
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Power and Probability Calculations in Longitudinal Outcome Measures and Image Analysis, 
with Applications to Biomedical Data

Permalink
https://escholarship.org/uc/item/2jg989sz

Author
Zhao, Yu

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2jg989sz
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Power and Probability Calculations in Longitudinal Outcome Measures and Image Analysis,
with Applications to Biomedical Data

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Biostatistics

by

Yu Zhao

Committee in charge:

Professor Armin Schwartzman, Chair
Professor Steven Edland, Co-Chair
Professor Howard Feldman
Professor Jingjing Zou

2023



Copyright

Yu Zhao, 2023

All rights reserved.



The Dissertation of Yu Zhao is approved, and it is acceptable in quality and form

for publication on microfilm and electronically.

University of California San Diego

2023

iii



DEDICATION

To my family and friends.

iv



EPIGRAPH

The most important questions of life are indeed,
for the most part,

really only problems of probability.

Laplace, Pierre Simon

v



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Organization of this dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Power formulas for mixed effects models with random slope and intercept
comparing rate of change across groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Background, the mixed effects model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Power formulas derived . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Power formula, balanced design with no dropout . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Power formula, balanced design with dropout . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Power formula, unequal allocation, unequal study subject attrition, and

unequal variance across groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Modeling under the unequal variance across groups assumption . . . . . . . 14

2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Validation by computer simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 3 The chronic progressive repeated measures (CPRM) model for longitudinal
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 The chronic progressive repeated measures (CPRM) model . . . . . . . . . . . . . . . . . . 23
3.3 Empirical validation of the chronic progressive (CP) covariance structure for

Alzheimer’s disease data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Performance of the CPRM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Simulations under the null . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



3.4.2 Simulations under the alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Sample size calculations for the CPRM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Completers-only approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Study subject attrition approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.4 Validation of sample size formulas by computer simulation . . . . . . . . . . . 33

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 4 An approximation to peak detection power using Gaussian random field
theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Power approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Peak detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Power approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.4 Adjusted E[Mu] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.5 Height equivariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.6 Small domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.7 Large threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.8 Sharp signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Explicit formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 Isotropic Gaussian fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 General formula under isotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Explicit formulas in 1D, 2D and 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.4 Isotropic unimodal mean function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.1 Paraboloidal mean function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.2 Constant mean function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.3 Gaussian mean function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Estimation from data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.1 Estimation of the noise spatial covariance function . . . . . . . . . . . . . . . . . . 56
4.5.2 Estimation of the mean function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 A 3D real data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6.1 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6.2 Estimation of the autocorrelation and mean functions . . . . . . . . . . . . . . . . 59
4.6.3 3D Simulation induced by data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7.1 Explicit formulas and approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7.2 Effect size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7.3 Application to data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



Chapter 5 On the peak height distribution of non-stationary Gaussian random fields:
1D non-constant variance and scale space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 1D non-stationary Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Peak height distribution of non-stationary Gaussian processes . . . . . . . . . 72
5.2.2 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.3 The boundary case: |ρ(t)|= 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.4 The Gaussian process with non-constant bandwidth . . . . . . . . . . . . . . . . . 77
5.2.5 The Gaussian process with non-constant bandwidth: Gaussian kernel . . . 80
5.2.6 The Gaussian process with non-constant bandwidth and variance . . . . . . 82

5.3 Multidimensional non-stationary Gaussian random fields . . . . . . . . . . . . . . . . . . . 83
5.3.1 The scale space Gaussian random field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.2 The scale space Gaussian random field: Gaussian kernel . . . . . . . . . . . . . 87
5.3.3 Peak height distribution of the scale space Gaussian random field . . . . . . 88

5.4 Numerical implementation of the Kac-Rice formula . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.2 Relative efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Validation via simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.1 The Gaussian process with non-constant bandwidth . . . . . . . . . . . . . . . . . 93
5.5.2 3D scale space Gaussian random field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.6.1 Peak height distribution in 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.6.2 Peak height distribution of the scale space field . . . . . . . . . . . . . . . . . . . . . 96
5.6.3 Numerical Kac-Rice algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Appendix A Supplementary materials for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.2 Implementation of the random effects model with random slopes and intercepts

in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Appendix B Supplementary materials for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
B.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
B.2 Explicit expression of W in equation (3.10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendix C Supplementary materials for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
C.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Appendix D Supplementary materials for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
D.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

viii



LIST OF FIGURES

Figure 2.1. Theoretical power curves versus power estimated by computer simulation
given no study subject attrition (top curve) and give 5% attrition per follow-
up visit (bottom curve). (10,000 simulations per sample size, two-sided
test, type I error α = 0.05.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.2. Theoretical powers curve versus power estimated by computer simulation
given 5% study subject attrition per visit, and allocation ratio λ = 1 (top
curve) and λ = 2 (bottom curve). (10,000 simulations per sample size,
two-sided test, type I error α = 0.05.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.3. Theoretical power curves versus power estimated by computer simulation
given equal variance of random slopes (top line) and given σb1 is increased
by 50% in one of the groups (bottom line). (10,000 simulations per sample
size, two-sided test, type I error α = 0.05.) . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.1. Fixed effect estimates by a repeated measures model (red) and a random
slopes model (blue). The repeated measures model estimates the expect
level at each time point while the random slopes model assumes a linear
trajectory of fixed effect levels as a function of time. . . . . . . . . . . . . . . . . . . 25

Figure 3.2. Top panel: Hypothetical trajectory of expected values by arm for a treat-
ment with short term efficacy but no difference in treatment versus control
at the end of the trial. The random slopes model is prone to spurious type I
error under this scenario (Table 3.3). Bottom panel: Hypothetical trajectory
of expected values for a treatment with positive effect starting after the
third observation and persisting to the end of the trial. . . . . . . . . . . . . . . . . . 30

Figure 3.3. Theoretical power curve versus power estimated by computer simulation
(10,000 simulations per sample size, two-sided test, type I error α = 0.05). 34

Figure 4.1. 2D simulation: a single instance of θ(s), Z(s) and their resulting X(s). . . . 52

Figure 4.2. 2D simulation: Power approximation using E[Mu] under four different
scenarios (scenario 3 is displayed in all three panels) when the mean
function is quadratic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.3. 2D simulation: Type I error approximation using E[Mu]. . . . . . . . . . . . . . . . 54

Figure 4.4. 2D simulation: Power approximation using E[Mu] when the mean function
is Gaussian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

ix



Figure 4.5. HCP data: Mean, standard deviation of the data, and standardized mean
of the smoothed data (transverse sliced at the peak of the image along the
third dimension). The blue box represents the subdomain of the peak and
the red box represents the subdomain we use to estimate the noise spatial
covariance function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.6. The empirical correlation after symmetrization and the estimated kernel
from a subdomain of HCP data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.7. 3D Simulation induced by data: Simulated Peak height distribution under
the null (zero mean) with different levels of effect sizes and threshold u. . . 61

Figure 4.8. 3D Simulation induced by data (Rad(D) = 3, medium effect size): Simu-
lated power and E[Mu] when the mean function is obtained from raw data
vs quadratic estimation (4.29). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 4.9. 3D Simulation induced by data (Rad(D) = 6, medium effect size): Simu-
lated vs theoretical E[Mu] and adjusted E[Mu]. . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 4.10. 3D Simulation induced by data: Power curves when the signal has small,
medium, and large effect size, and comparisons between large and small
domain size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 4.11. 2D simulation: Power and E[Mu] for different θ and η (u = 3.92 and
Rad(D) = 10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 5.1. The peak height density (5.3) with different parameters. Left panel: Fixing
σ̃(t) at 1, the effect of ρ(t) on the peak height density. Right panel: Fixing
ρ(t) at −1/

√
3, the effect of σ̃(t) on the peak height density. . . . . . . . . . . . 73

Figure 5.2. Simulated instances of the Gaussian process with non-constant variance,
its spatial correlation, and the parameters σ(t), σ̃(t), and ρ(t). . . . . . . . . . . 75

Figure 5.3. Simulated instances of the Cosine process in Example 1, σ(t), σ̃(t) and
the peak height distribution at t = π/4 (large σ̃(t)) versus t = π/2 (small
σ̃(t)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 5.4. Simulated instances of the Gaussian process with non-constant bandwidth,
its spatial correlation, and the parameters σ(t), σ̃(t), and ρ(t). . . . . . . . . . . 79

Figure 5.5. Simulated instances of the Gaussian process with non-constant bandwidth
and variance, and the parameters σ(t), σ̃(t), and ρ(t). . . . . . . . . . . . . . . . . . 84

Figure 5.6. The peak height distribution of the Gaussian process with non-constant
bandwidth and variance at t = 0.2 (negative ρ(t)) versus t = 0.7 (positive
ρ(t)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

x



Figure 5.7. A single instance of the 2D scale space field and a slice plane ν(t) =
0.5t +0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 5.8. Simulated CDF of the 3D scale space field, direct simulation versus numer-
ical Kac-Rice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 5.9. 1D simulation: ρ(t) and the peak height density of the Gaussian process
with non-constant bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 5.10. Simulated CDF of the 3D scale space field under the three scenarios
described in Table 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xi



LIST OF TABLES

Table 2.1. Sample model fit using the R package nlme and R function lme. . . . . . . . . . 15

Table 2.2. Correlation matrices estimated using data from the ADCS Folate/B6/B12
clinical trial. The correlation matrix imposed by a random effect model fit
(RE, bottom panel) closely mirrors the empirical correlation matrix (top
panel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Table 3.1. Covariance matrices estimated from the ADCS homocysteine trial (ADAS-
cog data, n=330 subjects, quarterly observations for one and one half years). 27

Table 3.2. Covariance matrices estimated from the ADCS clinical trial of vitamin E
and donepezil (MMSE data, n = 510, biannual observations for three years). 28

Table 3.3. Type I error rate under the null (Figure 3.2, Top panel), and power under
the alternative (Figure 3.2, Bottom panel). (10,000 simulations each, with
effect size under the alternative chosen to achieve 80% power for the CPRM
model.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 4.1. 2D simulation: default value of each parameter . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 5.1. Runtime of direct simulation versus numerical Kac-Rice algorithm for
estimating the peak height distribution of a scale space field. . . . . . . . . . . . . 92

Table 5.2. Parameter choices for the three simulation scenarios to validate Theorem 7. 94

xii



ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to my committee chairs, Dr.

Armin Schwartzman, and Dr. Steven Edland. I couldn’t have finished this dissertation without

their support and mentorship. I would also like to thank my other committee members, Dr.

Howard Feldman and Dr. Jingjing Zou for providing valuable feedback on my work.

I grew my interest in Biostatistics from Dr. Schwartzman’s class where you showed great

passion and expertise for statistics. I really appreciate the way you encouraged questions and

discussions as it strengthened my ability to think actively and critically. In terms of research, Dr.

Schwartzman introduced me to the world of random fields theory which perfectly matches my

strength and interest. You are a great advisor for guiding me to initiate ideas with my statistical

sense and turn ideas into scientific papers. You have consistently been supportive of my career

choices, sharing your own experience and offering valuable advice. I would also like to thank

you for organizing various activities, such as hiking trips and the Thanksgiving dinner.

I am grateful to Dr. Edland for leading me into Biostatistics research and helping me to

finish my first publications. I am deeply moved by your passion for research. I still remember

your excitement when we discuss new research ideas. You provided valuable insights about

the applications of Biostatistics in clinical trials to help me bridge the gap between academic

research and industry. Your mentorship has also refined my communication and scientific writing

which are valuable for my future career. Moreover, I want to express my gratitude for your

kindness and care throughout my academic journey.

I also want to thank others that have helped me at the University of California, San Diego.

I would like to thank Dr. Ian Abramson, Dr. Dimitris Politis, Dr. Ery Arias-Castro, Dr. Tianyi

Zheng, and other professors from the math department for helping me to learn the fundamentals

of Statistics theory. I want to thank the faculty members of the Division of Biostatistics and

Bioinformatics for providing me with a collegial and stimulating academic environment. The

courses and seminars have broadened my perspective and enriched my understanding of different

research topics in Biostatistics. I want to thank the current and past staff of the Division of

xiii



Biostatistics and Bioinformatics, Sarah Dauchez, Alan Larson and Stella Tripp for your support.

I would like to thank the members of Dr. Schwartzman’s research group. I had a great

experience participating in the group meetings where we shared research ideas and learned from

the insights of others. The opportunity to present my research projects and receive constructive

feedback consolidated my understanding and helped me to improve my research works. I also

want to thank Dr. Dan Cheng and Dr. Samuel Davenport for being patient and sharing your

expertise in random field theory in our collaborative works. It’s my great honor to collaborate

with someone as knowledgeable and intellectually rigorous as you.

I want to thank my friends and peers in the department, Matt (Ruohui) Chen, Tuo Lin,

Charles (Jiyu) Luo, Junting Ren, and Xinran Wang for helping me both in academics and in life.

I would like to thank my girlfriend, Peiyu Si for your comfort and valuable information during

moments of stress. You have filled my life with laughter and happiness. Finally, I want to thank

my family, especially my parents, for your unconditional love and support. Your understanding

and encouragement have been a constant source of motivation.

Chapter 2, in full, is a reprint of the material as it appears in the International Journal of

Biostatistics. Zhao, Yu; Edland, Steven. Power formulas for mixed effects models with random

slope and intercept comparing rate of change across groups, Int J Biostat, 18(1): 173-182, 2021.

The dissertation author was the primary investigator and author of this material.

Chapter 3, in full, has been submitted for publication of the material as it may appear in

Clinical Trials. Zhao, Yu; Edland, Steven. The chronic progressive repeated measures (CPRM)

model for longitudinal data. The dissertation author was the primary investigator and author of

this material.

Chapter 4, in full, has been submitted for publication of the material as it may appear

in the Journal of Multivariate Analysis. Zhao, Yu; Cheng, Dan; Schwartzman, Armin. An

approximation to peak detection power using Gaussian random field theory. The dissertation

author was the primary investigator and author of this material.

Chapter 5, in full, is currently being prepared for submission for publication of the

xiv



material. Zhao, Yu; Cheng, Dan; Schwartzman, Armin. On the peak height distribution of non-

stationary Gaussian random fields: 1D non-constant variance and scale space. The dissertation

author was the primary investigator and author of this material.

xv



VITA

2017 Bachelor of Science in Mathematics and Applied Mathematics, Beijing University
of Posts and Telecommunications

2019 Master of Science in Statistics, University of California San Diego

2023 Doctor of Philosophy in Biostatistics, University of California San Diego

PUBLICATIONS

Zhao Yu, Edland SD. “Power formulas for mixed effects models with random slope and intercept
comparing rate of change across groups” Int J Biostat 18(1):173-182, 2021.

Smirnov DS, Salmon DP, Galasko D, Goodwill VS, Hansen LA, Zhao Yu, Edland SD, Léger
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In this dissertation, we aim to utilize modern statistical frameworks to perform power

and probability calculations in longitudinal outcome measures and image analysis. Chapter 1

and Chapter 2 primarily focus on longitudinal outcome measures data. In practice, two different

analysis plans are commonly applied to these data: linear mixed effects model and repeated

measures analysis. In Chapter 1, we are interested in generalizing current power formulas for

linear mixed effects models to accommodate missing data due to study subject attrition, and

unequal sample size and variance parameters across groups.

For repeated measures analysis, a covariance structure needs to be specified when model-
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ing the data and computing type I error and power. In Chapter 2, we describe a parsimonious

covariance structure for repeated measures analysis that is useful for modeling longitudinal

repeated measures of chronic progressive conditions and derive the power calculation formulas.

In image analysis, finding the peak height distribution and power for peak detection are

known to be challenging due to the spatial aspect of the data. In Chapter 3, we propose a novel

way to approximate the power for peak detection using Gaussian random field theory (RFT) and

demonstrate scenarios where the approximation works well. We also apply our formulas to 2D

and 3D simulated datasets, and the 3D data is induced by real fMRI data to measure performance

in a realistic setting.

The main limitation of RFT-based image analysis is the model assumptions, and these

assumptions are known to be difficult to check and even not appropriate in many application

settings. In Chapter 4, we seek to relax the stationarity assumption and study the peak height

distribution of non-stationary Gaussian random fields. The explicit formula for the peak height

distribution is derived for 1D smooth Gaussian random fields and efficient numerical algorithms

are proposed as a general solution for computing the peak height distribution in applications.
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Chapter 1

Introduction

Accurate probability calculation is crucial in hypothesis testing and general statistical

analysis. For example, calculating power, the probability that the test correctly rejects the null

hypothesis when a specific alternative hypothesis is true, helps statisticians decide the minimum

sample size required for an informative test, and thus reduce cost. Probability calculation

formulas exist for common statistical and hypothesis testing problems, such as cumulative

distribution function (CDF) of Gaussian distribution, and type I error/ power in t-test. However,

due to the complexities of biomedical data, probability and power calculations can be challenging.

