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ABSTRACT: The human impacts of changes in heat events depend on changes in the joint behavior of temperature and

humidity. Little is currently known about these complex joint changes, either in observations or projections from general

circulation models (GCMs). Further, GCMs do not fully reproduce the observed joint distribution, implying a need for

simulation methods that combine information from GCMs with observations for use in impact studies. We present an

observation-based, conditional quantile mapping approach for the simulation of future temperature and humidity.

A temperature simulation is first produced by transforming historical temperature observations to include projected

changes in the mean and temporal covariance structure from a GCM. Next, a humidity simulation is produced by trans-

forming humidity observations to account for projected changes in the conditional humidity distribution given temperature,

using a quantile regression model. We use the Community Earth SystemModel Large Ensemble (CESM1-LE) to estimate

future changes in summertime (June–August) temperature and humidity over the continental United States (CONUS), and

then use the proposed method to create future simulations of temperature and humidity at stations in the Global Summary

of the Day dataset. We find that CESM1-LE projects decreases in summertime humidity across CONUS for a given de-

viation in temperature from the forced trend, but increases in the risk of high dewpoint on historically hot days. In com-

parison with raw CESM1-LE output, our observation-based simulation largely projects smaller changes in the future risk of

either high or low humidity on days with historically warm temperatures.

KEYWORDS: Climate change; Climate variability; Humidity; Surface temperature; Statistical techniques

1. Introduction

Assessing the potential societal impacts of changes in future

heat events requires an understanding of projected changes in

both temperature and humidity. For example, high humidity

is a contributor to human heat stress during heat events

(Barreca 2012) and some projections show substantial in-

creases by the end of century in the risk of humid heat events

that exceed theoretical limits on the human body’s ability to

self-regulate temperature through evaporative cooling (Pal

and Eltahir 2016; Coffel et al. 2017). See also Buzan andHuber

(2020) for a recent review of the impacts of moist heat stress

and its projected changes. In contrast, hot and dry conditions

increase wildfire risk (Seager et al. 2015), among other impacts.

Changes in hot and humid or hot and dry events can be affected

by distributional changes beyond the means of each variable,

such as changes in the underlying local relationship between

temperature and humidity as well as changes in variability at

multiple scales, implying a need for methods that are sensitive

to these potentially complex changes.

There is limited existing work that addresses local joint

changes in temperature and humidity either in observations or

in general circulation models (GCMs). Many recent studies

focus on univariate summaries that may be useful for a

particular impact of interest, such as wet bulb or wet bulb globe

temperature (as an indicator for human comfort) (Knutson and

Ploshay 2016; Pal and Eltahir 2016; Coffel et al. 2017; Li et al.

2017; Lee andMin 2018; Li et al. 2020) or vapor pressure deficit

(as an indicator for crop health or wildfire risk) (Seager et al.

2015; Hsiao et al. 2019). While univariate summaries can be

useful for studying particular impacts, amore general approach

is desirable and requires multivariate methods. Studies that do

consider changes in both temperature and humidity have ten-

ded to focus on limited quantities, such as changes in temper-

ature and humidity on the 1% warmest days (Fischer and

Knutti 2013), for monthly averages (Simmons et al. 2010), in

univariate quantities during specific definitions of hot and dry

or hot and humid events (Schoof et al. 2017), or at a small

number of spatial locations (Pryor and Schoof 2016; Yuan et al.

2020). Fischer and Knutti (2013) recognized a need for more

work in understanding joint changes in temperature and hu-

midity, but a detailed understanding remains lacking in the

literature.

Moreover, future impact studies may require not only an

understanding of projected changes in temperature and hu-

midity in GCMs, but also realistic bivariate simulations of

these variables. It is well understood that raw GCM output is

insufficient for these purposes, because GCM output forced

with historical forcings does not fully reproduce observed cli-

mate variable distributions; see John and Soden (2007), Brands

et al. (2013), Tian et al. (2013), and Zhao et al. (2015) for ex-

amples specifically evaluating GCM simulations of tempera-

ture and humidity or heat stress [see also IPCC (2013, ch. 9)].

This fact is not specific to temperature or humidity simulations,

and a number of methods have been proposed to combine
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observations with model output to produce better calibrated

future simulations, typically labeled ‘‘bias correction’’ methods

[see, e.g., Ho et al. (2012), Hawkins et al. (2013), and Cannon

et al. (2020) for reviews of themain types of methods]. Ho et al.

(2012) separate popular methods into two classes: those that

modify GCM output in an attempt to correct biases with ob-

servations, and those that modify observations in an attempt to

account for GCM projected changes. Because the term bias

correction connotes the former but not the latter type of

methods, we instead refer to these methods as ‘‘model-based’’

or ‘‘observation-based’’ simulation methods. While no sim-

ulation method resolves all potential defects of future

simulations (Dixon et al. 2016; Lanzante et al. 2018),

observation-based simulations have the attractive property

that they easily preserve most of the higher-order behavior of

observational distributions and generally require more sta-

tistical modeling of distributions in GCM output (where

available data are typically abundant and signal-to-noise ra-

tios are relatively high) than in observations (where data are

typically limited and signal-to-noise ratios are lower).

Recent work has extended observation-based simulation

methods to incorporate more complex changes from GCM

output, such as distinct variability changes at different time

scales (Leeds et al. 2015; Poppick et al. 2016) or seasonally

varying changes to the full marginal distribution of a climate

variable (Haugen et al. 2019).

Most of the aforementioned simulation methods are uni-

variate, but there has been a recent increase in proposed

methods for multivariate simulations. Indeed, Zscheischler

et al. (2019) emphasizes the importance of multivariate

simulation methods, using temperature and humidity as one

example where there is such a need, because separately pro-

ducing simulations of each variable fails to address intervari-

able dependencies that can have relevant effects on impacts

studies. Recently, Schoof et al. (2019) proposed a model-based

method for temperature and humidity and, to our knowledge,

other existing bivariate or multivariate methods are model-

based [e.g., Piani et al. 2010; Vrac and Friederichs 2015;

Mehrotra and Sharma 2015, 2016; Cannon 2018; Vrac 2018;

Guo et al. 2019; see also François et al. (2020) for a review of

some methods] and so may struggle to realistically simulate

higher-order distributional features that are not explicitly

corrected in the simulation procedure. We therefore see a

benefit in developing observation-based multivariate simula-

tion methods.

This work makes two main contributions to the literature on

joint changes in temperature and humidity. One is an analysis

of projected changes in the relationship between summertime

daily temperature and humidity over the continental United

States (CONUS) in the Community Earth System Large

Ensemble (CESM1-LE) (Kay et al. 2015). Our methodology is

based on a quantile regression (Koenker and Bassett 1978)

model for humidity given local and global temperature, al-

lowing for a flexible and unifying approach to studying the

relationship between humidity and temperature in different

parts of the humidity distribution (i.e., dry vs humid days) over

the course of the summer, and changes thereof with increasing

global mean temperature. Quantile regression has been used

previously in the climate literature, for example, to study dis-

tributional changes in observed temperatures (Reich 2012;

Matiu et al. 2016;McKinnon et al. 2016; Rhines et al. 2017; Gao

and Franzke 2017) and in temperatures from GCM output

(Haugen et al. 2018), and recently, changes in the relationship

between temperature and humidity in observations (McKinnon

and Poppick 2020) and for a limited number of CONUS grid cells

within CESM1-LE but without an explicit model for changes

(Yuan et al. 2020).

