𝐿𝐻⨂𝑋) ↓2 , 𝑋𝐻𝐿 = (𝑓𝐻𝐿⨂𝑋) ↓2 , 𝑋𝐻𝐻 = (𝑓𝐻𝐿⨂𝑋) ↓2 

where ↓2 refers to down sampling by a factor of 2 and ⨂ refers to convolution operation. 
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Figure 3 Decomposition of the image by 2D wavelet transform [34]  

The original image can be reconstructed from the decomposed images without loss of 

information using the Inverse wavelet transform (IWT) such that 𝑋 = 𝐼𝑊𝑇(𝑋𝐿𝐿, 𝑋𝐿𝐻, 𝑋𝐻𝐿 , 𝑋𝐻𝐻).  

The Haar wavelet [37], one of the simplest and most common wavelets, is used in this work but 

in theory any other wavelet can be used. The Haar wavelet filters are given by:  

 

After the 2D transform using the Haar wavelets, for each sub-band image the (𝑖, 𝑗)-th value is 

given by: 
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Furthermore, the IWT can be written in terms of the sub-banded images as the following: 

 

 

The DWT can be recursively applied to each sub-banded image for further processing in a multi-

level wavelet packet transform (WPT). The IWT is applied symmetrically as the DWT path to 

reconstruct the original image. The multi-level WPT can be connected to the CNN layers 

because the wavelet filters could be considered a fully convolutional network (FCN) layer with 

pre-set weights and no nonlinearity. Thus, multi-level WPT can be extended by having FCN 

after each DWT. In image processing applications, such as denoising or segmentation, nonlinear 

operations like thresholding or filling are applied to post-transformed images to further aid in the 
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image processing task. Convolutional Layers in the multi-level WPT structure act like tailor-

made functions for the image-processing tasks learned during the network training. 

The benefits of employing learnable structures such as the FCNs are that any potential function 

can be automatically learned based on the learning phase's requirements. The complete 

architecture of the FCNs in the multi-level WPT is dubbed the multi-level wavelet CNN 

(MWCNN) [36]. Figure 4 shows a comparison between the multi-level WPT and the MWCNN. 

The MWCNN architecture can be modified in many of the same ways that other neural networks 

are modified, such as adding different types of layers or regularization methods. However, the 

core idea of the MWCNN is having a convolutional layer between each level of DWT. 

 

 

 

 

Figure 4 Comparison between Multi-level WPT (a) and a MWCNN (b). It can be seen that the MWCNN is a generalization of the 
multi-level WPT. [36] 
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As mentioned before, the MWCNN architecture used for image restoration was based on the U-

Net architecture [22]. The main changes from the U-Net Architecture are the wavelet transforms 

for down-sampling and up-sampling layers and element-wise summation of features between 

contracting and expanding networks instead of concatenation. After each DWT down-sampling, 

the four sub-banded images are concatenated and fed to an FCN layer with several convolutional 

filters to match the next set of convolutional Blocks. Each CNN block consists of a 3-layer of 

FCN without any pooling layers. Each FCN layer in the block has a 3x3 filter followed by a 

ReLU activation function. In the expanding network before the IWT up-sampling layer, an FCN 

is placed with a number of filters to create a feature map that matches the next set of CNN blocks 

after up-sampling. Figure 5 shows the template for the MWCNN architecture. 

 

Figure 5 MWCNN architecture [36]  
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III. Training Deep Denoising Model 
 

Two main methods of training deep denoising models using pairs of clean and corrupted images 

are to train directly for reconstruction accuracy or to train for residual learning. For deep 

denoising, pairs of clean ground truth images and noisy corrupted images are used for training 

the model. As defined before, the input to the model is the noisy image 𝑦𝑖 = 𝑥𝑖 + 𝑛  where 𝑦𝑖 is 

the i-th noisy image, 𝑥𝑖  is the i-th ground truth image and 𝑛 is the noise or corruption added to 

the clean image. For standard denoising models, the goal is to find a function mapping  

𝑓(𝑦𝑖, Θ) = 𝑥𝑖 where Θ are the parameters of the function. For neural networks, this is achieved 

through the appropriate loss function.  

