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ABSTRACT OF THE DISSERTATION

Sensitivity Analysis of Unmeasured Confounding in Causal Inference based on
Exponential Tilting and Super Learner

by

Mi Zhou

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, June 2021

Dr. Weixin Yao, Chairperson

Causal inference under the potential outcome framework relies on the strongly ignorable

treatment assumption. This assumption is usually unverifiable,and therefore we will never

know if there is unmeasured confounding. Unmeasured confounding is one of the fundamen-

tal challenges in causal inference. Sensitivity studies are often used to address this issue and

evaluate how sensitive a causal estimate is to the unmeasured confounder. In this disserta-

tion, we propose a new sensitivity analysis method to evaluate the impact of the unmeasured

confounder by combining ideas of the doubly robust estimator, the exponential tilt method,

and the super learner algorithm for both binary and continuous outcomes in chapters 2 and

3, respectively. Compared to other existing methods of sensitivity analysis that parameter-

ize the unmeasured confounder as a latent variable in the working models, the exponential

tilting method does not impose any restrictions on the structure or models of the unmea-

sured confounders. Therefore, the unmeasured confounder could be continuous, binary, or

categorical, and could be univariate or multivariate. In order to reduce the modeling bias of

traditional parametric methods, we propose incorporating the super learner machine learn-
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ing algorithm to perform nonparametric model estimation and the corresponding sensitivity

analysis. In addition, we employ the data-driven trimming method to handle the estimated

extreme propensity scores that can hamper the performance of the proposed doubly robust

estimator. Furthermore, most existing sensitivity analysis methods require multivariate

sensitivity parameters, which makes it more difficult and subjective to specify a reasonable

range of the sensitivity parameters in practice. However, the new method has a univariate

sensitivity parameter with a nice and simple interpretation of log-odds ratios and deviation

in the conditional means of the outcomes for binary and continuous outcomes respectively.

This makes choosing a range for the sensitivity parameter easier for the application. The

simulation studies demonstrate the effectiveness of the proposed method.
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Chapter 1

Introduction

Important research questions in biomedical, epidemiological, economic, social and

behavioral sciences are frequently not associational but causal in nature. For example,

what is the efficacy of a new drug in a target population of patients? Does a particular

microorganism cause a particular disease? What fraction of past crimes could have been

avoided by a given policy? Causal inference is the process of learning about causality

from data with the help of subject matter knowledge. Understanding the causal effect of a

treatment or exposure is an important goal in various scientific studies.

1.1 Potential Outcomes

A common framework for causality research is based on potential outcomes, which

was originally proposed by Neyman 1923 in the context of completely randomized exper-

iments and later Rubin 1974 extended it to both observational and experimental studies.

Most of the existing methods for causal inference can be cast in terms of potential outcomes.
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Suppose we are interested in the causal effect of some treatment T on some outcome

Y . The potential outcome for a given treatment is the outcome that would result under

that treatment. For each possible value t of T , let Y (t) be the outcome for treatment t,

i.e., the outcome that would be observed if, possibly contrary to fact, treatment was set to

T = t. In this proposal, we consider a binary treatment, with t = 1 indicating the treatment

of interest and t = 0 indicating a control treatment. Thus, in the target population, each

person has two potential outcomes: Y (1) and Y (0). The potential outcomes are usually

not completely observed. Typically, we can only observe either Y (1) or Y (0), depending on

which treatment is actually given.

1.2 Causal effect

1.2.1 Average treatment effect

For a population of interest, the average treatment effect is defined as the difference

between the population average value of Y if everyone was treated with T = 1 and the

population average value of Y if everyone was treated with T = 0: δ = µ1 − µ0, where

µt = E{Y (t)}, t = 0, 1.

1.2.2 Other causal effects

In addition to the average treatment effect, there are many other causal effects that

might be of interest. For example, we might be interested in the difference in a specified

quantile between two potential outcome distributions. For binary outcomes, a causal effect
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could be defined as the relative risk P{Y (1) = 1}/P{Y (0) = 1}, or the odds ratio:

P{Y (1) = 1}
P{Y (1) = 0}

/
P{Y (0) = 1}
P{Y (0) = 0}

= P{Y (1) = 1}P{Y (0) = 0}/[P{Y (1) = 0}P{Y (0) = 1}].

Sometimes interest lies in the average treatment effect on the treated, E{Y (1)−Y (0)|T = 1},

which measures the average effect of treatment among those who are actually treated. This

may be of interest if the untreated individuals would never be interested in this particular

treatment (for example, some people are just unable or unwilling to have surgery). For

those people who want to be treated, we would like to understand the average effect of the

treatment in that subpopulation.

The causal effect of interest depends on the scientific context – the research ques-

tion, the design of a study, and possibly the data available. For later discussions in this

proposal, we focus on the average treatment effect.

1.3 Confounding

Randomized experiments are considered the gold standard for causal inference as

in a randomized study subjects are randomly assigned to treatment groups, which makes

the treatment assignment independent of the potential outcomes. Outcomes in different

treatment groups can be compared directly, because the subjects are not systematically

different. Formally, randomization implies that T is independent of Y (1) and Y (0), both of
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which are baseline variables (which exist before randomization occurs). It follows that

E(Y |T = t) = E{Y (t)|T = t} = E{Y (t)} t = 0, 1. (1.1)

Thus, the average outcome in each treatment group estimates the mean of the correspond-

ing potential outcome.

In some situations, randomization may be unethical or impractical, and one has

to conduct an observational study in which treatment assignment is observed but not con-

trolled by investigators. Without randomization, treatment assignment is not known to be

independent of the potential outcomes, and equation (1.1) is generally false. This issue,

known as confounding, is the main challenge in understanding causality from observational

data. To adjust for confounding in an observational study, we first need to identify the

confounders, the variables that cause the confounding. These are usually identified as the

baseline variables that are predictive of both treatment assignment and the outcome of

interest.

1.4 Standard Assumptions

1.4.1 Strongly Ignorable (SI) Treatment Assignment

A standard assumption for causal inference is the assumption of strongly ignorable

treatment assignment. Let X be a collection of measured baseline covariates which are con-

sidered possible confounders. The strong ignorability assumption says that the treatment
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assignment T is conditionally independent of the potential outcomes Y (t) given the value

of X, written

T ⊥ Y (t)|X, t = 0, 1. (1.2)

In other words, within each level of X, T is assumed to be independent of the potential

outcomes, so we have a quasi-randomized experiment. This assumption is not testable with

observed data and must be based on external information such as subject matter knowledge.

In practice, to make the strong ignorability assumption plausible, one needs to identify and

measure all baseline variables that are important predictors of treatment assignment and

the outcome of interest.

1.4.2 Positivity Assumption

Another standard assumption for causal inference is the positivity assumption:

P (T = t|X = x) > 0, ∀ t, x, (1.3)

which requires that both treatments be possible at each level of X. In other words, there

cannot be a subpopulation defined by X that never receives one of the treatments. Unlike

assumption(3.1), assumption (1.3) is testable with observed data. Without this assumption,

treatment assignment would be deterministic for some values of X, and there would be no

observed outcome data in one treatment group for those values of X. This would have a

negative impact on parameter identification, as we now discuss.
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Together, assumptions (3.1) and (1.3) are sufficient for nonparametric identifica-

tion of µt (t = 0, 1) and hence δ; that is, the parameters can be expressed in terms of the

observable (X,T, Y ) under the two assumptions. To see this, note that assumption (3.1)

implies

E{Y (t)|X} = E{Y (t)|T = t,X} = E(Y |T = t,X),

which further implies that

µt = E{E(Y |T = t,X)},

where the outer expectation is with respect to the marginal distribution of X. Assumption

(1.3) ensures that E(Y |T = t,X) is identified from the observed data. If the positivity

assumption fails, so that P(T = t|X = x) = 0 ∀x ∈ X0 for some X0 with P(X ∈ X0) > 0,

then E(Y |T = t,X = x) is unidentified for x ∈ X0.

1.5 Existing methods assuming SI

Suppose an observational study is conducted on a random sample of size n from

the target population. The observed data will be conceptualized as independent copies

of (X,T, Y ), and will be denoted by (Xi, Ti, Yi), i = 1, . . . , n. The goal is to estimate

δ = µ1 − µ0 using the observed data. In this section, we describe several methods that

assume SI and positivity.
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1.5.1 Outcome Regression

The previous discussion of identification suggests an estimation approach based on

the regression function E(Y |T,X). Estimator obtained based on this method is referred to

as the outcome regression estimator, and it has been widely used. Some well-known works

include Paul R Rosenbaum and Rubin 1982, Imbens 2003 and Tan 2006. IfX is discrete with

a small number of levels, one can estimate E(Y |T,X) non-parametrically with the sample

mean of Y within each stratum defined by (T,X). When X has several components, some

of which may be continuous, this nonparametric approach quickly becomes impractical due

to the curse of dimensionality. One way to deal with the curse of dimensionality is to specify

a model for E(Y |T,X), say m(T,X;β), where m is a known function and β represents the

unknown parameters to be estimated. Now the average treatment effect can be rewritten

as:

δ = E{m(1, X;β)−m(0, X;β)}. (1.4)

For example, the outcome regression model may be specified as a generalized linear model

(GLM):

m(t, x, β) = ψ{β0 + βXx+ βT t+ βTX(tx)}, (1.5)

where ψ is an inverse link function. In this model, the regression coefficients βT and βTX

together describe the conditional effect of T on Y given X on the scale of the link function.

Specifically, we have

βT + βTXX = ψ−1(E{Y (1)|X})− ψ−1(E{Y (0)|X}).

7



The model is also related to the marginal effect through the relationship µt = E{m(t,X, β)},

where the expectation is with respect to the marginal distribution of X.

The outcome regression model can be fitted using standard techniques. Let β̂

denote the resulting estimate of β, we can estimate µt (t = 0, 1) with

µ̂OR
t =

1

n

n∑
i=1

m(t,Xi; β̂),

and estimate δ with δ̂OR = µ̂OR
1 − µ̂OR

0 .

1.5.2 Inverse Probability Weighting (IPW)

One way to look at confounding in observational studies is to regard each treatment

group as a biased sample from the target population, with some subjects over-sampled and

other under-sampled. For example, subjects with high propensity scores, which indicates

a high probability of receiving the treatment, would be over-sampled in the treated group

and under-sampled in the control group. Similarly, subjects with small propensity scores,

which indicates a small probability of receiving the treatment, would be under-sampled in

the treated group and over-samples in the control group. The idea of IPW is to create a

pseudo-population where treatment is no longer dependent on confounders by weighting

the available subjects in each treatment group.

The appropriate weight turns out to be the inverse of the probability of the treat-

ment received, conditional on X:

For treated subjects: weighted by the inverse of P (T = 1|X) = PS.

For control subjects: weighted by the inverse of P (T = 0|X) = 1− PS.