The second and primary contribution of this work is a pro-

posed observation-based bivariate simulation method for daily

summertime humidity and temperature. A temperature sim-

ulation is first produced by transforming historical temperature

observations to account for GCM projected changes in mean

and temporal covariance, using a method based on those pro-

posed in Leeds et al. (2015) and Poppick et al. (2016). A sim-

ulation of humidity is then produced by transforming humidity

observations to account for changes both in temperature itself

as well as in the underlying relationship between humidity and

temperature. Our methodology relies on the aforementioned

quantile regression analysis and can be thought of as an

observation-based ‘‘quantile-mapping’’ approach to simula-

tion [as in Haugen et al. (2019)]. To our knowledge, the pro-

posed method is the first such observation-based method that

can account for bivariate changes and is built specifically for

simulating temperature and humidity.

The remainder of this paper is organized as follows. In

section 2, we define the variables in our analysis and describe

both the GCM data used to study changes in the relationship

between humidity and temperature and the observations we

use for producing our observation-based simulation. In section 3,

we describe our method for producing an observation-based

temperature simulation, which is an input into our humidity

simulation, and illustrate how the simulation procedure works at

one location. In section 4, the primary contribution of this work,

we then describe the proposed humidity simulation and illustrate

the bivariate simulation at the same location. We provide an

analysis of changes over CONUS, as well as summaries of our

resulting observation-based simulations, in section 5. In

section 6, we provide a discussion and concluding remarks.

Additional technical details may be found in appendixes A and

B, and statistical model validation may be found in the online

supplemental material.

2. Data

The simulation procedure that we propose in sections 3

and 4 requires temperature and humidity data from both

GCM output and observations. Unlike for temperature,

many different and related variables are used as measures of

humidity. In this paper, we use the dewpoint, which is the

temperature to which an air parcel would need to be cooled in

order for the water vapor in it to condense. We use dewpoint

for several reasons, including that it is directly measured by

the weather stations in the observational data we use (see

below), is a reasonable indicator of human comfort (Davis

et al. 2016), and can be understood straightforwardly as

a measure of humidity because it does not change with
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temperature if the moisture content of the air is fixed (unlike

relative humidity). At some points in this paper, we also refer

to the dewpoint depression, which is defined as the difference

between (dry bulb) temperature and dewpoint. While our

simulations and results are presented in terms of dewpoint, the

dry bulb temperature and dewpoint determine the relative

humidity value, so a relative humidity simulation is implicit in

the proposed procedure.

a. Climate model data

Climate model output for temperature and humidity are

from CESM1-LE, a 40-member initial condition ensemble run

with the fully coupled 18 latitude–longitude version of CESM1.

Historical forcings (Lamarque et al. 2010) are used for the

years 1920–2005 and the RCP8.5 scenario (Meinshausen et al.

2011) is used for the years 2005–2100. In this study, we focus on

boreal summer (JJA) daily average temperature and dewpoint

over a subregion of the global grid that contains CONUS

(latitudes between 258 and 508N, and longitudes between 668
and 1258W, and grid cells at least 50% land).

Daily or subdaily near-surface humidity data are only

available (as reference height specific humidity, QREFHT) in

CESM1-LE as 6-hourly data during the time periods 1990–

2005, 2026–35, and 2071–80. To calculate daily average dew-

point from the available data, we first use the QREFHT and

surface pressure (PS) values to calculate 6-hourly values of

dewpoint using the equations found in Table 1 of Willett et al.

(2014); we then average the four 6-hourly values to compute a

daily value. To be consistent with this calculation, daily tem-

peratures are computed by averaging the four concurrent

6-hourly reference height temperature (TREFHT) values. In

cases where the calculated dewpoint exceeds the daily tem-

perature value (0.03% of cases), it is set to the value equal to

the temperature minus the minimum positive calculated dew-

point depression at the grid cell.

The statistical models we describe below for changes in the

distribution of local temperature and dewpoint require an es-

timate of the forced trend in global mean temperature (GMT).

An estimate fromCESM1-LE is obtained by first averaging the

annually averaged TREFHT values across grid cells (weighting

by geographic area) and across the first 35 ensemble members

(for the full 1920–2100 ensemble output). We exclude the last

five runs, completed at the University of Toronto, in this cal-

culation due to concerns about the consistency of the results

when considering trends in the GMT (CESM Project 2020);

however, they are included in the local temperature and

dewpoint data described above, as we have found no evidence

of a discrepancy in the distribution of these local variables over

CONUS. The raw global annual-mean ensemble-mean tem-

perature value is then further smoothed using a lowess

smoother with a 5% span (approximately 9 years) and tricubic

weighting to obtain our final estimate of theGMT forced trend.

See Fig. S1 in the online supplemental material for the en-

semble mean GMT anomalies and lowess smoothed estimated

trend. While alternative methods for GMT trend estimation are

available (e.g., Poppick et al. 2017), we use lowess smoothing

here for simplicity since studying the global trend is not of pri-

mary interest in this work.

b. Observational data

Observational temperature and dewpoint data are from

the Global Summary of the Day (GSOD) database provided

by the National Center for Environmental Information

(NCEI). Data are typically collected on an hourly or 3-hourly

basis and are averaged to daily values. We restrict our anal-

ysis to stations within CONUS and we use data from the years

1973–2018, where the record is most complete. We retain

only stations that meet the relatively strict criterion that

there are no missing temperature values during JJA over the

time period studied; this corresponds to about 25% of CONUS

stations in the database and appears to be geographically

representative (see Fig. 1). The requirement of no missing

temperature values makes the proposed temperature simula-

tion (relying on fast Fourier transforms) more convenient;

however, this requirement could be relaxed by using interpo-

lation methods to fill in missing values or by using an alterna-

tive temperature simulation method that does not require

complete data, since the proposed dewpoint simulation can

be implemented with any temperature simulation method

deemed suitable by the user.

3. Univariate simulation of temperatures

The novel observation-based dewpoint simulation that we

propose in section 4 is conditional on a temperature simulation.

Many methods exist for producing univariate simulations of

temperature that combine information fromGCM output with

observations, as discussed in section 1. The procedure used

here is a modified version of those proposed in Leeds et al.

(2015) and Poppick et al. (2016), which are extensions of the

so-called delta method. The delta method simulates future

temperatures by adding a GCM projected future mean trend

to historical observations; however, temperature variability

changes are also potentially important and unaccounted for

by the delta method. Variability changes can be dependent on

time scale (e.g., day-to-day versus interannual variability changes

can differ), implying full changes to the temporal covariance

structure. The proposed procedure accounts for these temporal

covariance structure changes by modifying the observed

FIG. 1. Locations of GSOD stations used in our analysis.
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temperatures’ spectral density to account for GCM projected

changes.

