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Using a sample of 232� 106 ��4S� ! BB events collected with the BABAR detector at the PEP-II B
Factory in 1999–2004, we study B� ! D0K��892�� decays where K�� ! K0

S�
� and D0 ! K���,

K����0, K������� (non-CP final states); K�K�, ���� (CP� eigenstates); K0
S�

0, K0
S�, and K0

S!
(CP� eigenstates). We measure four observables that are sensitive to the angle � of the CKM unitarity
triangle; the partial-rate charge asymmetries ACP� and the ratios of the B-decay branching fraction in
CP� and non-CP decays RCP�: ACP� � �0:08� 0:19�stat� � 0:08�syst�, ACP� � �0:26�
0:40�stat� � 0:12�syst�, RCP� � 1:96� 0:40�stat� � 0:11�syst�, and RCP� � 0:65� 0:26�stat� �
0:08�syst�.

DOI: 10.1103/PhysRevD.72.071103 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh
The measurement of CP violation in B-meson decays
offers a means to over-constrain the unitarity triangle. A
theoretically clean determination of the angle � �
arg��VudV�ub=VcdV

�
cb� is provided by the B� !

D���0K���� decay channels in which the favored b! cus
and suppressed b! ucs tree amplitudes interfere [1,2].
Results on the B� ! D���0K� decays have been published
by the BABAR [3–5] and BELLE [6,7] collaborations. In
this paper, we present a study based on the interference
between B� ! D0K��892�� and B� ! D0K�� when both
D0 and D0 decay to the same CP eigenstate (D0

CP).
Reference to a charge conjugate mode is implied through-
out this paper unless otherwise stated.

We follow [2,8] and define:

R CP� � 2
��B� ! D0

CP�K
��� � ��B� ! D0

CP�K
���

��B� ! D0K��� � ��B� ! D0K���
;

ACP� �
��B� ! D0

CP�K
��� � ��B� ! D0

CP�K
���

��B� ! D0
CP�K

��� � ��B� ! D0
CP�K

���
:

Both ACP and RCP carry CP-violating information.
Neglecting D0-D0 mixing, they can be expressed as fol-
lows:

R CP� � 1� 2rB cos� cos�� r2
B; (1)

A CP� �
�2rB sin� sin�

RCP�
; (2)

where � is the CP-conserving strong phase difference
between the B� ! D0K�� (suppressed) and B� !
D0K�� (favored) amplitudes, rB ’ 0:1–0:3 [8] is the mag-
nitude of their ratio, and � is the CP-violating weak phase
difference. A value close to 60	 is favored for � when one
combines all measurements related to the unitarity triangle
[9]. It is useful to introduce also new variables,

x� 
 rB cos��� ��; (3)

which are better behaved (more Gaussian) in the region
where rB is small.
071103
To search for B� ! D0
CPK

�� decays we use data col-
lected with the BABAR detector [10] at the PEP-II storage
ring. The sample corresponds to an integrated luminosity
of 211 fb�1 at the ��4S� resonance (232� 106 BB pairs)
and 20:4 fb�1 at an energy 40 MeV below the peak.

To reconstruct B� ! D0K�� decays, we select K��

candidates in the K�� ! K0
S�
�, K0

S ! ���� mode and
D0 candidates in eight decay channels, D0 ! K���,
K����0, K������� (non-CP final states); K�K�,
���� (CP� eigenstates); and K0

S�
0, K0

S�, K0
S! (CP�

eigenstates). We optimize our event selection to minimize
the statistical error on the signal yield, determined for each
channel using simulated signal and background events.
Particle identification is required for all charged particles
except for the pions from K0

S decays.
K0
S candidates are formed from oppositely charged

tracks assumed to be pions with a reconstructed invariant
mass within 13 MeV=c2 (4 standard deviations) from the
knownK0

S mass [11],mK0
S
. All K0

S candidates are refitted so
that their invariant mass equals mK0

S
(mass constraint). For

those retained to build aD0
CP� candidate the tracks are also

constrained to emerge from a single vertex (vertex con-
straint). For those retained to build a K�� we further
require their flight direction and length be consistent with
a K0