8



The IPW approach (P. Rosenbaum, Colton, and Armitage 1998; Lunceford and

Davidian 2004; Robins, Hernan, and Brumback 2000) can be formally justified as follows:

E

{
TY

π(X)

}
= E

{
TY (1)

π(X)

}
= E

[
E

{
TY (1)

π(X)

∣∣∣∣X,Y (1)

}]
= E

[
E{T |X,Y (1)}Y (1)

π(X)

]
= E

{
E(T |X)Y (1)

π(X)

}
= E

{
π(X)Y (1)

π(X)

}
= E{Y (1)}

= µ1,

(1.6)

which follows from the SI and positivity assumptions. (The positivity assumption ensures

that the denominator π(X) is positive and can be cancelled with π(X) in the numerator.)

A similar argument shows that µ0 = E

{
(1−T )Y
1−π(X)

}
.

In an observational study, the propensity score is typically unknown and must be

estimated. Here again, π(X) can be estimated nonparametrically if X is discrete with a

small number of levels. In most realistic situations, to deal with the curse of dimensionality,

we can estimate π(X) under a regression model for T conditional on X, say P(T = 1|X) =

π(X, γ). Because T is binary, the propensity score model is a binary regression model

(e.g., logistic regression), which can be fitted using standard techniques. Let γ̂ denote the

9



resulting estimate of γ. Then we can estimate δ with δ̂IPW = µ̂IPW1 − µ̂IPW1 , where

µ̂IPW1 =
1

n

n∑
i=1

TiYi
π(Xi, γ̂)

,

µ̂IPW0 =
1

n

n∑
i=1

(1− Ti)Yi
1− π(Xi, γ̂)

.

Each µ̂IPWt can be regarded as a weighted average of the observed outcomes in the tth

treatment group. The total weight converges to 1 but is not necessarily equal to 1 in finite

samples. For improved performance, we could divide the weights by the total weight in

each treatment group. The resulting normalized IPW estimator generally performs better.

1.5.3 Double Robust (DR) Estimators

The OR and IPW estimators involve different models, and their consistency de-

pends on correct specification of the OR model and the PS model, respectively. Misspeci-

fication of the working model generally results in a bias in the estimator. Some protection

is provided by a DR estimator, which is consistent under correct specification of either or

both of the OR and PS models. This DR property is a significant advantage because in

practice it is often difficult to specify a regression model correctly.

Motivated by semiparametric theory, DR estimators (Robins, Rotnitzky, and Zhao

1995; Rotnitzky, Robins, and D. O. Scharfstein 1998; D. O. Scharfstein, Rotnitzky, and

Robins 1999; Lunceford and Davidian 2004; Rotnitzky, Lei, et al. 2012) can be constructed

in different ways. A common approach to DR estimation is to augment an IPW estimator

or estimating equation with a term derived from semiparametric theory. In the present

context, an augmented IPW (AIPW) estimator of δ is given by δ̂AIPW = µ̂AIPW
1 − µ̂AIPW

0 ,

10



where

µ̂AIPW
1 = µ̂IPW1 − 1

n

n∑
i=1

Ti − π(Xi, γ̂)

π(Xi, γ̂)
m(1, Xi, β̂),

µ̂AIPW
0 = µ̂IPW0 − 1

n

n∑
i=1

Ti − π(Xi, γ̂)

1− π(Xi, γ̂)
m(0, Xi, β̂).

The DR property of the AIPW estimator can be seen as follows. For ease of argument,

let us focus on estimation of µ1. Let β∗ and γ∗ denote the probability limits of β̂ and γ̂,

respectively. If the PS model is correct, then γ∗ equals the true value of γ, the IPW estimator

is consistent, and the difference µ̂AIPW
1 − µ̂IPW1 converges to E

{
T−π(X)
π(X) m(1, X, β∗)

}
, which

is easily seen to be zero by using a conditioning argument. Next, suppose the OR model is

correct, so that β∗ equals the true value of β and the OR estimator is consistent. In this

case, the difference

µ̂AIPW
1 − µ̂OR

1 =
1

n

n∑
i=1

Ti{Yi −m(1, Xi, β)}
π(Xi, γ∗)

converges to

E

[
T{Y −m(1, X, β)}

π(X, γ∗)

]
,

which is again zero. Thus, the AIPW estimator is indeed DR—consistent if either model

is correct. If both models are correct, the AIPW estimator attains the nonparametric

information bound; in that sense, the AIPW estimator is said to be locally efficient.

There are other approaches, such as targeted maximum likelihood estimation, to

obtaining DR estimators with similar (or better) properties.
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1.5.4 Propensity Score Stratification

Paul R Rosenbaum and Rubin 1983 point out that

T ⊥ Y (t)|π(X), t = 0, 1.

Thus, upon conditioning on the PS, T becomes independent of the potential outcomes so

we have a quasi-randomized experiment within each subpopulation defined by π(X). This

observation motivates a PS stratification approach in which subjects are grouped into a few

strata based on their estimated PS values. Let Sk, k = 1, . . . ,K, be a partition of the unit

interval based on quantiles of the estimated PS π(Xi, γ̂). If each stratum is approximately

homogeneous, we can treat T as approximately independent of the potential outcomes with

the stratum, and estimate µ
(k)
t = E{Y (t)|π(X) ∈ Sk} with µ̂

(k)
t , the average of the observed

Y -values for treatment t in stratum k. The stratified estimator of δ is δ̂ST = µ̂ST1 − µ̂ST0

with

µ̂STt =
1

n

K∑
k=1

|Sk|µ̂
(k)
t ,

where |Sk| is the size of Sk. This PS stratification approach is simple and easy to implement.

On the other hand, because the strata are not exactly homogeneous, there may be a bias

in δ̂ST due to residual confounding.

1.6 Existing methods dealing with possible violation of SI

The methods discussed above are valid in cases where there are no unmeasured con-

founders, which, practically, is a strong assumption. Researchers may hope that sufficiently

12



rich baseline information is collected in order to justify this assumption. In reality, the as-

sumption is questionable in many observational studies. If unmeasured confounders exist,

the strong ignorability assumption may be violated, which may result in a bias in treatment

effect estimation and undermine the validity and credibility of the conclusions drawn. Un-

fortunately, the strong ignorability assumption cannot be validated with observed data, and

there is frequently insufficient background knowledge to justify this assumption. Therefore,

it is important to consider possible violations of the strong ignorability assumption.

With the strong ignorability assumption removed, the parameters µt and δ be-

come un-identified, which has motivated alternative assumptions of various forms that aim

to recover identifiability. These alternative assumptions are, like the strong ignorability as-

sumption, untestable with observed data. A single set of alternative identifying assumptions

may be as questionable as, or more questionable than, the strong ignorability assumption.

To address such uncertainty, it is common to conduct a sensitivity analysis that considers

a variety of identifying assumptions and compares results obtained under different assump-

tions. In fact, most existing methods that deal with violations of the SI assumption can be

regarded as sensitivity analysis methods.

In the rest of this section, we describe two existing sensitivity analysis methods of

Paul R Rosenbaum and Rubin 1982 and Lin, Psaty, and Kronmal 1998, as well as a E-value

approach of Ding and VanderWeele 2016, which represents a different perspective.

1.6.1 Sensitivity Analysis Method of Rosenbaum and Rubin (1982)

Paul R Rosenbaum and Rubin 1982 proposed a sensitivity analysis method that

explicitly adjusts for an unmeasured confounder as a latent variable. With U denoting the
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unmeasured confounder, their method assumes that X and U together satisfy the SI and

positivity assumptions:

T ⊥ Y (t)|X,U, t = 0, 1; (1.7)

0 < P (T = 0|X,U) < 1, with probability 1. (1.8)

In addition, their method assumes that X is finitely discrete and that Y and U are both

binary.

Under assumption (1.7), the joint distribution of (Y (t), T, U,X) for t = 0, 1 can

be factorized as:

P (Y (t)|U,X)P (T |U,X)P (U |X)P (X),

where the SI assumption for (X,U) allows us to write P (Y (t)|T,U,X) as P (Y (t)|U,X).

Write φj = P (X = j) and πj = P (U = 0|X = j), j = 1, ...J. Further, let P (T |U,X) and

P (Y (t)|U,X) be parameterized as logistic regression models:

P (T = 0|U = u,X = j) = [1 + exp(γj + uαj)]
−1,

and

P (Y (t) = 0|U = u,X = j) = [1 + exp(βjt + uηjt)]
−1.

Note that both models are saturated and impose no real assumptions on the conditional

probabilities on the left side. The above expressions are really just to parameterize the two
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conditional probabilities. When u = 0, γj is the log odds of treatment 0 in subclass j and

when u = 1, γj + αj is the log odds of treatment 0 in subclass j. Likewise, βjt is the log

odds of Y (t) in subclass j when u = 0, and βjt+ηjt is the corresponding log odds when u = 1.

Under this parameterization, µt can be expressed as

µt =
J∑
j=1

φj [(1− πj)
exp(βjt + ηjt)

1 + exp(βjt + ηjt)
+ πj

exp(βjt)

1 + exp(βjt)
]. (1.9)

If all parameters on the right side can be estimated, we can then substitute their estimates

into the above expression to estimate µt and δ. However, the parameters are not fully

identified because U is unobserved. the proposal of Paul R Rosenbaum and Rubin 1982

is to specify the values of the parameters associated with the unmeasured confounding

variable u (i.e., πj , αj , ηjt). Once these values are specified, we can then estimate the other

parameters by maximizing the likelihood for the observed data (Xi, Ti, Yi), i = 1, . . . , n.

Varying the specified values of (πj , αj , ηjt) leads to a sensitivity analysis.

1.6.2 Sensitivity Analysis Method of Lin et al. (1998)

Lin, Psaty, and Kronmal 1998 proposed an approach to assess the sensitivity of the

regression coefficients in an outcome regression model adjusting for both the measured and

unmeasured confounders. Because the regression coefficients describe the conditional effect

of T on Y given confounders, the approach of Lin, Psaty, and Kronmal 1998 is targeted at

the conditional effect and not the marginal effect, which is the focus of this proposal.

Again, let U denote an unmeasured confounder. The main idea of Lin, Psaty, and

15



Kronmal 1998 is to relate a regression model for E(Y |T,X,U) to a regression model for

E(Y |T,X) of a similar form. A key observation here is that

E(Y |T,X) = E{E(Y |T,X,U)|T,X}.

To deduce E(Y |T,X) from a given model for E(Y |T,X,U) requires integration with respect

to the conditional distribution of U given (T,X). To this end, the authors assume that

U ⊥ X|T, (1.10)

that is, unmeasured confounders are independent of measured confounders within each

treatment group. Under this assumption, the conditional distribution of U given (T,X) is

just the conditional distribution of U given T , which is easier to specify because T is binary.

As a concrete example, suppose Y is binary and consider the following log-linear

model:

P (Y (t) = 1|T = t,X,U) = P (Y = 1|T = t,X,U) = eα+βT+γtU+θ′X , (1.11)

where α, β, γt(t = 0, 1) and θ are unknown regression parameters. The notation γt implies

that T is allowed to interact with U .

Under assumption (1.10), model (1.11) implies that

P (Y = 1|X,T ) = eα
∗+β∗T+θ∗

′
X , (1.12)
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where θ∗ is the same as θ but (α∗, β∗) may differ from (α, β) in model (1.11). β represents

the true conditional effect of the treatment given (X,U = 0), while β∗ is just a regression

parameter without a causal interpretation. If we assume γ1 = γ0 so there is no interaction

between T and U in model (1.11), then β represents the conditional effect of treatment

given (X,U) (without restricting the value of U). Let R = eβ and R∗ = eβ
∗
, then R is

the true relative risk of disease due to treatment whereas R∗ is the relative risk estimable

from the reduced model, i.e., the apparent relative risk. It is of interest to ascertain the

relationship between β and β∗ and between R and R∗. Suppose U is a binary unmeasured

confounder:

U |T,X ∼ Bernoulli(PT ).