The loss function determines how far the output of a neural network is from the correct answer 

and is used for updating the parameters of the network. During training, the goal is to minimize 

the loss function. A widely used loss function is the average mean squared error (MSE) which 

can be written as 

ℒ(Θ) =  
1

2𝑁
∑‖𝑓(𝑦𝑖, Θ) − 𝑥𝑖‖

2

𝑁

𝑖=1

 

In some image processing tasks, it is more efficient and worthwhile to learn the residual mapping 

instead of directly predicting a clean image[38][38]. The residual is defined as noise that has 

been added to the clean images. The goal is to learn the function mapping 𝑓(𝑦𝑖 , Θ) such that 𝑥𝑖 =

𝑦𝑖 − 𝑓(𝑦𝑖, Θ) which can be achieved with a slight modification to the MSE loss function as 

shown below 

ℒ(Θ) =  
1

2𝑁
∑‖𝑓(𝑦𝑖, Θ) − (𝑦𝑖 − 𝑥𝑖)‖2

𝑁

𝑖=1
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III.a. Generating Training Data Set 
 

With limited available data for training deep neural networks, creating synthetic datasets 

becomes desirable. Creating a synthetic dataset requires adequate modeling of the real dataset's 

properties. If features that show up in real data are not modeled, then the trained model may not 

be able to handle them correctly. For denoising models, first, the ground truth image must be 

generated and then the corruptions must be added to create the image pairs for training. The 

corruption added to the clean images should also match similar corruption found in a realistic 

scenario. 

In the task of denoising spectrogram images, generating synthetic data sets is desired; otherwise, 

manual labor is needed to process and generate the clean data needed for training. Deep learning 

models need thousands of samples; thus, automatic generation is helpful for training models 

adequately. Additional benefits to creating synthetic data arise from the nature of the signal we 

want to detect. In the ideal case, the spectrogram only contains the signal we want and adds no 

other corruptions, which can be simulated in the synthetic dataset. Then, any arbitrary corruption 

is added to the clean image. This procedure can force the model to train for only extracting the 

desired signal in the spectrogram, as the ground truth image only contains exactly the signal we 

want and ignores everything else. In essence, the denoising model has turned into a signal-

extracting model. 
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III.b. Modeling Alfven Eigenmode Spectrograms 
 

The Alfven eigenmodes are characterized by up or down chirping modes. Multiple Alfven 

eigenmodes can also be excited close to each other in time, creating clusters of modes in time 

and frequency. Figure 6 is a spectrogram from a shot from the DIII-D tokamak shot 185787 

showing excited toroidal Alfven eigenmodes. The image shows that the excited modes appear as 

up-chirping curves clustered close to each other. A method to generate structures similar to the 

actual physics found in the spectrogram and possible corruptions is needed to create a synthetic 

dataset to match the actual features of data. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Spectrogram of ECEI data of a region where Alfven Eigenmodes exist from the DIII-D tokamak shot 
185787  
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This work uses a simple approach to model structures generated by Alfven eigenmodes. Simple 

functions are used as proxies to generate similar-looking structures in the spectrogram. The 

assumption is that if the structures are similar enough to actual structures, then the model can 

generalize to detect other continuous curves that can show up. Four functions were used: linear, 

square, cubic, and logistic. Each function was parameterized to control its length, position, and 

shape. A random number of curve-generating functions is chosen per spectrogram, with random 

parameters chosen for each function. The figure (Fig. 7) below shows a sample of generated 

ground truth spectrograms. Each image has a size of 256 x 256 pixels which, while arbitrary, 

reduces the model size and, thus, training time. The spectrogram generated is divided into 256 x 

256 chunks, fed to the model, and then further processed. The results generated from each chunk 

are then stitched back together. Chunking the spectrogram into smaller images allows the 
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processing of large spectrograms while using a relatively modest model size. The chunks should 

not be smaller than the features we want to process, which are the Alfven eigenmodes.  

