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Abstract

A general finite element solution method for the dynamic response sensitivity of inelastic
structures is developed. Employing conditional derivatives, the gradient equation of motion
is solved without iteration and by taking advantage of the available solution of the response.
Special attention is given to sensitivities with respect to inelastic material parameters and
detailed derivations are made for the J; plasticity model with linear hardening rule.‘ The
method can be generally applied to any other inelastic material models that have analytically
defined yield function and flow rule. The formulation is easily incorporated in existing finite

element codes. Numerical examples demonstrate the accuracy and efficiency of the method.
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1 Introduction

Response sensitivity analysis aims at measuring the rate of variation in the response of a
structure with respect to parameters describing, e.g., the material of the structure, its ge-
ometry or the applied loads. Measures of sensitivity in general are expressed in terms of
the partial derivatives of the response with respect to the parameters of interest, i.e., the
gradient. These measures are useful in a variety of applications, including the determina-
tion of relative importance of parameters, optimum structural design, design of experiments,

optimum allocation of resources, and probabilistic analysis.

The authors’ interest in this field stems from their work in probabilistic analysis. In such
analysis, the gradients of the response with respect to uncertain variables are used either for
estimating the response variability in a second-moment context (e.g., determining the variance
of the response for prescribed means and variance/covariances of the uncertain variables),
or for determining the probability of exceeding a prescribed limit state, commonly known as
reliability analysis [13]. In such applications, the uncertain quantities usually are the material
properties of the structure, the applied loads, and the geometry or boundary of the structure.
In reliability analysis, as in optimum design, the gradients are used to determine a direction
of search in an iterative algorithm for finding an optimum solution point [10]. Both accuracy
and efficiency of the gradient computation are required to ensure rapid convergence of the

search algorithm.

Several general methods are available for computing the gradients of structural response. A

comprehensive review is made by Haftka and Adelman [6]. The most straightforward ap-



proach is using finite differences. This requires repeated solutions of the problem at least
one time greater than the number of sensitivity parameters. The accuracy depends on the
difference formulation used and on the choice of the finite variation in the sensitivity param-
eter. A computationally more efficient approach employs perturbation analysis [11, 7]. In
this, the governing equation of the response for a perturbed value of the sensitivity param-
eter is expanded and, after deleting higher-order terms, an equation for the corresponding
perturbation in the response is derived which has a form similar to the equation of the re-
sponse itself. In solving the perturbed equation, advantage is taken of the available solution
of the response and a complete reanalysis is not necessary. The accuracy depends on the
size of the perturbation used and on the importance of the neglected higher-order terms. In
general, the perturbation method is less accurate but more efficient than the finite-difference
method. Iterative methods that improve the efficiency or accuracy of the above approximate
methods have also been suggested [5, 4]. In terms of accuracy and efficiency, these methods

lie somewhere between the finite difference and perturbation methods.

An alternative approach for computing the response gradients is to directly differentiate the
equation governing the response with respect to the variable of interest. The result is an
equation for the gradient which has a form similar to the equation of the response itself.
Thus, this approach enjoys the same advantage of efficiency as the perturbation method,
but it is accurate as it employs no approximation, save for the approximation involved in
the numerical solution of the equations of the response and the gradient. This approach
has been called the Direct Differentiation Method (DDM) [17]. The objective of this paper

is to present a new, general formulation with this approach for the dynamic response of



structures with inelastic material. Detailed formulations are developed for materials with
the J; plasticity constitutive law. Particular attention is given to the response gradients
with respect to the inelastic material property constants. Although such gradients may be
of limited interest in optimum design applications, they are of prime interest in reliability
analysis where the material property constants are often treated as random variables to

account for the underlying uncertainties.

The DDM has been applied to elastic and inelastic problems by previous researchers [14, 8,
2,17, 9]. For inelastic problems, the difficulty lies in the internal resisting forces, which are
history dependent and have implicit relations with the sensitivity parameters. Ray et al.
[14] developed formulations for the response gradients of hysteretic dynamic frame systems
with respect to member cross-sectional areas. The formulation is not in a conventional finite
element form and it is not clear that it can be readily applied to compute the sensitivities
with respect to inelastic material property constants, such as the yield stress. More recently,
general formulations for both geometrically and materially nonlinear problems were proposed
(2. lT] Examples were used to show that the formulations could be implemented in a finite
element context [2, 1. 16]. However, as in the method of Ray et al., it is not clear that
their approaches are applicable to the response gradients with respect to inelastic material

property constants for general structures.