S coming from the interaction point. The K0
S candidate

flight path and momentum must make an acute angle and
the flight length in the plane transverse to the beam direc-
tion must exceed its uncertainty by 3 standard deviations.
K�� candidates are formed from a K0

S and a charged
particle with a vertex constraint. We select K�� candidates
which have an invariant mass within 75 MeV=c2 of the
known value [11]. Finally, since the K�� in B� ! D0K��

is polarized, we require j cos�Hj � 0:35, where �H is the
angle in the K�� rest frame between the daughter pion and
the parent B momentum. The helicity distribution discrim-
inates well between a B-meson decay and an event from
the e�e� ! qq (q 2 fu; d; s; cg) continuum, since the for-
mer is distributed as cos2�H and the latter is flat.

Some decay modes of the D0 contain a �0. We combine
pairs of photons to form a �0 candidate with a total energy
-4
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greater than 200 MeV and an invariant mass between 115
and 150 MeV=c2. A mass-constrained fit is applied to the
selected�0 candidates. Composite particles included in the
CP� modes are vertex constrained. Candidate � (!)
mesons are constructed from K�K� (�����0) particle
combinations with the invariant mass required to be within
12 �20� MeV=c2 or 2 standard deviations of the known
values [11]. Two further requirements are made on the !
candidates. The magnitude of the cosine of the helicity
angle between theD0 momentum in the rest frame of the!
and the normal to the plane containing all three decay pions
must be greater than 0.25. The Dalitz angle [12], defined as
the angle between the momentum of one daughter pion in
the ! rest frame and the direction of one of the other two
pions in the rest frame of the two pions, must have a cosine
with a magnitude less than 0.9.

Except for the K0
S�

0 final state, all D0 candidates are
mass and vertex constrained. We select D0 candidates with
an invariant mass differing from the known mass [11] by
less than 12 MeV=c2 for all channels except K0

S�
0

(30 MeV=c2) and K0
S! (20 MeV=c2). These limits are

about twice the corresponding rms mass resolutions.
To suppress the background due to e�e� ! qq reac-

tions, we require j cos�Bj � 0:9, where �B is defined as the
angle between the B candidate momentum in the ��4S�
rest frame and the beam axis. In qq background events the
cos�B distribution is uniform, while for B mesons it fol-
lows a sin2�B distribution. We also use global event shape
variables to distinguish between qq continuum events,
which have a two-jet-like topology in the ��4S� rest frame,
and BB events, which are more spherical. We require
j cos�T j � 0:9 where �T is the angle between the thrust
axes of the B candidate and that of the rest of the event. We
construct a linear discriminant [13] from cos�T and
Legendre monomials [14] describing the energy flow in
the rest of the event.

We identify B candidates using two nearly independent
kinematic variables: the beam-energy-substituted mass

mES 

������������������������������������������������������
�s=2� p0  pB�

2=E2
0 � p

2
B

q
and the energy differ-

ence �E � E�B �
���
s
p
=2, where E and p are energy and

momentum, the subscripts 0 and B refer to the e�e�-beam
system and the B candidate respectively; s is the square of
the center-of-mass (CM) energy and the asterisk labels the
CM frame. For signal modes, the mES distributions are all
described by the same Gaussian function G centered at the
B mass with a 2:6 MeV=c2 resolution (for D0 ! K0

S�
0 the

peak is slightly wider, 2:7 MeV=c2). The �E distributions
are centered on zero for signal with a resolution of 11 to
13 MeV for all channels except K0

S�
0 for which the reso-

lution is asymmetric and about 30 MeV. We define a signal
region through the requirement j�Ej< 50 �25� MeV for
K0
S�

0 (all other modes).
A background for B� ! D0������K���K0

S�
�� is the

decay B� ! D0�K0
S�
������ which contains the same

final state as the signal but has a branching fraction 600
071103
times larger. We therefore explicitly veto any selected B
candidate containing a K0

S�
��� combination within

25 MeV=c2 of the D0 mass. No background remains.
In those events where we find more than one acceptable

B candidate (less than 25% of selected events depending on
the D0 mode), we choose that with the smallest �2 formed
from the differences of the measured and true D0 and
K�� masses scaled by the mass spread which includes
the resolution and, for the K��, the natural width.
Simulations show that no bias is introduced by this choice
and the correct candidate is picked at least 82% of the time.