 

While not precisely matching a realistic scenario, the images generated imitate features that 

signals in a spectrogram would exhibit, mainly continuity and a sharp contrast from the 

background. The generated images also include extreme cases of densely clustered signals to 

push the limit of the model's ability to extract individual signals out of the cluster. Blank images 

were also included in the ground truth training set to train the model to expect patches with no 

signal and to prevent the model from hallucinating signals from random noise. 

The ground truth images act as the target we want to achieve, and the noisy images are the 

model's input. Thus, the noisy images must be generated from the clean images by adding noise 

and corruption. The corruption added to the images should match the types of processes desired 

Figure 7 Examples of generated Ground Truth Images 
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to be removed, which can be gaussian noise, salt and pepper noise, more exotic types of noise or 

even structures caused by other processes that are different enough from the target. In this case, 

four types of corruptions were added: gaussian noise, salt and pepper noise, noisy columns, and 

vertical spikes. 

The gaussian noise is random values added to the whole image sampled from a gaussian 

distribution parameterized by its mean and standard deviation. The salt and pepper noise is when 

a random number of pixels from the image is set to the highest or lowest value. The added noisy 

columns represent noise from external processes happening in some time interval. The noisy 

columns follow a gaussian distribution and are parameterized by the width of the column and 

position of the column in addition to the mean and standard deviation of the distribution. The 

vertical spikes represent the result of impulses picked up by the sensors and are columns of 

pixels set to the highest value at random time intervals. Figure 8 shows the corresponding images 

in Fig. 7 injected with the corruptions mentioned above. Similarly, the ground truth images, and 

the noisy images are extreme representations that may be found in actual data and are meant to 

push the model to its limits of denoising. Overall, the noise added together creates a non-

stationary noise distribution that is hard to remove without losing information about the signals 

present. 
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III.c. Spectrogram Denoising Model and Training Parameters 
 

The spectrogram denoising model used follows the MWCNN architecture shown in Fig. 9. The 

network consists of three down-sampling/up-sampling operations with eight “convolutional 

blocks”, eight additional 2D convolutional layers and skip-addition connections between 

corresponding points in the encoder and decoder path. All convolutional layers except the last 

layer use a 3x3 filter kernel and are followed by a ReLU operation. The last convolutional layer 

is used to recreate the denoised image and thus uses a 1x1 filter kernel size and no ReLU 

Figure 8 Sample of Synthetic Corrupted Images 
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operation. The convolutional blocks consist of three layers of 2D convolutional layers, each 

followed by a ReLU and Batch Normalization. 

 

 

 

The model weights were optimized by the widely used Adam optimizer [39] and an MSE loss 

function. The loss is calculated between the model output and the ground truth image. The 

training set consists of 10,000 samples of synthetic data generated in the manner shown in 

section (III.ii.). The three primary hyper-parameters of the training are the optimizer learning 

rate, batch size, and epoch. The optimizer learning rate controls the step size the optimization 

algorithm takes in updating the weights of neural at each update step. The batch size is the 

number of samples from the entire training set fed to the network for each forward pass through 

the network before the update step. The epoch parameter controls the number of total passes 

through the training data to complete. The final hyper-parameters used in training the model are 

Figure 9 MWCNN architecture for proposed Spectrogram Denoising 
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shown in Table 1. Better results can be achieved with more hyper-parameter tuning using grid 

search or other advanced techniques [40]. 