The alternative direct differentiation method proposed here is different from the above formu-
lations in the manner of computing the gradient of the resisting forces. Rather than directly
computing the total derivative, the formulation employs the partial derivatives with respect

to the sensitivity parameter and the present value of the displacement vector. The resulting



equation of the gradient naturally involves the tangent stiffness matrix, which is available
from the solution of the response if a Newton-type algorithm is used, and this facilitates the
solution of the gradient equation. The partial derivative of the resisting forces with respect to
the sensitivity parameter is obtained in terms of the derivatives of the constitutive equations
of the material for fixed values of the displacements. The proposed method is referred to as
the Conditional Derivative Method (CDM). Although the derivations here are fully developed
only for the J; plasticity law, the procedure is general and can be developed for other models

of inelastic material.

The proposed method has been implemented in the finite element code FEAP by R. L. Taylor
[19] and a number of applications have been carried out. The present paper concludes with
the presentation of two numerical examples: a perforated strip under plane strain and a truss
structure under dynamic loading, both having plastic materials with hardening. Comparisons
with finite-difference results demonstrate the accuracy of the procedure and estimates of

computer execution time provide indications of its efficiency.



2 The Conditional Derivative Method

Let = denote a parameter, with respect to which response sensitivities are of interest. z
may denote a material property constant (e.g., a modulus, yield stress, hardening parameter,
certain geometry parameters) or a load parameter. We consider the class of nonlinear dynamic

problems for which the equation of motion can be written in the form
M(z)u(t,z)+ C(z)ult,z) + R(u(t,z),z) = P(t,z) (1)

where ¢ denotes the time, u(?, ) denotes the displacement vector, M(z) is the mass matrix,
C(z) is the damping matrix, R(u(t.r).z) denotes the internal resisting force vector, and
P(t.z) denotes the external load vector, and a superposed dot indicates differentiation with
respect to time. The dependences of R on the current value of the displacement vector and
the sensitivity parameter are explicitly shown. However, for an inelastic problem, R is also
history dependent. Although this dependence is not explicitly shown in this formulation, it
is implied and will be accounted for through the constitutive equations to be developed in
the following section.

The equation for the response gradient v = % 1s obtained by directly differentiating Eq. 1

with respect to z. After changing the orders of differentiation with respect to ¢ and z and

rearranging terms, one obtains

9P oM. 9C_ IR

Mv+Co+ K = - U - y
R F A i (2)
in which K(u) = %% is the current tangent stiffness matrix. The vector 881} represents the
U

derivative of the resisting forces with respect to = with u fixed. It depends on the assumed



constitutive law of the material and is history dependent.

The response and its gradient are obtained by successively solving Eqgs. 1 and 2. For known
u, Eq. 2 for the gradient v is linear, although the coefficient matrix K(u) in general may
depend on t. This linearity is one advantage of CDM. It will become more apparent when a

step-by-step algorithm is used to solve the set of equations.

In a finite element setting, the resisting force vector is given by [19]

R(u,z) = Z/Q Bo(e,z)dQ (3)

where e denotes the element number and the summation is over all the elements in the
structure, €2, is the domain of the element, B is the discrete strain operator, and o(e,z)is
the stress vector, which is expressed as a function of the strain vector € and z. Again, the
history-dependence of the stress vector is not shown explicitly in this formulation, but it is

implied. Taking derivative with respect to ¢ with u fixed, one obtains

R
dx

df (4)

oo

-y [ B

U e Qe dI

where %C—;—l is the derivative with respect to z with the strains fixed. This equation assumes
[

that the boundary of the element is not a function of z.

Normally a step-by-step numerical integration method is used to solve Eq. 1 at discrete
time steps t = t, for n = 0,1,2,... . The class of one-step implicit integration methods

approximate the acceleration and velocity at {41 by

1“Ln~+—1 = AgUn41 — A2Un — gty — agin (5)



a

ﬁr:—}-l = Q1Upyy — A3UR — A5Up ~ A7U, (6)

where ap-a7 are the integration ccefficients which depend on the particular method used.

Substituting the above approximations into Eq. 1 at time Int1, results in

a’OMun-H + alcun+1 + R(un+1) - pn+1 (7)
with

Py = Popi + M(ayu, 4 agis, + agitn) + Clasu, + ast, + asiiy,) (8)

being the effective loading at step n + 1. The most common algorithm for solving Eq. 7 for

Un41 is by Newton iteration, which can be summarized by the set of equations

[aoM + a;C + K’(uil'{’ﬂ ”Auimn = AR(";*'I) ®)
AR(ul )= Poyy — [aoMu},, + a;Cul, + R(u} )] (10)
whl =+ Y

in which AR(ul ) is the residual force and Au;H is the incremental displacement at the
ith iteration, and ui];ll is the updated displacement. One proceeds with the iteration until
convergence is reached, resulting in the solution w,4,.