Longitudinal outcome measures and image data are two important types of biomedical

data used in studying a certain disease like Alzheimer’s disease. According to the National

Institute on Aging, Alzheimer’s disease is a leading cause of death and disability in the United

States. A variety of treatments are being developed to manage the disease and slow the disease

progression. Longitudinal outcome measures data collects outcome measures, such as cognitive

assessment, of the same subject over time, and is widely used to evaluate the disease progression

and treatment effect in clinical trials and cohort studies. Biomedical image data contains valuable

information in the form of images that helps to fully understand the human body functions

and gain insights into the complex changes that occur due to interventions. For example, we

can measure the structural changes with scanning devices like computed tomography (CT)

and magnetic resonance imaging (MRI), and functional changes with scanning devices like
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functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). With

the rapid development of these devices, we are able to obtain high-quality images of the brain

and other parts of the body, and it becomes suitable to perform statistical inference. Longitudinal

data analysis and image analysis both play a crucial role in capturing the full range of disease

progression to benefit the treatment development.

Although longitudinal outcome measures and image data are two different types of

biomedical data, they share a common challenge for analysis: dealing with data correlation.

Longitudinal data exhibits correlation among outcome measures taken from the same subject, and

image data exhibits correlation between nearby pixels. Dealing with correlation in longitudinal

outcome measures and image data is necessary for accurate power and probability calculations.

Ignoring the correlation in longitudinal data can bias the estimated variance of regression

parameters leading to invalid statistical inferences. Two different analysis plans are commonly

applied to longitudinal outcome measures data to address the issue of data correlation. Under

the assumption of linear trajectories with random normal intercepts and slopes, the data can be

fitted using the linear mixed effects model. In linear mixed effects model, the data correlation is

induced by the subject specific random intercept and slope. The treatment effect can be seen as

the difference in rate of progression between the treatment and placebo group and is estimated

as the difference in fixed effect slope between the two groups. Alternatively, if the outcome

measure is observed on a fixed schedule, data can be modeled using repeated measures analysis

with arbitrary (non-linear) fixed effect estimates of level at each time point of observation. The

repeated measures analysis allows the user to deal with data correlation by specifying a correlation

structure such as compound symmetry (CS) and autoregressive (AR). For the repeated measures

analysis, the treatment effect can be estimated using the difference-in-difference method.

Both the linear mixed effects model and repeated measures analysis are studied in this

dissertation. For the linear mixed effects model, we generalize the existing power calculation

formulas (e.g. Hedeker et al., 1999; Wang et al., 2015) to accommodate missing data due to

study subject attrition. Missing data due to study subject dropout is common in clinical trials
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and cohort studies and poses challenges to treatment effect estimates and power calculations.

When there are missing observations, the effective sample size is reduced, leading to lower

statistical power. Calculating the amount of power loss according to the missing pattern is

necessary to make sure the study is adequately powered. The generalized power formulas

also accommodate unequal sample size and variance-covariance parameters across groups.

Differences in variance-covariance parameters are important but typically ignored in model

fitting and power calculations. The variability in disease progression observed in the treatment

group reflects the normal background variability in the control group plus variability in response

to treatment, making it inappropriate to use the same set of variance-covariance parameters.

For the repeated measures analysis, we propose a novel covariance structure to model

data under chronic progressive conditions. Mixed model repeated measures (MMRM) analysis

with unstructured (UN) covariance (Mallinckrodt et al., 2008) is a common primary statistical

analysis plan for clinical trials. This approach, however, can be problematic when the number

of repeated measures is large and the model fails to converge. Alternatively, we may consider

parsimonious covariance structures like compound symmetry (CS) and autoregressive (AR). We

note that a substantial literature describes mixed model repeated measures analyses assuming

CS or AR covariance structure (Rochon, 1991; Muller et al., 1992; Lu et al., 2008; Wang et al.,

2015). Although CS and AR models have less number of parameters compared to UN, and are

easier to converge, these models are not appropriate for repeated measures of chronic progressive

conditions. A typical longitudinal pattern of disease progression for chronic progressive diseases

is a fanning apart of trajectories over time, similar to the individual trajectories from the linear

mixed effects model. The model we propose has non-linear fixed effect means like MMRM, but

uses a pattern of dispersion of longitudinal repeated measures consistent with the covariance

structure of the linear mixed effects model. Characterizing this covariance structure requires only

four parameters for estimation and accurately describes the longitudinal pattern under chronic

progressive conditions.

In image analysis, the data can be decomposed into a fixed signal component and a
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random noise component. The signal and noise represent the underlying pattern and uncertainty

of the data respectively. The goal is to search a large space of noisy data for a relatively small

number of signals. This can be done by treating each data pixel or voxel as a statistic value and

testing it against the null hypothesis of no signal anywhere. Due to the nature of biomedical

image data, the number of pixels is usually large and the nearby pixels are correlated. As a result,

we are conducting multiple correlated hypothesis tests simultaneously, and ignoring the spatial

correlation leads to inaccurate estimation of the overall type I error and power. For example,

a traditional multiple testing technique like the Bonferroni correction, which guards against

correlation but does not model it explicitly, is too conservative and may miss detecting a true

effect. In this dissertation, we model the random noise and account for the data correlation with

the help of Gaussian random field theory (RFT). The basic idea is to treat the data as a realization

of a random field, and use RFT to find a proper threshold to identify active pixels.

Peak detection is an important technique in image analysis for identifying the signals

masked by random noise. It can be posed as a statistical testing problem intended to test whether

the underlying signal has a peak at a given location. This is typically done by comparing the

height of the observed peaks to a threshold computed from the distribution of peak height under

the null hypothesis. RFT based peak detection has been studied in Cheng and Schwartzman

(2017) and Schwartzman and Telschow (2019b), which provide methods to choose the threshold

while controlling the overall type I error. Formulas for the type I error which is the probability

of peak height falling above the threshold under the null hypothesis (zero mean) have been

developed for stationary fields in 1D and isotropic fields in 2D and 3D (Cheng and Schwartzman,

2015; Cheng and Schwartzman, 2017; Cheng and Schwartzman, 2018). However, there is

no exact formula to calculate power since it is challenging to deal with non-centered fields.

Here we propose to approximate power by calculating the expected number of peaks above the

threshold. We show that the approximation, which is also an upper bound, works well under

certain scenarios.

The main limitation of peak detection using RFT is model assumptions like stationarity
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and isotropy assumptions. In practice, these assumptions do not always hold. For example,

kernel smoothing is common in brain imaging analysis to increase the signal-to-noise ratio,

and the optimal smoothing bandwidth or scale of the kernel is usually unknown. One way to

handle this is to treat the scale as a parameter just like the location and look for peaks in the

scale-location space. The random field defined on this scale-location space is called the scale

space random field (Siegmund and Worsley, 1995). The scale space field is non-stationary since

the smoothness varies over the domain. To expand the usage of RFT in peak detection, we derive

the peak height distribution of 1D centered non-stationary Gaussian random processes and study

the statistical properties of the peak height distribution of the scale space field. These properties

give us a better interpretation of the scale space field and simplify the computation of peak height

distribution. Since the exact formula for multidimensional non-stationary Gaussian random

fields remains difficult to derive, as a general solution in practice, we introduce two convenient

and efficient numerical algorithms that can be used to evaluate the expected number of critical

points and the peak height distribution without having to simulate the field itself. These two

algorithms allow us to calculate the peak height distribution of any random field as long as it is

sufficiently smooth.

1.1 Organization of this dissertation

In Chapter 2, we focus on the linear mixed effects model, and derive general power

formulas for longitudinal studies with study subject dropout comparing mean slope across groups.

The power formulas fully accommodate missing data due to study subject dropout, and allow for

unequal missing patterns, sample size, and variance-covariance parameters across groups. We

demonstrate how power formulas under this model can be used to power a future trial of arbitrary

design (arbitrary number and interval between follow-up observations) regardless of the design

of the pilot study informing power calculations, and how to estimate the required parameters

from the pilot study through a real data example. We also perform simulations to evaluate the
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performance of the power formulas using parameters estimated from the real data example.

In Chapter 3, we direct our efforts towards the repeated measures analysis approach

and propose a novel covariance structure for the mixed model repeated measures (MMRM)

analysis under the chronic progressive conditions. We call it the chronic progressive (CP)

covariance structure, and the corresponding analysis plan the chronic progressive repeated

measures (CPRM) analysis. We demonstrate empirically using data from completed clinical trials

that the CP covariance assumption holds for longitudinal cognitive data in Alzheimer’s disease

and alternative parsimonious MMRM covariance structures including compound symmetry

(CS) and autoregressive (AR) are not appropriate for modeling the covariance pattern of this

type of data. We further demonstrate with computer simulations that CS and AR perform

poorly for chronic progressive conditions, with the CS model being anticonservative, and the

autoregressive model being poorly powered. Finally, the generalized power formulas for the

CPRM model are derived, and similar to the mixed effects model, the advantage of using the

CPRM parameterization is that the pilot study used to inform power calculations does not have

to match the design of a future trial.

In Chapter 4, we study power approximation formulas for peak detection using Gaussian

random field theory. The approximation, based on the expected number of local maxima above

the threshold is proved to work well under three asymptotic scenarios: small domain, large

threshold, and sharp signal. An adjusted version of this approximation is also proposed to

improve accuracy when the expected number of local maxima exceeds one. The proposed

approximation makes the problem more tractable, but in general, it does not have an explicit

form. We further simplify the formula under the isotropy assumption and show its explicit form

in 1D, 2D, and 3D. We also apply our formulas to 2D and 3D simulated datasets, and the 3D

data is induced by real fMRI data from the Human Connectome Project to measure performance

in a realistic setting.

In Chapter 5, our main focus is on the peak height distribution of non-stationary Gaussian

random fields, so that we can expand the application of random field theory in peak inference.
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We first derive the peak height distribution of 1D centered non-stationary Gaussian random fields

by evaluating the Kac-Rice formula. Based on the results we have developed in 1D, we explore

the properties of the peak height distribution of the scale space field. For multidimensional

non-stationary Gaussian random fields like the scale space field, although the general formula is

not available, we introduce two algorithms for evaluating the Kac-Rice formula numerically. We

perform simulation studies to validate the theoretical properties of the non-stationary Gaussian

random fields and evaluate the performance of the numerical algorithms.
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Chapter 2

Power formulas for mixed effects models
with random slope and intercept compar-
ing rate of change across groups

2.1 Introduction

Lu et al. (2008) have previously described sample size formulas for longitudinal studies

with study subject dropout for the mixed model repeated measures analysis comparing change

from baseline to last visit across groups. Missing data due to study subject dropout in clinical

trials and cohort studies is common and reduces statistical power to detect treatment effects or

differences in change across groups. We here derive power formulas for longitudinal studies

with study subject dropout for a different model, the mixed effects model with random slopes

and intercepts comparing mean slope across groups. We demonstrate how power formulas

under this model can be used to power a future trial of arbitrary design (arbitrary number

and interval between follow-up observation) regardless of the design of pilot study informing

power calculations. We expand and generalize previously published mixed effects model power

formulas (e.g. Hedeker et al., 1999; Wang et al., 2015) to fully accommodate differences in

length and interval between longitudinal observations, different allocation ratios, and different

study subject attrition rates. We also derive a formula that accommodates different covariance

structures across groups. Differences in covariance are typically ignored, but may be critical
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to clinical trials, where changes over time in the treatment arm reflect the normal background

variability in progression observed in the placebo control arm plus variability in response to

treatment, meaning that power calculations based only on the placebo arm covariance structure

may be anticonservative. To our knowledge, this is the first presentation of power formulas for

the mixed effects model with random slopes and intercepts that accommodates differences in

model variance parameters across groups. We note that a substantial literature describes many

of these features for mixed model repeated measures analyses assuming compound symmetric

or autoregressive covariance of repeated measures (Rochon, 1991; Muller et al., 1992; Lu

et al., 2008; Wang et al., 2015). While compound symmetric and autoregressive covariance

structures are mathematically more tractable, in our experience these models are not appropriate

for repeated measures of chronic progressive conditions. We demonstrate by example that

compound symmetric and autoregressive covariance structures typically are not appropriate for

modeling chronic progressive conditions. In the interest of clarity, in this chapter, we focus

exclusively on the model with covariance structure imposed by random slopes and intercepts

most appropriate for chronic progressive outcome measures.

2.2 Background, the mixed effects model

The parameterization of the mixed effects model with random slopes and intercepts

used in this derivation is the familiar Laird and Ware mixed effects model parameterization

with estimation and hypothesis testing by restricted maximum likelihood (REML). We use the

notation of Laird and Ware (1982) to represent within group longitudinal observations yi on

subject i as

yi = Xiα +Zibi + ei, (2.1)

where α are the fixed effect intercept and slope describing the mean longitudinal trajectory,

bi ∼ N (0,D) are random, subject-specific intercepts and slopes, and ei ∼ N (0,Ri) is residual

variation about the individual trajectories. When convenient, we will represent the elements of D
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as  σ2
b0

σb0,b1

σb0,b1 σ2
b1

 .

In the derivation below, Xi = Zi are subject specific design matrices composed of a column of

ones and a column of times at which measurements yi were made. To simplify presentation

we maintain large sample normality assumptions in all that follows, and we do not consider

covariates beyond ti. Consistent with prior literature (Hedeker et al., 1999; Wang et al., 2015),

we assume that data are missing at random and that the covariance parameters are known.

Searle (1970) showed that V (α̂), the asymptotic variance of maximum likelihood es-

timates of α , is independent of α̂ and derived its value. Under model (2.1), y is normally

distributed with mean Xα and variance-covariance V . The likelihood function is

l = (2π)−
1
2 n|V |

1
2 exp

(
−1

2
(y−Xα)′V−1(y−Xα)

)
. (2.2)

The log likelihood, apart from a constant is

L =−1
2

log|V |− 1
2
(y−Xα)′V−1(y−Xα). (2.3)

By the
√

n-consistency and asymptotic efficiency of MLE, α̂ the maximum likelihood estimate

of α follows
√

n(α̂ −α)
d−→ N (0, I−1(α)), (2.4)

where I(α) is the information matrix which equals to E[∂ 2L/∂αh∂αk]. For the log likelihood

(2.3), after taking the partial derivative and expectation,

I(α) = X ′V−1X . (2.5)
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Thus the asymptotic variance of α̂ is

Var(α̂) = (X ′V−1X)−1. (2.6)

We can further simplify this as

Var(α̂) = (X ′V−1X)−1

=


(X ′

1,X
′
2, . . . ,X

′
n)



V−1
1 0 0 0

0 V−1
2 0 0

0 0 . . . 0

0 0 0 V−1
n





X1

X2

...

Xn





−1

=

(
∑

i
(X ′

iV
−1
i Xi)

)−1

,

(2.7)

where

Vi = Cov(yi) = ZiDZ′
i +Ri. (2.8)

In particular, the lower right diagonal of Var(α̂) is the variance of the mean slope estimate which

is required for sample size formulas to power clinical trials comparing mean slope in treatment

versus control. The components of Var(α̂) can be estimated by REML (Laird and Ware, 1982).

Two specific cases of (2.7) are useful for illustrative purposes. If we are dealing with

balanced data, then Xi and Vi are constant across subjects, and (2.7) reduces to simply

Var(α̂) = (nX ′
iV

−1
i Xi)

−1. (2.9)

A similar clinical trial with missing observations due to missed clinical exams or study

subject dropout would not have constant Vi and Xi, but instead would have a finite set of design

and variance matrix pairs. Letting k index this set, the variance of the fixed effect estimates for a
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clinical trial with missing data is then equal to

Var(α̂) =

(
∑
k

nk(X ′
kV

−1
k Xk)

)−1

=

(
n∑

k
pk(X ′

kV
−1
k Xk)

)−1

, (2.10)

where the nk are counts of subjects in each set and sum to n, and pk = nk/n.

2.3 Power formulas derived

2.3.1 Power formula, balanced design with no dropout

For the balanced design with no dropout, standard power formulas apply. E.g., for equal

allocation to arms, sample size to detect a difference in mean slope ∆ between treatment and

control is

N/Arm = 2(zα/2 + zβ )
2[(X ′

iV
−1
i Xi)

−1]22/∆
2. (2.11)

This formula can be used given an estimate of Vi = Cov(yi) obtained from pilot data or a

previously completed trial of comparable design.