Hyper-parameter Value 

Learning Rate 0.0001 

Batch size 2 

Number of Epochs 10 

Table 1 Hyper-parameters of Neural Network Training 

 

III.d. Evaluation Metrics 

In the space of image processing and denoising, the two standard metrics are the Peak Signal-to-

Noise Ratio (PSNR) and the Structural Similarity Index Measure (SSIM) [41], which measure 

the quality of an image compared to a reference image. These metrics are used to quantify a 

model or algorithm's performance at various tasks, such as image reconstruction or image 

denoising. Both metrics are classified as full reference metrics, meaning they require the 

uncorrupted or original image to calculate the metrics. 

In the context of images, the PSNR measures the ratio of the maximum possible pixel value to 

the mean square error of the corrupted/processed image to the true image in decibel scale. The 

higher the value, the better the image stands out from the noise. The higher the PSNR, the less 

corrupted the image, meaning a better compressing or denoising model. The equation of the 

PSNR is shown below. 

𝑃𝑆𝑁𝑅 = 10 ∙ log10

𝑀𝐴𝑋2

𝑀𝑆𝐸
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The SSIM is a metric to measure the corruption of an image based on the changes in the 

structural information between the true image and the processed image. The SSIM considers an 

image's luminance, contrast, and structure and then performs a comparison to generate a quality 

assessment measure, as shown in Fig. 10. In general, the SSIM between two images 𝑥 and 𝑦  can 

be expressed as follows 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  [𝑙(𝑥, 𝑦)]𝛼 ∙ [𝑐(𝑥, 𝑦)]𝛽 ∙ [𝑠(𝑥, 𝑦)]𝛾 

where the functions 𝑙(𝑥, 𝑦), 𝑐(𝑥, 𝑦), 𝑠(𝑥, 𝑦) measure the luminance, contrast, and structure 

similarity between the two images. The parameters 𝛼, 𝛽, 𝑎𝑛𝑑 𝛾 determine the relative importance 

of the components. With equal weighting of each component, by setting the parameters 𝛼 = 𝛽 =

𝛾 = 1 , the general formula shown below can be derived. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 

where: 

• 𝜇𝑥 , 𝜇𝑦 are the mean pixel value of images 𝑥, 𝑦 

• 𝜎𝑥
2 , 𝜎𝑦

2 are the variance of pixel value of images 𝑥, 𝑦 

• 𝜎𝑥𝑦 is the covariance between 𝑥 𝑎𝑛𝑑 𝑦 

• 𝐶1 =  (𝑘1𝐿)2 , 𝐶2 =  (𝑘2𝐿)2 are constants to stabilize the expression 

• 𝐿 is the dynamic range of pixel values of the images 

• 𝑘1 =  0.01 and 𝑘2 =  0.03 is used in the default implementation of SSIM 
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In general, local structures in images vary spatially throughout an entire image resulting in 

different statistics between parts of the image. Calculating the SSIM over a moving window 

across the image, the local statistics of the image are preserved. Different window sizes and 

weighting schemes can be used, but the default implementation uses an 𝑁 × 𝑁 circular-

symmetric Gaussian weighting scheme with a standard deviation of 1.5 normalized to unity. 

Then, the average SSIM of all the patches is taken to obtain the final overall metric. The value of 

the SSIM metric for the whole image ranges between -1 to 1, where 1 refers to the two images as 

completely similar while -1 refers to complete dissimilarity. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Diagram of SSIM computation [41] 
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IV. Denoising Model Results 
 

A batch of an additional 1000 synthetic spectrograms is used to calculate the evaluation metrics 

PSNR and SSIM. The MWCNN was evaluated on the test set along with various denoising 

models or filtering techniques to achieve a comparison. Two groups of denoising techniques 

were used: non-data-adaptive and data-adaptive methods. The non-data-adaptive methods 

models are the gaussian filter, median filter, bilateral filter, TV filter, and BM3D. The adaptive 

data methods used are deep neural network architectures RED-net, U-Net, and MWCNN. Small 

and large versions of each architecture were used, which for U-Net and MWCNN mean larger 

convolutional filters at each block, and RED-net means more total layers. The results of all the 

methods are shown in Table 2. As a control, the PSNR and SSIM were calculated across the test 

set between the noisy images and ground truth. 