The partial derivative equation for the gradient, Eq. 2, is solved in conjunction with Eq. 1

using the same integration procedure. The counterpart of Eq. 7 for the gradient is

[aoM + a1C + K(unyy)|vng = (12)
P, oM 1o, OR(Upiq)
(9;1 - [ao 9z Upyr + Cll-(,ﬁunﬁ + —-—O;;;L ]

Un 41



in which

apn-f—l - 8Pn+l
5: 9z T (13)

Maqv, + a4, + ag®,) + C(azv, + asv, + a7v,) +

—(QQun + a4'i‘n + aGﬂ'n) + —(a3un + asﬁn + (17’&71)

oz dr
Observe that the matrix on the left-hand-side of Eq. 12 is identical to that of Eq. 9 at the
solution point, #,4+;. Therefore, only the vectors on the right-hand-side of Eq. 12 need to be

computed. The vectors —8——};—;‘—11—, -Qa]—\—;i and %g— are normally easy to compute at the element

level (see [3] ). The vector aR(g‘;" ! , however, is not easy to compute and requires

Un41

special treatment, especially in view of the history dependence of R. From Eq. 4, the latter

fele s

vector involves the stress gradient S , which is dependent on the constitutive law of

Enti

the material. Computation of this vector is discussed in the following section for materials
having the J;, plasticity constitutive relations. It is worth noting that Eq. 4 is analogous in
form to Eq. 3. Therefore, in the finite-element implementation, the procedure used to form

aR(u)
dz

the vector R(wu) can also be used to form the gradient vector , which facilitates the
u

implementation.



3 Constitutive Relations of J; Plasticity

Consider an isotropic material with plastic constitutive relations. Using a matrix notation,

let the total stresses and strains be decomposed as
1
o =p1+s and e:§(il+e (14)

where p = %(01 + 094+ 03) and 6 = =y + €5 + €3 are the mean stress and the trace of strain
matrix, respectively, s and e are the deviatoric stress and strain vectors, respectively, and
1 =(1,1,1,0,0,0)7. A complete inelastic model consists of a yield criterion and flow and
hardening rules. In this paper we consider the J, plasticity model, for which the constitutive

relations are given in the rate form [12]
p= K6 (15)
5= 2G(é~é") (16)

where I and G are the bulk and shear modulus, respectively, which are given in terms of

the elastic modulus, E, and the Poisson’s ratio, v, by

E
and G = Lt (17)

.
P 31— 21+ v)

Il

Lot =

and e” is the plastic strain rate vector given by
éP = A= (18)
In the preceding equation, A denotes the rate factor and F is the yield function defined by

F(s,p.x) = f(s - ple?)) - k(x) (19)



in which p(e?) is a vector describing the kinematic hardening, s is an isotropic hardening

variable, and f(.) is the Euclidean norm of the vector £ = s — p,

f(s — p(e”)) = [I&ll = /(£,£) (20)

where (£, £) denotes the inner product. The isotropic hardening variable, x, is usually taken

to be the effective plastic strain defined by

& = /Ot,/-g(eaép) di (21)

For the analysis in this paper, we consider the special case of linear kinematic and isotropic

hardening rules. In that case, p and k in Eq. 18 are given by

P = '?;Hkinep (22)

l‘("i) = \/z'(gy + Hisoép) (23)

where Hy;, and H;,, are the kinematic and isotropic hardening parameters, respectively,
and o, is the yield stress. This completes the definition of the plasticity model used in the

remainder of this paper.

In the incremental solution procedure, the above rate equations are usually discretized by

the backward Euler method. The set of discretized rate equations at time t,,4; then reads as

follows:
Pyl = I\,0n+1 (24)
Sng1 = 2G(enyr —€h ) (25)

10



efi = eh + Dpinagy with nayy = 20
an+1”

- 2 -
€i+i = ég + \/;Zl)\r”q (2‘/)

where n. .y is a unit vector normal to the yield surface at time th+1- In addition, when

plastic deformation occurs, the consistency condition requires that
1€riall = kngr =0 (28)
with
2 v 2 p
£n+l = Sn41 E;[{kmeru}—l and k”+1 = g(ay + HiSOen-l»l) (29)

The above set of equations can be solved in conjunction with Eq. 7 by use of a procedure

such as the return map algorithm [15] .