According to simulation of signal events, the total re-
construction efficiencies are 13.1% and 14.2% for theCP�
modes D0 ! K�K� and ����; 5.5%, 10.0%, and 2.4%
for the CP� modes D0 ! K0

S�
0, K0

S�, and K0
S!; 13.3%,

4.3%, and 8.2% for the non-CP modes D0 ! K���,
K����0, and K�������.

To study BB backgrounds we look in sideband regions
away from the signal region in �E and mD0 . We define a
�E sideband in the interval�100 � �E � �60 and 60 �
�E � 200 MeV for all modes except D0 ! K0

S�
0 for

which the inside limit is �95 rather than 60 MeV. The
sideband region in mD0 is defined by requiring that this
quantity differs from the D0 mass peak by more than 4
standard deviations. It provides sensitivity to doubly-
peaking background sources which mimic signal both in
�E and mES. This pollution comes from either charmed or
charmless B-meson decays that do not contain a true D0.
As many of the possible contributions to this background
are not well known, we attempt to measure its size by
including the mD0 sideband in the fit described below.

An unbinned extended maximum likelihood fit to mES

distributions in the range 5:2 � mES � 5:3 GeV=c2 is used
to determine yields and CP-violating quantities ACP and
RCP. We use the same Gaussian function G to describe the
signal shape for all modes considered. The combinatorial
background in the mES distribution is modeled with a
threshold function [15] A. Its shape is governed by one
parameter � that is left free in the fit. We fit simultaneously
mES distributions of nine samples: the non-CP, CP� , and
CP� samples for (i) the signal region, (ii) the mD0 side-
band, and (iii) the �E sideband. We fit three probability
density functions (PDF) weighted by the unknown event
yields. For the �E sideband, we use A. For the mD0

sideband (sb) we use asb A� bsb  G, where G accounts
for the doubly-peaking B decays. For the signal region
PDF, we use a A� b  G � c  G, where b � Npeak is
scaled from bsb according to the ratio of the mD0 signal
window to sideband widths and c is the number of B� !
D0K�� signal events. The non-CP mode sample, with
relatively high statistics, helps constrain the PDF shapes
for the low statistics CP mode distributions. The �E
sideband sample helps define the A background shape.

Since the values of � obtained for each data sample were
found to be consistent with each other, albeit with large
-5



TABLE I. Results from the fits. For each D0 mode class, we
give the event yield, the peaking background contribution Npeak,
ACP, and RCP. The uncertainties are statistical only.

Yield Npeak ACP RCP

non-CP 489� 27 20:1� 5:6
CP� 37:6� 7:4 4:1� 1:3 �0:08� 0:19 1:96� 0:40
CP� 14:8� 5:9 3:0� 2:3 �0:24� 0:35 0:73� 0:29
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statistical uncertainties, we have constrained � to have the
same value for all data samples in the fit. The simulation
shows that the use of the same Gaussian parameters for all
signal modes introduces only negligible systematic correc-
tions. We assume that the B decays found in the mD0

sideband have the same final states as the signal and we
fit the same Gaussian to the doubly-peaking B background.

The doubly-peaking B background is assumed to not
violate CP and is therefore split equally between the B�

and B� subsamples. This assumption is considered further
when we discuss the systematic uncertainties. The fit re-
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FIG. 1 (color online). Distributions ofmES in the signal region
for the non-CP modes in B� decays (a), the CP� modes in
B� (b) and B� (c) decays, and the CP� modes in B� (d) and
B� (e) decays. The dashed curve indicates the contribution from
the doubly-peaking B background estimated from a simulta-
neous fit to the D0 sideband (not shown).

071103
sults are shown graphically in Fig. 1 and numerically in
Table I.