Then, after some algebra, it can be shown that

β = β∗ − log e
γ1P1 + (1− P1)

eγ0P0 + (1− P0)
, (1.13)

where P1 = PT=1 = P (U = 1|T = 1) and P0 = PT=0 = P (U = 1|T = 0);

or

R = R∗/A; (1.14)

A =
eγ1P1 + (1− P1)

eγ0P0 + (1− P0)
.

A is called the adjustment factor and it involves the unmeasured confounder U . In ap-

plications, A can be evaluated for some specified values of the sensitivity parameters that
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are associated with U (i.e., P0, P1, e
γ1 , eγ0). Lin, Psaty, and Kronmal 1998 also considered

several other models and distributions of U , many of which admit a simple characterization

of the relationship between β and β∗.

This is an elegant and interesting approach. However, as pointed out by Van-

derWeele 2008 , assumption (1.10) is implausible if X and U are both related to T , as is

typically the case when X and U are both important confounders.

1.6.3 E-value

The two sensitivity analysis methods described earlier require specifying the values

of certain parameters related to the unmeasured confounder, which may be difficult and

arbitrary. There are other sensitivity analysis methods that require different specifications,

which also tend to be arbitrary.

VanderWeele and Ding 2017 takes a different perspective. Instead of exploring

alternative assumptions for identification, they ask how strong an unmeasured confounder

has to be in order to qualitatively change the conclusion of a causal analysis. They assume

a binary outcome and use the causal relative risk (or risk ratio) defined earlier as the effect

measure. They introduce an E-value, defined as the minimum strength of association, on the

risk ratio scale, that an unmeasured confounder would need to have with both the treatment

and outcome, conditional on the measured covariates, to explain away a treatment-outcome
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association. More precisely,

E − value =


R+

√
R× (R− 1), ifR > 1,

R∗ +
√
R∗ × (R∗ − 1), if R∗ = 1

R > 1

where R is the risk ratio of an observational study after adjusting for several observed

confounding covariates. The E-value is a continuous measure of the robustness of an ob-

served association to unobserved confounders. The smallest possible E-value is 1, which

corresponds to R = 1 and indicates no evidence for a causal relationship. Higher E-values

indicate stronger evidence for a causal relationship.
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Chapter 2

Sensitivity Analysis of Unmeasured

Confounding in Causal Inference

for Binary Outcomes

2.1 Introduction

In order to explore causal inference, Neyman 1923 proposed the potential outcome

framework in the context of completely randomized experiments and later Rubin 1974

extended it to both observational and experimental studies. Consider a binary treatment

T with T = 1 indicating the treatment group and T = 0 indicating the control group. The

potential outcome Y (t) is defined as the outcome we would observe if a subject had been

assigned the treatment T = t, t = 0, 1. The observed outcome will then be Y = TY (1)+(1−

T )Y (0). The causal effect, or average treatment effect (ATE), of the treatment is defined as
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τ = µ1−µ0, where µt = E{Y (t)}, t = 0, 1. In observational studies, a standard assumption

for causal inference is the assumption of strongly ignorable treatment assignment. Let X

be a collection of measured baseline covariates which are considered possible confounders.

The strong ignorability assumption states that the treatment assignment T is conditionally

independent of the potential outcomes Y (0) and Y (1) given X, i.e.,

Y (t) ⊥ T |X, t = 0, 1. (2.1)

In other words, within each level of X,T is assumed to be independent from the potential

outcomes, so we have a quasi-randomized experiment.

Researchers usually hope that sufficiently rich baseline information is collected

so that the ignorability assumption (3.1) is reasonable. However, this assumption is usu-

ally questionable in observational studies, and the unmeasured confounding is one of the

fundamental challenges in causal inference. If unmeasured confounders exist, the strong ig-

norability assumption is violated, which may result in a biased treatment effect estimation

and undermine the validity and credibility of the corresponding causal inference. Unfor-

tunately, the strong ignorability assumption cannot be validated with observed data for

the estimation of causal effect, and there is frequently insufficient background knowledge to

justify this assumption.

Without the strong ignorability assumption (3.1), the causal effect becomes uniden-

tified, which has motivated alternative assumptions of various forms that aim to recover

the identifiability. However, these alternative assumptions are also untestable with ob-

served data like the strong ignorability assumption, and may be as questionable as, or even
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more questionable than, the strong ignorability assumption. To address such uncertainty,

it is important to conduct a sensitivity analysis that considers a variety of identifiability

assumptions and compare results obtained under different assumptions.

The history of sensitivity analysis can be dated back to the work of Cornfield et al.

1959 which explored a causal link between smoking and lung cancer. Paul R Rosenbaum

and Rubin 1982 proposed a sensitivity analysis framework that explicitly included a bi-

nary unmeasured confounding variable U as a latent variable in regression models for the

binary treatment T and the binary outcome Y (t). Their method assumed that X and U

together satisfy the strong ignorability assumption, i.e., Y (t) ⊥ T |X,U . More specifically,

the observed data consists of (Y, T,X) and a binary unmeasured confounder U is assumed

for each individual. Suppose that the observed data and the unmeasured confounder were

generated according to:

Ui ∼ Ber(Pu)

Ti|Xi, Ui ∼ Ber (expit{γxX + γuU})

Yi|Ti, Xi, Ui ∼ Ber (expit{βtT + βxX + βuU}) ,

where Ber(π) is a Bernoulli distribution with a success probability π, expit(s) = (1 +

e−s)−1 = es/(1 + es). If we could observe U , the parameters (Pu, γx, γu, βt, βx, βu) can

be estimated via logistic regression models and report τ as the causal effect. The two

coefficients γu and βu measure the strength of the association between the unmeasured

confounder and the treatment and the association between the unmeasured confounder

and the outcome, respectively. However, U is not observed, thus Pu, γu and βu are not
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identifiable using the observed data. What analysts can do is to specify plausible values

of (Pu, γu, βu) based on their subjective judgments about these parameters, then the other

parameters can be estimated based on (Pu, γu, βu). The final estimate of the causal effect

can be expressed as τ̂(Pu, γu, βu). Veitch and Zaveri 2020 pointed out that this approach has

a major drawback: it relies on a parametric model for the full data generating process. Using

the assumed model is equivalent to assuming that if U had been observed, it would have been

appropriate to use logistic regression to model the treatment assignment and outcome. Also,

the sensitivity analysis result depends on the distribution of U . Furthermore, the choice

of the sensitive parameters (Pu, γu, βu) is subjective and challenging, and could be even

more difficult if U is not univariate. Lin, Psaty, and Kronmal 1998 proposed an approach

to parameterize the unmeasured confounder as the bias of regression coefficients in an

outcome regression model adjusting for both the measured and unmeasured confounders.

Imbens 2003 extended Paul R Rosenbaum and Rubin 1982 to allow for non-binary outcomes.

There is also a line of work that formulated the sensitivity parameter as the bias of the

outcome regression model caused by the unmeasured confounder, see, for example, Hogan,

M. Daniels, and Hu 2014; Jung et al. 2018; Roy, Lum, and Michael J Daniels 2017, etc.

Ding and VanderWeele 2016 and VanderWeele and Ding 2017 investigated how strong an

unmeasured confounder has to be in order to qualitatively change the conclusion of a causal

analysis. In recent years, another extension of the traditional sensitivity analysis was from a

Bayesian perspective which used the average over the distribution of sensitivity parameters

rather than varying the sensitivity parameters McCandless, Gustafson, and Levy 2007;

Dorie et al. 2016; McCandless and Gustafson 2017. Most of the above sensitivity analysis
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methods require specifying some parametric models for the confounding variable, which may

be difficult to hold in practice. In addition, they usually contain multivariate sensitivity

parameters, which makes their choice difficult and subjective when performing sensitivity

analysis in practice.

To this end, we propose a new sensitivity analysis method to evaluate the impact

of the unmeasured confounder by leveraging ideas of doubly robust estimators (Robins,

Rotnitzky, and Zhao 1995), the exponential tilt method D. Scharfstein et al. 2014, and the

super learner machine learning method Van der Laan, Polley, and Hubbard 2007. Note

that if there is any unmeasured confounder, f(Y (t)|X,T = 1) and f(Y (t)|X,T = 0) will

be different, where f is a probability distribution function (either a density function for a

continuous variable or a probability mass function for a discrete variable). Inspired by this,

we propose to assess the sensitivity of the difference between the conditional distribution

of the observed potential outcome given covariates and that of the counterfactual potential

outcome via the exponential tilting method proposed by D. Scharfstein et al. 2014. Com-

pared to most existing sensitivity analysis methods, the exponential tilting method does

not directly impose any assumptions on the distribution of the unmeasured confounders.

Therefore, the new method has the flexibility to allow the unmeasured confounder to be

continuous, binary, or categorical, and be univariate or multivariate. In order to reduce the

modeling bias of traditional parametric methods, we propose incorporating super learner

machine learning algorithms to perform the nonparametric model estimation and the cor-

responding sensitivity analysis. Super learner algorithms aim to optimally combine many

machine learning algorithms together to provide a better estimation than any individual
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candidate machine learning algorithm. Unlike most of existing sensitivity analysis methods

which usually contain multiple sensitivity parameters, the new method has a univariate sen-

sitivity parameter, which directly measures the bias of the strong ignorability assumption

(3.1) caused by the unmeasured confounding, and has a nice and simple interpretation of

log-odds ratios for binary outcomes. The used univariate sensitivity parameter also makes

its choice and the application of the new sensitivity analysis method very easy for practi-

tioners.

The rest of this paper is structured as follows. In section 2, we introduce our

proposed estimation method in detail. In sections 3 and 4, we present numerical examples

based on both a simulation study and a real data application. A conclusion is given in

section 5.

2.2 Methodology

In this article, we mainly focus on the binary response variable due to its wide

variety of applications in causal inference Paul R Rosenbaum and Rubin 1982; McCandless,

Gustafson, and Levy 2007; Groenwold et al. 2010. The proposed method can be easily

extended to a continuous response variable. Note that for a binary response variable,

the potential outcome mean µt = E{Y (t)} can be interpreted as the success rate among

the target population if everyone had been assigned the treatment t. For simplicity of

explanation, we introduce our new method by focusing on estimating µ1 = E{Y (1)}, the

mean of potential outcome if everyone in the target population had been treated. The

µ0 = E{Y (0)} and the corresponding ATE τ = µ1 − µ0 can be similarly estimated.

25



When the subjects are in the treatment group, Y (1) is the observed actual out-

come, whereas when the subjects are in the control group, Y (1) becomes the counterfactual

outcome which cannot be observed. So the estimation of µ1 essentially boils down to the

imputation of counterfactual outcomes. Let

m(x) = E(Y (1)|X = x), m1(x) = E(Y (1)|T = 1, X = x)

and

P (x, y) = P (T = 1|X = x, Y (1) = y), q(x) = P (T = 1|X = x).