 

Name PSNR SSIM Name PSNR SSIM 

Control 9.8 0.037 RED-Net10 17.44 0.072 

Gaussian 

Filter 

10.89 0.039 RED-Net20 28.00 0.729 

Median 

Filter 

11.32 0.048 U-Net  27.22 0.946 

Bilateral 

Filter 

10.89 0.033 U-Net (Large) 24.92 0.888 

TV Filter 10.72 0.051 MWCNN 27.69 0.948 
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BM3D 9.8 0.052 MWCNN(Large) 28.88 0.959 

Wavelet 10.24 0.04    

Table 2 Comparison of Denoising Methods 

 

The results show that the data-adaptive methods perform significantly better than the non-data-

adaptive methods. The poor performance of the non-data adaptive methods is because they are 

not suited for large global non-stationary noises. They can clear out some of the added gaussian 

noise, but not the more considerable corruption added. While removing some noise, most 

filtering methods performed worse in the SSIM metric due to the smoothing/blurring effect they 

cause to the image. On the other hand, the data-adaptive methods perform better because they 

have spent a considerable amount of computational time learning the statistics of the dataset and 

thusly perform well on this task. 

In the class of data-adaptive methods, the MWCNN overall performs better than the others. The 

RED-Net20, U-Net, and MWCNN have the same approximate number of parameters (10 

million). While the RED-Net20 has the higher PSNR, it has the lowest SSIM amongst the three, 

which means some structure information is lost. In this case, the difference between the U-Net 

and MWCNN is marginal. 

A point of interest is among the large versions (40 million parameters) of the U-Net and 

MWCNN in which the U-Net performs worse than its smaller version, PSNR 24.92 vs 27.22 and 

SSIM 0.946 vs 0.888. The weaker performance is due to a lack of generalization in the training 

phase, as larger neural networks are prone to overfitting the dataset. On the other hand, the large 
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MWCNN performs the best among all the models tested, meaning the network architecture 

performs better at generalization than the other models tested. 

Figure 11 shows the results of each neural network denoising models from a noisy sample image. 

The RED-net20, while removing significant amounts of noise, still has large amounts of noise. 

The U-Net and MWCNN perform about the same, with some distortions around the signals and a 

few false “hallucinated” signals, at reducing most of the noises. The larger U-Net model achieves 

sharp resulting signals with some artifacts spread throughout the image. The larger MWCNN 

Figure 11 Denoising Model Comparisons between different Deep Denoising Architecture 
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model performs the best, creating sharp signals with the least amount of background artifacts 

which can be seen in Fig. 12.  

 

 

 

 

So far, the denoising models have only been trained and evaluated with synthetic data emulating 

similar structures that could be found in real spectrogram data. ECEI diagnostic data from the 

DIII-D tokamak is used to generate a spectrogram from one channel to evaluate the denoising 

Figure 12 MWCNN sample results 
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model. The ECEI channel data comes in a time series, with each step corresponding to 1 

microsecond. The spectrograms were generated using a sampling frequency of 1000 and a 

window size of 2048 samples. Figure 13 shows the results of denoising using the MWCNN 

denoising model on a 256x256 pixel patch corresponding to a frequency range of 125 kHz and a 

time interval of 612.15 milliseconds. The result shows that the vast majority of background noise 

has been removed, and structures have been highlighted. Some artifacts remain, and some 

“hallucinated” signals also appear. Additionally, in parts of the spectrogram where the SNR is 

low, or ambiguities exist, the model can not denoise properly, resulting in a blurry patch. 