Before describing the simulation method, we introduce

some notation. Throughout, we write ~x for a quantity in GCM

output that is analogous to the quantity x in reality. We write

T(h)
y 5 (Ty,1, . . . , Ty,nJJA) for the vector of the nJJA 5 92 ob-

served JJA daily temperatures in the yth year of the observa-

tional record, and ~T(h)
y and ~T(f )

y for temperatures in historical

and future portions of the GCM output (suppressing notation

for the GCM ensemble member number for the sake of clarity).

We assume that temperatures can be separated into a mean

forced response component and a residual component repre-

senting internal variability (also possibly changing in distribu-

tion in response to forcing):

T(h)
y 5m(h)

y 1 e(h)y ,

and similarly for ~T(h)
y and ~T(f )

y , where m(h)
y is the mean forced

component in year y (not necessarily constant across days

within year y) and e(h)y is the temperature deviation from that

forced component. (In our terminology, the ‘‘mean forced

component’’ can be thought of as the true average temperature

over infinite realizations of internal variability, and would in-

clude both changes due to radiative forcing and the baseline

average value.) Our temperature simulation procedure re-

quires information about projected changes in both the mean

forced component and internal temperature variability. The

GCM change in mean forced component is denoted

~D
y
5 ~m(f )

y 2 ~m(h)
y . (1)

We represent changes in the temporal covariance structure

of the temperature deviations, �y, in terms of changes in spec-

tral densities. Under the reasonable approximation that

JJA internal temperature variability, captured by �y, is statis-

tically stationary within a year, it has a spectral density that

is denoted a(h)y (v) for frequency v, interpreted as the vari-

ance attributable to fluctuations at frequency v. We write

a(h)y 5 fa(h)y (0/nJJA), a
(h)
y (1/nJJA), . . . , a

(h)
y [(nJJA 2 1)/nJJA]g for

the vector of spectral densities on the Fourier frequencies

[noting that the spectral density must be periodic with a(v) 5
a(1 2 v) for v 2 (0, 1/2)]. Likewise, we write ~a(h)y and ~a(f )y , and

we write

~r
y
5

(
~a(f )y (0/n

JJA
)

~a
(h)
y (0/n

JJA
)
, . . . ,

~a(f )y [(n
JJA

2 1)/n
JJA

]

~a
(h)
y [(n

JJA
2 1)/n

JJA
]

)
(2)

for the projected change in spectral density, expressed as a

ratio of variances.

In section 3a, we first summarize the proposed procedure

that uses the above quantities to produce an observation-based

future simulation that captures projected changes in mean and

temporal covariance. Because the true forced mean compo-

nent and distribution of internal variability are not fully known

in either the observations or GCM, these quantities must be

estimated using statistical methods. In section 3b, we therefore

describe the statistical models that are used to estimate the

quantities required for the proposed procedure. We then il-

lustrate the method at an example location in section 3c.

a. Simulation method

With the notation established above, our proposed simula-

tion of daily JJA temperatures T̂(f )
y for the yth year of the future

period is

T̂(f )
y 5m(h)

y 1 ~D
y
1F21diag(

ffiffiffiffiffi
~r
y

q
)F [T(h)

y 2m(h)
y ] , (3)

where F is the discrete Fourier transform matrix [i.e., has en-

tries F j,t 5 e22pi(j21)(t21)/nJJA ]. (While written as matrix multi-

plication, in practice this is calculated using a fast Fourier

transform algorithm.) In words, starting with observed JJA

temperatures from the yth year of the historical record, we

1) subtract the estimated mean forced component from the

observed temperatures to obtain the observed temperature

deviation from the mean (herein simply the ‘‘temperature

deviation’’),

2) calculate the discrete Fourier transform of the observed

temperature deviations,

3) multiply by frequency-dependent projected square root

spectral density changes,

4) invert the Fourier transformation to obtain future temperature

deviations reflecting GCM projected variability changes, and

5) add back the estimated forced response from the observa-

tions and the GCM projected change in mean to obtain the

future temperature simulation.

This procedure produces a simulation that has the mean

changes and (approximately) the covariance changes projected

by the GCM [Eqs. (1) and (2)] but otherwise retains many

features of the observed temperatures [including, e.g., spatial

coherences; see Poppick et al. (2016)]. If ~ry 5 1 (i.e., there are

no projected variability changes), then the procedure reduces

to the basic delta method. Other versions of the delta method

extend the basic method to allow for marginal variability

changes (i.e., same variability change at each frequency); step 3

is an extension of this idea, where instead we are separately

multiplying by the change in standard deviation associated

with fluctuations at each of the Fourier frequencies, producing

changes to the full temporal covariance structure. As written,

the simulation procedure is applied separately to temperatures

in each year y, but in practice this can be done simultaneously

in a vectorized fashion and the resulting simulation procedure

can be implemented very quickly.

b. Statistical models for mean and variability changes

The quantities m(h)
y , ~Dy, and ~ry in Eq. (3) are unknown and

must be estimated from the available data using statistical

methods.

One approach to estimation, although not ours, would be to

rely on methods that attempt to avoid strong assumptions

about the functional form of the above quantities; as a simple

example, one might estimate ~Dy as the difference in ensemble

mean local temperatures between the two time points. However,

this approach has a number of disadvantages. First, the ensemble

mean local temperature (for example) is a very noisy estimate of

the true model forced component, due to the presence of con-

siderable internal variability in local temperatures and an en-

semble of only 40 runs. This problem is even more pronounced
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when estimating more complex quantities (such as the changes in

spectral densities ~ry) or when estimating m(h)
y from observations

(where we have only a single observational record). Moreover,

these kinds of methods do not readily provide an interpretable

summary of how the relevant functions are changing across years

within the forcing scenario of interest.

Instead, our approach is based on the fact that some aspects

of the forced response of local atmospheric variables scale

approximately with the GMT forced response [e.g., Santer

et al. (1990), Dai et al. (2015), and Li et al. (2020), among many

others; see also IPCC (2013, section 12.4.2)]. We use this idea

to constrain the functional forms of the changes. The resulting

parametric statistical models make stronger assumptions but

give estimates that are both less noisy and easier to interpret.

Validation of the statistical models presented below, and

comparison with empirical estimates obtained only by aver-

aging across ensemble members, may be found in the online

supplemental material in sections S2.1 and S2.2.

We model the mean forced component of local temperature

on the dth day of the yth year in the historical observational

record as

m
(h)
y,d 5b

0
1b

1
~G(h)
y 1g(d)1h(d) ~G(h)

y , (4)

where ~G(h)
y is the smoothed GMT anomaly value in year y of

the historical period from the GCM, the b terms are unknown

parameters, and g(d) and h(d) are unknown functions. We use
~G(h)
y as our estimate of the GMT forced response in the his-

torical period for the observations under the assumption that

the GCM adequately captures the forced response of GMT.