Then our target parameter can be also written as µ1 = {Y (1)} = {m(X)}. Notice that

when there is no unmeasured confounder,

m(x) = m1(x) and P (x, y) = q(x), (2.2)

which can be estimated from the observed data.

2.2.1 Doubly robust estimator

Let (Xi, Yi, Ti)
n
i=1 be an independent and identically distributed random sample

from X ∈ Rd, Y ∈ {0, 1} and T ∈ {0, 1}, where X is a set of baseline covariates, and T

is a binary treatment indicator. Under the strong ignorability assumption (i.e., there is no

unmeasured confounder), three of the most commonly used estimators for µ1 = E{Y (1)}

are

µ̂OR =
1

n

n∑
i=1

m̂1(xi), (2.3)
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µ̂IPW =
1

n

n∑
i=1

TiYi
q̂(xi)

, (2.4)

and

µ̂DR =
1

n

n∑
i=1

{
TiYi
q̂(xi)

− Ti − q̂(xi)
q̂(xi)

m̂1(xi)

}
, (2.5)

where m̂1(x) and q̂(x) are the estimates of m1(x) and q(x), respectively. Estimator (2.3)

only involves an outcome regression (OR) model, m1(x), so it is referred to as an OR

estimator Tan 2006. Estimator (2.4) is called an IPW estimator (P. Rosenbaum, Colton,

and Armitage 1998; Lunceford and Davidian 2004; Robins, Hernan, and Brumback 2000),

since it includes a model for the propensity score (PS, Paul R Rosenbaum and Rubin 1983),

q(x) = P (T = 1|X = x), and uses the inverse probability weight (IPW). Estimator (3.3)

is a doubly robust estimator of the potential outcome mean (DR, Robins, Rotnitzky, and

Zhao 1995; Rotnitzky, Robins, and D. O. Scharfstein 1998; D. O. Scharfstein, Rotnitzky,

and Robins 1999; Lunceford and Davidian 2004; Rotnitzky, Lei, et al. 2012). It involves

both OR and PS models. Notice that the DR estimator is an augmented form of the IPW

estimator:

µ̂DR = µ̂IPW − 1

n

n∑
i=1

Ti − q̂(xi)
q̂(xi)

m̂1(xi).

The consistency of the resulting estimators OR, IPW, and DR depends on the correct

specification of the relevant models for q(x) and m1(x). However, unless the parametric

models for q(x) and m1(x) are correctly specified, we cannot expect OR or IPW estimator

to be consistent. It is worth noting that the validity of the DR estimator entails weaker

conditions, since it only requires either m1 or q to be correctly specified. Because of this,
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we will adopt the DR method for the proposed sensitivity analysis.

If there exists any unmeasured confounder, thenm(x) 6= m1(x) and P (x, y) 6= q(x),

and the traditional estimators of µ1 in (2.3)—(3.3) will be biased. To incorporate the

unmeasured confounder to correct the estimation bias, we propose the following modified

doubly robust estimator for µ1 using the estimators of m(x) and P (x, y) instead of m1(x)

and q(x), respectively,

µ̂DR =
1

n

n∑
i=1

{
TiYi

P̂ (xi, yi)
− Ti − P̂ (xi, yi)

P̂ (xi, yi)
m̂(xi)

}
. (2.6)

The difficulty of the estimation for m(x) and P (x, y) lies in the fact that the outcome Y (1)

is only partially observed.

2.2.2 Exponential tilt method for the unmeasured confounder

When there are unmeasured confounders, the conditional distribution of the ob-

served Y (1) is no longer the same as the conditional distribution of the unobserved Y (1)

given the covariates, and thus the relationship in equation (3.2) breaks down. Our goal is

to restore the relationship between the conditional distributions of the observed and the

unobserved outcome so that we can further estimate m(x) and P (x, y) in (3.4).

Let g(y|x) be the conditional distribution of Y (1)|X and gt(y|x) be the conditional

distribution of Y (1)|X,T = t, t = 0, 1. Notice that when T = 1, Y (1) is observed, and

when T = 0, Y (1) is missing. We propose leveraging the exponential tilt method from D.
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Scharfstein et al. 2014 to build the connection between g0 and g1,

g0(y|x) =
g1(y|x)eαy

E{eαY |x, T = 1}
, (2.7)

which links the distribution of unobserved outcomes to the the distribution of observed

outcomes. The denominator in (3.5) is a normalization constant to make g0 a legitimate

density. Since the exponential tilt method (3.5) does not require specifying parametric

models for latent confounding variables, the unmeasured confounder could be continuous,

binary, or categorical, and could be univariate or multivariate. The parameter α is a uni-

variate sensitivity parameter and non-identifiable with the data, and governs the departure

of the truth from the strong ignorability assumption that “no unmeasured confounder ex-

ists”. When α = 0, g0(y|x) = g1(y|x), which indicates there is no unmeasured confounding.

When α 6= 0, g0(y|x) 6= g1(y|x) and hence some unmeasured confounders exist. It can be

derived from (3.5) that for a binary outcome, if

[Y (1)|T = 1, X = x] ∼ Ber (π(X)) ,

then [Y (1)|T = 0, X = x] ∼ Ber

(
π(X)eα

π(X)eα + 1− π(X)

)
.

(2.8)

Equation (2.8) also indicates that

logit{P (Y (1) = 1|T = 0, X = x)− logit{P (Y (1) = 1|T = 1, X = x)} = α,

where logit(s) = log s
1−s . Therefore, for binary response variables, eα is the conditional

odds ratio (and hence α is the log odds ratio) of the unobserved potential outcome and
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the observed potential outcome being 1 after adjusting for the measured confounding vari-

ables X; the sensitivity parameter α can directly measure the bias/violation of the strong

ignorability assumption (3.1) caused by the unmeasured confounding.

Figure 2.1: The contour plot of log-odds ratio

Figure 2.1 demonstrates how the conditional log-odds ratio relates to the un-

derlying probabilities of the unobserved and observed potential outcome being 1 as the

sensitivity parameter α varying from -5 to 5. When there is no unmeasured confounder,

P (Y (1) = 1|T = 0, X = x) = P (Y (1) = 1|T = 1, X = x) and thus the log odds ratio

is α = 0. If α > 0, it implies that the probability of the unobserved potential outcome

Y (1) (given T = 0) being 1 is larger than that of the observed potential outcome (given

T = 1) being 1 after adjusting for the measured confounding variables X. When α < 0,

the relationship is reversed, i.e., the probability of the unobserved potential outcome Y (1)

(given T = 0) being 1 is smaller than that of the observed potential outcome (given T = 1)
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being 1 conditional on any X.

For example, if Y = 1 indicates a certain disease being cured, then eα is the

conditional odds ratio of being cured between the control patients had they been treated

and the treated patient after adjusting for the measured covariates. A value of α = 1 implies

an odds ratio of e1 = 2.72, meaning that the odds of being cured for the control patients

had they been treated is almost 2.72 times as that of the treated patients after adjusting for

measured covariates. The choice of α in practice relies on some subject-matter guidance,

such as experts’ experience and prior knowledge that is experiment-specific. In practice,

usually, the α value from -2 to 2 (with the corresponding odds ratio from e−2 = 0.14 to

e2 = 7.39) or even -1 to 1 (with the odds ratio from 0.37 to 2.72) is a reasonable choice for

a sensitivity analysis.

As mentioned earlier, the exponential tilt method of (3.5) can be also applied

to the continuous outcomes easily. For example, based on the assumption of (3.5), if

[Y (1)|T = 1, X = x] ∼ N(η, σ2), then [Y (1)|T = 0, X = x] ∼ N(η + ασ2, σ2) for the unob-

served outcome variable. Thus, for continuous response variables, the sensitivity parameter

α determines the mean shift/difference, which is ασ2, between the observed outcome Y (1)

from the treated arm and the unobserved outcome from the control arm due to the unmea-

sured confounder. Note that σ can be estimated based on the observed outcome. If the

exponential tilt method is applied to the standardized data (i.e., σ = 1), then the sensitivity

parameter α is exactly equal to the mean difference/shift between the unobserved potential

outcome from the control arm and the observed potential outcome from the treatment arm.
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To apply the proposed method (3.4), we need to estimate m(x) and P (x, y). Note

that g1(y|x) and q(x) can be estimated from observed data. We introduce a super learner

machine learning estimation method for estimating g1(y|x) and q(x) in Section 3.2.3. The

m(x) can then be estimated by m̂(x) = ĝ(1|x), where

ĝ(y|x) = q̂(x)ĝ1(y|x) + [1− q̂(x)]ĝ0(y|x),

and g0(y|x) can be estimated based on g1(y|x) according to equation (3.5). To estimate

P (x, y), note that

P (x, y) =
g1(y|x)q(x)

g1(y|x)q(x) + g0(y|x){1− q(x)}

=
g1(y|x)q(x)

g1(y|x)q(x) + g1(y|x)eαy
E(eαY |x,T=1)

{1− q(x)}

=expit [logit{q(x)} − αy + log {eαg1(1|x) + g1(0|x)}] ,

(2.9)

Then, P (x, y) can be estimated by plugging the estimates to equation (3.7) as

P̂ (x, y) = expit [logit{q̂(x)} − αy + log {eαĝ1(1|x) + ĝ1(0|x)}] . (2.10)

2.2.3 Super learner machine learning estimators

One way to estimate g1(x) and q(x) is to specify some parametric models for

them, for example, a linear or a logistic regression model for g1(x) for a continuous or

binary response, respectively, and a logistic regression model for q(x). However, if there are

some violations of the parametric assumptions, which is usually the case in practice, it would
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aggravate the bias in the causal inference even for a doubly robust estimator. To this end,

we propose employing a super learner machine learning algorithm to nonparametrically

estimate g1(x) and q(x). Super learner is a general loss-based learning algorithm that

was proposed and analyzed theoretically by Van der Laan, Polley, and Hubbard 2007.

The algorithm optimally combines a library of machine learners by minimizing the cross-

validation error and is aimed to estimate the regression function flexibly without over-fitting

the data (Van der Laan and Rose 2011).

To illustrate this learning process, let the observed data be (Yi, Xi)
n
i=1, where Y is

the outcome and X is a set of covariates with dimension d. The super learner algorithm aims

to estimate m(x) = E(Y |X = x) using a library of machine learners m1, ...mK weighted

by λ1, . . . , λK , such that m̂(x) =
∑K

k=1 λkm̂k(X), where m̂k is the estimator of m(x) based

on kth machine learner. The selection of a library of machine learners will be discussed

in Section 3.3. The weight vector λ = (λ1, . . . , λK) can be chosen by the following cross

validation procedure:

Randomly split the sample (Yi, Xi)
n
i=1 into J equally sized subsets. For each j ∈ (1, ..., J),

the jth subset, denoted by Sj , is used as a validation set and the other subsets are used as

the training sets. Let m̂
(−j)
k be the estimator of m(x) using the kth machine learner based

on the training data without the jth subset Sj . Then we can find the weight vector by

(λ̂1, ..., λ̂K) = arg min
(λ1,...,λK)

J∑
j=1

∑
(Xi,Yi)∈Sj

{
Yi −

K∑
k=1

λkm̂
(−j)
k (Xi)

}2

.