A more generally applicable formula can be derived given the usual assumption of

independent residual error (Ri = σ2
ε I). Under this assumption, it can be shown (see Appendix)

that [(X ′
iV

−1
i Xi)

−1]22 = σ2
b1
+σ2

ε /∑(t j − t̄)2 (Snijders and Bosker, 1993), and (2.11) reduces to

N/Arm = 2(zα/2 + zβ )
2 (

σ
2
b1
+σ

2
ε /∑(t j − t̄)2)/∆

2, (2.12)

where Σ(t j − t̄)2 is the sum over the measurement time vector t = (t1, t2, ...., tm)′ of the squared

differences t j minus mean time.

(2.12) is more generally applicable because it only requires estimates of σ2
ε and σ2

b1
,

which can be obtained by REML fit to longitudinal pilot data of arbitrary design. That is, future

studies can be powered using prior study data that do not necessarily have the same duration or

interval between follow-up as the planned future study (Ard and Edland, 2011). Equation (2.12)
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also provides a heuristic illustration of the influence of study design on power longer trials or

trials with more longitudinal observations increase power by reducing the influence of σ2
ε on

overall variance.

2.3.2 Power formula, balanced design with dropout

Another important example, following Lu et al. (2008), is the case of study subject

dropout during a cohort study or clinical trial, also referred to as study subject attrition (SSA).

SSA implies a subset of the dropout patterns indexed by k in (2.10), restricting to the m− 1

longitudinal dropout patterns composed of subjects whose last visit is at tk, k = 2 through m

inclusive. Given the independent residual errors assumption and equal allocation to arms, under

SSA the sample size is calculated by

N/Arm = 2(zα/2 + zβ )
2([
(
Σpk(X ′

kV
−1
k Xk)

)−1
]22/∆

2), (2.13)

where the sum is over the m−1 dropout patterns defined by SSA, pk(X ′
kV

−1
k Xk) are as in (2.10),

and Vk are matrices with off diagonal elements u,v equal to σ2
b0
+(tu + tv)σb0,b1 + tutvσ2

b1
and

diagonal elements u,u equal to σ2
b0
+2tuσb0,b1 +t2

u σ2
b1
+σ2

ε . As before, the parameters σ2
b0

, σb0,b1 ,

and σ2
b1

of D and the residual error variance σ2
ε are estimated by REML fit to representative prior

longitudinal data.

Power formulas accommodating study subject attrition such as (2.13) and Lu et al. (2008)

are technically anticonservative because they ignore information lost by the occasional missed

interim visit, although this bias is typically small. If missing interim visit data is a concern, then

applying (2.13) over all sets of missing data patterns will ensure true nominal type I error rates

are maintained.
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2.3.3 Power formula, unequal allocation, unequal study subject attrition,
and unequal variance across groups

Formulas (2.12) through (2.13) assume that variance parameters and study subject

attrition rates are the same in the two groups being compared and the number of subjects in each

group is equal. We may require a formula that accommodates different study subject attrition

rates across groups, and/or unequal allocation to groups (Lu et al., 2008). It would also be

useful to have a formula that accommodates different variance parameters across groups. Letting

Term1 and Term2 indicate the values [
(
Σpk(X ′

kV
−1
k Xk)

)−1
]22 calculated separately for group1

and group2, and given the independent identically distributed residual error assumption, sample

size for group1 can be calculated by

Ngroup1 = (zα/2 + zβ )
2(Term1 +λTerm2)/∆

2), (2.14)

where λ is the sample size ratio across groups (Ngroup2 = Ngroup1/λ ). The derivation of (2.14)

is straightforward, and follows from the observation that the variance of the difference in fixed

effects slope estimates equals the sum of the individual slope estimate variances. Factoring

out 1/Ngroup1 from this sum leaves the quantity (Term1 +λTerm2), and power as a function of

Ngroup1 follows.

2.3.4 Modeling under the unequal variance across groups assumption

It is given that using (2.14) with unequal variance parameters to power a study presumes

the analysis plan for the study explicitly models the covariance structure of the two groups. For

most applications, including clinical trials, σ2
ε is assumed constant across groups. Sample syntax

explicitly modeling the remaining, within group random effects parameters determining the

covariance structure of repeated measures is included in Appendix.
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2.4 Example

Given representative pilot data it is a simple matter to estimate the variance terms required

for the power formulas. For example, Table 2.1 is the output from a mixed effect model fit to

longitudinal ADAS-cog scores observed in the ADCS trial of a folic acid/B6/B12 compound

to slow the progression of Alzheimer’s disease (Aisen et al., 2008) (n = 330 subjects and m =

7 observations per subject) using the software provided with the standard mixed effects model

text Mixed-Effects Models in S and S-PLUS (Pinheiro and Bates, 2000). The correlation of

repeated measures estimated by the random slopes and random intercepts REML model fit

(Table 2.2) mirrors the empirical correlation calculated from the same sample data, confirming

that this model well represents the covariance structure of longitudinal repeated measures of a

chronic progressive condition. In contrast, the commonly assumed compound symmetric and

autoregressive covariance structures are constant on the diagonals and inconsistent with these

longitudinal data of a chronic progressive condition.

Table 2.1. Sample model fit using the R package nlme and R function lme.

lme(y ~ time, random= ~ time|id)

Random effects formula: ~time | subject

StdDev Corr

(Intercept) 7.432548 (Intr)

time 3.964215 0.465

Residual 3.705466

Fixed effects: ADAS ~ time

Value Std.Error

(Intercept) 17.745024 0.4321112

time 4.057879 0.2672020

Number of Observations: 2310 / Number of Groups: 330
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Table 2.2. Correlation matrices estimated using data from the ADCS Folate/B6/B12 clinical trial.
The correlation matrix imposed by a random effect model fit (RE, bottom panel) closely mirrors
the empirical correlation matrix (top panel).

Empirical correlation matrix

1 0.83 0.82 0.79 0.80 0.80 0.76
0.83 1 0.84 0.82 0.82 0.85 0.80
0.82 0.84 1 0.85 0.85 0.85 0.84
0.79 0.82 0.85 1 0.88 0.85 0.84
0.80 0.82 0.85 0.88 1 0.90 0.88
0.80 0.85 0.85 0.85 0.90 1 0.89
0.76 0.80 0.84 0.84 0.88 0.89 1


Correlation matrix estimated assuming RE

1 0.81 0.80 0.80 0.78 0.77 0.76
0.81 1 0.83 0.83 0.82 0.81 0.81
0.80 0.83 1 0.85 0.85 0.85 0.84
0.80 0.83 0.85 1 0.87 0.87 0.87
0.78 0.82 0.85 0.87 1 0.88 0.89
0.77 0.81 0.85 0.87 0.88 1 0.90
0.76 0.81 0.84 0.87 0.89 0.90 1



From Table 2.1, the estimated standard deviation of slopes σ̂b1 is 3.964 and the estimated

standard deviation of residual errors σ̂ε is 3.705. Assuming equal variance across arms, and

using these values in (2.12), the sample size required to detect a 25% slowing of cognitive

decline (∆ = 0.25∗4.06) with 80% power and a type I error rate of 5% for an 18 month trial

with observations every 3 months is 360 subjects/arm. For comparison, a 24 month trial with

observations every 3 months would require 296 subjects per arm using (2.12). Note that it is not

necessary for the design of the pilot study (i.e., the number of observations and interval between

observations) to match the design of the future trial, we only require that there are sufficient pilot

data to estimate the variance parameters σ2
b1

and σ2
ε .

2.5 Validation by computer simulation

To evaluate the performance of equations (2.12) through (2.14) we have performed

computer simulations assuming data following the model fit obtained in the Example above. We
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first performed simulations assuming a clinical trial with balanced design with six post-baseline

time points with no loss to follow-up and with equal variance within arms consistent with (2.12).

Simulating a series of clinical trials with sample size from 200 to 600 subjects per arm with

effect size equal to a 25% reduction in the mean rate of decline observed in placebo (25% of

the mean 4.06 points per year rate of decline observed in the pilot data (Table 2.1)) with 10,000

simulations per sample size simulated, we found that simulated power closely tracks the power

predicted by (2.12) (top line, Figure 2.1).

To validate the power formula for data with study subject attrition described in (2.13), we

simulated data under equivalent conditions, except that for each simulation we randomly dropped

5% of the initial sample from each arm at t2 through t7. We similarly found that simulated power

closely tracks the power predicted by the equation (2.13) power formula (bottom line, Figure

2.1). Study power decreases when there is study subject attrition (Figure 2.1).

To validate the power formula for data with unequal allocation to groups described in

(2.14), we simulated data with 5% study subject attrition at each follow-up visit as above, but let

the allocation ratio λ vary from one to two. Simulated power closely tracks the power predicted

by the equation (2.14) power formula (Figure 2.2). Predictably (Meinert, 1986; Vozdolska et al.,

2009), power is maximized when λ equals one, and declines as the allocation ratio deviates from

one (Figure 2.2).

To validate (2.14) power formula when covariance structures differ across groups, we

simulated data as done in the top line of Figure 2.1, but increased σb1 by 50% in one of the

groups. Simulated power closely tracks the power predicted by (2.14) power formula (Figure

2.3). The top line from Figure 2.1 is included in Figure 2.3 for reference. Figure 2.3 illustrates

the potential for anticonservative power calculations in the clinical trial setting when variance

parameters used in power calculations are informed by prior placebo arm data and assumed to be

constant across arms.
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Figure 2.1. Theoretical power curves versus power estimated by computer simulation given
no study subject attrition (top curve) and give 5% attrition per follow-up visit (bottom curve).
(10,000 simulations per sample size, two-sided test, type I error α = 0.05.)

Figure 2.2. Theoretical powers curve versus power estimated by computer simulation given 5%
study subject attrition per visit, and allocation ratio λ = 1 (top curve) and λ = 2 (bottom curve).
(10,000 simulations per sample size, two-sided test, type I error α = 0.05.)
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Figure 2.3. Theoretical power curves versus power estimated by computer simulation given
equal variance of random slopes (top line) and given σb1 is increased by 50% in one of the groups
(bottom line). (10,000 simulations per sample size, two-sided test, type I error α = 0.05.)

2.6 Discussion

There are limitations to the Laird and Ware model as parameterized in (2.1), because

this model depends on the assumption that mean trajectories are linear as a function of time.

This assumption may be violated, particularly in clinical trials of treatments with potential acute

treatments effect beyond simple alteration of rate of progress of disease. In this circumstance

mixed model repeated measure analysis (Lu et al., 2008) or model robust alternatives such as

generalized estimating equations (Jung and Ahn, 2003) would be preferred. In our experience

the linearity assumption is often appropriate for chronic progression conditions, especially when

the interval of observation under study is small relative to the full trajectory of disease.

We further note that the formulas presented here assume variance parameters are known,

as is typical of the power formula literature (Rochon, 1991; Hedeker et al., 1999; Tu et al.,

2007; Lu et al., 2008; Wang et al., 2015). However, variance parameters may be uncertain if

sample size in pilot studies used to estimate the variance parameters is small or if pilot data

are not perfectly representative of the future investigation being powered. There is a literature

on characterizing power when variance parameter estimates are uncertain (e.g. Browne, 1995).

However, these methods apply to narrow applications that do not include random effects models.
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We recommend sensitivity analyses using a range of plausible variance parameters to ensure

that planned future investigations are adequately powered. If the prior data informing power

calculations are available, sensitivity analyses may be informed by bootstrap estimates of the

uncertainty of variance parameter estimates (e.g., McEvoy et al., 2010). We have also used

computer simulations to explore the adequacy of pilot study sample size to inform future trials in

other applications (Edland et al., 2017).

The formulas derived here are useful for determining the relative efficiency of different

study designs using the mixed effects model to test for differences in mean rate of change

between groups. We have described how efficiency can vary by the number and interval between

observations, the study subject attrition rate, the allocation ratio, and by differences in variance

parameters between groups. Increasing the length of observation or number of observations

increases statistical power, although with diminishing returns depending on the magnitude of

residual error variance of the outcome measure under study (see (2.12)). Study subject attrition

can also meaningfully impact statistical power and should be accounted for in study design (see

(2.13) and, e.g., Figure 2.1).

Regarding recruitment allocation ratios, if all other conditions are equal across groups,

then altering the allocation ratio from one-to-one reduces statistical power for given study

sample size (Meinert, 1986). Altering the allocation ratio has been propose to improve statistical

power when there is differential attrition rates across clinical trial arms (Lu et al., 2008). More

commonly, allocation ratios are altered to increase the probability of randomization to the active

treatment in the hope of increasing clinical trial recruitment rates. While this approach may

increase recruitment rates, it also implies more subjects will have to be recruited to achieve

target statistical power, and trade-offs between clinic trial cost and time to completion should be

considered carefully when planning a trial with unequal randomization to arms (Vozdolska et al.,

2009).

Finally, we describe how statistical power depends on variance parameters which may

vary across groups (see (2.14)). This consideration is typically overlooked, but may be especially
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relevant to clinical trials, where rate of progression in the active treatment arm is a function of

both underlying variability in rate of progression and variability in response to treatment. Given

that response to treatment is unlikely to be constant across subjects, we can anticipate that the

variance of random slopes in the treatment arm will be larger than variance in the control arm

if there is a treatment effect. Hence, power calculations based only on the covariance within

placebo data will be anticonservative. Typically pilot data for clinical trials are from placebo arm

data of a previous trial or registry trial with no treatment arm. A conservative power calculation

assumption under these circumstances would be to use an inflation factor for σ2
b1

within the

treatment arm in (2.14) to be more likely to achieve nominal power in the planned trial.

Formulas (2.12), (2.13), and (2.14) are implemented in the R package longpower (Dono-

hue, 2019), and will be useful tools for planning future cohort studies and clinical trials as well

as for comparing the influence of the many factors affecting the efficiency of such investigations.

Areas of additional research include modifying power calculation methods in anticipation of

evolving guidelines on statistical analysis plans for clinical trials in the presence of missing not

at random data (ICH Working Group, 2019), and generalizing power formulas to more directly

address the stochastic nature of covariance parameter estimates typically used in practice.
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Chapter 3

The chronic progressive repeated mea-
sures (CPRM) model for longitudinal data

3.1 Introduction

Mixed model repeated measures (MMRM) assuming an unstructured covariance matrix

(Mallinckrodt et al., 2008) is a standard analysis plan for clinical trials of chronic progressive

conditions. For example, this was the statistical analysis plan for two recently approved treat-

ments for early Alzheimer’s disease (van Dyck et al., 2023; Budd Haeberlein et al., 2022). The

number of covariance parameters in the MMRM model increases quadratically with the number

of repeated measures, and MMRM models may fail to converge. For this reason, regulatory

trial statistical analysis plans include contingency analysis plans, typically MMRM analysis as-

suming parsimonious compound symmetric (CS) or first order autoregression (AR1) covariance

structures.

In this chapter, we demonstrate that the CS and AR1 models are not appropriate for

chronic progressive data. We describe an alternative parsimonious covariance structure that is

more appropriate for chronic progressive data. The model we propose (Section 3.2) has arbitrary

fixed effect means like the MMRM model, but uses a pattern of dispersion of longitudinal

repeated measures consistent with the covariance structure of a random slopes model. We call

this alternative covariance structure the chronic progressive (CP) covariance structure, and the

corresponding analysis the chronic progressive repeated measures (CPRM) analysis.
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The CPRM analysis has a number of favorable features. The CP covariance model

requires only four parameters for estimation. We demonstrate using data from completed clinical

trials that the CP covariance assumption holds for longitudinal cognitive data in Alzheimer’s

disease (Section 3.3). We further demonstrate that the CS model is anticonservative, and the

AR1 model is poorly powered (Section 3.4) when applied to chronic progressive data. Finally,

we derive power formulas for the CPRM model (Section 3.5). A unique advantage of the CPRM

parameterization is that power formulas are more flexible in that they can be used to power future

clinical trials of arbitrary design (with arbitrary number and interval between followup visits)

regardless of the design of the pilot study used to inform power calculations.

3.2 The chronic progressive repeated measures (CPRM)
model

The CPRM model is a modification of the familiar application of the Laird and Ware

(1982) mixed effects model of longitudinal data

yi j = β0 +β1t j +b0i +b1it j + ei j, (3.1)

where yi j is the response for subject i (i = 1,2, ...,n) at time j ( j = 1,2, ...,m), t1, t2, ..., tm are

times at which measurements yi are made, β = (β0,β1) are the fixed effect coefficients describing

the mean longitudinal trajectory, (b0i,b1i) ∼ N (0,D) are random, subject-specific intercepts

and slopes, and ei ∼ N (0,R) is residual variation about the individual trajectories. Where

convenient, we will represent the diagonal elements of D as σ2
b0 and σ2

b1, and the off-diagonal

elements as σb0,b1 .