11



4 Gradient of Constitutive Relations

The gradient equations of the constitutive relations are obtained by taking derivatives of Egs.

24 - 29 with respect to z, producing the following

apn+1 _ oK B 89n+1
gz - ag i AT
sy ,0G b denpr  Oeb
(91: - 2-5;:(6714'1 - €n+1) + 2G( 81' - 61‘ )
aeﬁﬂ Bef{ aA/\71+1 5nn+1
dr Oz + Ox Mgt T SAntt Oz
8nn+1 _ 1 T 8£n+1
i T A
0ey, _ 0eh i \/?8&”“
Oz Oz 3 Oz

T 9,11 _ Okyq
tlo9r Jdz

=0 fOT' Fn+1:0

041 Osnn 2

— ( 0Hkin P 8ez+1

H'in P
Jz €nt1 ¥ Ak oz )

oz Jdz 3
Oknir \/z’ do,  OH.s o€l 4
9z~ V3laz t or o T e )

(30)

(31)

(32)

(33)

(35)

(36)

(37)

where [ is the identity matrix. The above equations are valid for both elastic and plastic

deformations, except for the condition in Eq. 35 that applies only when plastic deformation

occurs, i.e., when the yield function at the step is zero. Note that under elastic deformation,

LA 41 and its gradient are both zero and Eqs. 32 and 34 can be simplified. In the present

analysis, the parameter z is assumed to be one of the constants K, G, Hgin, Hiso or 0y,

12



5

Then, the gradient terms , J—;f;m, ﬁg—?ﬂ, and 2 are either one or zero, depending on

¥

the choice of z.

ADA 4

Bnnfl
Ar dx

and

As can be seen in Eq. 32, the solutions of are essential for determining

the gradient of the plastic strain. In order to derive expressions for these quantities, we first

£

solve for ?—-C—%il by substituting Eqs. 31 and 32 into Eq. 36. After some algebra, the result is

8£ +1 2 Jer BA./\,H.] Bnn+1
Sl = (9G4 SHp 2+ I, A, 3
Ee (2G+3 kin - + 5 "l + 1 )+ (38)
& vaeﬂ+1 2 8Hk1n p
26 oz 3 gz onl

Substituting this result into Eq. 33, after some lengthy manipulations. we obtain

ann‘f‘l 1 i
it i s e I-n,n; + (30
az [€maal + (2G + ZHn 1 2mgs | anl ) )
. 2 8eﬁ 2 0]{;{{” P

6+ ) G = 5 gy e

), len oG .

2¢; (‘);:l + 2*5“;(€n+1 - eﬁﬂ)] for Fni1 =0
=0 fOT Fn+1 <0

In deriving this expression, use has been made of the identities (I — nn?)n = 0 and (I -

ann®)"l = T+ l—i’;nn,T involving the unit normal vector n. Observe that the only unknown
on the right-hand side of the above expression is the gradient of the deviatoric strain at step
n + 1. Note also that the expression involves the gradient of the plastic strain from the
previous step, which shows the history dependence of the solution. For Fr41 < 0, obviously

an . . :
~—5=t+ = 0 since no plastic deformation occurs.

To derive an expression for iél”—‘t—, we substitute Eqs. 34 and 39 into Egs. 37 and 38,
p dx q q

respectively, and then substitute the results into Eq. 35 . After extensive algebra and use of

13



the above mentioned identities, the result is

%ﬁ T 26+ 2H:n+%Hno{"z“[ 26+3 H’“")aae; - 4
28];1%1 el + 26'83qul + 28“G(en+1 ~eh )] -
Vol s v m5E) for Fa =0
= 0 for Fop1 <0

Observe again that the only unknown term on the right-hand side is the gradient of the

deviatoric strain at step n+ 1. For F,4y < 0, i%—\——i— = 0 since no plastic deformation occurs.