The statistical significance of the CP� and CP� yields
are 6.8 and 2.7 standard deviations, respectively. The yields
for each individual mode are 23:1� 5:1 (K�K�), 17:4�
5:0 (����), 10:9� 4:1 (K0

S�
0), 3:1� 3:2 (K0

S�), and
3:8� 2:7 (K0

S!).
Although most systematic errors cancel for ACP, an

asymmetry inherent to the detector or data processing may
exist. After performing the analysis on a high statistics
B� ! D0�� sample (not applying the K��selection), the
final sample shows an asymmetry of �0:019� 0:008. We
assign a systematic uncertainty of �0:027. The second
substantial systematic effect is a possible CP asymmetry
in the peaking background. Although there is no physics
reason that requires the peaking background to be asym-
metric, it cannot be excluded. We note that if there were an
asymmetry Apeak, a systematic error on ACP would be
given by Apeak �

b
c , where b is the contribution of the

peaking background and c the signal yield. Assuming
conservatively jApeakj � 0:5, we obtain systematic errors
of �0:06 and �0:10 on ACP� and ACP�, respectively.

Since RCP is a ratio of rates of processes with different
final states of the D0, we must consider the uncertainties
affecting the selection algorithms for the different D chan-
nels. This results in small correction factors which account
for the difference between the actual detector response and
the simulation model. The main effects stem from the
approximate modeling of the tracking efficiency (1.2%
per track), the K0

S reconstruction efficiency for CP�
modes of the D0 (2.0% per K0

S), the �0 reconstruction
efficiency for the K0

S�
0 channel (3%) and the efficiency

and misidentification probabilities from the particle iden-
tification (2% per track). A substantial effect is the uncer-
tainty on the measured branching fractions [11].
Altogether, we obtain systematic uncertainties equal to
�0:11 and �0:055 for RCP� and RCP�, respectively.

Another systematic correction is applied to the CP�
measurements which arises from a possible CP� back-
ground for the K0

S� and K0
S! channels. In this case, the

observed quantities, Aobs
CP� and Robs

CP� are corrected:

A CP� � �1� ��A
obs
CP� � �ACP�;

RCP� �
Robs

CP�

�1� ��
;
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where � is the ratio of CP� background to CP� signal.
There is little information on this CP� background. An
investigation in BABAR of the D0 ! K�K�K0

S Dalitz plot
indicates that the dominant background for D0 ! K0

S�
comes from the decay a0�980� ! K�K�, at the level of
�25� 1�% the size of the �K0

S signal. We have no infor-
mation for the !K0

S channel and assume �30� 30�%.
Adding the most frequent K0

S�
0 mode which does not

suffer such a CP� pollution, we estimate � � �13�
7�%. The systematic error associated with this correction
is �0:01 and �0:04 for ACP� and RCP�, respectively.

To account for the nonresonant K0
S�
� pairs under the

K��, we vary by 2� all the strong phases in a conservative
model which incorporates S-wave K� pairs in both b!
c �us and b! u �cs amplitudes. This background induces
systematic variations of �0:051 for ACP� and �0:035
for RCP�. We add the systematic uncertainties in quad-
rature and quote the final results:

A CP� � �0:08� 0:19�stat� � 0:08�syst�;

ACP� � �0:26� 0:40�stat� � 0:12�syst�;

RCP� � 1:96� 0:40�stat� � 0:11�syst�;

RCP� � 0:65� 0:26�stat� � 0:08�syst�:

These results also can be expressed in terms of x�

defined in Equation (3):
071103
x� � 0:32� 0:18�stat� � 0:07�syst�;

x� � 0:33� 0:16�stat� � 0:06�syst�;

where the CP� pollution systematic effects increase x�

and x� by 0:022� 0:012 and 0:019� 0:010, respectively.
From Eq. (1) we find r2

B � 0:30� 0:25.
In summary, we have studied the decays of charged B

mesons to a K��892�� and a D0, where the latter is seen in
final states of even and oddCP. We express the results with
RCP, ACP, and x�. These quantities can be combined
with other D���K��� measurements to estimate rB more
precisely and improve our understanding of the angle �.
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