The CPRM model replaces the fixed effects intercept and slope in (3.1) with m means,

one for each repeated measurement time, and can be written as

yi j = α j +b0i +b1it j + ei j, (3.2)
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where α j, j = 1, ...,m are mean levels at each visit, (b0i,b1i)∼ N (0,D) as above are random

intercepts and slopes modeling the dispersion of the longitudinal trajectories, and ei ∼ N (0,R)

are residual errors. The alternative parameterizations of fixed effects by the two models is

illustrated with a toy example in Figure 3.1.

Estimation of the parameters in (3.2) is by maximum likelihood or restricted maximum

likelihood (REML). Derivation of the asymptotic variance of the fixed effect estimates for power

calculation formulas proceeds analogously to the derivation of the variance of the fixed effects

parameters under the random slopes model (see Chapter 2), and is presented here in outline only.

Writing (3.2) in matrix notation, we have

yi = Xiα +Zibi + εi, (3.3)

where identity matrix Xi is the fixed effects design matrix for subject i, and Zi = (1, ti) is the

random effects design matrix for subject i. More generally, Xi can include additional fixed effect

covariates.

Under this model, the covariance Vi for subject i with data completion pattern ti is

Vi = Cov(yi) = ZiDZ′
i +Ri. (3.4)

Assuming i.i.d. residual error σ2
ε , Ri = σ2

ε I, and the elements of Vi are a function of the

pattern ti of observations obtained for subject i, the residual error variance σ2
ε , and the covariance

parameters σ2
b0

, σ2
b1

, and σb0,b1 . Specifically, Vi are matrices with off diagonal elements u,v equal

to σ2
b0
+(tu + tv)σb0,b1 + tutvσ2

b1
and diagonal elements u,u equal to σ2

b0
+2tuσb0,b1 + t2

u σ2
b1
+σ2

ε .

Given Vi and Xi, when data are missing at random the asymptotic variance of REML

estimates of the coefficients in (3.3) is

Var(α̂) =

(
∑

i
(X ′

iV
−1
i Xi)

)−1

. (3.5)
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Figure 3.1. Fixed effect estimates by a repeated measures model (red) and a random slopes
model (blue). The repeated measures model estimates the expect level at each time point while
the random slopes model assumes a linear trajectory of fixed effect levels as a function of time.

Note that there is a finite set of missing value patterns defining Xi and Vi. Indexing these

missing value patterns by k, (3.5) can be expressed as

Var(α̂) =

(
∑
k

nk(X ′
kV

−1
k Xk)

)−1

=

(
n∑

k
pk(X ′

kV
−1
k Xk)

)−1

, (3.6)

where the nk are counts of subjects in each set and sum to n, and pk = nk/n.

More generally, α and X in equations (3.2) through (3.6) can include covariate fixed

effects beyond the visit level terms. (3.6) will be useful for power calculation formulas for the

CPRM model (Section 3.5).

3.3 Empirical validation of the chronic progressive (CP)
covariance structure for Alzheimer’s disease data.

We explore the relevance of the CPRM model for modeling cognitive decline in
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Alzheimer’s disease using placebo arm data from representative clinical trials performed by the

National Institute of Aging funded Alzheimer’s Disease Cooperative Study (ADCS). Alzheimer’s

disease is a chronic progressive condition characterized by gradual loss of short term memory

and other cognitive faculties. The primary outcome measures for Alzheimer’s disease clinical

trials are typically so called global cognitive measures, meaning neuropsychometric instruments

querying multiple domains of cognitive function affected by the disease. We here report data

from two representative clinical trials, an Alzheimer’s treatment trial of vitamins to reduce

homocysteine levels using the Alzheimer’s Disease Assessment Scale - cognitive domain (the

ADAS-cog) as the primary outcome (Quinn et al., 2010), and a prodromal Alzheimer’s disease

trial of vitamin E or donepezil using the Mini-Mental Status Exam (MMSE) as a secondary

outcome (Petersen et al., 2005). The vitamin E arm was null in the prodromal Alzheimer trial

(Petersen et al., 2005), and therefore we pooled the placebo and vitamin E arm data from this

trial in analyses reported here.

Tables 3.1 and 3.2 report empirical covariance matrices and covariance matrices estimates

by the CPRM model for the two trials. The empirical covariance matrices for these trials

represent the covariance pattern one would expect for longitudinal trajectories that are fanning

apart as a function of time. Under this pattern, we observe two phenomena. First, the variance

increases over time, as reflected in the diagonal terms. Second, the covariance of neighboring

observations increases over time, as reflected in the off-diagonal terms. The CPRM covariance

model consistently recapitulates the empirical covariance observed in these data (Tables 3.1

and 3.2). For comparison, we have included covariance matrices for the heterogeneous CS and

heterogeneous AR1 MMRM model fits to the ADCS homocysteine trial data (Table 3.1). In

these data, the CS model overestimates covariance terms away from the diagonal and the AR1

model underestimates these terms. In particular, the covariance of the first and last observations,

a critical component of the standard error of change first to last, is misrepresented by these

models. Similar CS and AR1 covariance patterns were observed in the prodromal Alzheimer’s

disease trial (data not shown). We will use computer simulations (Section 3.4) to demonstrate
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the effect of this model misspecification on statistical power and type I error rates.

Table 3.1. Covariance matrices estimated from the ADCS homocysteine trial (ADAS-cog data,
n=330 subjects, quarterly observations for one and one half years).

Empirical covariance matrix

68.6 61.8 60.6 66.0 67.7 73.9 78.4
61.8 80.4 67.2 74.8 75.4 84.5 89.6
60.6 67.2 79.5 76.9 77.4 84.6 93.2
66.0 74.8 76.9 102.7 91.0 96.1 106.1
67.7 75.4 77.4 91.0 104.9 102.8 112.4
73.9 84.5 84.6 96.1 102.8 123.7 123.7
78.4 89.6 93.2 106.1 112.4 123.7 155.6


Covariance assuming the CPRM model

69.1 58.8 62.3 65.7 69.1 72.5 76.0
58.8 76.9 67.7 72.1 76.5 80.9 85.3
62.3 67.7 86.7 78.5 83.9 89.3 94.7
65.7 72.1 78.5 98.5 91.3 97.6 104.0
69.1 76.5 83.9 91.3 112.3 106.0 113.4
72.5 80.9 89.3 97.6 106.0 128.0 122.8
76.0 85.3 94.7 104.0 113.4 122.8 145.8


Covariance assuming heterogeneous CS

72.7 64.4 63.5 72.2 72.2 78.2 89.2
64.4 81.6 67.2 76.5 76.5 82.9 94.5
63.5 67.2 79.2 75.4 75.3 81.6 93.1
72.2 76.5 75.4 102.5 85.7 92.9 105.9
72.2 76.5 75.3 85.7 102.4 92.8 105.9
78.2 82.9 81.6 92.9 92.8 120.2 114.7
89.2 94.5 93.1 105.9 105.9 114.7 156.3


Covariance assuming heterogeneous AR1

78.1 73.6 62.1 58.8 49.3 45.5 44.6
73.6 92.1 77.7 73.5 61.7 57.0 55.8
62.1 77.7 87.1 82.4 69.1 63.9 62.6
58.8 73.5 82.4 103.4 86.7 80.1 78.6
49.3 61.7 69.1 86.7 96.6 89.2 87.5
45.5 57.0 63.9 80.1 89.2 109.5 107.3
44.6 55.8 62.6 78.6 87.5 107.3 139.6



3.4 Performance of the CPRM model

We use computer simulations to characterize the performance of the CPRM model relative

to other models under null and alternative scenarios. We consider MMRM analyses assuming

unstructured, compound symmetry (standard and heterogeneous), and first order autoregressive
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Table 3.2. Covariance matrices estimated from the ADCS clinical trial of vitamin E and donepezil
(MMSE data, n = 510, biannual observations for three years).

Empirical covariance matrix

3.46 2.08 2.00 2.52 2.30 2.76 3.20
2.08 4.88 2.92 3.97 3.52 4.34 5.18
2.00 2.92 5.41 4.47 4.22 4.91 6.25
2.52 3.97 4.47 9.13 6.15 8.19 10.02
2.30 3.52 4.22 6.15 8.87 8.25 9.89
2.76 4.34 4.91 8.19 8.25 13.44 14.55
3.20 5.18 6.25 10.02 9.89 14.55 21.69


Covariance assuming the CPRM model

5.13 2.20 2.50 2.81 3.12 3.42 3.73
2.20 6.12 3.56 4.24 4.93 5.61 6.29
2.50 3.56 7.86 5.68 6.74 7.80 8.85
2.81 4.24 5.68 10.36 8.55 9.98 11.42
3.12 4.93 6.74 8.55 13.60 12.17 13.98
3.42 5.61 7.80 9.98 12.17 17.60 16.54
3.73 6.29 8.85 11.42 13.98 16.54 22.34



(standard and heterogeneous) covariance structures. We also consider the random slopes analysis

in the simulations. MMRM models were fit using the gls function within the R nlme package

(Pinheiro et al., 2021). Random slopes and CPRM models were fit using the lme function within

the same package. The random slopes models were constrained to have a single fixed effect

intercept shared by both groups as recommended for randomized clinical trials (Hu et al. 2021).

3.4.1 Simulations under the null

Longitudinal repeat measures were generated following a CPRM model using covariance

and residual error variance parameters estimated from the placebo arm of the ADCS homocys-

teine trial (Quinn et al., 2010), and using fixed effects means under the hypothetical scenario of a

treatment with short term palliative effect that washes out by the end of the study period (Figure

3.2, top panel). A total of 10,000 simulated samples were performed (n=80 per group, 18 month

trial with quarterly observations, and a nominal p-value for hypothesis testing of 0.05).
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Type I error rate estimates under the different model fits are listed in Table 3.3. The CPRM

model and unstructured MMRM model meet the nominal five percent type I error rate to within

the accuracy of simulations. The compound symmetry and heterogeneous compound symmetry

MMRM models had type I error rates of 13.4 percent and 9.6 percent respectively, meaning these

two models are invalid and not appropriate for data that follow the chronic progressive pattern.

The mixed effects model with random slopes was likewise anticonservative, with a type I error

rate of nearly 15 percent (Table 3.3). This result clearly illustrates the concern of regulatory

agencies that analyses imposing assumptions about the shape of individual trajectory, such as the

random slopes model with linear trajectories illustrated here, can result in positive trial findings

even when the treatment has no persistent efficacy. The AR1 and heterogeneous AR1 models

(Table 3.3) had type I error rates much less than 0.05 (i.e., were substantively conservative).

3.4.2 Simulations under the alternative

We next simulated data following the CPRM model as above, but under the alternative

scenario depicted in Figure 3.2, bottom panel, and with an effect size chosen to ensured an

expected power of 80 percent under the CPRM analysis. The unstructured MMRM and the

CPRM models acheived the expected 80 percent power, while the AR1 MMRM models were

substantially underpowered (Table 3.3). We do not report power for the compound symmetry

models because type I error rates for these models are substantially greater than 0.05, meaning

these models are invalid for chronic progressive longitudinal data. Likewise we do not report

power for the random slopes model based on the findings from the simulations under the null.

3.5 Sample size calculations for the CPRM model

Derivation of sample size formulas for the CPRM model follows directly from derivations for the

random slopes model (see Chapter 2) and is reported here in outline only. Power is a function of

the sample size in each arm, the covariance of repeated measures in each arm, the study design

(the study length and interval between followups), the missing data pattern, and the effect size.
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Figure 3.2. Top panel: Hypothetical trajectory of expected values by arm for a treatment with
short term efficacy but no difference in treatment versus control at the end of the trial. The
random slopes model is prone to spurious type I error under this scenario (Table 3.3). Bottom
panel: Hypothetical trajectory of expected values for a treatment with positive effect starting
after the third observation and persisting to the end of the trial.
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Table 3.3. Type I error rate under the null (Figure 3.2, Top panel), and power under the alternative
(Figure 3.2, Bottom panel). (10,000 simulations each, with effect size under the alternative
chosen to achieve 80% power for the CPRM model.)

α error rate Power

CPRM 0.0536 0.7981
Random slopes 0.1499 -
MMRM, CS 0.1343 -
MMRM, hetCS 0.0955 -
MMRM, AR1 0.0069 0.5187
MMRM, hetAR1 0.0058 0.4997
MMRM, UN 0.0539 0.7989
CS = compound symmetric; hetCS = heterogeneous CS;
AR1 = autoregressive; hetAR1 = heterogeneous AR1;
UN = unstructured.

To simplify presentation, we begin by describing power formulas for the common circumstance

of equal allocation to arms and equivalent covariance structure in the two arms. In this case, the

variance of change first to last visit in each arm is Var(α̂m − α̂1), and the sample size required to

detect a difference ∆ in change scores between arms at last visit with power 1−β and type I

error rate α is given by the familiar formula

N/Arm = 2(zα/2 + zβ )
2
σ

2/∆
2. (3.7)

Two power calculation approaches are common when sizing a clinical trial, a conservative

estimate of required sample size informed by the power of a completers-only analysis, and a

less conservation estimate that explicitly adjusts for the anticipated missing data pattern to be

obtained by the trial. We describe each of these in turn.

3.5.1 Completers-only approach

A conservative approach is to determine the sample size required to power a completers-

only analysis and then increase the sample size to ensure this many subjects complete the trial.

This method has the advantages of relying on a straightforward power calculation formula and
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resulting in statistically conservative sample size estimates. For completers, there are no missing

data and Xi and Zi are equivalent full matrices for all subjects so that

Var(α̂m − α̂1) =
2σ2

ε +(tm − t1)2σ2
b1

n
. (3.8)

See the Appendix for derivation of this result. (3.7) then reduces to

Ncompleters/Arm = 2(zα/2 + zβ )
2[2σ

2
ε +(tm − t1)2

σ
2
b1]/∆

2. (3.9)

If pm is the proportion of subjects who will complete the trial, then setting total N/Arm to

Ncompleters/pm will ensure an expected Ncompleters complete the planned trial.

3.5.2 Study subject attrition approach

Alternatively, one can use (3.6) to directly account for the anticipated dropout pattern

expected in a study. Setting W = nVar(α̂), under equal allocation to study arm and assuming

equivalent repeated measures covariance across arms, the sample size required to detect treatment

effect ∆ with power 1−β and type I error rate α is

N/Arm = 2(zα/2 + zβ )
2 (Wmm +W11 −2W1m)/∆

2. (3.10)

As a practical matter, investigators restrict to the m missing data patterns determined

by study subject dropout (Lu et al., 2008). Given i.i.d. residual error variance σ2
ε , W and by

extension (3.10) are simple linear functions of the variance parameters σ2
ε , σ2

b0
, σ2

b1
, and σb0,b1 ,

and the design vector t (see Appendix).

3.5.3 Implementation

Formula (3.9) and the study subject attrition approach formula (3.10) under the usual

assumption of i.i.d residual error are implemented in the cprm.power function within the R

package longpower (Donohue, 2019). Generalizing these formulas to allow unequal allocation
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and to the case where the covariance structure is different in the two groups is straightforward

(Zhao and Edland, 2021), and has also been implemented for the CPRM model in the cprm.power

function. Different covariance structures may be anticipated across groups. For example, in

clinical trials a greater variance of change may occur within the treatment arm because the

change observed in the treatment arm reflects both normal background variability in change and

the variability in response to treatment (Mallinckrodt et al., 2008). The formulas provided in

cprm.power can be used to perform sensitivity analyses of the potential magnitude of this effect

on trial power.

Note that the variance parameters for these formulas can be estimated from prior data

of arbitrary design. Stated differently, if we have variance parameter estimates from pilot

studies or prior trials, we can use these values to power a future trial of arbitrary design (with

arbitrary number and interval between followup visits). Furthermore, under CPRM these power

calculation formulas are appropriate for trials using MMRM with unstructured covariance as the

primary a priori analysis plan.

3.5.4 Validation of sample size formulas by computer simulation

We used computer simulations to evaluate the performance of (3.7). We simulated

data following the random slopes model (3.1) using parameters estimated from the ADCS

homocysteine trial as in Section 3.4, assuming an 18 month trial with quarterly observations and

a 25% shift in mean change in treatment versus control. Power observed in simulations closely

matches predicted power (Figure 3.3).

3.6 Discussion

We have introduced a novel parsimonious parameterization of the covariance structure

of longitudinal repeated measures appropriate for chronic progressive conditions. We have

demonstrated that alternative parsimonious parameterizations typically used in MMRM analysis

are not appropriate for this pattern of longitudinal data that fan apart over time. In application, the
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Figure 3.3. Theoretical power curve versus power estimated by computer simulation (10,000
simulations per sample size, two-sided test, type I error α = 0.05).