Now consider the gradient of the stress vector, o. Using Eqgs. 14, 30 and 31, on obtains

3Un+1 _ 3Pn+1 35n+1 )
Jz B Oz + dx (41)
_ oK ,89n+1 . oG 88n+1 8en+1
= 1(“8—‘;971-‘}4 + K 32 ) + 25’5(‘3%1 — el )+ 2G( i )

As noted in Eq. 4 and the discussion following Eqs. 12 and 13, the quantity needed in order
to solve Eq. 12 for v,4; is the gradient of ¢ with €,4, fixed. This is obtained simply by

. 5 . . . .
setting the terms 39,3‘;1 and ”83“;” in the preceding equation to be zerc. The result is

o, N G deb | ,
—5—;& = 1"5;“87144 -+ 2‘7@*1:—(€n+1 - n+1) 2G —t= 817 (42)

Ent1 €n41

At the solution of the equations of motion (Eq. 7) and the constitutive relations (Eqs. 24-27)

noP

.. . . . . ., de
at step n+ 1, the only remaining unknown quantity in the preceding equation is ~———i~a"r + .
€n4y

Using Eq. 32,
oer | deP OO\, ONng, \
~_5L = an + a 1 Tipn4a + Zl/\rri»l 6+ (43)
z s, z z ents T lens,

14



The partial derivatives of n, 1 and A, 4, are obtained from Eqs. 39 and 40, respectively, by
setting the term g%-’iii to be zero, i.e.,

ann+] . 1
dz €n41 “fn+1“ + 2(; + ngm)&/\n-b-l
def  20H.,
{“‘(2 + 3 LI/sm) 3 (9; i+1 +
G

2—5}‘(%“ —el ) for Fnp =0

(I~ mnpinlig) (44)

= 0 for Fnp1 <0

! T aeP
= 2G H in 45
€n41 QG -+ szin + %Hiso {nn+1{ ( + ki ) ( )
2 aHAzn p G

-3 a €n+t1 + 25— gz (en+1 - ei%—l)} -

2 d(] 8H1'304 ()Eﬁ ,
3G TG s G for Fen =0

aA’\n«H
oz

= 0 for Foi1 <0

The above completes the set of equations necessary to solve the gradient of the inelastic

response. The specific procedure used is as follows:

1. Solve the incremental equations of motion (Eq. 7) together with the constitutive
relations (Eqs. 24-27) at step n + 1 by use of the return-map algorithm, and

compute the quantities n,41, DMy, eh ) and €

2. Compute Eqgs. 43-45 and substitute in Eq. 41 to compute i%ir*— ;
En+l

3. Compute the partial derivative of the resisting forces for step n + 1 from Eq. 4;
4. Compute the remaining terms on the right-hand side of Eq. 12.

5. Solve the gradient equation (Eq. 12) for v,4; using the factorized form of the

matrix [agM + a1C + K(u,;1)] available from step 1;

15



6. Obtain g—%";ﬂ from v,41, and then solve Eqs. 39 and 40, and update the “uncon-

ditional” derivatives in Egs. 32 and 34 for use in the next step of the analysis;

7. If desired, compute the gradient of the stress vector from Eq. 41.

5

The above procedure is of course valid for inelastic static problems that are path dependent.
The simplified equations for that case can be obtained by setting the integration coefficient

ag - a7 in Egs. 5-13 equal to zero.

The gradient computation method described above can be implemented into any existing non-
linear finite element code with relatively minor modification and extension. In the present
study, the program FEAP (Finite Element Analysis Program) by R.L. Taylor {19] was em-
ployed. This program has a modular form and is particularly convenient for the development
of the needed routines to perform the gradient computation. The main extensions here were
at the element level and involved the development of routines to compute the partial deriva-
tive matrices for element mass, damping, resisting force, and external loading. Routines for
computing the gradient of the resisting forces at the global level and for solving the gradient
equations were developed using macro-commands within a subroutine of FEAP intended for
new applications. This implementation appears to be no more difficult than the implemen-

tation of other less accurate methods [6, 18].

16



5 Numerical Examples

In this section numerical examples are presented to illustrate the accuracy and efficiency of
the proposed method for computing the response gradients. These examples also demonstrate

interesting results for the response sensitivities of inelastic structures.

5.1 Example 1 - Perforated Strip Under Cyclic Loading

The first example is an infinitely long rectangular strip with a circular hole, shown in Fig. 1,
which is subjected to the quasi-static cyclic loading p(t) in Fig. 2. The inertia and damping
forces are assumed to be insignificant. The strip is assumed to have infinite thickness and
to be in a state of plane strain. The elastic properties of the material are £ = 10°%kN/cm?
and v = 0.3, and its plastic properties are o, = 1kN/em?, His, = 50kN/cm? and Hiipn =
50kN/cm?. Four-node quadrilateral finite elements are used with the mesh for a quarter of
the body as shown in Fig. 3. The step-size At = 0.0625s is employed in the incremental
procedure for solving the equations of motion and the gradient, and a lins search at each
Newton iteration is performed to stabilize the solution [19]. For the loading in Fig. 2, the
displacement u; at point A and the stress component o1 at point B in direction zy, are

shown in Figs. 4a and 4b, respectively.