 

Figure 13 Results of MWCNN denoising model on ECEI data 
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V. Signal Extraction Pipeline 
 

The results of the denoising models create images that often have unwanted artifacts that make 

disambiguating between different signals more difficult. A processing pipeline is created 

incorporating the denoising model and other techniques to detect the different excited Alfven 

eigenmodes from the time series and separate them into distinct signals. The pipeline takes in a 

time series of data containing possible Alfven eigenmodes and outputs a list of time series 

corresponding to each individual detected Alfven eigenmode. The pipeline has 9 steps: time 

domain low-pass filtering, short-time Fourier transform, spectrogram denoising, thresholding, 

morphological thinning, trace clustering, trace separation, filter mask creation and mask filtering, 

and inverse short-time Fourier transform. 

 

V.a. Signal Extraction Pipeline Description 

 

Step 1: Low-pass filtering: 

The ECEI data comes from a voltage signal with a strong DC offset. The DC aspect of the signal 

can overpower all other high-frequency signals when converted into spectrogram form. To 

remove the DC bias, a simple 5th-order Butterworth lowpass filter is used with a cutoff at 10 

kHz. The cutoff was arbitrarily chosen since the feature we care to observe occurs in higher 

frequency ranges. 

Step 2: Spectrogram generation 

First, a Short-Time Fourier Transform (STFT) of the filtered signal is taken to obtain the 

spectrogram. The STFT has two main parameters, the sampling rate and the window length, with 
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values of 1000 and 2048, respectively. The magnitude of the STFT is taken to create the 

spectrogram. For ease of use, the spectrogram bin values are scaled to be between 0-100. 

Step 3: Spectrogram denoising 

The spectrogram is then denoised using the deep denoising models. In this case, the MWCNN 

denoising model is used to denoise the spectrogram. The resulting image is rescaled again for 

ease of use. 

Step 4: Thresholding 

To remove any low amplitude noise or stray artifacts, a thresholding process is performed, 

turning the image into a binary image. To create the binary image, any pixel value above a 

threshold is set to one and any value below the threshold is set to zero. The denoised image 

strongly contrasts the detected signals and background noise; thus, algorithmically finding an 

optimal threshold is feasible. Multiple algorithms exist to find an optimal threshold, but the “Li” 

method [42] is used for this pipeline. 

Step 5: Morphological thinning 

In the domain of image processing, morphological operations are operations that “morph” an 

image based on the underlying structure of the image. Morphological processes determine the 

resulting pixel value using the neighborhood pixel values. Examples of basic morphological 

operations are dilations (addition of pixels based on neighboring pixels) and erosion (deletion of 

pixels based on neighboring pixels). The base operations can be chained together to create more 

complex morphological operations. 
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Currently, the binarized spectrogram has a thickness and roughness without any consistency, 

which is not desirable when making filter masks. To get to the centerline of each structure in the 

image, the morphological operation called thinning/skeletonizing is used [43]. The resulting 

“skeletonized” image consists of one-pixel wide lines corresponding to the center frequencies of 

filter masks that will be created. The skeletonized traces also allow for easier trace separation 

down the pipeline. 

Figure 14 shows the effects of the thresholding and skeletonizing on the original denoised image. 

As seen in the middle plot, the thresholding has removed some of the stray weak artifacts. With 

the skeletonizing, everything has been reduced to one-pixel structures. 

 

 

Figure 14 Processing of Denoised Image by Thresholding and Skeletonizing 
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Step 6: Trace clustering 

The intended goal of the pipeline is to have separated and tagged filtered signals that correspond 

to different Alfven eigenmodes; thus, it is required to separate each unique trace in the image. 

The image can be converted into a point cloud where each pixel in a trace corresponds to a 2D 

point, with the x-axis being time and the y-axis being frequency. Different types of clustering 

algorithms exist, which can be categorized using different methods such as centroid, density, 

hierarchical or distribution methods, each of which has pros and cons. For example, the K-means 

clustering [44] method is a centroid-based clustering method that is very efficient but requires 

knowledge of the number of existing clusters in the data you want to cluster. Additionally, 

centroid-based clustering methods do not work well when the "shape" of the data is not 

geometrically "flat", such as in our case of packed curving traces. On the other hand, density-

based clustering methods such as DBSCAN [45] are better suited to non-flat geometries at the 

cost of computational efficiency. 