MMRM analysis assuming compound symmetry is anticonservative, and the MMRM analysis

assuming AR1 is underpowered for this type of data, while the CPRM analysis is both valid

(maintaining its nominal type I error rate) and has equivalent power to MMRM with unstructured

covariance when applied to chronic progressive data.

Further, we have derived power calculation formulas for the CPRM model that are

independent of pilot study design. This is helpful when the design of pilot studies available to

inform power calculations does not match the design of the future trial being powered.

Like MMRM, the CPRM model has the heuristic advantage of testing treatment efficacy

based explicitly on differences in response at the end of the trial period without any assump-

tions about the shape of mean trajectories of response over time. Model results are therefore

unambiguous and easier to describe to a non-technical audience. We illustrated with computer

simulations the concern of regulators and clinical trialists that false positive findings are possible

under different analysis plans (Figure 3.3 and Table 3.3). Recent advances in analytic methods,

including natural cubic spline (Donohue et al., 2023) and progression repeated measures (Raket,

2022) models, may be less susceptible to type I error concerns, and this is an area of future

research. However, the cost of using MMRM in terms of statistical efficiency is counterbal-
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anced by the unambiguous characterization of treatment affects by this approach, and MMRM

remains the de facto standard for Alzheimer’s disease treatment trials (van Dyck et al., 2023;

Budd Haeberlein et al., 2022).

The suitability of CPRM for data beyond the longitudinal Alzheimer data considered

here will have to be examined on an individual basis. However, we note that the CPRM

model assumptions hold for any scenario where the mixed effects model with random slopes is

appropriate, so applications of CPRM are equally as broad as this common analytic approach.
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Chapter 4

An approximation to peak detection power
using Gaussian random field theory

4.1 Introduction

Detection of peaks (local maxima) is an important topic in image analysis. For example,

a fundamental goal in fMRI analysis is to identify the local hotspots of brain activity (see, for

example, Genovese et al., 2002; Heller et al., 2006), which are typically captured by peaks

in the fMRI signal. The detection of such peaks can be posed as a statistical testing problem

intended to test whether the underlying signal has a peak at a given location. This is challenging

because such tests are conducted only at locations of observed peaks, which depend on the data.

Therefore, the height distribution of the observed peak is conditional on a peak being observed

at that location. This is a nonstandard problem. Solutions exist using random field theory (RFT).

RFT is a statistical framework that can be used to perform topological inference and modeling.

RFT-based peak detection has been studied in Cheng and Schwartzman (2017) and Schwartzman

and Telschow (2019b), which provide the peak height distribution for isotropic noise under the

complete null hypothesis of no signal anywhere. However, particular challenges arise when

we perform power calculations in peak detection settings. Due to the nature of imaging data,

the number and location of the signal peaks are unknown. Besides, the power is affected by

other spatial aspects of the problem, such as the shape of the peak function and the spatial

autocorrelation of the noise. Considering these difficulties, it requires some extra effort to derive
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a power formula for peak detection.

A formal definition of power in peak detection is necessary to perform power calculations.

In Cheng and Schwartzman (2017) and Durnez et al. (2016), the authors explored approaches

to control the false discovery rate (FDR). For the entire domain, average peakwise power, i.e.

power averaged over all non-null voxels, is a natural choice for these approaches. For a local

domain where a single peak exists, the power can be defined as the probability of successfully

detecting that peak. Following this idea, we describe the null and alternative hypothesis and the

definition of detection power. We do so informally here for didactic purposes and present formal

definitions in Section 4.2.

Consider a local domain where a single peak may exist, and consider the hypotheses

H0 : “the signal is equal to 0 in the local domain.” vs

H1 : “the signal has at least one positive peak in the local domain.”

Suppose we observe a random field to be used as test statistic at every location, typically as the

result of statistical modeling of the data. For a fixed threshold u, the existence of observed peaks

with height greater than u would lead to rejecting the null hypothesis. Therefore, we define the

type I error and power as the probability of existing at least one local maximum above u under

H0 and H1 respectively:

Type I error: P{∃ a peak in the local domain with height > u when H0 is true}

Power: P{∃ a peak in the local domain with height > u when H1 is true} (4.1)

Formulas for type I error have been developed for stationary fields in 1D and isotropic fields

in 2D and 3D (Cheng and Schwartzman, 2015; Cheng and Schwartzman, 2017; Cheng and

Schwartzman, 2018). However, there is no formula to calculate power. In order to get an

appropriate estimate of power, we need to know the peak height distribution for non-centered
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(the mean function is not 0) random fields. Generally speaking, it is very difficult to calculate

the peak height distribution especially when the random field has non-zero mean. Durnez et al.

(2016) suggests using Gaussian distribution to describe the non-null peaks and truncated Gaussian

distribution to approximate the overshoot distribution. This approach is easy to implement but

not very accurate because the peak height distribution is in reality always skewed and not close

to any Gaussian distribution.

In this chapter, we propose to approximate the probability of an observed peak exceeding

the detection threshold u by calculating the expected number of peaks above the threshold u. We

show that the approximation, which is also an upper bound, works well under certain scenarios.

For the entire domain, we can approximate the average peakwise power by taking the arithmetic

mean of the approximation proposed in this chapter over non-null voxels.

The proposed approximation makes the problem more tractable, but in general, it does

not have an explicit form. In order to make it applicable in practice, we further simplify the

formula under the isotropy assumption and show its explicit form in 1D, 2D, and 3D. The explicit

results are validated through 2D and 3D computer simulations carried out in MATLAB. The

simulation also covers multiple scenarios by modifying the parameters used to generate the data.

The performance of power approximation and its conservative adjustment under these scenarios

are discussed.

Finally, to assess the real-data performance of our power approximation method, we

apply it to a 3D simulation induced by a real brain imaging dataset, where the parameters are

estimated from the Human Connectome Project (Van Essen et al., 2012) fMRI data. By testing

the method in a realistic setting, we also demonstrate how effect size and other parameters affect

the power.
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4.2 Power approximation

4.2.1 Setup

Let Y (s) = σ(s)Z(s)+µ(s) where Z = {Z(s),s ∈ D} representing the noise is a centered

(zero-mean) smooth unit-variance Gaussian random field on an N dimensional non-empty

domain D ⊂ RN , σ(s) is the standard deviation of the noise and µ(s) is the mean function. Let

X(s) = Y (s)/σ(s) = Z(s)+ θ(s) where the ratio θ(s) = µ(s)/σ(s) is the standardized mean

function, which we assume to be C2. Here C3 is a sufficient smoothness condition for Z, and this

will be clarified in Assumption 1 below.

Let

Xi(s) =
∂X(s)

∂ si
, ∇X(s) = (X1(s), . . . ,XN(s)),

Xi j(s) =
∂ 2X(s)
∂ sis j

, ∇
2X(s) = (Xi j(s))1≤i, j≤N ,

Zi(s) =
∂Z(s)

∂ si
, ∇Z(s) = (Z1(s), . . . ,ZN(s)),

Zi j(s) =
∂ 2Z(s)
∂ sis j

, ∇
2Z(s) = (Zi j(s))1≤i, j≤N .

We will make use of the following assumptions:

Assumption 1. Z ∈ C2(D) almost surely and its second derivatives satisfy the mean-square

Hölder condition: for any s0 ∈ D, there exists positive constants L, η and δ such that

E[Zi j(s)−Zi j(t)]2 ≤ L2∥s− t∥2η , ∀t,s ∈Us0(δ ), i, j = 1, ...,N,

where Us0(δ ) = s0 ⊕ (−δ/2,δ/2)N is the N dimensional open cube of side length δ centered at

s0. This condition is satisfied, for example, if Z is C3(D).
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Assumption 2. For every pair (t,s) ∈ D×D with s ̸= t, the Gaussian random vector

(Z(s), ∇Z(s), Zi j(s), Z(t), ∇Z(t), Zi j(t), 1 ≤ i ≤ j ≤ N)

is non-degenerate, i.e. its covariance matrix has full rank.

4.2.2 Peak detection

Following the notation in the problem setup, the null and alternative hypothesis can be

written as:

H0 : µ(s) = 0 for all s ∈ D vs

H1 : µ(s)> 0, ∇µ(s) = 0, ∇
2
µ(s)≺ 0 for some s ∈ D

The mean function µ(s) is not directly observed, so the hypothesis is tested based on the peak

height of X(s). For a peak detection procedure that aims to test this hypothesis, a threshold u for

the peak height of X(s) needs to be set in advance. If a local maximum with height greater than

u is observed, we would choose to reject the null hypothesis due to the strong evidence against it.

The probability that a peak of X exceeds u

P
(
∃ s ∈ D s.t.X(s)> u|∇X(s) = 0 and ∇

2X(s)≺ 0
)

(4.2)

is the type I error under H0 and power under H1. The threshold u can be obtained based on the

peak height distribution under H0. A formula for peak height distribution of smooth isotropic

Gaussian random fields has been derived in Cheng and Schwartzman (2018) and it can also be

derived directly from a special case of the formulas presented in this chapter. Usually, u is set to

be some quantile of the null distribution of peak height to maintain the nominal α type I error.

More details about selecting the threshold will be discussed in the real data example. Selecting u

is not the main focus of this Chapter and our method can be applied to any choice of u.
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4.2.3 Power approximation

Let Mu be the number of local maxima of the random field X above u over the local

domain D. The power defined in (4.2) can be represented as P[Mu ≥ 1]. We call this the power

function, seen as a function of the threshold u. Note that

P[Mu ≥ 1] =
∞

∑
k=1

P[Mu = k]≤
∞

∑
k=1

kP[Mu = k] = E[Mu]. (4.3)

On the other hand,

E[Mu]−P[Mu ≥ 1] =
∞

∑
k=2

(k−1)P[Mu = k]≤ 1
2

∞

∑
k=2

k(k−1)P[Mu = k] =
1
2
E[Mu(Mu−1)]. (4.4)

Thus, we have

E[Mu]−
1
2
E[Mu(Mu −1)]≤ P[Mu ≥ 1]≤ E[Mu]. (4.5)

This inequality tells us that for any fixed u, the power is bounded within an interval of length

E[Mu(Mu −1)]/2. Thus, E[Mu] is a good approximation of power if one of the two conditions

below is satisfied:

1. The factorial moment E[Mu(Mu −1)] converges to 0 and E[Mu] does not.

2. They both converge to 0 and E[Mu(Mu −1)] converges faster than E[Mu].

The convergence above refers to conditions on the signal and noise parameters. In the rest of this

section, we introduce four interesting results. The first result can be useful for simplifying the

power function and the other three results give different scenarios where one of the conditions

above holds.

4.2.4 Adjusted E[Mu]

We have provided evidence of using E[Mu] to approximate power through (4.5). However,

E[Mu] alone might not be sufficient for power approximation since it only gives an upper bound.
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Also, unlike power, E[Mu] sometimes exceeds one. To correct for this, we define the adjusted

E[Mu] as

E[Mu]adj = E[Mu]/max(1,E[M−∞]). (4.6)

The adjusted E[Mu] is the same as E[Mu] when the expected number of local maxima E[M−∞] is

less or equal to 1. When E[M−∞] is greater than 1, we divide E[Mu] by E[M−∞] to make sure it

never exceeds one. The adjusted E[Mu] is more conservative, and we conjecture that it is a lower

bound of power when there exists at least one local maximum in the domain D. In applications,

people are interested in a conservative estimator so that the test is guaranteed to have enough

power. Combining E[Mu] and E[Mu]/E[M−∞], we can get an approximate range of the true

power. We will compare E[Mu] and adjusted E[Mu] in simulation studies.

4.2.5 Height equivariance

Our first result does not concern the approximation (4.5) yet, but it offers a simplification

of the power function and E[Mu] that will be used later. The proposition below states that the

power function and E[Mu] for peak detection are translation equivariant with respect to peak

height.

Proposition 1. Let θ(s) = h(s)+θ0 be a peak signal with height θ0, where h(s) is a unimodal

mean function with maximum equal to 0 at s0 in D. Then the power function for peak detection

and E[Mu] can be written in the form F(u−θ0), where F(u) is the power function or E[Mu] at

θ0 = 0.

Next, we give three scenarios where the equality in (4.5) can be achieved asymptotically:

small domain size, large threshold, and sharp signal.

4.2.6 Small domain

If the size of the local domain D where a single peak exists is small enough, it can be

shown that equality in (4.5) can be achieved asymptotically.
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Theorem 1. Consider a local domain Dε = U(s0,ε) for any fixed s0 ∈ D where U(s0,ε) =

s0⊕ (−ε/2,ε/2)N is the N-dimensional open cube of side ε centered at s0. For sufficiently small

ε and fixed threshold u,

P[Mu ≥ 1] = E[Mu](1−o(1)) = E[Mu]adj(1−o(1)). (4.7)

4.2.7 Large threshold

For large threshold u, the following asymptotic result shows power can be precisely

approximated by E[Mu].

Theorem 2. For any fixed domain D, as u → ∞

P[Mu ≥ 1] = E[Mu](1−o(e−αu2
)), (4.8)

where the error term o(e−αu2
) is non-negative and α > 0 is some constant.

Notice that the threshold u does not affect the value of E[M−∞] which is part of the

adjusted E[Mu]. By (4.8)

P[Mu ≥ 1] = E[Mu]adj(1−o(e−αu2
))max(1,E[M−∞]).

If E[M−∞]> 1, the adjusted E[Mu] might be overly conservative for large threshold u. Therefore,

we only recommend E[Mu] for this scenario.

4.2.8 Sharp signal

The following theorem provides an asymptotic power approximation when the signal is

sharp. Interestingly, while the power function is generally non-Gaussian, it becomes closer to

Gaussian as the signal peaks become sharper.
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Theorem 3. Let θ(s) = ah(s)+θ0 where h(s) is a unimodal mean function with maximum equal

to 0 at s0, a > 0, and θ0 represents the height. For any fixed threshold u, as a → ∞

P[Mu ≥ 1] = E[Mu]+o(1) = E[Mu]adj +o(1) = Φ(θ0 −u)(1+o(1)), (4.9)

where Φ(x) is CDF of the standard Gaussian distribution.

4.3 Explicit formulas

We have showed that the power for peak detection can be approximated by the expected

number of local maxima above u, E[Mu], under certain scenarios such as small domain and large

threshold. Although we can apply the Kac-Rice formula to calculate E[Mu], it remains difficult to

evaluate it explicitly for N > 1 without making any further assumptions. In this section, we focus

on computing E[Mu] and show a general formula can be obtained if the noise field is isotropic.

Furthermore, explicit formulas when N = 1,2,3 are derived for application purposes.

4.3.1 Isotropic Gaussian fields

Suppose Z is a zero-mean unit-variance isotropic random field. We can write the covari-

ance function of Z as E{Z(s)Z(t)}= ρ(∥s− t∥2) for an appropriate function ρ(·) : [0,∞)→ R.

Denote

ρ
′ = ρ

′(0), ρ
′′ = ρ

′′(0), κ =−ρ
′/
√

ρ ′′, (4.10)

where ρ ′ and ρ ′′ are first and second derivative of function ρ respectively.

The following lemma comes from Cheng and Schwartzman (2018).

Lemma 1. For each s ∈ RN and i, j, k, l ∈ {1, . . . ,N},

E{Zi(s)Z(s)}= E{Zi(s)Z jk(s)}= 0,

E{Zi(s)Z j(s)}=−E{Zi j(s)Z(s)}=−2ρ
′
δi j,

E{Zi j(s)Zkl(s)}= 4ρ
′′(δi jδkl +δikδ jl +δilδ jk),
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where ρ ′ and ρ ′′ are defined in (4.10) and δi j is the Kronecker delta function.

In particular, it follows from Lemma 1 that Var(Zi(s)) =−2ρ ′ and Var(Zii(s)) = 12ρ ′′

for any i ∈ {1, . . . ,N}, implying ρ ′ < 0 and ρ ′′ > 0 and hence κ > 0.

We can use theoretical results from Gaussian Orthogonally Invariant (GOI) matrices to

make the calculation of E[Mu] easier. GOI matrices were first introduced in Schwartzman et al.

(2008), and used for the first time in the context of random fields in Cheng and Schwartzman

(2018). It is a class of Gaussian random matrices that are invariant under orthogonal transfor-

mations, and can be useful for computing the expected number of critical points of isotropic

Gaussian fields. We call an N ×N random matrix G = (Gi j)1≤i, j≤N GOI with covariance param-

eter c, denoted by GOI(c), if it is symmetric and all entries are centered Gaussian variables such

that

E[Gi jGkl] =
1
2
(δikδ jl +δilδ jk)+ cδi jδkl. (4.11)

The following lemma is Lemma 3.4 from Cheng and Schwartzman (2018).