To verify the validity of the procedure and the accuracy of its implementation, the gradients of
the displacement at A and the stress at B with respect to the yield stress, g, are considered.
Figure 5 shows comparisons of the computed results with the proposed approach (solid curves)

with results obtained from finite-difference analysis (broken curves) with decreasing values

17



of the yield stress deviation Ao, = 0.1, 0.05, and 0.001 kN/cm?. In each case, the gradient
is scaled by the sensitivity variable so that the curves have the same units as the response
itself. As can be seen in the figure, the finite-difference results asymptotically approach the
results based on the proposed method, thus indicating the validity of the method and the

accuracy of its implementation.

Figure 6 compares scaled gradients of the two response quantities with respect to three plastic
material parameters, o,, Hyi, and H,. For a fixed percent variation in each parameter, the
displacement response is found to be more sensitive to the yield stress, except towards the
end of the loading where greater sensitivity to Hy;, and H,,, is observed in Fig. 6a. For the
stress response, much greater sensitivity is found with respect to the vield stress than to the

hardening parameters, as can be seen in Fig. 6b.

The first row in Table 1 lists the CPU times spent for this problem on a DEC-System 5500
workstation. The CPU time for each gradient is only about 16 percent of the time for the
response. This fraction can be further reduced by storing additional element-level data at the
expense of computer storage. Thus, the CPU times in Table 1 are not necessarily optimum

and should be regarded as rough estimates of the required effort in computing the gradients.

5.2 Example 2 — Inelastic Truss Structure Under Dynamic Loading

The second example is a truss structure under dynamic loading. The structure and the
loading history are show in Figs. 7 and 8, respectively. The geometric nonlinearity due to

large displacements is taken into account in formulating the kinematic relations of the truss

18



(19].
The material of the truss is assumed to follow the J, plasticity law with a linear hardening
rule. For the one-dimensional case, the constitutive relations are simplied with only one stress

component o, expressed as

o= E(e—¢?P)
The plastic strain, ¢”, and the isotropic hardening variable, «, are expressed as

s‘P:A—ég and & =| P |
where the vield function F is defined as

F =0~ Hgne? | —=(0, + Hisor)
Material property constants considered are E = 30,000kN/em?, Hy; = 303.03kN /em?,
Hio = 0. and o, = 12.0kN/em?, and the material weight density is 0.761 x 1072N/em?.
The corss-section area of each member is A = 6em?. The vield stress o, and the kinematic

hardening parameter Hy,, of each truss member are considered as the sensitivity variables.

The time step size used is At = 0.002s.

Fig. 9 shows the time histories of the vertical displacement at node 2 and the stress o, of
member 1. The corresponding gradients with respect to the yield stress of members 1, 2 and
5 and the hardening parameter Hy;, of member 1. each scaled by the parameter itself, are
shown in Fig. 10. It is found that both response quantities are most sensitive to the yield

stress in member 1.

The second row in Table 1 lists the CPU times spent for this problem on the DEC-System

5500 workstation. The CPU time for each gradient is again about 16 percent of the time

19



spent for calculating the response. As mentioned earlier, this fraction can be further reduced

by storing additional element-level data at the expense of computer storage.

20



6 Summary and Conclusions

A general finite element solution method for the gradients of dynamic response of inelas-
tic structures is developed. Employing conditional derivatives, the response gradients are
computed efficiently, without iterations and by taking advantage of the available solution of
the response. Gradients with respect to inelastic material parameters, which are of special
interest in reliability analysis and have received limited attention in the past, are evaluated.
Specific derivations are made for the widely used J; plasticity model with linear hardening
rule. The method is general and can be developed for other inelastic materials whose yield

function and flow rule can be analytically defined.

The method is implemented in an existing general-purpose finite element code and several
numerical examples are analyzed. The execution time for the gradients is found to be a small
fraction of the required execution time of the response. Thus, the method is found to be
both efficient and practical for use in applications requiring response sensitivities, such as in

optimum design or reliability analysis.
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Tuble 1@ Comparision of Execution Times for Gradients

total cpu | cpu for response | cpu for grads. | cpu per grad.
example 1 265.0 178.0 87.0 29.0
example 2 24.0 5.4 18.7 0.9
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Figure 3: Finite Element Mesh for Perforated Strip
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