The function g(d) allows for seasonally varying mean tem-

peratures and h(d) allows for that seasonal cycle to change as

the GMT changes; these functions are both parameterized

using the first two seasonal harmonics. Since ~Gy is smooth in

time, the resulting estimates of forced mean changes in local

temperature also vary smoothly in time, with additional flexi-

bility to allow for seasonality in the mean changes. The GCM

mean forced component is modeled similarly, so that the

projected change in mean temperature on the dth day of the

yth year (comparing future versus historical time periods) is

~D
y,d

[ ~m
(f )
y,d 2 ~m

(h)
y,d 5 [~b

1
1 ~h(d)]( ~G(f )

y 2 ~G(h)
y ) . (5)

Modeling local mean changes as proportional to global mean

changes results in well-fitting mean functions for the time pe-

riods, region, and climate change scenario analyzed here.More

complex local mean emulators (e.g., Castruccio et al. 2014)

could be used if more a general simulation (e.g., for multiple

climate change scenarios) were required.

Similarly, we model the changes in spectral densities at

frequency v as

log[~r
y
(v)]5 ~d(v)[ ~G(f )

y 2 ~G(h)
y ] , (6)

where ~d(v) is a smooth function in frequency (smoothing en-

forced via a kernel smoother). If ~d(v) is constant, then model

(6) says that only the marginal standard deviation of temper-

atures changes over time (and scales with GMT); otherwise,

the model allows different changes at different frequencies

and therefore changes to the full temporal covariance struc-

ture. Positive values of d(v) correspond to frequencies with

variability increasing with increasing GMT, and similarly for

negative values of d(v). See the sections a and b in appendix A

for additional modeling and estimation details for models (4)

and (6), respectively.

c. Illustration of method

Here we show an illustration of the procedure described

above for a location near Minneapolis, Minnesota (MN); the

observational data we use are from a station located

at Minneapolis–Saint Paul International Airport, and the

changes from CESM1-LE are estimated using the nearest grid

cell. For an analysis over all of CONUS, see section 5. For il-

lustration to directly compare the observation-based simula-

tion with raw output from CESM1-LE, the years 1996–2005 of

the observations are used to simulate the years 2071–80 of the

RCP8.5 scenario, although the full data are used to estimate

the required parameters for the simulation. For reference, the

average change in the GMT forced mean between these two

time periods in CESM1-LE is approximately 3.38C.
First, we show the CESM1-LE projected changes in mean

and variability at this grid cell. Figure 2a shows changes in local

mean temperature per degree warming of GMT. Specifically,

we show the function ~b1 1 ~h(d) versus d from Eq. (5) along

with approximate 95% pointwise confidence intervals; see

appendix A, section a for a description of how the confidence

intervals are obtained. Averaged over the summer, this grid

cell shows warming of about 1.68C per degree warming in

GMT, but the later part of summer warms most quickly.

Figure 2b shows the relative change in the square root spectral

density at this grid cell per degree warming of GMT—that is,

we show the function exp[~d(v)/2]2 1, again along with ap-

proximate 95% pointwise confidence intervals; see appendix A,

section b—which can be interpreted as the relative change in

standard deviation for fluctuations with frequency v. In Fig. 2b,

the value at v 5 0 is labeled ‘‘JJA annual average’’; this is be-

cause the discrete Fourier transform at v 5 0 is proportional to

the time average, so that
ffiffiffiffiffiffiffiffiffiffiffi
~ry(0)

q
is the change to the standard

deviation of the JJA annual average in year y in Eq. (3).

Summertime lower-frequency variability at this grid cell in-

creases with GMT (e.g., the standard deviation of the JJA av-

erage temperature is estimated to increase by about 6% per

degree increase in GMT), but the variability changes at higher

frequencies are estimated to be negligible.

These changes in means and variability are then incor-

porated into the simulation procedure [Eq. (3)] to produce

an observation-based simulation of future temperatures.

Figures 2c–f show an illustration of observed temperatures and

the resulting simulation. We show observed and simulated

daily values over the first year of the record (Figs. 2c,d), as well

as JJA average values across years (Figs. 2e,f), to illustrate the

differences in variability changes at short and longer time

scales, respectively. The observed temperatures and simulated

series are shown on top (Figs. 2c,e), while deviations from the

forced mean (i.e., T
(h)
y,d 2m

(h)
y,d and similar) are shown at bottom

(Figs. 2d,f) to illustrate how the simulation procedure affects

temperature variability. Because high-frequency variability
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changes at this location are projected to be negligible, simu-

lated daily temperature deviations look very similar to the

observed values in the first year and the resulting simulation is

driven by mean changes; however, lower-frequency variability

is projected to increase at this location, resulting in JJA aver-

age values that are more variable in the simulation than in the

original observations.

4. Observation-based conditional quantile mapping of
dewpoint given temperature

In this section, we propose an observation-based simulation

method for dewpoint that depends on a temperature simula-

tion such as that proposed in section 3. The proposed dewpoint

simulation falls into the general category of ‘‘quantile map-

ping’’ simulation methods, and works by transforming ob-

served dewpoint quantile levels given observed temperatures

to new dewpoints given simulated temperatures, accounting

for GCM projected changes in the underlying relationship

between dewpoint and temperature.

As in section 3, we first summarize the proposed simu-

lation procedure in section 4a, then describe the statistical

models that are used to estimate the quantities required

for the proposed procedure in section 4b, and finally pro-

vide an illustration of the simulation at one location in

section 4c.

a. Simulation method

Conceptually, we want to simulate future dewpoint values,

given a future temperature simulation, via a quantile mapping

that transforms the observed distribution into a future distribu-

tion. Writing D(h) for the observed dewpoint values and D̂(f ) for

the observation-based future simulation [and T(h), T̂(f ), ~G(h),

and ~G(f ) for the observed local temperature and future simu-

lation, and historical and future smoothed GMT forced trend

estimate, as above], our ideal simulation procedure would entail

the following transformation:

D̂(f ) 5F21

D(f) [t
*jT̂(f ), ~G(f )], where

t* 5F
D(h) [D

(h)jT(h), ~G(h)] (7)

and where FX(�j�) denotes the (conditional) cumulative distri-

bution function of the variable X and therefore F21
X (�j�) is the

FIG. 2. (a) CESM1-LE projected change in mean temperature for a 18 increase in GMT (with approximate 95% confidence interval;

dashed), by day of the summer, for a grid cell near Minneapolis, MN. The summertime mean temperatures at this location increase more

quickly than GMT, and the increase is greater toward the end rather than the beginning of the summer. (b) Estimated relative change in

the square root spectral density for a 18 increase in GMT at the same grid cell (with approximate 95% confidence interval; dashed).