Lemma 2. Let the assumptions in Lemma 1 hold. Let G̃ and G be GOI(1/2) and GOI((1−

κ2)/2) matrices respectively. IN denotes N ×N identity matrix.

(i) The distribution of ∇2Z(s) is the same as that of
√

8ρ ′′G̃.

(ii) The distribution of (∇2Z(s)|Z(s) = z) is the same as that of
√

8ρ ′′
[
G−

(
κz/

√
2
)
IN
]
.

Lemma 2 shows the distribution and conditional distribution of the Hessian matrix of a

centered random field Z(s). Next, we establish the corresponding result for non-centered random

field X(s) = Z(s)+θ(s).

Lemma 3. Let G̃ and G be GOI(1/2) and GOI((1−κ2)/2) matrices respectively.

(i) The distribution of ∇2X(s) is the same as that of

√
8ρ ′′G̃+∇

2
θ(s).
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(ii) The distribution of (∇2X(s)|X(s) = x) is the same as that of

√
8ρ ′′

[
G− κ(x−θ(s))√

2
IN

]
+∇

2
θ(s).

4.3.2 General formula under isotropy

Theorem 4. Let X(s) = Z(s)+θ(s), where Z(s) is a smooth zero-mean unit-variance isotropic

Gaussian random field satisfying Assumption 1, 2. Let θ(s) a smooth C3 mean function such that

∇2θ(s) is a non-singular matrix with ordered eigenvalues θ ′′
1 (s)...θ

′′
N(s) at all critical points s.

Then for any domain D

E[Mu] =

(
2ρ ′′

−πρ ′

)N/2 ∫
D

e
∥∇θ(s)∥2

4ρ ′
∫

∞

u
φ (x−θ(s))E

[
|det(Matrix(s))|1{Matrix(s)≺0}

]
dxds,

(4.12)

where φ(x) is the PDF of the standard Gaussian distribution, Matrix(s) = G − κ(x −

θ(s))IN/
√

2+diag{θ ′′
1 (s), . . . ,θ

′′
N(s)}/

√
8ρ ′′, G as in Lemma 3 represents GOI((1-κ2)/2), and

1{·} denotes the indicator function.

The expression (4.12) can be simplified further if we further assume the mean function

θ(s) to be a rotationally symmetric paraboloid centered at s0. In this case, the Hessian of θ(s) is

the identity matrix multiplied by a constant, i.e.

θ
′′ = θ

′′
1 (s) = θ

′′
2 (s) = ...= θ

′′
N(s).

Then we can write the mean function as θ(s) = θ0 +θ ′′∥s− s0∥2/2. Define

η =
θ ′′

2κ
√

ρ ′′
=

θ ′′

−2ρ ′ =
θ ′′

Var(Z1(s))
, (4.13)

and

H(x̃) = EN
GOI((1−κ2)/2)

[
N

∏
j=1

∣∣∣∣λ j −
κ x̃√

2

∣∣∣∣1{λN<
κ x̃√

2
}

]
. (4.14)
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E[Mu] can be simplified as

E[Mu] =

(
2ρ ′′

−πρ ′

)N/2 ∫
D

e
θ ′′2∥s−s0∥

2

4ρ ′
∫

∞

ũ(s)
φ (x̃+η)H(x̃)dx̃ds, (4.15)

where we make a change of variable x̃ = x−θ(s)−η and ũ(s) = u−θ(s)−η . Note that the

parameter κ depends on the correlation structure of Z(s).

4.3.3 Explicit formulas in 1D, 2D and 3D

In (4.15), a general formula for E[Mu] under isotropy was derived. To make the formula

easier to apply in practice, we have the following results for computing it in 1D, 2D, and 3D.

When N = 1, the derivation is simple enough that we do not need additional assumptions on the

mean function θ(s) except those in Theorem 4, and it follows directly from Kac-Rice formula.

When N = 2 and 3, we assume the mean function θ(s) is a rotationally symmetric paraboloid

centered at s0. E[Mu] is calculated by first obtaining explicit formulas for H(x̃), and plugging H

into (4.15).

Proposition 2. Let N = 1, X(s) = Z(s)+θ(s), where Z(s) is a smooth zero-mean unit-variance

Gaussian process and θ(s) is a smooth mean function. Assume additionally that Z(s) is stationary,

then

E[Mu] =
∫

D

√
−2ρ ′(3−κ2)

κ
φ

(
θ ′(s)√
−2ρ ′

)∫
∞

u
φ(x−θ(s))ψ

(
κ[x−θ(s)−η(s)]√

3−κ2

)
dxds,

(4.16)

where the function ψ is defined as

ψ(x) =
∫ x

−∞

Φ(y)dy = φ(x)+ xΦ(x), x ∈ R.
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Note that when N = 1,

H(x̃) = φ

(
κ x̃√

3−κ2

)
+

κ x̃√
3−κ2

Φ

(
κ x̃√

3−κ2

)
= ψ

(
κ x̃√

3−κ2

)
. (4.17)

We need the following lemmas to calculate H(x̃) explicitly when N = 2 and N = 3. They are

direct calculation of integral by parts.

Lemma 4. Let N = 2, for constant a >−1
2 and b ∈ R

∫
R2

exp
{
− 1

2

2

∑
i=1

λ
2
i − a

2
( 2

∑
i=1

λi
)2
}( 2

∏
i=1

|λi −b|

)
|λ1 −λ2|1{λ1<λ2<b}dλ1 dλ2

=

√
2π√

1+a
e−

1+2a
2(1+a)b2

Φ

(
1+2a√

1+a
b
)
+

(
2b2 − 1+4a

1+2a

) √
π√

1+2a
Φ(
√

2(1+2a)b)

+
b

1+2a
e−(1+2a)b2

. (4.18)

Lemma 5. Let N = 3, for constant a > 0 and b ∈ R

∫
R3

exp
{
− 1

2

3

∑
i=1

λ
2
i +

a
2(2+3a)

( 3

∑
i=1

λi
)2
}

×

(
3

∏
i=1

|λi −b|

)
∏

1≤i< j≤3
|λi −λ j|1{λ1<λ2<λ3<b}dλ1 dλ2 dλ3

=

[
a3 +6a2 +12a+24

2(a+2)2 b2 +
2a3 +3a2 +6a

4(a+2)
+

3
2

]
1√

π(a+2)
e−

b2
a+2 Φ

(
2
√

2b√
(a+2)(3a+2)

)

+

[
a+1

2
b2 +

a2 −a
2

−1
]

1√
π(a+1)

e−
b2

a+1 Φ

( √
2b√

(a+1)(3a+2)

)

+

(
a+6+

3a3 +12a2 +28a
2(a+2)

)
b

2π(a+2)
√

3a+2
e−

3b2
3a+2

+b
[

b2 +
3(a−1)

2

]
[ΦΣ1(0,b)+ΦΣ2(0,b)],
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where

Σ1 =

 3
2 −1

−1 a+2
2

 , Σ2 =

 3
2 −1

2

−1
2

a+1
2

 .

Proposition 3. Let N = 2, and assumptions in Theorem 4 hold. Then the function H defined in

(4.14) can be written explicitly as

H(x̃) =

√
2π√

3−κ2
φ

(
κ x̃√

3−κ2

)
Φ

(
κ x̃√

(2−κ2)(3−κ2)

)
+

κ2

2
(x̃2 −1)Φ

(
κ x̃√

2−κ2

)
+

κ
√

2−κ2x̃
2

φ

(
κ x̃√

2−κ2

)
. (4.19)

Proposition 4. When N = 3, let assumptions in Theorem 4 hold. Then the function H defined in

(4.14) can be written explicitly as

H(x̃) =

[
κ2 [(1−κ2)3 +6(1−κ2)2 +12(1−κ2)+24

]
4(3−κ2)2 x̃2

+
2(1−κ2)3 +3(1−κ2)2 +6(1−κ2)

4(3−κ2)
+

3
2

]
φ( κ x̃√

3−κ2 )√
π(3−κ2)

Φ

(
2κ x̃√

(3−κ2)(5−3κ2)

)

+

[
κ2(2−κ2)

4
x̃2 − κ2(1−κ2)

2
−1
]

φ( κ x̃√
2−κ2 )√

π(2−κ2)
Φ

(
κ x̃√

(2−κ2)(5−3κ2)

)

+

[
7−κ

2 +
(1−κ2)

[
3(1−κ2)2 +12(1−κ2)+28

]
2(3−κ2)

]
κ x̃φ(

√
3

5−3κ2 κ x̃)

2
√

2π(3−κ2)
√

5−3κ2

+
κ3

2
√

2
x̃(x̃2 −3)

[
ΦΣ1(0,κ x̃/

√
2)+ΦΣ2(0,κ x̃/

√
2)
]
,

where

Σ1 =

 3
2 −1

−1 3−κ2

2

 , Σ2 =

 3
2 −1

2

−1
2

2−κ2

2

 .
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Note that for N = 2 and N = 3, we need to solve an integral over the domain (see (4.15))

to get E[Mu]. Although we can not derive the explicit form for the entire formula, this can be

evaluated in applications with the help of numerical algorithms.

4.3.4 Isotropic unimodal mean function

We have calculated the explicit formulas assuming the mean function is a concave

paraboloid. This is a very strong assumption. However, in a general setting, where the unimodal

mean function is rotationally symmetric of any shape, we can apply a multivariate Taylor

expansion at the peak and use the second-order approximation to estimate power. For example,

suppose the shape of the mean function is proportional to a rotationally symmetric Gaussian

density

θ(s) = θ0 exp
(
−∥s− s0∥2

2ξ 2

)
, (4.20)

where s0 is the center of the mean function and ξ is the signal bandwidth. The Taylor expansion

at the center is

θ(s) = θ0 −
θ0

2ξ 2∥s− s0∥2 +o(∥s− s0∥2). (4.21)

When the domain size gets small, we neglect the remainder term, and use its quadratic approx-

imation as the mean function. With quadratic mean function, it becomes convenient to use

compute E[Mu]. We will evaluate the performance of this approach for different domain sizes in

the simulation study.

4.4 Simulations

In Section 4.2 above, we discussed power approximation under different scenarios. We

showed the factorial moment E[Mu(Mu−1)] decays faster than E[Mu] under some circumstances

so that we can use E[Mu] or adjusted E[Mu] to approximate power. In this section, a simulation

study is conducted to validate each scenario as well as visualize the power function, E[Mu], and

adjusted E[Mu]. Through simulation, we could also get a better sense of applying them to real
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data.

4.4.1 Paraboloidal mean function

We generate B = 100,000 centered, unit-variance, smooth isotropic 2D Gaussian random

fields over a grid of size 50× 50 pixels as Z(s), each field obtained as the convolution of

white Gaussian noise with a Gaussian kernel of spatial standard deviation 5, and normalized to

standard deviation σ = 1. For the mean function µ(s), we use a concave paraboloid centered at

s0 = (25,25). The equation of the paraboloid is

θ(s) = θ0 −
∥s− s0∥2

2ξ 2 , (4.22)

where ξ controls the sharpness of the mean function. The smaller ξ is, the sharper the paraboloid

will be. θ0 controls the height of the signal. To maintain the rotationally symmetric property of

θ(s), we only consider those circles centered at s0 as domain D. The size of D is measured by

the radius Rad(D). The default value of each parameter is listed in Table 4.1 unless otherwise

specified.

Table 4.1. 2D simulation: default value of each parameter

Parameter Default value

Rad(D) 10
ξ 7
θ0 3

The first two panels of Figure 4.1 display two instances of θ(s) and Z(s) respectively.

The third panel displays the resulting sum X(s) which is calculated by the signal-plus-noise

model.

In the simulation, we validate and visualize the scenarios presented above, and check the

effect of different choices of parameters on the power function, E[Mu] and adjusted E[Mu]. Four

different scenarios are considered as we discussed in Section 4.2:
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(a) Mean function θ(s) (b) Noise Z(s) (c) Data X(s)

Figure 4.1. 2D simulation: a single instance of θ(s), Z(s) and their resulting X(s).

1. Height equivariance

2. Small domain size Rad(D)

3. Large threshold u

4. Sharp signal (small ξ )

For each simulated random field, we record the height of its highest peak if there exists

at least one, and then for any threshold u, we calculate the empirical estimate of detection power

(4.1) and E[Mu]:

P̂[Mu ≥ 1] =
1
B

B

∑
i=1
1(∃ a peak in D with height > u for ith simulated sample), (4.23)

Ê[Mu] =
1
B

B

∑
i=1

# peaks in D with height > u for ith simulated sample. (4.24)

Figure 4.2 displays the power, E[Mu] and adjusted E[Mu] curves under the four scenarios.

The first panel is to validate scenario 1 (height equivariance). As stipulated by Proposition 1, the

power, E[Mu] and adjusted E[Mu] curves are parallel for different signal height h having other

parameters remain the same. In the second panel, both the E[Mu] and adjusted E[Mu] curve are

close to the power curve under scenario 2 (small domain) which indicates that for a smaller

domain (quantified by Rad(D)), using E[Mu] and adjusted E[Mu] to approximate power becomes
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(a) Height equivariance (b) Small domain size

(c) Sharp signal

Figure 4.2. 2D simulation: Power approximation using E[Mu] under four different scenarios
(scenario 3 is displayed in all three panels) when the mean function is quadratic.

more accurate as stipulated by Theorem 1. We can also find in all three panels that when u is

large enough, the E[Mu] curve converges to the power curve as u increases, as stipulated by

Theorem 2. The adjusted E[Mu] curve also converges to the power curve but with a slower

rate compared to E[Mu]. The third panel shows the power, E[Mu] and adjusted E[Mu] curve all

converge to the Gaussian CDF for sharp signal (small ξ ), as stipulated by Theorem 3.

4.4.2 Constant mean function

When the mean function θ(s) is constant, i.e. it does not depend on location s, X(s)

reduces to a centered isotropic Gaussian random field. Within the context of this Chapter,

θ(s) = 0 can be seen as the null hypothesis and the power function becomes the probability of
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(a) Height equivariance (b) Small domain size

Figure 4.3. 2D simulation: Type I error approximation using E[Mu].

Type I error. We use the peak height distribution when θ(s) = 0 (Cheng and Schwartzman, 2018)

to decide the cutoff point such that the test meets the nominal type I error. The simulation result

when θ(s) = 0 is displayed in Figure 4.3.

The performance of Type I error approximation when the mean function is 0 is similar

to what we find when the mean function is quadratic (scenario 4 is ignored since the shape

parameter does not exist when the mean function is constant). The conclusion is that under large

u (which is guaranteed in order to control the Type I error) or small domain, we have good Type

I error approximation.

4.4.3 Gaussian mean function

The simulation results under Gaussian mean are displayed in Figure 4.4. For scenario

2 and 3, the results are consistent with those under quadratic mean. For scenario 1, since θ0

controls both the signal height and sharpness, the power, E[Mu] and adjusted E[Mu] are no longer

equivariant in terms of θ0. For scenario 4, if we look at Figure 4.4c with Figure 4.4d, it can be

seen that as the signal becomes sharper, the power, E[Mu] and adjusted E[Mu] curve converges to

the Gaussian CDF only when the domain size (quantified by Rad(D)) is small. In this case, the

asymptotic curve is a mixture of Gaussian CDF and E[Mu] under constant mean. This is due to

the shape of Gaussian density as it converges to 0 if we expand the domain.
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(a) Height equivariance (b) Small domain size

(c) Sharp signal (Rad(D) = 3) (d) Sharp signal (Rad(D) = 20)

Figure 4.4. 2D simulation: Power approximation using E[Mu] when the mean function is
Gaussian.

In conclusion, for Gaussian mean function, we recommend applying our method to

approximate power only when the domain size is small.

4.5 Estimation from data

To use our power approximation formula in real peak detection problems, we need to

estimate the spatial covariance function of the noise as well as the mean function from the data.

In this section, we demonstrate the 3D application setting and how to estimate the noise spatial

covariance function and the mean function. Consider an imaging dataset with n subjects, and let

Yi(s) represent the signal plus noise for subject i
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Yi(s) = µ(s)+σ(s)εi(s),

where s = (s1,s2,s3)
′ ∈ R3, the signal µ(s), standard deviation σ(s) and noise ε(s) are assumed

to be smooth C3 functions. If we compute the standardized mean of all n subjects, we will get a

standardized random field

X(s) = Ȳ (s)/SE(Ȳ (s)) =
√

nµ(s)/σ(s)+
√

nε̄(s). (4.25)

This standardized random field X(s) has constant standard deviation of 1. We can treat
√

nµ(s)/σ(s) as the new signal and
√

nε̄(s) as the new noise of the standardized field. Let

θ(s) =
√

nµ(s)/σ(s) and Z(s) =
√

nε̄(s). We propose using the following method to estimate

the new signal and noise.