Polley, Rose, and Van der Laan 2011 suggested bounding λk and using the constraints∑K
k=1 λk = 1, λk ≥ 0, ∀k. A non-negative binomial likelihood maximization, maximizing
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AUC (Area Under The Curve) of ROC (Receiver Operating Characteristics) curve or min-

imizing the misclassification error rate can also be used as a cross validation criteria for

binary outcomes.

2.2.4 New sensitivity analysis method

Below we summarize our proposed sensitivity analysis by combining the ideas of

the doubly robust estimator, the exponential tilt method, and the super learner machine

learning method introduced in Sections 2.1 to 2.3, respectively.

Step 1: Train the super learner method for q(x) based on the data (Ti, Xi) using T as the

response variable and X as the independent variable to obtain the estimate q̂(x).

Step 2: Train the super learner method for g1(x) based on the subset of the data {(Xi, Yi), Ti =

1, i = 1, . . . , n} using Y as the response variable and X as the independent variable to ob-

tain the estimate ĝ1(x).

Step 3: For a given value of the sensitivity parameter α, calculate:

ĝ0(y|x) =
eαy ĝ1(y|x)

eαĝ1(1|x) + ĝ1(0|x)
,

ĝ(y|x) = q̂(x)ĝ1(y|x) + {1− q̂(x)}ĝ0(y|x),

m̂(x) = ĝ(1|x),

and

P̂ (x, y) = expit [logit{q̂(x)} − αy + log {eαĝ1(1|x) + ĝ1(0|x)}] .
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Step 4: Repeat steps 1-3 for a set of the sensitivity parameter α, and compare results

across different α values, say from -2 to 2.

Note that the new sensitivity analysis method only has one sensitive parameter

α, which also enjoys a nice interpretation based on the odds ratio. Therefore, unlike most

existing sensitivity analysis methods containing multiple sensitivity parameters, the new

method is much easier to implement and choose the sensitivity parameter.

2.3 Examples

In this section, we conduct two sets of simulation studies. Similar to Lin, Psaty,

and Kronmal 1998, we use the first simulation study to demonstrate the effectiveness of

the proposed super learner based doubly robust estimation method (3.4) for adjusting un-

measured confounders in the estimation of µ1 for any given sensitivity parameter α. The

second simulation study is conducted to illustrate the performance of the proposed sensi-

tivity analysis method in Section 3.2.5 by varying the sensitivity parameter. We compare

our proposed nonparametric doubly robust estimator using the super learner algorithm

(DR np) with two parametric estimators: OR and IPW as shown in equations (2.3) and

(2.4), respectively. We use parametric logistic regression to estimate the outcome and the

propensity score models for OR and IPW estimators. For the proposed DR-np method,

the super learner is based on the library of learners of generalized linear models (GLM),

generalized additive models (GAM, Hastie and Tibshirani 1990) and recursive partitioning

and regression trees (rpart, Breiman et al. 1984).
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2.3.1 Estimating µ1

Given three independent baseline covariates X = (X1, X2, X3) generated from a

standard normal distribution, we generate the treatment assignment T and the observable

binary outcome Y (1) in the treatment group (T = 1) from the following two logistic model:

logit{P (T = 1|X)} = −2X1 +X2 +X3 + 2
{
X2

1 + sin(X2) + (X1 + 0.5)3eX3
}
,

logit{P (Y (1) = 1|X,T = 1)} = 3X1 − 2X2 −X3 + 2
{
X2

1X2 − sin(X2) + (X1 + 1)3eX3
}
.

Note that the models used to generate both the treatment and the outcome include

non-linear terms in X. The purpose is to make it unlikely for the analysts to formulate

correct parametric models for the treatment and the outcome. In practice, it seems more

natural for them to specify models that are linear in the observed covariates. When un-

measured confounding exists, the strong ignorability assumption (3.1) is violated and hence

logit{P (Y (1) = 1|X,T = 1)} will be different from logit{P (Y (1) = 1|X,T = 0)} with the

difference modeled by the exponential tilt relationship (2.8). The sensitivity parameter α

in the exponential model can measure the departure of the truth from the assumption (3.1)

regardless of the distribution and dimension of the unmeasured confounder. We examine

α = (±2,±1.5,±1,±0.5) for estimating µ1 (the corresponding odds ratio is from 0.14 to

7.39). The simulation was performed for the sample size n = 1000 with 1000 replicates.

Figure 2.2 displays squared errors of estimates for µ1 based on the exponential tilt

model (2.8) for each α = (±2,±1.5,±1,±0.5). It can be seen that our proposed method

DR np can estimate µ1 well after adjusting the confounding effect using the exponential
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Figure 2.2: Squared errors of estimates for µ1 in Simulation 1.

tilt model and result in estimates with the smallest median squared error and the smallest

variation, with the OR method a close second. In addition, both DR np and OR have much

better performance than IPW.

2.3.2 Sensitivity analysis

In the previous section, we have demonstrated that the proposed method can

successfully adjust the unmeasured confounder for any given sensitivity parameter α. In

practice, however, the α is unknown. Next we demonstrate the proposed sensitivity analysis

method by checking how the estimate changes when varying the sensitivity parameter α for

the exponential tilt model.

To illustrate how our new sensitivity analysis method can be applied to unmea-

sured confounding settings used by existing sensitivity analysis methods, we incorporate
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unmeasured confounding by explicitly including a latent variable U ∼ N(1, 1) as one of the

covariates in the models to generate the treatment T and the outcome Y (t) as the following:

logit{P (T = 1|X,U)} =− 2X1 +X2 +X3 + βtuU

+ 2
{
X2

1 + sin(X2) + (X1 + 0.5)3eX3
}
,

logit{P (Y (t) = 1|X,U)} = 3X1 − 2X2 −X3 + 2t+ βyuU

+ 2
{
X2

1X2 − sin(X2) + (X1 + 1)3eX3
}
, t = 0, 1.

The observed outcome is Y = TY (1) + (1 − T )Y (0), and the data set used for analysis

is {Y, T,X}. We assume βtu = βyu = βu and consider four cases of βu = (0, 1, 2, 3) to

represent different strengths of unmeasured confounding in the simulation. For each fixed

βu = (0, 1, 2, 3), we perform a sensitivity analysis by checking how the estimate of µ1

changes when α varies from −4 to 4 (the corresponding odds ratio is from 0.2 to 54.6). The

simulation is performed for the sample size n = 1000 with 1000 replicates.

Notice that case 1 with βu = 0 indicates “there is no unmeasured confounder”

which corresponds to α = 0. However, for other nonzero βu, it is hard to derive the explicit

relationship between βu and α. The sensitivity parameter α used in our new method can

measure the difference between the conditional log-odds of the unobserved outcome being

1 and the log-odds of the observed outcome being 1. In other words, α directly governs the

difference between logit{P (Y (t) = 1|X,T = 0)} and logit{P (Y (t) = 1|X,T = 1)} caused

by the unmeasured confounding U with sensitivity parameters (βtu, β
y
u) and the distribution

for U . Therefore, compared to the sensitivity parameters (βtu, β
y
u) and the distribution for

U used by existing sensitivity analysis methods, the univariate sensitivity parameter α used
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by our new method has better and more direct interpretation, and is also much easier to

choose in practice .

Figure 2.3: Simulation results of case 1: βu =
0

Figure 2.4: Simulation results of case 2: βu =
1

Figure 2.5: Simulation results of case 3: βu =
2

Figure 2.6: Simulation results of case 4: βu =
3

Figures 3.2-2.6 display box plots of the estimates for µ1 obtained by OR, IPW and

the proposed method DR np after adjusting the unmeasured confounding using the expo-

nential tilt method with varying sensitivity parameter α for βu = 0, 1, 2, and 3, respectively.

The dashed line indicates the true µ1. It can be seen that, at most specified α values, the

proposed DR np provides best estimates for µ1.
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2.4 Application

In this section, we discuss an application of the proposed sensitivity analysis to

evaluate the causal relationship between heart failure death rate and low ejection fraction

(EF≤ 30). The ejection fraction (EF) measures how much blood the left ventricle pumps

out with each contraction, which is usually represented as a percentage with a normal range

between 50%-75%. As stated by the World Health Organization Cardiovascular diseases

(CVDs) fact sheet, CVD causes 31% of all global deaths and is the number one cause of

death. We use the data set which was originally analyzed by Ahmad et al. 2017. The main

objective of their study was to estimate death rates due to heart failure and to investigate its

link with some major risk factors in the city of Faisalabad (the third most populous city of

Pakistan). The data set contains medical records of 299 heart failure patients in Faisalabad

from April to December 2015. 10 confounding variables are addressed in this study and

summarized in Table 2.1. Ahmad et al. 2017 used traditional survival models such as Cox

regression and Kaplan-Meier plots to predict the death rate and identify the risk factors.

According to their conclusion, low EF was a significant risk factor associated with death

caused by heart failure. They also stated that there was a major difference among the

Kaplan-Meier curves for patients with EF≤30 and patients with EF>30. Thus, 30 is used

as a cutoff to divide the EF into two groups: T = 1, if EF ≤ 30 and T = 0, if EF > 30 in

our application. Our goal is to estimate the causal effect of low EF on heart failure deaths

and to assess the sensitivity of the result to some unmeasured confounder. The outcome is

defined based on whether heart failure death had occurred: Y = 1, if the patient died and

Y = 0, otherwise. A summary of the death event variable Y is also provided in Table 2.1.
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Variable
EF ≤ 30
(n=93)

EF > 30
(n=207)

measurement

Age 59.63(10.80) 61.38(12.34) Years
Anaemia 0.46(0.50) 0.42(0.49) Binary

log(creatinine phosphokinase) 5.68(1.09) 5.65(1.16) mcg/L (log)
Diabetes 0.41(0.49) 0.42(0.50) Binary

High blood pressure 0.37(0.48) 0.34(0.48) Binary
Platelets 257836.45(94691.67) 265850.78(99303.30) platelets/mL

Serum creatinine 1.45(0.77) 1.47(1.14) mg/dL
Serum sodium 135.61(4.62) 137.08(4.25) mEa/L

Sex 0.70(0.46) 0.63(0.48) Binary
Smoking 0.34(0.48) 0.31(0.46) Binary

Death event 0.55(0.50) 0.22(0.41) Binary

Table 2.1: Mean (and standard deviation) of Ahmad et al. 2017 dataset.

Then, the causal effect of low EF is τ = µ1 − µ0 = P [Y (1) = 1] − P [Y (0) = 1]. We use

our proposed modified doubly robust estimator to estimate µ1 and µ0, and include GLM,

GAM, rpart and random forest (Ho 1995) algorithms in the super leaner library.