Variability increases at low frequencies, but changes are negligible for higher frequencies. The remaining panels show an illustration of the

proposed temperature simulation method using observations fromMinneapolis–Saint Paul International Airport. Observations are from

the years 1996–2005, and the simulation is for the years 2071–80 of the RCP8.5 scenario. (c),(e) Temperatures; (d),(f) temperature

deviations (i.e., temperature minus its estimated forced mean); first year of daily values in observations (black) and resulting simulation

(red) are shown in (c) and (d); JJA average values over the observed record and simulation period are shown in (e) and (f).
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conditional quantile function. In words, the ideal procedure

would be the following:

1) determine the quantile levels associated with observed

dewpoint values, given observed local temperatures and

the GMT forced trend, and then

2) simulate future dewpoints using those quantile levels, but

conditionally on future simulated local and global temper-

atures and under the projected future relationship between

dewpoint and temperature.

However, in practice we do not know F21

D(f) (�j�), the conditional
quantile function of true future dewpoints, so our proposed

method will replace this function with one that incorporates

changes from the GCM, analogous to other observation-based

simulation procedures.

b. Statistical model for conditional quantile functions

We model the relationship between dewpoint and temper-

ature (and changes thereof) through a quantile regression

model of the log dewpoint depression, with effects for GMT,

seasonality, and the local temperature deviation from its esti-

mated forced mean. Writing ~Yy,d 5 log( ~Td,y 2 ~Dd,y) for the log

dewpoint depression in the GCM (again suppressing notation

for the run, and here not distinguishing between historical

versus future time periods), our quantile regression model for

the GCM is

F21
~Yd,y

(tj ~T
d,y
, ~G

y
)5 ~a

0,t
1 ~g

t
(d)1 ~a

1,t
~G
y
1 ~h

t
( ~T

d,y
2 ~m

d,y
), (8)

where the function ~gt(�) characterizes the seasonal cycle in the

tth quantile for a fixed GMT and local temperature deviation,

~a1,t characterizes the change in dewpoint depression with

GMT for a fixed local temperature deviation and day of the

year, and the function ~ht(�) characterizes the relationship be-

tween the dewpoint depression and local temperature devia-

tion for a fixed day of year and GMT. We use the two leading

seasonal harmonics to parameterize ~gt(�) and use a natural

spline to parameterize ~ht(�); see appendix A, section c for

details.Working on the scale of log dewpoint depression allows

us to easily enforce the constraint that the dewpoint depres-

sion must be positive, and therefore that dewpoint must be less

than the temperature value. However, model (8) implies an

equivalent model on the scale of the dewpoint itself, ~Dy,d 5
~Td,y 2 e

~Yd,y , that is,

F21
~Dd,y

(tj ~T
d,y
, ~G

y
)5 ~T

d,y
2 exp[~a

0, 12t
1 ~g

12t
(d)

1 ~a
1, 12t

~G
y
1 ~h

12t
( ~T

d,y
2 ~m

d,y
)]. (9)

So while in practice the model is estimated on the scale of

Eq. (8) (where themodel is linear), changes in the log dewpoint

depression can be translated into changes in dewpoint (but the

tth quantile of dewpoint depression corresponds to the 12 tth

quantile of dewpoint). See supplemental material section S2.3

for information about the quality of fit of this quantile re-

gression model in CESM1-LE.

In model (8), changes in the conditional quantile function

associated with changes in GMT are captured by the ~a1,t

parameters at each quantile level t. In the spirit of univariate

observation-based simulation procedures, we assume that the

GCM captures changes with GMT through this parameter, but

that the terms describing the seasonal cycle and dependence on

local temperature in observations may be different from those

in the GCM. As such, we take the future quantile function for

our simulation to be

F21

D̂
(f)
d,y

[tjT̂(f )
d,y,

~G(f )
y ]5 T̂

(f )
d,y 2 expfa

0, 12t
1 g

12t
(d)

1 ~a
1, 12t

~G(f )
y 1h

12t
[T̂

(f )
d,y 2 m̂

(f )
d,y]g.

This assumption would imply that the ideal simulation proce-

dure (7) may be rewritten as

D̂
(f )
y,d 5 T̂

d,y
2 expfa

0, 12t*
y,d
1 g

12t*
y,d
(d)1 ~a

1, 12t*
y,d

~G(f )
y

1 h
12t*

y,d
[T̂

(f )
d,y 2 m̂

(f )
d,y]g;

where

t*y,d 5F
D
(h)
y,d
[D

(h)
y,d jT(h)

y,d ,
~G(h)
y ], (10)

which is therefore our proposed procedure. Note that we es-

timate the quantile function for the observations over the

historical period using the ~a1,t values estimated from theGCM;

this is consistent with the overall simulation approach and the

idea that theGCMwill havemuchmore information about this

term than is contained in the observational output, because of

both the larger amount of data in the GCM as well as the larger

changes in GMT.

To better understand the procedure (10), it is instructive to

consider first its behavior in the special case that ~a1,t 5 0 for all

t (i.e., the relationship between dewpoint depression and the

temperature deviation does not change with GMT) and

~r(v)5 1 for all v (i.e., temperature variability does not

change). In this setting, it is straightforward to show that the

simulation resulting from (10) is D̂
(f )
y,d 5D

(h)
y,d 1

~Dy,d, where ~Dy,d

is the projected change in local mean temperature [Eq. (5)].

That is, in this simplest setting, the future dewpoint value

‘‘follows’’ the mean temperature change, and also no modeling

of the observed relationship between temperature and dew-

point is explicitly needed for the simulation.

In the general case, the procedure (10) can therefore be

understood as an adjustment to that simple setting to account

for changes with GMT and in the simulated temperature de-

viation value. The reason that an explicit quantile regression

model for observed dewpoints is now needed is because the

future simulated temperature deviation differs from the ob-

served deviation value if ~r(v) 6¼ 1, therefore requiring an esti-

mate of the observed relationship ht (�) to carry out the

simulation. This implies that, if projected temperature vari-

ability changes are small, the dewpoint simulation will not be

very sensitive to errors in estimating ht (�) from observations,

and primarily depends on the estimated changes from the

GCM. This is important because there is more information

available from the GCM about changes than there is
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information in the observed record about the baseline distri-

bution. Thus the simulation procedure (10) shares the impor-

tant feature with other observation-based simulation methods

that it is not as dependent on explicitly modeling the behavior

of observations as it is on modeling changes in the GCM

output.

c. Illustration of method

Figure 3 shows the bivariate distributions of temperature

and dewpoint in CESM1-LE, as well as in the observations and

observation-based simulations, for the same location near

Minneapolis, MN, used in Fig. 2. We show observed and sim-

ulated values for the years 1996–2006 and 2071–80 during the

month of July, along with the fitted median and 5th/95th per-

centile curves on 16 July when the GMT is equal to the average

value in the respective time interval. (The displayed quantile

curves are those for a fixed day of year, so are not strictly

comparable to the data values shown, which vary in distribu-

tion over the month and across years; however, since this

variation is relatively small compared to the differences be-

tween the future and historical periods, we still find it helpful to

display for reference.)