For our use case, we use an extension of DBSCAN called Hierarchical-DBSCAN (HDBSCAN) 

[46], which overcomes some of the limitations of the regular DBSCAN, such as requiring 

clusters to be uniform density. In addition to clustering segments, the clustering algorithm acts as 

another stage of denoising by removing stray or small groups of points that are not in any sizable 

existing cluster. The clustering algorithm will have two outcomes: a cluster containing one 

unique trace or intersecting traces. In the first case, the task is complete, and the unique trace is 

separated. In the case of intersecting traces in one cluster, we need to separate them further into 

separate traces. 
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Step 7: Trace separation 

The trace separation algorithm used in this work is a tracing algorithm from another more 

extensive spectrogram processing pipeline used to detect whale chirps in spectrograms [47]. The 

tracing algorithm takes in a binary image where each "on" pixel corresponds to a point on the 

traces. From the binary image, for each active pixel a "connection degree" is calculated based on 

the number of active neighbors. Based on each point's connection degree, they are categorized 

into Basis points (BP), Connection points (CP), and Node points. The Basis points are the 

endpoints of the traces, the Connection points are the points along a unique trace, and the Node 

points are the points of intersection between traces. The algorithm starts with a BP and collects 

each adjacent CP into one trace until it reaches a node point. At the node point, the direction of 

the current trace is calculated and then CP in the same direction as the current trace is collected 

until a BP is reached. After a BP is reached, the collected points are removed, and the algorithm 

continues until no other points are left. 

Each cluster containing multiple possible traces in this pipeline is converted into a binary image 

and fed to the trace-separating algorithm described. The result is a list of points belonging to a 

unique potential cluster. A "Savgol" smoothing filter is applied for each set of points to 

smoothen each trace. The results of the trace separation are overlaid over the spectrogram in Fig. 

15. In the results, we can generally see the traces are separated into unique traces; however, for 
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some traces, deformations are apparent, and in some cases, the traces were "deleted". The 

deletion error is likely due to this work's implementation of the algorithm cited in the paper. 

 

Step 8: Filter mask creation 

Using the individual traces filter mask can now be created. Spectrogram filter masks are used as 

a method of filtering spectrogram data. The principle of mask filtering is that by zeroing out all 

bins except where the desired signal is, by element-wise multiplication of the filter mask with the 

original spectrogram, only the desired signal remains, which can then be converted back into the 

time domain. Zeroing out time-frequency bins removes the signal contribution of that bin when 

Figure 15 Results of trace separation algorithm in pipeline. Each unique trace is overlayed on the original spectrogram. 
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reverted to the time domain. Since the spectrogram has inherent uncertainty in both time and 

frequency, the filter mask should be wider than one bin/pixel so that the chances we filter the 

desired signal become higher. To achieve this, the filter is expanded above and below the center 

line by some number of pixels corresponding to a desired bandwidth. Each filter mask is a matrix 

the size of a spectrogram with regions where the desired signal should be set to unity while 

everywhere else set to zero. The filter mask's sharp boundary could cause a small ringing 

phenomenon in the time domain. A more gradual windowing around the filter mask can combat 

the ringing. 