With the adjustment of these 10 measured confounding variables, the estimated

effect of low EF on heart failure death τ is 0.275 with a 95% confidence interval of (0.149,

0.402). Since the factors that lead to heart failure deaths remain unclear, it is informative

and worthwhile to evaluate the sensitivity of the result of this study. For the potential

outcome if everyone in this study had EF ≤ 30, we assumed logit[P{Y (1)|T = 0, X}] −

logit[P{Y (1)|T = 1, X}] = α1, where α1 is the difference between the conditional log-odds of

heart failure death for patients with normal EF(EF > 30) if they had become EF ≤ 30 and

the conditional log-odds of heart failure death for patients with EF ≤ 30. For the potential

outcome if everyone in this study had EF > 30, we assume logit[P{Y (0)|T = 1, X}] −

logit[P{Y (0)|T = 0, X}] = α2. The interpretation of α2 is similar to α1. For simplicity,
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let α1 = α2 = α, with the corresponding odds ratio being eα. Table 2.2 displays the point

estimates and 95% confidence intervals (obtained by a bootstrap with 100 replications) for

the low EF effect on heart failure death rate τ with the adjustment of the unmeasured

confounder represented by α.

α: -4 -3 -2 -1
Odds ratio: 0.018 0.05 0.14 0.37

τ : 0.080 0.098 0.135 0.196
C.I: (-0.003,0.162) (0.009,0.188) (0.035,0.235) (0.097,0.295)

α: 1 2 3 4
Odds ratio: 2.72 7.39 20.09 54.60

τ : 0.343 0.372 0.369 0.360
C.I: (0.222,0.464) (0.276,0.468) (0.260,0.479) (0.248,0.471)

Table 2.2: Point estimates and 95% confidence intervals of the low EF effect on heart failure
death rate.

The point estimates of τ change from approximately 0.08 to 0.36, while α being

varied from −4 to 4. None of the α values makes the point estimate of τ null value zero

(which would indicate that low EF would have no effect on heart failure death) or negative

(which would indicate that low EF would decrease the heart failure death compared to

higher EF). It should be pointed out that if the investigators have made efforts to collect

the measured confounders, it might not be very likely to have unmeasured confounders

that result in an |α| > 2 or even |α| > 1, although those values were examined in this

sensitivity analysis. Notice that when α = −4 with an odds ratio of 0.018, which is very

unlikely to occur in practice, the null value τ = 0 is included in the 95% confidence interval,

but the lower limit of the confidence interval −0.003 is quite close to 0. The results of

this sensitivity study demonstrate that the potential unmeasured confounder will not likely

change the sign of τ (except for extreme α values). Therefore, we can safely conclude that
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the low EF increases the heart failure death rate when compared to higher EF and such

conclusion is robust against the possible unmeasured confounders.
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Chapter 3

Sensitivity Analysis of Unmeasured

Confounding in Causal Inference

for Continuous Outcomes

3.1 Introduction

In observational and experimental studies, the identification of the causal effect,

or the average treatment effect (ATE), of a treatment T on an outcome Y can be achieved

under the potential outcome framework with the strong ignorability assumption proposed

by Rubin 1974. For a binary treatment T with T = 1 indicating the treatment group and

T = 0 indicating the control group, the potential outcome Y (t) is the outcome that we

would observe, had the treatment been assigned to T = t. Then, ATE can be defined as

τ = µ1 − µ0 = E{Y (1)} − E{Y (0)}, where µt = E{Y (t)}, (t = 0, 1), is the mean of the
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potential outcome if everyone received T = t. The strong ignorability assumption assumes

Y (t) ⊥ T |X, t = 0, 1, (3.1)

where X is a vector of measured confounders which are usually identified as some baseline

covariates. Assumption (3.1) implies “there exists no unmeasured confounder” and requires

all confounding variables to be measured and included in X. The above ignorability as-

sumption (3.1) is usually questionable and very difficult to satisfy in practice. In addition,

it cannot be tested using the observed data. Therefore, we can never confidently rule out

the existence of unmeasured confounding in the estimation for ATE.

The existence of unmeasured confounding makes ATE unidentifiable using the

observed data and would induce serious bias in causal estimates if it is not adjusted. To

address this issue, sensitivity analysis is often used. Since the work of Cornfield et al.

1959 which explored a causal relationship between smoking and lung cancer, a number

of sensitivity study approaches have been proposed. Paul R Rosenbaum and Rubin 1982

proposed a sensitivity analysis that included a binary unmeasured confounding variable U

as a latent variable in the regression models for the binary treatment T and the binary

outcome Y (t) with the assumption that X and U together satisfy the strong ignorability

assumption, i.e., Y (t) ⊥ T |X,U . The regression coefficients that are associated with U

are not identifiable with the data and were used as sensitivity parameters. In a sensitivity

analysis, different values of such sensitivity parameters are assumed and other parameters

are estimated based on these specified values of sensitivity parameters. Some extension of

this parameterization of unmeasured confounding include Imbens 2003 that extended Paul
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R Rosenbaum and Rubin 1982 to allow for non-binary outcomes. Sensitivity studies that

use different parameterization of unmeasured confounding were discussed in Lin, Psaty, and

Kronmal 1998, Hogan, M. Daniels, and Hu 2014, Jung et al. 2018, Roy, Lum, and Michael

J Daniels 2017 and Ding and VanderWeele 2016. Liu, Kuramoto, and Stuart 2013 and

Richardson et al. 2014 provided excellent reviews about sensitivity analysis methods. Note

that the above methods require a specification of whether the latent variable is continuous or

discrete, and require a parameterization of unmeasured latent variable(s). In addition, the

above methods contain multiple sensitivity parameters, which makes it difficult to specify

a reasonable range of values for them.

In our earlier study, we proposed a modified doubly robust estimator together with

a sensitivity analysis to address the unmeasured confounder based on exponential tilting (D.

Scharfstein et al. 2014) and Super learner algorithm (Van der Laan, Polley, and Hubbard

2007). Similar to the standard doubly robust estimator (DR,Robins, Rotnitzky, and Zhao

1995; Rotnitzky, Robins, and D. O. Scharfstein 1998; D. O. Scharfstein, Rotnitzky, and

Robins 1999; Lunceford and Davidian 2004; Rotnitzky, Lei, et al. 2012, this modified doubly

robust estimator also involves an outcome regression(OR) model and an inverse probability

weight (IPW) with the adjustment of unmeasured confounding. Although the super learner

algorithm is used to nonparametrically estimate the OR and IPW models, severe mis-

specifications of both working models along with strong unmeasured confounders can still

unduly hamper the performance of this method, since it can possibly result in extreme values

of inverse probability weights. Trimming is likely the most frequently used solution to this

problem. Observations with probability weights below a certain cutoff point are discarded
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from subsequent analysis. However, most trimming methods are sensitive to the choice

of the trimming threshold and the proportion of the sample excluded from the analysis.

Therefore trimming is often criticized as ad-hoc. We extend our sensitivity analysis to cases

where extreme probability weights exist with the implementation of trimming that uses a

data-driven threshold proposed by Ma and Wang 2020.

In this article, we propose a new sensitivity analysis for continuous outcomes by

leveraging the exponential tilting method to parameterize the unmeasured confounding as

the departure from the ignorable treatment assumption Rubin 1974 regardless of the distri-

bution of the unmeasured confounder. Compared to existing sensitivity analysis methods,

which usually parameterize the unmeasured confounder as a latent variable in the working

models with multivariate sensitivity parameters, the new method only has a univariate sen-

sitivity parameter and does not impose any restrictions on the structure of the unmeasured

confounders. In addition, we employ the data-driven trimming method proposed by Ma

and Wang 2020 to handle the estimated extreme propensity scores that can hamper the

performance of the modified doubly robust (DR) estimator. Furthermore, we use simula-

tion studies and a real data example to demonstrate how we can adjust for the bias in the

estimated average treatment effect (ATE) caused by the unmeasured confounder using the

proposed method.

The rest of this paper is structured as follows. In section 2, we introduce our

proposed estimation method in detail. In sections 3 and 4, we present simulated numerical

examples and an empirical application to illustrate how our method works. A conclusion is

given in section 5.
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3.2 Methodology

3.2.1 Doubly robust estimator

For explanation purposes, we discuss our method by focusing on the estimation of

µ1 = E{Y (1)}, the mean of potential outcome if everyone in the target population had been

treated. Then µ0 = E{Y (0)} and the corresponding ATE τ = µ1 − µ0 can be estimated

similarly.

For treated patients, their Y (1)’s are observed, so they are the actual outcomes.

Whereas for control patients, Y (1)’s cannot be observed and become the counterfactual

outcomes–the outcomes if the control patients had been treated. In order to estimate µ1,

the counterfactual outcomes need to be imputed first. Let (Xi, Yi, Ti)
n
i=1 be an independent

and identically distributed random sample from X ∈ Rd, Y ∈ (−∞,∞) and T ∈ {0, 1},

where X is a set of baseline covariates, and T is a binary treatment indicator. Define

µ(x) = E(Y (1)|X = x), µt(x) = E(Y (1)|T = t,X = x), t = 0, 1

and

p(x, y) = P (T = 1|X = x, Y (1) = y), p(x) = P (T = 1|X = x).

Our goal is to estimate µ1 = {Y (1)} = {µ(X)}.

Note that

µ(x) = p(x)µ1(x) + {1− p(x)}µ0(x).
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When no unmeasured confounder exists,

µ1(x) = µ0(x) = µ(x) and p(x, y) = p(x). (3.2)

The outcome regression (OR) model for the treatment group µ1(x) and the propensity score

(PS) model for p(x) can be estimated based on the observed data, The standard doubly

robust estimator of µ1 (DR, Robins, Rotnitzky, and Zhao 1995; Rotnitzky, Robins, and

D. O. Scharfstein 1998; D. O. Scharfstein, Rotnitzky, and Robins 1999; Lunceford and

Davidian 2004; Rotnitzky, Lei, et al. 2012) is defined as

µ̂DR =
1

n

n∑
i=1

{
TiYi
p̂(xi)

− Ti − p̂(xi)
p̂(xi)

µ̂1(xi)

}
. (3.3)

This DR estimator (3.3) involves both an OR model and a PS model. It has the doubly

robust property since it can reduce the likelihood of bias by requiring that only one of the

OR and PS models be correctly specified.

3.2.2 Addressing the unmeasured confounding

When the strong ignorability assumption (3.1) is violated, (i.e., there exists un-

measured confounding), the equations in (3.2) no longer hold. In this case, the traditional

DR estimator (3.3) will be biased. To correct the bias, we can modify the DR estimator for

µ1 by replacing µ1(x) and p(x) by µ(x) and p(x, y), respectively:

µ̂DRm =
1

n

n∑
i=1

{
TiYi

p̂(xi, yi)
− Ti − p̂(xi, yi)

p̂(xi, yi)
µ̂(xi)

}
. (3.4)
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We refer to estimator (3.4) as the modified DR estimator and p(x, y) as the adjusted

propensity score (PS). When the equations in (3.2) do not hold, the difficulty of estimating

µ(x) and p(x, y) (and hence µ1) lies in that the conditional distribution of the observed Y (1)

differs from conditional distribution of the unobserved Y (1) given the covariates. Thus we

can no longer use the model fitted with the observed data to impute the unobserved poten-

tial outcome. Our goal is to restore the relationship between the conditional distributions

of the observed and the unobserved outcome, so that we can estimate µ(x) and p(x, y) in

(3.4).