Focusing first on CESM1-LE, the bivariate distributions are

complex, as are the projected changes. The estimated ~a1,t

values are positive (Fig. 3, top right), and larger in magnitude

for the smaller dewpoint depression quantiles (or equiva-

lently, the larger dewpoint quantiles); for the three displayed

quantile curves, the estimated values are ~a1, 0:05 5 0:138C 8C21,

~a1, 0:05 5 0:0818C 8C21, and ~a1, 0:95 5 0:0678C 8C21. This means

that for a fixed temperature deviation [i.e., ~Td,y 2 ~md,y, the co-

variate in model (8)], the dewpoint depression tends to be larger

in the future time period than in the historical period (Fig. 3, top

FIG. 3. Comparison of historical (black) vs future (red) bivariate distributions in CESM1-LE and observations vs

simulated values during the time periods 1996–2005 and 2071–80 for the month of July. (top) CESM1-LE; (bottom)

observations and simulations; (left) dewpoint vs temperature; (right) dewpoint depression (i.e., temperature minus

dewpoint) vs temperature deviation (i.e., temperature minus its estimated forcedmean). Lines show the fittedmedian

and 5th/95th percentile curves on 16 July when GMT is equal to its average value in the relevant time period.
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right), especially on days that were expected to bemore humid;

that is, for a fixed realization of temperature variability around

the forced mean, we see relative drying especially on the most

humid days. However, since the mean temperature increases

from the historical to the future time periods, a fixed temper-

ature deviation corresponds to a higher temperature value; for

example, we still see combined heat and humidity events that

are more severe in the future than in the historical period, al-

beit less so than if the ~a1,t values were negative (Fig. 3, top left).

When we compare the bivariate distributions in CESM1-LE

to those in the observations and our observation-based simu-

lation (Fig. 3, bottom), we see clear discrepancies between the

two. For example, dewpoints show less variability in the ob-

servations for a fixed temperature than is apparent from

CESM1-LE, and the estimated median and 5th/95th percentile

curves are nearly monotonic in the observations whereas not in

CESM1-LE. The simulation procedure (10) transfers the pro-

jected changes with GMT to the observed bivariate relation-

ship, generating a simulation whose changes look similar to

those in CESM but that is consistent with the original obser-

vations’ distribution (and better preserves higher-order fea-

tures from the observations, like spatiotemporal relationships).

Because of this difference in the underlying relationship be-

tween dewpoint and temperature, the aforementioned in-

crease in future risk of high humidity at a historically high

temperature value is smaller in the observation-based simula-

tion compared to in CESM1-LE.

5. Results

The preceding sections describe our simulation procedure

and illustrate both the projected changes fromCESM1-LE and

resulting simulations at one location near Minneapolis, MN.

Here we provide a summary of projected changes from

CESM1-LE over a region containing CONUS, and discuss the

resulting simulations using GSOD station data. Simulations

are produced using projected changes from the grid cell that is

nearest to the GSOD station in question and at least 50% land,

and the years 1996–2005 are used to produce a simulation of

the years 2071–80 in the RCP8.5 scenario in order to directly

compare the observation-based simulation with raw output

from CESM1-LE, although the full data is used to estimate the

required parameters for the simulation.

Recall that the temperature simulations require estimates of

both local mean changes and changes in spectral densities.

Figure 4 (top) shows projected local mean temperature changes

per degree warming in GMT, at three time points throughout the

summer. That is, we show ~b1 1 ~h(d) from Eq. (5), for d corre-

sponding to the dates in question. Across CONUS, summertime

local temperatures in CESM increase more quickly than in the

GMT, and the increases are stronger toward the end rather than

the beginning of the summer (especially in the Northwest). That

is, the changes over CONUS are broadly similar to those shown in

Fig. 2a at the grid cell near Minneapolis.

Figure 4 (bottom) shows projected changes in local tem-

perature spectral densities per degree increase in GMT, at

three different frequencies. As in Fig. 2b, we show the values

exp[~d(v)/2]2 1, where ~d(v) is as in Eq. (6); this corresponds to

the relative change, per degree increase in GMT, in the stan-

dard deviation attributable to fluctuations at frequency v.

Likewise as in Fig. 2b, the changes at v 5 0 are labeled ‘‘JJA

average’’ because these can be interpreted as changes in the

standard deviation of the JJA average temperature in the re-

sulting simulation. Summertime low-frequency temperature

FIG. 4. (top) Projected mean temperature changes per degree increase in GMT on 1 Jun, 1 Jul, and 1 Aug [i.e., ~b1 1 ~h(d) from Eq. (5),

for d corresponding to the dates in question]. Projectedmean changes are stronger toward the end rather than the beginning of summer, as

also illustrated for the example grid cell in Fig. 2a. (bottom) Projected changes in temperature spectral densities per degree increase in

GMT, for three different frequencies. We are displaying the values exp[~d(v)/2]2 1, where ~d(v) is as in Eq. (6); this can be interpreted as

the relative change, per degree increase in GMT, in the standard deviation attributable to fluctuations at the frequency v. The left plot is

forv5 0, which corresponds to the change in the standard deviation of the JJA average temperature; the center and right plots correspond

to frequencies v 5 1/92 and v 5 1/2, respectively. Grid cells are stippled if the estimated change is not significantly different from zero,

controlling the false discovery rate at 5% (see appendix A for details).
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variability is largely projected to increase with increasing

GMT, although changes in the Northeast and Southwest are

estimated as negligible. Higher-frequency variability changes

are more spatially variable, with decreases in the Northeast and

Northwest and increases in the Southwest and Plains states.

After estimating changes in temperature distributions for

our temperature simulation, the dewpoint simulation requires

information about changes in the conditional quantile function

of dewpoint. Figure 5 shows the estimated values of ~a1,t from

Eq. (8) for three quantile levels; recall that these are the

changes in log dewpoint depression quantiles per increase in

GMT, fixing the day of the year and the temperature deviation

from its forced mean, and that the tth quantile for dewpoint

depression corresponds to the 1 2 tth quantile for dewpoint.

As in Fig. 3, top right, we see increases in dewpoint depression

with increasing GMT, particularly in the lower quantiles. That

is, for a fixed temperature deviation, we see relative drying

particularly on the most humid days. The increases are smaller

in the West and Southwest.

The observation-based simulations inherit changes in dew-

point depression for a fixed temperature deviation projected

from the GCM (i.e., the parameter ~a1,t), but the resulting

changes in dewpoint for a fixed temperature value can differ

between the GCM and observation-based simulation because

the same temperature value corresponds to different temper-

ature deviations in Eqs. (9) versus (10) and involve different

relationships in the GCM and observations, ~h(�) versus h (�).
Here we consider changes in the risk of high or low dewpoint

values for a fixed temperature value. Figure 6 shows changes in

the risk of historically high humidity events at a fixed histori-

cally high temperature, for CESM1-LE and the observation-

based simulation. We express changes in risk in terms of odds

ratios, comparing the future (2071–80) odds of exceeding the

historical (1990–2005) 95th percentile of dewpoint, conditional

on local temperature being at the historical 95th percentile, to

the historical odds. Overall, the probability of historically high

humidity on a historically warm day increases in both CESM1-

LE and the observation-based simulation, particularly in the

Southeast. However, the increase in risk is typically larger in

CESM1-LE than in the observation-based simulation. This

result may stand in apparent contrast with Fig. 5, which shows

dewpoint depression increases (and so dewpoint decreases)

for a fixed temperature deviation in the future; however, a

historically high temperature is associated with a smaller (or

possibly negative) temperature deviation in the future, ex-

plaining the difference (e.g., compare the left and right panels

of Fig. 3 for a fixed x-axis value). See appendix B for more

details on how the quantities we are showing here are

calculated.

