UC Berkeley

UC Berkeley Previously Published Works

Title

Functional composites by programming entropy-driven nanosheet growth

https://escholarship.org/uc/item/2jd4m2md

Journal

Permalink

Nature, 623(7988)

ISSN

0028-0836

Authors

Vargo, Emma Ma, Le Li, He <u>et al.</u>

Publication Date 2023-11-23

DOI 10.1038/s41586-023-06660-x

Peer reviewed

Functional Composites by Programming Entropy-Driven Nanosheet Growth

Emma Vargo^{1,2}, Le Ma^{1,2}, He Li^{2,3}, Qingteng Zhang⁴, Junpyo Kwon^{2,5}, Xiaochen Tang⁶,
L. Tovmasyan¹, Jasmine Jan⁷, Ana C. Arias⁷, Hugo Destaillats⁶, Wei-Ren Chen⁸, William Victoria Heller⁸, Robert O. Ritchie^{2,5}, Yi Liu^{2,3}, Ting Xu^{1,2,9*}

¹Department of Materials Science and Engineering, University of California, Berkeley, CA

94720, USA

²Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

³The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

⁴Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA

⁵Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA

⁶Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

⁷Department of Electrical Engineering and Computer Sciences, University of California,

Berkeley, CA 94720, USA

⁸Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

⁹Department of Chemistry, University of California, Berkeley, CA 94720, USA

DOI: 10.1038/s41586-023-06660-x

Abstract

Nanomaterials must be systemically designed to be technologically viable.¹⁻⁵ Driven by optimizing intermolecular interactions, current designs are too rigid to plug in new chemical functionalities and cannot mitigate condition differences during integration.^{6,7} Despite extensive optimization of building blocks and treatments, accessing nanostructures with the required feature sizes and chemistries is difficult. Programming their growth across the nano-to-macro hierarchy also remains challenging, if not impossible.8-13 To address these limitations, we should shift to entropy-driven assemblies to gain design flexibility, as seen in high entropy alloys, and program nanomaterial growth to kinetically match target feature sizes to the system mobility during processing.¹⁴⁻¹⁷ Here, following a micro-then-nano growth sequence in ternary composite blends, we successfully fabricate high-performance barrier materials composed of >200 stacked nanosheets (125 nm in sheet thickness) with defect density $< 0.056 \ \mu\text{m}^{-2}$ and $\sim 98\%$ efficiency in controlling the defect type. Contrary to common perception, polymer chain entanglements are advantageous to realize long-range order, accelerate the fabrication process (<30 minutes), and satisfy specific requirements to advance multi-layered film technology.^{3,4,18} The present studies showcase the feasibility, necessity, and unlimited opportunities to transform laboratory nanoscience into nanotechnology through system engineering of self-assembly.