Let f(y|x) be the conditional density of Y (1)|X and ft(y|x) be the conditional

density of Y (1)|X,T = t, t = 0, 1. When T = 1, Y (1) is observed, and when T = 0, Y (1)

is missing. We use the exponential tilt method of D. Scharfstein et al. 2014 to build the

connection between f0 and f1,

f0(y|x) = f1(y|x)eγx+αy (3.5)

where γx = − log{E(eαY |x, T = 1)} = − log{
∫
eαyf1(y|x)dy} is a normalization constant.

Equation (3.5) connects the conditional distribution of the observed and unobserved po-

tential outcomes together. The parameter α is a sensitivity parameter that cannot be

identified using the observed data. It reflects a deviation from the benchmark assumption

(i.e.,the strong ignorability assumption) that “no unmeasured confounder exists”. When

α = 0, f0(y|x) = f1(y|x), which corresponds to no unmeasured confounding. When α 6= 0,

f0(y|x) 6= f1(y|x), hence some unmeasured confounders exist.

LetMx(t) be the moment generating function corresponding to f1(y|x) andRx(t) =
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logMx(t) be the corresponding cumulant-generating function. Note that the normalization

constant γx can be also expressed as γx = −Rx(α).

Proposition 1. Supposing f0 and f1 have the exponential tilt relationship (3.5), we have

µ1(x) = R′x(0) and µ0(x) = R′x(α), (3.6)

where R′x(t) is the first derivative of Rx(t) with respect to t.

The proof of Proposition 1 is trivial and thus omitted here. Based on the above

result, we know that the departure of µ0(x) from µ1(x) due to the violation of the strong

ignorability assumption can be characterised by the shape of R′x(·). Note that for a small

α around 0,

µ0(x)− µ1(x) = R′x(α)−R′x(0) ≈ R′′x(0)α = (Y (1)|T = 1, x)α.

Hence, the departure of µ0(x) from µ1(x) when the strong ignorability assumption is violated

depends on both α and the variability of the observed outcome Y (1) given the covariates.

More specifically, if f1(y|x) has a normal distribution with mean µ1(x) and variance σ2, then

Mx(t) = exp{µ1(x)t+ 1
2σ

2t2} and Rx(t) = µ1(x)t+ 1
2σ

2t2. Based on Proposition 1, we have

the following result when the outcome has a conditional normal distribution. Suppose f0

and f1 have the exponential tilt relationship (3.5). If [Y (1)|T = 1, X = x] ∼ N
(
µ1(x), σ2

)
,

then [Y (1)|T = 0, X = x] ∼ N
(
µ0(x), σ2

)
with µ0(x) = µ1(x) + ασ2. Based on Lemma

3.2.2, when the outcome has a conditional normal distribution, the sensitivity parameter

α determines the difference, through ασ2, between the conditional mean of the observed
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potential outcomes and the unobserved potential outcomes after adjusting for the observed

covariates. If equation (3.5) is applied to standardized data (σ=1), α itself represents this

mean shift/difference. A positive α(> 0) indicates that the control group, if they had been

treated, would have had a higher mean value of Y (1) than the treatment group. Conversely,

a negative α(< 0) indicates that the control group, if they had been treated, would have had

a lower mean value of Y (1) than the treatment group. The parameter σ can be estimated

using the observed data, whereas the sensitivity parameter α is non-identifiable.

Our proposed sensitivity analysis is to compute the causal estimates based on a

set of numerical values of α which needs to be specified with some subject-matter guidance,

such as experts’ experience and other prior information about the experiment. Compared

to the parameterizations that explicitly include the unmeasured confounder as a latent

variable in the PS and OR models, the proposed formulation of the sensitivity parameter

α does not impose any parametric form of the unmeasured confounder. Therefore, the

unmeasured confounder could be continuous or discrete, and could be univariate or multi-

variate. Regardless of the distribution and dimension of the unmeasured confounder, this

one-dimensional sensitivity parameter α can reflect the bias in the conditional mean of

potential outcomes caused by the unmeasured confounder.

To apply the modified DR estimator (3.4), we need to estimate µ(x) and p(x, y).

Noting that µ1(x) and p(x) can be estimated based on the observed data, we can estimate

m0(x) based on the exponential tilt equation (3.5) and Proposition 1. When the outcome

has a conditional normal distribution, m0(x) can be easily estimated based on µ1(x) through
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the relationship in Lemma 3.2.2. The p(x, y) can be also easily estimated by noting that

p(x, y) =
f1(y|x)p(x)

f1(y|x)p(x) + f0(y|x){1− p(x)}

=
f1(y|x)p(x)

f1(y|x)p(x) + f1(y|x)eγx+αy{1− p(x)}

=
p(x)

p(x) + eγx+αy{1− p(x)}
.

(3.7)

Note that if α = 0, then γx = 0, eγx+αy = 1, and p(x, y) = p(x). If f1(y|x) is a normal

density with mean µ1(x) and variance σ2, γx = −µ1(x)α− 1
2σ

2α2.

3.2.3 Super learner machine learning estimations

A standard way to estimate µ1(x) and p(x) based on the observed data is to

specify some parametric models. However, the parametric assumptions are sensitive to

model misspecification. A biased and even misleading doubly robust estimator would arise

if incorrect parametric structures are specified on the outcome regression and the propensity

score model. For this reason, we propose employing the super learner machine learning

algorithm proposed and analyzed theoretically by Van der Laan, Polley, and Hubbard 2007

to nonparametrically estimate µ1(x) and p(x) for the modified DR estimator.

The super learner includes multiple learners and generates a set of optimal weights

to combine those learners via the cross-validation. Given the observed data (Yi, Xi)
n
i=1, the

super learner estimates µ(x) = E(Y |X = x) with a library of L machine learners m1, . . . ,mL

and a set of weights ω1, . . . , ωL. The resulting super learner estimate of µ(x) is a weighted

average of all the learners used: µ̂(x) =
∑L

l=1 ωlm̂l(x), where m̂l is the estimator of µ(x)

based on the lth machine learner. The weight vector ω = (ω1, . . . , ωL) can be chosen
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by the following external cross validation procedure: We first randomly split the sample

(Yi, Xi)
n
i=1 into J equally sized disjoint subsets: D1, . . . , DJ and then find the weight vector

by minimizing the squared error loss function

(ω̂1, ..., ω̂L) = arg min
(ω1,...,ωL)

J∑
j=1

∑
(Xi,Yi)∈Dj

{
Yi −

L∑
l=1

ωlm̂
(−j)
l (Xi)

}2

.

where m̂
(−j)
l is the estimate of µ(x) using the lth machine learner based on the training

data without the jth subset Dj . Polley, Rose, and Van der Laan 2011 suggested bounding

ωl and using the constraints
∑L

l=1 ωl = 1, ωl ≥ 0, ∀l. The selection of a library of machine

learners will be discussed in Section 3.3.

3.2.4 Data-driven trimming approach

Despite the fact that the super learner algorithm allows for flexibility to capture

the real pattern of the data, the performance of the modified DR estimator can be severely

undermined if some of the estimated propensity scores are close to zero. Close-to-zero

estimated propensity scores will unduly induce large bias and standard error in the final

causal estimates. One popular solution is to reduce the impact of extreme weights through a

trimming method. Fixed trimming is probably the most frequently used trimming scheme.

It excludes observations whose estimated propensity score is less than a predetermined

threshold bn = b > 0. Note that if bn = 0, there is no trimming. A rule of thumb

is to set b = 0.1 recommended by Crump et al. 2009. Another popular choice of the

trimming threshold is to use the qth quantile of the estimated propensity scores and remove

observations with PS that are below the qth quantile. Stürmer et al. 2010 proposed a
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trimming scheme that requires multiple steps. Firstly, subjects with propensity scores

outside of a certain range are discarded. Then, among the treated units, subjects whose

propensity score are below the qth quantile are further excluded. The estimated propensity

scores enter the final estimator through the inverse weighting and the trimming function.

While these trimming approaches serve to reduce the bias of causal estimates, they have

also been criticized for being too ad-hoc.

To this end, we extend a newly developed data-driven trimming threshold selection

by Ma and Wang 2020 to the modified DR estimator (3.4). More specifically, we choose the

trimming threshold data adaptively by minimizing an empirical analogue of the asymptotic

mean squared error. The threshold bn for PS can be obtained by solving the following

equation:

P [p(x, y) ≤ bn] =
1

2nbn

η2(0)

η1(0)2
, (3.8)

where ηs(p) = E [Y (1)s|p(x, y) = p, T = 1] is the sth order central moment of the response

variable in the treatment group. We discard observations with estimated p(x, y) below

bn, and then use the remaining subsample to calculate the modified DR estimator by the

equation (3.9), i.e.,

µ̂DRtm (α) =
1

n

n∑
i=1

{
TiYi

p̂(xi, yi)
− Ti − p̂(xi, yi)

p̂(xi, yi)
µ̂(xi)

}
I{p̂(xi, yi) > bn}, (3.9)

where I{A} = 1, if A is true, and 0, otherwise. The above estimator µ̂DRtm (α) is the final

proposed modified DR estimator. The asymptotic properties of the trimmed estimator are

discussed in detail in Ma and Wang 2020.
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3.2.5 A new sensitivity analysis

Note that the proposed modified DR estimator µ̂DRtm (α) in (3.9) depends on α.

Under the strong ignorability assumption (3.1), α = 0 and hence µ̂DRtm (0) is the resulting

estimate of µ1.

In order to perform a sensitivity analysis of the causal estimate, we propose evalu-

ating the µ̂DRtm (α) for a set of α values. Next, we summarize our proposed sensitivity analysis

by combining the ideas of the doubly robust estimator, the exponential tilt method, the

super learner machine learning method, and the data-driven trimming scheme introduced

in Sections 2.1 to 2.4, respectively.

Step 1: Train the super learner method for p(x) based on the data (Ti, Xi) using T as the

response variable and X as the independent variable to obtain the estimate p̂(x).

Step 2: Train the super learner method for µ1(x) based on the subset of the data {(Xi, Yi), Ti =

1, i = 1, . . . , n} using Y as the response variable and X as the independent variable

to obtain the estimate µ̂1(x).

Step 3: For a given sensitivity parameter α, estimate µ(x) = p(x)µ1(x) + {1− p(x)}µ0(x)

based on Proposition 1, and estimate p(x, y) based on (3.7).

Step 4: Calculate the data-driven threshold b̂n by solving the following equation:

1

n

n∑
i=1

I{p̂(xi, yi) ≤ b̂n} =
1

2nb̂n

1
n

∑n
i=1{y2i |T = 1}[

1
n

∑n
i=1{yi|T = 1}

]2 .
Then, we can estimate µ1 by µ̂DRtm (α) in (3.9) with the threshold b̂n.
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Step 5: The sensitivity analysis is completed by repeating Steps 1-4 for a set of different

values of the sensitivity parameter α, and comparing results across different α values.

If the observed outcome follows a normal distribution (i.e., f1(y|x) is a normal

density), the estimate for µ(x) can be easily implemented based on Lemma 3.2.2.

3.3 Simulation studies

In this section, we conduct two sets of simulation studies. The first simulation

study is conducted to illustrate the effectiveness of the proposed modified DR estimator

µ̂DRtm (α) of (3.9) in the estimation of µ1 for any given sensitivity parameter α. The second

simulation study is conducted to illustrate the performance of the proposed sensitivity anal-

ysis method in Section 3.2.5 to address unmeasured confounding by varying the sensitivity

parameter values.