4.5.1 Estimation of the noise spatial covariance function

We consider the noise Z(s) to be constructed by convolving Gaussian white noise with a

kernel:

Z(s) =
∫
RN

K(t − s)dB(t), (4.26)

where K(·) is a N dimensional kernel function, and dB(s) is Gaussian white noise. Assume that

the kernel is rotationally symmetric so that the noise Z(s) is isotropic. Under model (4.26), we

would be able to simulate the noise if we were able to estimate the kernel function from the data.

It can be shown that the autocorrelation of Z(s) is the convolution of the kernel with

itself:

Cor(Z(s),Z(s′)) =
∫
RN

K(t − s)K(t − s′)dt =
∫
RN

K(t − (s− s′))K(t)dt.

By the convolution theorem, convolution in the original domain equals point-wise mul-

tiplication in the Fourier-transformed domain. Thus the kernel function can be estimated

56



empirically using the following method:

1. Determine a location s0 of interest (e.g. center of the peak), and calculate the empirical

correlation vectors between Y (s0) and Y (s) where s lies on the three orthogonal axes

centered at s0, and belongs to a subdomain of interest.

2. Take the average of the three estimated correlation vectors (forcing the noise to be isotropic)

and perform Fourier transform.

3. Take the square root of the Fourier coefficients, then the estimated kernel function can be

obtained by performing the inverse Fourier transform.

4.5.2 Estimation of the mean function

Our explicit formulas are derived assuming the Hessian of the mean function is a constant

times the identity matrix. Therefore, we aim to find a rotationally symmetric paraboloid θ̂(s)

that best represents the mean function:

θ(s) = β0 +β1||s||2 +(β2,β3,β4) · s, (4.27)

where the dot represents the vector inner product in R3. Note that all the quadratic terms share

the same coefficient which is due to the rotational symmetry. To estimate (4.27), we can fit a

linear regression using all X(s) within the subdomain as outcome.

4.6 A 3D real data example

As an application, we illustrate the methods in a group analysis of fMRI data from the

Human Connectome Project (HCP) (Van Essen et al., 2012). The data consists of the 2-back

vs 0-back working memory contrast (Barch et al., 2013) from 80 unrelated subjects and is used

here to get realistic 3D signal and noise parameters from which to do 3D simulations as well

as evaluate the performance of our formulas in power approximation. For each subject, the
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size of the fMRI image is 91×109×91 voxels. The mean and standard deviation of the data

are displayed in Figure 4.5a and 4.5b. Regions like the dorsal and ventral prefrontal cortex are

activated in the contrast (Barch et al., 2013) as demonstrated by the standardized mean in Figure

4.5c.

(a) Mean of the data (b) Standard deviation of the data

(c) Standardized mean of the smoothed data

Figure 4.5. HCP data: Mean, standard deviation of the data, and standardized mean of the
smoothed data (transverse sliced at the peak of the image along the third dimension). The blue
box represents the subdomain of the peak and the red box represents the subdomain we use to
estimate the noise spatial covariance function.

4.6.1 Data preprocessing

Gaussian kernel smoothing is applied to the dataset to make the mean function unimodal

around the peak and increase the signal-to-noise ratio. The standard deviation of the smoothing

kernel we use in this example is 1 voxel which translates to full width at half maximum (FWHM)
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Figure 4.6. The empirical correlation after symmetrization and the estimated kernel from a
subdomain of HCP data.

being around 2.235. It is obvious from Figure 4.5b that the standard deviation of the noise is

not a constant for different locations, thus we use the transformation described in Section 4.5 to

standardize the smoothed data before analyzing it. The standardized mean of the smoothed data

X(s) is displayed in Figure 4.5c.

4.6.2 Estimation of the autocorrelation and mean functions

After standardizing the data, our next step is to estimate the mean and kernel functions

using the methods described in Section 4.5. Here a 15×15×15 subdomain (the red box in Figure

4.5c) around the peak is taken to estimate the kernel. Since we assume the noise is isotropic, the

correlation around the peak is supposed to be strictly symmetric along any dimension. However,

this is not always true in real data. To tackle this, for each of the three dimensions, we first

save the correlation Cor(X(s),X(s0)) around the peak s0 as a vector and create a new vector

by flipping the saved correlation vector. Then we take the mean of the two vectors so that it

is guaranteed to be symmetric. The empirical correlation after such symmetrization and the

corresponding estimated kernel function are displayed in Figure 4.6.

We consider two approaches to estimate the mean function, nonparametric and parametric.
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The nonparametric mean estimation is obtained as a voxelwise average over subjects.

θ̂(s) =
n

∑
i=1

Xi(s) = X̄(s). (4.28)

The parametric mean estimation is obtained by fitting a linear regression model (4.27) using

all observed data X(s) within the subdomain of size 6× 6× 6 (the blue box in Figure 4.5c)

as outcome and their corresponding location variables ||s||2, s as covariates. The least square

estimate of the mean is

θ̂(s) = 13.03−0.26||s||2 +(0.20,0.11,0.39) · s. (4.29)

We will compare the difference in simulated power and E[Mu] when the mean function is

estimated by the nonparametric approach (4.28) vs the parametric approach (4.29).

4.6.3 3D Simulation induced by data

We have done several simulation studies under a well-designed 2D setting where the

formulas are supposed to work well, but eventually, we want to apply the formulas to real-life

data which is more complicated. Besides, in terms of fMRI data analysis, the image is always 3D

by nature. Considering all these factors, a 3D simulation study induced by real data is necessary

to validate the performance of the formulas under a more realistic setting,

In the previous two subsections, we have studied the signal and noise of the HCP data.

For the simulation, we would like to generate 3D images using the estimated mean and kernel

function. The noise field is generated by convolving the estimated kernel (displayed in Figure 4.6)

and Gaussian white noise. For each simulation setting, 10,000 such noise fields are generated.

The signal from the standardized data is very strong (see Figure 4.5c). For illustrative

purposes, we choose to weaken the signal by scaling down the estimated mean function (4.29)

while maintaining the same shape. Here signal strength is measured by effect size, and the
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Figure 4.7. 3D Simulation induced by data: Simulated Peak height distribution under the null
(zero mean) with different levels of effect sizes and threshold u.

amount of scaling is determined by different levels of effect size. In traditional t-test or z-test,

Cohen’s d values of 0.2, 0.5, and 0.8 (corresponding to 0.58th 0.69th and 0.79th quantiles of the

standard Gaussian distribution) are considered as small, medium, and large effect sizes (Cohen,

1988). The peak height distribution under the null hypothesis (zero mean function) is displayed

in Figure 4.7, and does not follow a Gaussian distribution. Therefore, we take 0.58th, 0.69th

and 0.79th quantile of the null distribution minus the mean as small (0.16), medium (0.40), and

large (0.65) effect size (see the black dash-dot lines in Figure 4.7). For simplicity, we see the

peak height of the mean function as effect size in this simulation. However, this is not the most

accurate way of defining effect size in the peak detection setting. More details will be discussed

in 4.7.2. The threshold u for peak detection is chosen as the 0.99th quantile of the peak height

distribution under the null (≈ 3.42) according to Cheng and Schwartzman (2017) (see the red

dashed line in Figure 4.7).

Similar to the 2D simulation, the search domain D is assumed to be a sphere centered

at the true peak, and we use radius of D to control the domain size. Signal sharpness is fixed

since it is estimated from the data. The empirical power and E[Mu] are computed using (4.23)

and (4.24).

To derive the explicit formulas for E[Mu], we assume the mean function to be a rota-
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Figure 4.8. 3D Simulation induced by data (Rad(D) = 3, medium effect size): Simulated power
and E[Mu] when the mean function is obtained from raw data vs quadratic estimation (4.29).

tionally symmetric paraboloid, and this assumption might cause some bias in applications. In

Figure 4.8, we demonstrate the difference in simulated power and E[Mu] when the mean function

is estimated by the nonparametric approach (4.28) vs the parametric approach (4.29). It can

be observed that the quadratic approximation only has a small impact on power and E[Mu] in

this example. In Figure 4.9, we validate our theoretical formula for E[Mu] (4.15) as well as

the adjusted E[Mu]. As we can see, the theoretical curve for E[Mu] and adjusted E[Mu] closely

mirrors the empirical curve. The figure also shows that the power approximation using E[Mu] is

accurate for large u as stipulated by Theorem 2. Power curves using three different effect sizes,

and comparisons between large and small domain sizes are displayed in Figure 4.10. We can see

from the figure that the E[Mu] works well for small sample sizes and E[Mu]adj works better than

E[Mu] for large sample sizes. We can also observe that the performance of power approximation

using E[Mu] becomes better if the domain size is smaller as stipulated by Theorem 1.

4.7 Discussion

4.7.1 Explicit formulas and approximations

Calculating power for peak detection (4.1) has been a difficult problem in random field

theory due to the lack of formula that can compute it directly. In this chapter, we have discussed
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Figure 4.9. 3D Simulation induced by data (Rad(D) = 6, medium effect size): Simulated vs
theoretical E[Mu] and adjusted E[Mu].

(a) Small effect size (Rad(D) =
5)

(b) Medium effect size
(Rad(D) = 5)

(c) Large effect size (Rad(D) =
5)

(d) Small effect size (Rad(D) =
2)

(e) Medium effect size
(Rad(D) = 2)

(f) Large effect size (Rad(D) =
2)

Figure 4.10. 3D Simulation induced by data: Power curves when the signal has small, medium,
and large effect size, and comparisons between large and small domain size.
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the rationale of using E[Mu] and E[Mu]adj to approximate peak detection power under different

scenarios and derived formulas to compute E[Mu] assuming isotropy. Isotropy is assumed so that

we are able to use the GOI matrix (Cheng and Schwartzman, 2018) as a tool to calculate E[Mu]

via the Kac-Rice formula.

We also showed explicit formulas for H(x̃) (defined as (4.14)) when N = 1,2,3 assuming

the mean function is a paraboloid. Computing H(x̃) involves applying the probability density

function for the eigenvalues of GOI matrices and details can be found in the proof of Proposition

2, 3 and 4. Then E[Mu] can be calculated by plugging H(x̃) to (4.15). The integration in (4.15),

however, can not be evaluated explicitly. In practice, one may evaluate it numerically. For higher

dimensions (N > 3), it remains difficult to get an explicit form of H(x̃) due to the fact inferred by

Proposition 2, 3 and 4 that the integration becomes extremely complicated as N becomes large.

4.7.2 Effect size

We want to emphasize that the power depends on both the signal strength parameter θ0

and shape parameter η . In a traditional z-test or t-test which tests a single null hypothesis that

the mean value equal to 0, the detection power depends only on a single parameter we call effect

size. Here the test is conditional on the point being a local maximum. Applying a simple z-test or

t-test, one could reject the null hypothesis as long as the peak height θ0 exceeds the pre-specified

threshold. This approach is not accurate since the peak height does not follow a Gaussian or t

distribution. To address this, the threshold can be determined by the null distribution of peak

height (Cheng and Schwartzman, 2018) to control the type I error at a nominal level. However,

power calculation based on the test over peak height is still biased since the true effect size

depends both on the signal height and curvature. The height of the peak affects the likelihood

of exceeding the threshold and the curvature affects the likelihood of existing such peak in the

domain. It follows that a sharp and high peak is easier to detect compared to a flat and low peak,

leading to a larger detection power.

For an interpretation of the parameter η = θ ′′/(−2ρ ′), we consider two types of mean
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(a) Power (b) E[Mu]

Figure 4.11. 2D simulation: Power and E[Mu] for different θ and η (u= 3.92 and Rad(D) = 10).

function: paraboloid and Gaussian. Suppose the noise is the result of the convolution of white

noise with a Gaussian kernel with spatial std. dev. ν resulting in the covariance function with

ρ(r) = exp(−r/(2ν2)) as specified in Section 4.3.1. This is the same noise as we simulated in

Section 4.5. When the mean function is paraboloid, consider θ(s) = −∥s∥2/(2ξ 2)+θ0 as in

(4.22). Here we obtain θ ′′ =−1/ξ 2 and ρ ′ =−1/(2ν2), yielding η = θ ′′/(−2ρ ′) =−ν2/ξ 2.

Thus, η is a shape parameter representing the relative sharpness of the mean function with

respect to the curvature of the noise. When the mean function is Gaussian, consider θ(s) =

aexp(−∥s∥2/(2τ2)). This expression is obtained, for example, if the signal is the result of the

convolution of a delta function with a Gaussian kernel with spatial std. dev. τ . We obtain

θ ′′ =−a/τ2 and ρ ′ =−1/(2ν2), yielding η = θ ′′/(−2ρ ′) =−aν2/τ2. Thus, η is the height of

the signal a, scaled by the ratio of the spatial extent of the noise and signal filters. In both cases,

the parameter η , and thus the power, are invariant under isotropic scaling of the domain, in a

similar fashion to the peak height distribution under the null hypothesis (Cheng and Schwartzman,

2020).

Figure 4.11 illustrates how θ0 and η affect power and E[Mu] in the 2D simulation

described in Section 4.4. As we have explained, θ0 and η together determine the effect size.

Although deriving an explicit form of effect size as a function of θ0 and η is difficult, we are able
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to roughly show how the two parameters relate to power. θ0 which can be seen as signal-to-noise

ratio (SNR) plays a major role. Having η stay the same, the power monotonically increases with

respect to θ0. On the other hand, power monotonically decreases with respect to η having θ0

stays the same. In this simulation example, the impact of θ0 on power is about 10 times stronger

than η if we fit a linear model of power using θ0 and η . We can also observe from the figure that

the effect of η on power is stronger for large θ0 compared to that for small θ0.

4.7.3 Application to data

To use our formula to calculate power in practice, one needs to assume the peak to be a

certain type such as paraboloid or Gaussian. However, sometimes it might not be plausible to

make such assumptions, leading to inaccurate power estimate.

Regarding the conjecture of E[Mu]adj being a lower bound when there exists at least one

local maximum in the domain D, it remains difficult to prove in general, but as we showed in

the real data example, it seems to be correct in practice. When it comes to a real-life problem,

we can take both E[Mu] and the E[Mu]adj into consideration to get a better understanding of

the true sample size. We suggest using E[Mu] as an approximation to power when the sample

size is small, considering E[Mu]adj when the sample size is large. E[Mu]adj also gives a more

conservative estimate of power compared to E[Mu] which is useful to guarantee that the test is

powerful enough when we design future studies. Because of its difficulty, we leave further study

of E[Mu]adj for future work.
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Chapter 5

On the peak height distribution of non-
stationary Gaussian random fields: 1D
non-constant variance and scale space

5.1 Introduction

Peak inference is an important statistical problem in random field theory (RFT) and has

been applied to multiple domains, such as neuroimaging (Worsley et al., 2004; Schwartzman

and Telschow, 2019a) and statistical cosmology (Bertschinger, 2001). Researchers have made

significant efforts to derive the formulas for the peak height distribution (Lindgren, 1972; Azaı̈s

and Wschebor, 2008; Cheng and Schwartzman, 2015; Cheng and Schwartzman, 2018). The

currently known exact formulas for the peak height distribution in 1D, 2D, and 3D require the

stationarity assumption (Cheng and Schwartzman, 2018). However, the stationarity assumption

is known to be difficult to check and even not appropriate in many application settings (Worsley

et al., 1996a; Foody, 2004). To expand the application of RFT in peak inference, we investigate

the peak height distribution of zero-mean Gaussian random fields and seek to develop a general

solution.

Let {X(t) : t ∈RN} be a real-valued, N dimensional, C2 Gaussian random field. Through-

out this chapter, we always assume X(t) satisfies the conditions (C1) and (C2) in Cheng and

Schwartzman (2015) unless stated otherwise. For stationary random fields, the statistical prop-
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erties, including the mean, variance, and covariance between points at a fixed distance remain

constant across the domain. Any spatially varying statistical property leads to non-stationarity.

For example, X(t) is non-stationary if the mean function µ(t) is non-constant. This is known

as the signal-plus-noise model, where µ(t) and X(t)− µ(t) represent the signal and noise re-

spectively. Non-centered Gaussian random fields are frequently considered in data applications

(Hayasaka et al., 2007; Cheng and Schwartzman, 2017), and the peak height distribution of

non-centered Gaussian random fields has been studied in various RFT-based power calculation

works (Durnez et al., 2016; Zhao et al., 2023). In this chapter, we only consider centered

Gaussian random fields, and focus on non-stationary Gaussian random fields with non-constant

variance, spatially varying correlation, or both.