With each filter mask created, the filtering process can now be performed. The original complex-

value short-time Fourier transformed matrix is used as the object of filtering because the phase 

information is required to accurately reconstruct the desired signals using the inverse short-time 

Fourier transform. Each filter mask is applied to the STFT matrix element-wise to create a list of 

"filtered" matrices corresponding to each filtered trace. 
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Step 9: Inverse short-time Fourier transform 

To get the final individual detected Alfven eigenmode in the time domain the inverse short-time 

Fourier transform is performed on the filtered matrices with the same parameters used in the 

original short-time Fourier transform. The result is a time series spanning the entire length of the 

original data with only the active signal at the time corresponding to the filtered Alfven 

eigenmode. Some post-processing is performed to only get the segment of data corresponding to 

the detected mode, which is then saved. Figure 16 shows the result of the pipeline for one 

specific existing mode. The mode is filtered using the pipeline and then returned to the time-

frequency domain to be compared with the original unfiltered data. We can see that only a single 

trace remains in the filtered spectrogram. 

Figure 16 Filtering Pipeline results compared to raw spectrogram 
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V.b. Application of Signal detecting pipeline 
 

Currently, the pipeline takes only one data channel and detects and filters out the Alfven 

eigenmodes. In actuality, the Alfven eigenmode is a rotating structure that can be visualized as a 

2D cross-sectional image generated by all the channels of the ECEI system. The pipeline can be 

modified to be applied to all the channels to filter out detected modes by using the filter masks 

from an initially selected channel. If a mode does not appear in the channel used to generate the 

filter masks, it will not be detected and filtered out to generate the image. Figure 17 is an 

example of a detected Alfven eigenmode in a 2D image generated from all the channels at a 

specific time. 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 2D image of a filtered Alfven Eigenmode in Shot 185787 
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VI. Conclusion 
 

Modern Plasma physics research typically involves investigating vast amounts of data generated 

by cutting-edge plasma diagnostics. Any tool that speeds up or automates the process is valuable 

to a researcher. One avenue of study in plasma physics is the excited modes that occur in 

different plasma experiments. The excited modes are often detected using spectrograms 

generated from plasma diagnostic tools such as Electron Cyclotron Emission Imaging. Typically, 

the recorded data are very noisy due to the plasma environment making it difficult to manually 

and automatically detect points of interest in the data. 

This work created a pipeline to detect and extract the Toroidal Alfven Eigenmodes 

automatically. The pipeline uses ECEI channel data, and through a pipeline of filtering, 

denoising, clustering and tracing, any detected Toroidal Alfven Eigenmodes are tagged and 

filtered out into separate signals. 

One of the main aspects of the pipeline is a Deep Denoising model used to remove noise and 

enhance features in the spectrograms under analysis. The architecture used for the denoising 

model is a multi-level wavelet convolutional neural network. Due to limited data, the model was 

trained using synthetic data designed to recreate similar features of real Alfven Eigenmodes. 

Nevertheless, the trained denoising model adequately enhanced the noisy spectrograms with 

minimal false positives. 

Many aspects of the pipeline can be improved, but here we can classify them into two categories: 

Deep denoising model and pipeline improvements. To improve the Deep denoising model, two 

avenues can be pursued: better architectures or better data. The model used in the current 

pipeline is a relatively straightforward extension of the already simple U-Net model architecture. 
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The current state of the art in deep denoising uses much more complex architectures, which are 

either extension of the CNN U-Net architecture [48], [49] or use the newer Transformer 

architectures [50], [51]. 

In practice in deep learning, most of the gains come from better data. Thus, the same architecture 

can achieve better results if the models are trained on better data. In this case, that would either 

mean a hand-cleaned dataset of the structures we want to denoise, or data generated from a direct 

simulation. Both methods add additional labor to human labeling or computations. 

The clustering method can improve different aspects of the overall pipeline, but one primary way 

is the clustering method. Clustering could be applied to all the channels so that features could be 

cross-correlated to remove hallucinated structures and detect modes across all the channels in 

one go. 

With the development of modern diagnostics tools, vast amounts of high-resolution data are 

being created rapidly every year. Advanced machine learning techniques that require large 

amounts of data can now be used to aid researchers in their work. Automated pipelines can be 

built to clean or classify desired features saving countless human hours and allowing rapid 

iterations through the research process to increase the speed of science. 
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