Figure 7 is analogous to Fig. 6 but instead shows changes in

the risk of historically low-humidity events at a fixed histori-

cally high temperature. Here we compare the 2071–80 odds of

dewpoint less than the 1990–2005 5th percentile of dewpoint,

fixing local temperature at its 1990–2005 95th percentile, to the

1990–2005 odds. Unlike for humid heat events, the risk of dry

heat events appears to decrease over CONUS except in the

Northeast (particularly in later summer). However, the de-

crease is stronger in CESM1-LE than in the observation-based

simulation, indicating that future low-humidity heat events

may be a greater risk than indicated by CESM1-LE.

6. Discussion

In this work, we propose an observation-based joint simu-

lation of future dewpoint and temperature that accounts for

estimated changes from CESM1-LE in 1) mean temperature,

2) temperature variability at multiple time scales, and 3)

changes in the relationship between dewpoint and tempera-

ture. We believe that the proposed simulation method is

preferable compared to those based on attempting to statisti-

cally correct GCM runs, both because observation-based

simulation procedures retain higher-order distributional fea-

tures of the observations and because they require less explicit

statistical modeling of observations (where data are limited)

than of GCMs (where more data are available).

That said, observation-based simulations are of course lim-

ited by the observational record. The simulation procedure as

proposed is nonstochastic and is determined by the observa-

tional data and the estimated changes from the GCM; how-

ever, it may be possible to produce longer or multiple

simulations by using a resampling procedure on the observa-

tions or through developing a statistical model of the variability

[as in, e.g., McKinnon et al. (2017) and McKinnon and Deser

(2018)]. In situ station measurements are also spatially limited,

can contain systematic errors [e.g., issues discussed in Brown

and DeGaetano (2009), Durre et al. (2010), Dunn et al. (2014),

FIG. 5. Projected changes in log dewpoint depression quantiles per degree increase in GMT, fixing the temperature deviation from the

forced trend [i.e., ~a1,t from Eq. (8)]. Recall that the 5th percentile of dewpoint depression corresponds to the 95th percentile of dewpoint,

and vice versa. Over CONUS, summertime dewpoint depression increases with GMT, fixing the local temperature deviation, andmore so

on more humid days.
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Rhines et al. (2015), and many others] and are point mea-

surements that cannot be straightforwardly compared to a

GCM grid cell, presenting potential challenges for any simu-

lation method that requires information from observations

(including model-based simulation procedures). We do not

address these issues here, but we believe that it is advisable to

repeat the simulation procedure with multiple data sources (if

available) to address the effects of observational uncertainties.

The analysis presented here uses one GCM ensemble,

CESM1-LE. While outside the scope of the current work, it

would be important when applying these methods using

changes from other climate model output to verify that the

underlying statistical models remain appropriate for the cli-

mate model output in question (as e.g., we do in section S2 of

the supplemental material). Multimodel comparisons are ad-

visable if producing simulations for impacts assessments in

order to account for intermodel variability.

Simulation procedures that combine information from GCM

output with observations inherently require users to choose either

what changes from theGCMshould be reflected in the simulation

(for observation-based procedures) or what features of the GCM

output should be corrected (for model-based procedures). These

notions become arguably more ambiguous in more complex set-

tings (e.g., for multivariate simulations and where the simulation

involves nonlinear transformations). The underlying assumption

that the GCM captures relevant changes also becomes more

challenging to evaluate in the presence of limited observational

data if the changes are complex but small over the historical pe-

riod, as in our setting. While this ambiguity is difficult to fully

overcome, we believe that one additional advantage of the ap-

proach taken here, which involves parametric statistical models to

characterize GCM projected changes, is that such models make

transparent what changes are inherited in the resulting simulation

and these estimated changes are on their own a relevant summary

of the GCM’s behavior.

Our understanding of changes in compound extreme events,

such as humid or dry heat events, remains limited. We hope

that the statistical methods developed in this paper aid in the

development of coherent and interpretable comparisons across

other regions, forcing scenarios, and climate models, to ulti-

mately enrich our understanding of these complex but impor-

tant projected changes.
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FIG. 6. Change in risk of historically high (95th percentile) dewpoint on historically high temperature (95th percentile) days, by month,

comparing the years 2071–80 vs 1990–2005 in (top) CESM1-LE and (middle) the observation-based simulation, and (bottom) the dif-

ference between the two. The top two rows show the log (base 10) odds ratio comparing the future vs historical risk; positive values

correspond to an increase in risk. The bottom row shows the difference between the middle and top rows; positive values indicate a larger

future risk in the observation-based simulation than in CESM1-LE. See appendix B for details.
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(formally known as the Earth System Grid) (https://doi.org/

10.5065/d6j101d1). The GSOD weather station data are avail-

able at https://www1.ncdc.noaa.gov/pub/data/gsod/.

APPENDIX A

Details on Statistical Models

In this appendix, we provide more detail on the statistical

models used in this paper and how the relevant parameters are

estimated.

a. Mean temperature model

The functions g(d) and h(d) in the mean temperature model

(4) control seasonality and changes thereof with GMT, re-

spectively. These functions are parameterized using the first

two seasonal harmonics, that is,

g(d)5 �
2

k51

[g
k,1
cos (2pkd/365)1g

k,2
sin(2pkd/365)], (A1)

and similarly for h(d). We have found that using only the first

two harmonics is sufficient for modeling seasonality within JJA

(see supplemental material section S2.1 for model validation)

since most seasonal structure is dealt with by only examining

JJA temperatures.

The parameters in the mean model (4) are estimated via

least squares (separately for CESM1-LE and GSOD, but using

all data within each respective dataset). Uncertainties in

CESM1-LE projected mean changes (i.e., as shown in Fig. 2a)

are assessed using a residual block bootstrap, blocking by run

in the 40-member ensemble. That is, we

1) calculate the residuals from the mean model, ~e5 ~T2 ~m,

2) resample residuals by resampling 40 runs with replacement

from the 40 ensemble members, and

3) add the resampled residuals to the originally estimated

mean function to obtain a bootstrap dataset, and refit the

mean model (4).

This process is repeated 1000 times andwe use a 95%bootstrap

percentile interval to display uncertainties.

b. Temperature spectrum model

The function ~d(v) in the temperature variability change

model (4) controls the change in spectral density at frequency

v with GMT changes. This function is estimated similarly to

the methods described in Poppick et al. (2016). We briefly

describe the fundamental elements of the procedure, but refer

readers to Poppick et al. (2016, sections 4.1.1 and S2 and S3

therein) for more detail.