We compare the proposed super learner based modified DR estimator (DR np)

with the corresponding parametric version (DR par) that uses a logistic regression model

and linear regression model to estimate p(x) and µ1(x), respectively. For the proposed DR-

np method, the super learner used to estimate p(x) is based on the library of learners of

generalized linear model (GLM), generalized additive models (GAM, Hastie and Tibshirani

1990) and recursive partitioning and regression trees (rpart, Breiman et al. 1984), the

super learner for estimating µ1(x) is based on the library of linear regression, GAM, neural

networks (nnet,Hopfield 1982), locally estimated scatterplot smoothing (LOESS,

Cleveland 1979) and random forest (Hastie and Tibshirani 1990).
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3.3.1 Estimation of mean outcome µ1

We include three independent baseline covariates X1, X2, and X3 generated from a

standard normal distribution. Given the covariates, we generate the treatment assignment

T from the following regression:

logit{P (T = 1|X)} = −0.5X1 +X2 +X3 + 2
{
X2

1 + sin(X2) + (X1 + 0.5)3eX3
}
.

The continuous outcome Y (1) in the treatment group (T = 1) is generated from the normal

distributions N(µ1(X), 1), where

µ1(X) = X1 − 2X2 −X3 − 0.5
{

sin(X1)−X2
2 + eX3

}
.

We include non-linear terms in X in both the treatment and the outcome models. Therefore,

there are some misspecifications for the traditional parametric logistic regression model and

the linear regression model. When unmeasured confounding exists, µ0(x) = {Y (1)|T =

0, X} is no longer the same as µ1(x) = {Y (1)|T = 1, X} with α representing this difference

(note that σ = 1). A sequence of equal-spaced values from −2 to 2 with increment of 0.25

are checked for the sensitivity parameter α in our simulation. All methods described above

are applied to 1000 samples of size n = 1000.

Figure 3.1 displays the squared error of trimmed DR par and DR np estimates of

µ1 as the sensitivity parameter α varying from -2 to 2 with an increment of 0.25. For most

α values, the median squared error and the variation of the proposed method DR np are
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Figure 3.1: The box plot of squared errors of trimmed DR par and trimmed DR np estimates
for µ1.

smaller than those of the DR par estimates.

3.3.2 Sensitivity analysis

From the previous section, we know that the proposed method can successfully

adjust the unmeasured confounder for any given sensitivity parameter α. However, in

practice, the α is unknown. Next, to demonstrate how our new sensitivity analysis method

can be applied to unmeasured confounding settings used by existing sensitivity analysis

methods, we introduce unmeasured confounding by explicitly including a latent variable

U ∼ N(1, 1) as one of the covariates in the models to generate the treatment T and the
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outcome Y (t) as the following:

logit{P (T = 1|X,U)} =− 0.5X1 +X2 +X3 + βtuU

+ 0.5
(
X3

1 + sin(X2) +X2
3

)
,

and then the outcome Y (t) is generated from the following outcome regression:

Y (t) = X1 − 2X2 −X3 − 0.5
(
eX1 −X2

2 +X1X3

)
+ βyuU + 2t+ ε,

where t = 0, 1 and ε ∼ N(0, 1).

The data we use for our analysis is {X,T, Y }, where Y = TY (1)+(1−T )Y (0) is the

observed outcome. For simplicity, we let βtu = βyu = βu and examine four different values of

βu = {0, 0.5, 1, 2} representing cases of no unmeasured confounding, weak, mild and strong

unmeasured confounding, respectively. For each value of βu, the proposed sensitivity study

is conducted by varying α, the sensitivity parameter, from −1 to 1 with an increment of

0.25. The analysis is performed to 1000 samples of size n = 1000. In our sensitivity study,

the univariate sensitivity parameter α measures the bias due to unmeasured confounding

and βu = 0 implies “no unmeasured confounder” which corresponds to α = 0. However,

there is no clear/explicit relationship between nonzero βu and α.

Figures 3.2-3.5 display box plots of the estimates for µ1 obtained by DR par and

DR np addressing unmeasured confounding using the exponential tilt method. True µ1 is

represented by the dashed line. Each figure shows how the estimates change with different

values of the sensitivity parameter α. It can be seen that, at most specified α values, the
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Figure 3.2: Simulation results of case 1: βu =
0

Figure 3.3: Simulation results of case 2: βu =
0.5

Figure 3.4: Simulation results of case 1: βu =
1

Figure 3.5: Simulation results of case 2: βu =
2

proposed DR np provides better estimates for µ1 in all four cases corresponding to different

strengths of the unmeasured confounder.

3.4 Empirical application

In this section, we discuss an application of the proposed sensitivity study to

evaluate how the unmeasured confounder affects the causal effect (ATE) of the National

Supported Work (NSW) Demonstration. NSW was a labor training program conducted in
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the 1970’s and provided work experience to selected participants. The study measured the

baseline covariates: age, education, black, Hispanic, married, earning in 1974, earning in

1975, unemployed in 1974, and unemployed in 1975. The effect of the NSW program on

post-intervention annual income levels, 1978 earnings, was originally studied by LaLonde

1986 and has been analyzed by various studies ever since, such as Imbens 2003; Dehejia

and Wahba 1999; Carnegie, Harada, and Hill 2016. The data analyzed here is the same

as in Dehejia and Wahba 1999. We use this data set to demonstrate how our proposed

sensitivity procedure can address the impact of unmeasured confounding on the effect of

NSW on 1978 earnings based on our proposed modified DR estimator with data-driven

trimming. Let T = 1 indicate enrollment in NSW and T = 0 otherwise. Let X be the

vector of all measured confounders described in Table 3.1. The outcome variable Y is the

1978 earnings.

Variable
Treatment
(n=185)

Control
(n=260)

measurement

Age 25.82(7.16) 25.05(7.06) Years
Education 10.35(2.01) 10.09(1.61) Years of schooling

Black 0.84(0.36) 0.83(0.38) Binary
Hispanic 0.06(0.23) 0.11(0.31) Binary
Married 0.19(0.39) 0.15(0.36) Binary

High school diploma 0.71(0.46) 0.83(0.37) Binary
1974 Earnings 2.10(4.89) 2.11(5.69) 1000 US dollar
1975 Earnings 1.53(3.22) 1.27(3.10) 1000 US dollar

1974 Unemployment 0.71( 0.46) 0.75(0.43) Binary
1975 Unemployment 0.60(0.49) 0.68(0.47) Binary

1978 Earnings 6.35(7.87) 4.55(5.48) 1000 US dollar

Table 3.1: Mean (and standard deviation) of LaLonde 1986 dataset.

If no unmeasured confounding exists (α = 0), the estimated causal effect (ATE)

of the NSW program on 1978 earning is 1.65 thousand dollars using the proposed modified
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DR estimator µ̂DRtm (0) of (3.9). However, as mentioned in Imbens 2003, strong motivation

to enroll in a job-training program may lead to more favorable outcomes. Thus motivation

to join the program can definitely be considered unmeasured confounding and would be

worthwhile to address using the sensitivity analysis. For the potential outcomes if everyone

had enrolled in NSW, we employ the exponential tilt method of (3.5) to assume E{Y (1)|T =

0, X} − E{Y (1)|T = 1, X} = α1σ
2
1, where σ21 = {Y (1)|T = 1, X} and α1σ

2
1 represents the

difference between the conditional mean of 1978 outcome for nonparticipants of NSW if

they had been enrolled in NSW and that of those who were actually enrolled in the NSW

program. Similarly, for the potential outcome if everyone were not enrolled, we assume

E{Y (0)|T = 1, x} − E{Y (0)|T = 0, x} = α0σ
2
0, where σ20 = {Y (0)|T = 0, X} and α0σ

2
0 has

similar interpretation to α1σ
2
1. The sensitivity parameters α0 and α1 are taken from -0.2 to

0.2 with an increment of 0.01 (all combinations are considered). The standard deviations

(σ1 and σ0) of 1978 earnings for the treatment group and the control group are 7.9 and

5.5, respectively, which are relatively large compared to the means. Therefore, a value of

α1 = 0.2 (the interpretation of α0 can be done similarly) indicates that the conditional

mean of 1978 earning of nonparticipants of NSW if they had joined the program would be

α1σ
2
1 = 0.2 × 7.92 = 12.48 thousand US dollars more than the participants who were in

NSW. It also means that if the nonparticipants joined NSW, their 1978 earning would be

approximately 3 times that of the participants, which can be considered a big impact on

the outcome resulting from the unmeasured confounder. In practice, an α value between

-0.02 and 0.02, representing a difference of approximately 1.25 thousand dollars between

the conditional means of the observed and unobserved potential outcomes for NSW, is more
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likely.

Left: the range of sensitivity parameters is (−0.2, 0.2);

Right: the range of sensitivity parameters is (−0.02, 0.02).

Figure 3.6: Sensitivity analysis results of the ATE of NSW on 1978 earnings.

Figure 3.6 displays the contour plot of the ATE estimates for different combinations

of α1 and α0. We notice that, when α0 and α1 are very different, the estimates tend to

be very different from the benchmark value 1.65. For example, when α1 = 0.2 and α1 =

−0.1, the estimated ATE is approximately 5.6 thousand US dollars, and the unmeasured

confounder would significantly change our causal results. Also notice that, when the range

of both α0 and α1 are between −0.02 and 0.02, none of the combinations of sensitivity

parameter values would result in a significant departure more than 1 thousand US dollars

from the bench mark value or change the direction of our conclusion. Thus, if α0 and α1

are both bounded between −0.02 and 0.02, this unmeasured confounding would only have

a mild impact on our causal inference.
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Chapter 4

Conclusions

In Chapters 2 and 3, We have proposed a new sensitivity analysis method for causal

inference to adjust for unmeasured confounding in the estimation of the mean outcome by

combining the ideas of the doubly robust estimator, the exponential tilting method, and

the super learner algorithm. In causal inference, when unmeasured confounders exist, the

conditional distribution of the observed outcome is different from that of the unobserved

outcome given the covariates. As a result, the model estimated from the observed data can

no longer be used to model the unobserved potential outcomes. This relationship between

these distributions is restored by the exponential tilting method with a one-dimensional

sensitivity parameter, which adjusts for the bias due to the unmeasured confounding, and

addresses how sensitive a causal inference is when the strong ignorability assumption does

not hold. Compared to most of the existing sensitivity analysis in the literature, our method

does not require modeling assumptions for the unmeasured confounders as latent variables

and hence the unmeasured confounder could be continuous, binary, or categorical, and could
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be univariate or multivariate. In addition, the sensitivity parameter can be interpreted as

a log-odds ratio for a binary outcome and deviation of the conditional outcome means for

a continuous outcome, which makes the choice of its range relatively easy for practitioners.

To increase the accuracy of traditional parametric methods, We propose a nonparametric

modified doubly robust estimator with the super learner algorithm to reduce the bias caused

by the possible misspecification of the parametric working models used by the traditional

doubly robust estimator. To avoid observations with an extremely small estimated propen-

sity score, we incorporate a newly developed data-driven trimming method to provide more

stable/reliable causal estimates.
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