A preliminary estimate of ~d(v) is first obtained by maximizing

a block composite Whittle likelihood function (Dahlhaus 1997)

FIG. 7. Change in risk of historically low (5th percentile) dewpoint on historically high temperature (95th percentile) days, by month,

comparing the years 2071–80 vs 1990–2005 in (top) CESM1-LE and (middle) the observation-based simulation, and (bottom) the dif-

ference between the two. The top two rows show the log (base 10) odds ratio comparing the future vs historical risk; positive values

correspond to an increase in risk. The bottom row shows the difference between the middle and top rows; positive values indicate a larger

future risk in the observation-based simulation than in CESM1-LE. See appendix B for details. Compare to Fig. 6 but note the reversal of

the color bars to follow the intuition that red corresponds to drying.
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based on the separate periodograms of each year of JJA tem-

peratures. The estimator based on maximizing this approximate

likelihood combines information from the yearly periodograms

across runs and yearly blocks, but still produces a rather rough

estimate across frequency v. This is therefore further smoothed

across frequencies using an Epanechnikov kernel to obtain the

final estimate. The bandwidth of the kernel smoother is chosen to

minimize the sum of squared errors from leave-one-out cross-

validation. We use a fixed bandwidth for all nonzero frequencies,

but do not smooth the estimate of ~d(0) beyond the initial estimate

to avoid contaminating information about interannual variability

changes with intraseasonal changes.

Approximate standard errors of the resulting estimate of
~d(v) can then be derived through a tedious but straightforward

calculation involving the second derivative of the composite

likelihood function and the kernel smoother weights. The 95%

intervals shown in Fig. 2b are the 62SE intervals around the

final estimate of ~d(v). The determination of statistical signifi-

cance shown in Fig. 4, bottom, is based on first calculating a p

value from the Z statistic associated with the estimate of ~d(v)

and its standard error, and then controlling the false discovery

rate (FDR) at 5% using the Benjamini–Hochberg procedure

(Benjamini andHochberg 1995;Wilks 2016). The FDR control

procedure accounts for the multiple-testing problem arising

from the fact that we are assessing significance at each of the

1344 grid cells (and so would expectmany small p values even if

there were no grid cells with nonzero true changes).

c. Dewpoint quantile regression model

The function gt (�) in the quantile regression model (8)

controls seasonality in dewpoint (after controlling for the local

temperature deviation and GMT trend) and the function ht (�)
controls the relationship between dewpoint and the local

temperature deviation for a fixed day and GMT. As for the

mean temperature model, we parameterize gt (�) using the

first two seasonal harmonics [see Eq. (A1)]. The function

ht (�) is parameterized using a natural spline with 10 degrees

of freedom (i.e., 8 knots). The knots are chosen as the em-

pirical quantiles of the local temperature deviation, with

boundary knots equal to the minimum and maximum

observed value.

Model (8) is estimated for the quantile levels t5 0.005, 0.01,

0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99, and 0.995. If quantile

functions cross, this is dealt with by reordering fitted values

(Chernozhukov et al. 2010). Values for other quantile levels

needed for the dewpoint simulation are obtained via linear

interpolation. That is, the value t*
y,d

in Eq. (10) is calculated by

linearly interpolating between the two quantile levels yielding

fitted values closest to the observed value D
(h)
y,d ; the simulation

D̂
(f )
y,d is then calculated by linearly interpolating between the

two corresponding future simulation values in Eq. (10).

Finally, note that the reported GSOD data are first rounded

to the nearest tenth of a degree Fahrenheit, then converted to

Celsius and rerounded to the nearest tenth of a degree Celsius;

to avoid numerical issues that arise when estimating quantile

regression models with discrete response variables (Machado

and Silva 2005), we therefore add a random jitter to each ob-

served dewpoint depression value when fitting the model to

observations: dewpoint depression is produced by jittering

both temperature and dewpoint separately by UF 3 5/9 1 UC,

where UF and UC ;
indep

Unif(20:05, 0:05).

APPENDIX B

Details on Calculations of Changes in Risk Probabilities

Figures 6 and 7 show changes in the risk of historically high

and low humidity heat events, respectively, at a fixed histori-

cally high temperature. Here we provide more details on the

quantities we are showing.

Write G(h) and G(f ) for the average GMT forced trend over

the years 1990–2005 and 2071–80, respectively. Write ~m
(h)
d and

~m
(f )
d for the estimated local mean temperature on day d [from

Eq. (4)] in CESM1-LE given those historical or future GMT

forced trend values. Write ~T
(h)
95,m for the empirical 95th per-

centile of local temperatures in month m over the years 1990–

2005 in CESM1-LE (calculated across days in themonth, years,

and the 40 ensemble members). Finally, write ~q
(h)
95,d for the es-

timated 95th percentile of dewpoints in CESM1-LE on day d

from model (8), given local temperature ~T
(h)
95,m and GMT

anomaly G(h); that is,

~q
(h)
95,d 5F21

~Dd,y
[0:95j ~T

d,y
5 ~T

(h)
95,m,

~G
y
5G(h)]

5 ~T
(h)
95,m 2 expf~a

0, 120:95
1 ~g

120:95
(d)

1 ~a
1, 120:95

G(h) 1 ~h
120:95

[ ~T
(h)
95,m 2 ~m

(h)
d ]g ,

and write q
(h)
95,d for the analogous quantity from observations

(replacing all of the above relevant quantities with their ana-

logs from the observations).

The future risk of a historically high humidity heat event in

CESM1-LE is defined as the probability on day d of exceeding

~q
(h)
95,d given a historically high local temperature, ~T

(h)
95,m, but fu-

ture GMT anomaly G(f ). That is,

~p
(f )
95,d 5Pr[ ~D

d,y
. ~q

(h)
95,dj ~Td,y

5 ~T
(h)
95,m,

~G
y
5G(f )]

5 12F ~Dd,y
[~q

(h)
95,dj ~Td,y

5 ~T
(h)
95,m,

~G
y
5G(f )].

By definition, the historical risk is 0.05 (because ~q
(h)
95,d is the

estimated historical 95th percentile). We measure the change

in risk in terms of the odds ratio,

~v
95,d

5
~p
(f )
95,d/[12 ~p

(f )
95,d]

0:05/(12 0:05)
,

and similarly v95,d for the observation-based simulation. If the

odds ratio is greater than 1, the future risk is greater than the

historical risk. Figure 6 shows log10(~v95,d) (first row), log10(v95,d)

(second row), and log10(v95,d/~v95,d) (bottom row) on the days

1 June, 1 July, and 1 August.

Figure 7 is similar except it shows changes in the risk of

historically low-humidity heat events, which we define as

dewpoints falling below the historical 5th percentile (rather

than above the 95th percentile) on days with local temperature

equal to the historical 95th percentile value.
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