The scale space random field (Siegmund and Worsley, 1995) is an example of

non-stationary random field with spatially varying correlation and has many applications

(Bertschinger, 2001; Worsley et al., 1996b). In peak detection, kernel smoothing is com-

monly applied to improve the signal-to-noise ratio. To maximize the detection power, the kernel

bandwidth is chosen to match the shape of the kernel to that of the peak. However, when the

peaks have different shapes and sizes, there does not exist a single smoothing bandwidth to

match all the peak shapes. To handle peaks of different spatial extents, it is natural to consider the

bandwidth as an extra parameter and search for peaks in the scale-location space. The random

field defined in the scale-location space is called the scale space random field. Since the data

smoothness varies over the search domain, the scale space random field is non-stationary even if

it is stationary at any fixed scale. In this chapter, we study the scale space Gaussian field as a

prototypical example of non-stationarity.

For Gaussian random fields, the Kac-Rice formula (see Chapter 11 of Adler and Taylor,

2007) is a powerful tool to calculate the expected number of critical points and the peak height

distribution. With the Kac-Rice formula, it can be shown (see Cheng and Schwartzman, 2015)

that the peak height distribution of X(t) (the probability that the height of X(t) at point t exceeds
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the fixed threshold u, given that the point t is a local maximum of X(t)) can be computed as

Ft(u) =
E[|det∇2X(t)|1{∇2X(t)≺0}1{X(t)>u}|∇X(t) = 0]

E[|det∇2X(t)|1{∇2X(t)≺0}|∇X(t) = 0]
. (5.1)

In this chapter, we first derive the exact formula for the peak height density (the derivative

of (5.1)) of 1D centered, smooth Gaussian processes and compare it with that for stationary

Gaussian processes (Cheng and Schwartzman, 2018). When the dimension N > 1, the Kac-Rice

formula involves computing the conditional expectation of the determinant of the Hessian matrix

of X(t) which is a Gaussian random matrix. There is no analytical solution to this without

making further assumptions. The explicit evaluation of the peak height distribution of isotropic

Gaussian random fields has been studied in Cheng and Schwartzman (2018) with the help of

Gaussian random matrix theory, but there is no exact formula for general anisotropic Gaussian

random fields. Like the Gaussian CDF, lacking an exact formula does not hinder its practical

applications. One approach to address this issue is to connect the random field of interest X(t)

to some other random field Y (t) with known peak height distribution. For example, Cheng

and Schwartzman (2020) have proved that the peak height distribution remains the same under

diffeomorphic transformation, i.e. X(t) = Y ( f (t)) where f is a diffeomorphic map. Another

approach is to simplify the calculation by making practical assumptions, for example, assuming

the field has constant variance. If we still find it difficult to evaluate explicitly or if the data

indicates a violation of such assumptions, the peak height distribution can be obtained with

numerical approximations. In this chapter, we introduce two convenient algorithms that compute

the peak height distribution by evaluating the Kac-Rice formula numerically, and it works for any

Gaussian random field as long as it is sufficiently smooth. Compared to the traditional simulation

approach, which simulates the field itself, this algorithm achieves higher accuracy with much

less computing time.
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5.2 1D non-stationary Gaussian processes

In this section, we start from the simplest non-stationary Gaussian random field, the

1D non-stationary Gaussian process. Our aim is to derive the explicit form of the peak height

distribution by evaluating the Kac-Rice formula (5.1), and look for connections and differences

between the peak height distribution of stationary and non-stationary Gaussian processes.

Assuming that the random process {X(t) : t ∈ R} is non-stationary, the covariance

between any two points may depend on both their location and the distance between them.

As a generalization of the covariance function under the stationarity assumption (Azaı̈s and

Wschebor, 2008), we can write the covariance function of a non-stationary Gaussian process as

E[X(t −d/2)X(t +d/2)] = h(t,τ = d2) for an appropriate function h(·) : [0,∞)→R. Denote

h0(t) = h(t,0), h′1(t) =
∂h
∂ t

∣∣∣∣
τ=0

, h′2(t) =
∂h
∂τ

∣∣∣∣
τ=0

, h′′12(t) =
∂ 2h

∂ t∂τ

∣∣∣∣
τ=0

, etc. (5.2)

The variance-covariance matrix of (X(t), X ′(t), X ′′(t)) can be derived using (5.5.5) in Adler and

Taylor (2007). The lemma below is a generalization of Lemma 3.2 in Cheng and Schwartzman

(2018) for non-stationary Gaussian processes.

Lemma 6. Let {X(t), t ∈ R} be a centered, smooth 1D Gaussian process. Then for each t ∈R,

Var(X(t)) = h0(t),

Var(X ′(t)) =
1
4

h′′11(t)−2h′2(t),

Var(X ′′(t)) =
1

16
h′′′′1111(t)−h′′′112(t)+12h′′22(t),

E[X(t)X ′(t)] =
1
2

h′1(t),

E[X(t)X ′′(t)] =
1
4

h′′11(t)+2h′2(t),

E[X ′(t)X ′′(t)] =
1
8

h′′′111(t)−h′′12(t).
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5.2.1 Peak height distribution of non-stationary Gaussian processes

The following theorem states the formula for the peak height distribution of centered

smooth Gaussian processes.

Theorem 5. The peak height density of a smooth Gaussian process {X(t), t ∈ R} with mean 0

and standard deviation σ(t) is given by

ft(x) =
1

σ̃(t)
φ

(
x

σ̃(t)

)√
2π(1−ρ2(t))ψ

(
−ρ(t)x√

1−ρ2(t)σ̃(t)

)
, (5.3)

where σ̃2(t) := Var(X(t)|X ′(t) = 0), ρ(t) := Cor(X(t),X ′′(t)|X ′(t) = 0) satisfying |ρ(t)| < 1,

and the function ψ(·) is defined as

ψ(x) =
∫ x

−∞

Φ(y)dy = φ(x)+ xΦ(x), x ∈ R. (5.4)

The mean and variance of the peak height are −
√

π/2ρ(t)σ̃(t) and (1− (π/2−1)ρ2(t))σ̃2(t)

respectively.

The density function (5.3) only depends on two parameters, ρ(t) and σ̃(t), and has the

form of a Gaussian density multiplied by a tilting factor. By Lemma 6, ρ(t) can be computed as

ρ(t) =Cor(X(t),X ′′(t)|X ′(t) = 0)

=
E[X(t)X ′′(t)]Var(X ′(t))−E[X(t)X ′(t)]E[X ′(t)X ′′(t)]√

Var(X(t))Var(X ′(t))−E[X(t)X ′(t)]2

× 1
Var(X ′(t))Var(X ′′(t))−E[X ′(t)X ′′(t)]2

(5.5)

=−
2
(
2h′2(t)−

1
4h′′11(t)

)(
2h′2(t)+

1
4h′′11(t)

)
−h′1(t)

(
h′′12(t)−

1
8h′′′111

)√
−
(
h′′12(t)−

1
8h′′′111(t)

)2 −
(
2h′2(t)−

1
4h′′11(t)

)(
12h′′22(t)−h′′′112(t)+

1
16h′′′′1111(t)

)
× 1√

−h′1(t)
2 −4h0(t)

(
2h′2(t)−

1
4h′′11(t)

) . (5.6)

Both (5.5) and (5.6) can be used to compute ρ(t), depending on which is more convenient, the
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(a) σ̃(t) = 1 (b) ρ(t) =−1/
√

3

Figure 5.1. The peak height density (5.3) with different parameters. Left panel: Fixing σ̃(t) at
1, the effect of ρ(t) on the peak height density. Right panel: Fixing ρ(t) at −1/

√
3, the effect of

σ̃(t) on the peak height density.

moments or the partial derivatives of the covariance function. In the analytical examples below,

it is easier to use (5.5). In the numerical methods (Section 5.4), it is easier to use (5.6) because

all the terms in (5.6) can be programmed as the partial derivatives of the covariance function.

The same reasoning can be applied to the computation of σ̃(t):

σ̃(t) =Var(X(t)|X ′(t) = 0) = Var(X(t))− E[X(t)X ′(t)]2

Var(X ′(t))
= h0(t)−

h′1(t)
2

h′′11(t)−8h′2(t)
. (5.7)

Compared to the parameter κ of the peak height density derived in Cheng and Schwartz-

man (2018), using ρ(t) and σ̃(t) to characterize the peak height density improves the under-

standing and interpretation of the density function, as they both have a clear statistical meaning.

Figure 5.1 displays how these two parameters affect the peak height density. As we can see from

(5.3) and Figure 5.1a, if we fix σ̃(t), the density functions with ρ(t) and −ρ(t) are reflection

symmetric with respect to x = 0. As ρ(t) increases, the absolute value of the mean increases

proportionally, and the variance decreases. The parameter σ̃(t) is the scale parameter of the peak

height distribution. The distribution is more spread out for large σ̃(t) as displayed in Figure 5.1b.

Increasing σ̃(t) leads to a linear increase in both the absolute value of the mean and standard

deviation.
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Theorem 5 can be used to compute the peak height distribution of any centered smooth

non-stationary Gaussian process, including the Gaussian process with non-constant variance. In

general, Gaussian processes with non-constant variance are useful in modeling the heteroscedastic

noise (i.e. the variance of noise depends on location), which is often present in real-world

problems (see e.g. Le et al., 2005; Lázaro-Gredilla and Titsias, 2011). Understanding the peak

height distribution of such Gaussian processes is crucial for peak detection given heteroscedastic

noise. Figure 5.2a displays simulated instances of the Gaussian process with non-constant

variance on a grid ranging from 0 to 1 with a step size of 0.005. The process is generated by

multiplying a stationary unit-variance Gaussian process (convolution of Gaussian white noise

with a Gaussian kernel of bandwidth 0.3) by a linear standard deviation function σ(t) = t +0.1.

Consequently, the spatial correlation is independent of the location t, as shown in Figure 5.2b.

Figure 5.2c and Figure 5.2d display the two parameters ρ(t) and σ̃(t) that affect the peak height

distribution. Peak height distribution of this process at a fixed location t can be computed by

plugging ρ(t) and σ̃(t) into (5.3).

5.2.2 Special cases

In particular, if X(t) has constant variance, ρ(t) and σ̃(t) can be simplified as

ρ(t) =− Var(X ′(t))√
Var(X ′′(t))− E[X ′(t)X ′′(t)]2

Var(X ′(t))

=
2h′2(t)√

−h′′′112(t)+12h′′22(t)+
h′′12(t)

2

2h′2(t)

, (5.8)

σ̃(t) = Var(X(t)) = h0(t).

Note that (5.8) indicates ρ(t)≤ 0 when X(t) has constant variance.

If we further assume stationarity and unit-variance, then ρ(t) and σ̃(t) become constant:

ρ =− Var(X ′(t))√
Var(X ′′(t))− E[X ′(t)X ′′(t)]2

Var(X ′(t))

=
h′2√
3h′′22

,
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(a) Simulated instances with orange dots indi-
cating the local maxima

(b) Correlation

(c) σ(t) and σ̃(t) (d) ρ(t)

Figure 5.2. Simulated instances of the Gaussian process with non-constant variance, its spatial
correlation, and the parameters σ(t), σ̃(t), and ρ(t).

σ̃ = Var(X(t)) = 1.

As a special case of (5.8), the parameter ρ is non-positive for stationary random processes.

The general peak height density (5.3) has a similar form as the peak height density of a

unit-variance stationary Gaussian process derived in Cheng and Schwartzman (2018):

ft(x) =

√
3−κ2
√

3
φ

( √
3x√

3−κ2

)
+

√
2πκx√

3
Φ

(
κx√

3−κ2

)
φ(x)

= φ(x)

√
2π(3−κ2)

3
ψ

(
κx√

3−κ2

)
, (5.9)
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where κ is defined as

κ :=−h′2/
√

h′′22 =−
√

3ρ.

Note that κ = 1 if the covariance function is Gaussian (Cheng and Schwartzman, 2018), and the

corresponding ρ =−1/
√

3.

5.2.3 The boundary case: |ρ(t)|= 1

The random vector (X(t),X ′(t),X ′′(t)) is degenerate when |ρ(t)| = 1 violating the as-

sumption (C2) in Cheng and Schwartzman (2015). Therefore, the technique used in the proof of

Theorem 5 needs to be modified for the boundary case.

Proposition 5. When ρ(t) = −1, the peak height distribution of X(t) is Rayleigh(σ̃(t)) with

density

ft(x) =

√
2πx

σ̃2(t)
φ

(
x

σ̃(t)

)
, x ≥ 0. (5.10)

The mean and variance are
√

π/2σ̃(t) and (2−π/2)σ̃2(t) respectively.

When ρ(t) = 1, the peak height distribution of X(t) is −Rayleigh(σ̃(t)) with density

ft(x) =−
√

2πx
σ̃2(t)

φ

(
x

σ̃(t)

)
, x ≤ 0. (5.11)

The mean and variance are −
√

π/2σ̃(t) and (2−π/2)σ̃2(t) respectively.

Example 1. Define the Cosine process

X(t) = c1z1 cos(ωt)+ c2z2 sin(ωt), (5.12)

where z1 and z2 are independent, standard Gaussian random variables and c1, c2, and ω are

positive constants. X(t) has non-constant variance and is therefore non-stationary. It can

be derived by (5.5) and (5.7) that ρ(t) = −1 and σ̃(t) = c1c2/
√

c2
1 sin2(ωt)+ c2

2 cos2(ωt) =
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c1c2/σ(t). The peak height density is Rayleigh

ft(x) =

√
2π[c2

1 sin2(ωt)+ c2
2 cos2(ωt)]x

c2
1c2

2
φ


√

c2
1 sin2(ωt)+ c2

2 cos2(ωt)x

c1c2

 , x ≥ 0.

Figure 5.3a shows simulated instances of the cosine process (ω = 2, c1 = 3 and c2 = 4) on a grid

ranging from 0 to 2π with a step size of 0.002π . In Figure 5.3c, we compare the peak height

of this process near t = π/4 (large σ̃(t)) and t = π/2 (small σ̃(t)). The parameter σ̃(t) is the

only parameter of the peak height distribution, and has a positive effect on both the mean and

standard deviation, as displayed in Figure 5.3d.

5.2.4 The Gaussian process with non-constant bandwidth

The parameter ρ(t) is the only parameter that controls how the peak height distribution

varies over the domain when the field X(t) has constant variance. While constant ρ(t) is

necessary for stationarity, non-stationarity does not necessarily imply non-constant ρ(t). Next,

we provide an example of a non-stationary Gaussian process that has constant ρ(t).

We have discussed the Gaussian process with non-constant variance. Another type

of non-stationary Gaussian process is the Gaussian process with spatially varying corelation.

Gaussian processes with spatially varying correlation are commonly used (see e.g. Paciorek and

Schervish, 2003; Remes et al., 2017) to model data whose smoothness varies with t.

It is standard to define a stationary Gaussian process by convolving a white noise process

with a kernel function that specifies the correlation structure:

Z(t) =
∫

∞

−∞

1√
ν

k
(

t − s
ν

)
dB(s), (5.13)

where k(s), s ∈R, is a smooth kernel with
∫

k(s)2ds = 1 so that Z(t) is unit-variance, dB(s) is

Gaussian white noise and ν is the bandwidth. In (5.13), the kernel bandwidth ν controls the

smoothness and spatial correlation. We define the Gaussian process with non-constant bandwidth
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(a) Simulated instances with orange dots indi-
cating the local maxima

(b) σ(t) and σ̃(t)

(c) Selected simulated instances having a peak
near t = π/4 versus those having a peak near
t = π/2

(d) Peak height distribution at t = π/4 versus
t = π/2

Figure 5.3. Simulated instances of the Cosine process in Example 1, σ(t), σ̃(t) and the peak
height distribution at t = π/4 (large σ̃(t)) versus t = π/2 (small σ̃(t)).

as a generalization of (5.13)

X(t) =
∫

∞

−∞

1√
ν(t)

k
(

t − s
ν(t)

)
dB(s), (5.14)

where the bandwidth function ν(t), t ∈ R, is a positive non-constant smooth function. The

Gaussian process with non-constant bandwidth is non-stationary since the spatial correlation

varies with t. Here, the peak height distribution depends solely on ρ(t), since this process has

unit variance.
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In Figure 5.4a, we show simulated instances of the Gaussian process with linear band-

width function ν(t) = 0.5t +0.1 on a grid ranging from 0 to 1 with a step size of 0.005. From

Figure 5.4b, we can clearly see the spatial correlation is dependent on the location. More

specifically, since ν(t) is monotone increasing, the process becomes smoother as t increases, as

illustrated in the simulated instances and the correlation plot. Furthermore, it is important to note

that in this case, ρ(t) is independent of t (see Figure 5.4d), even though the field is non-stationary.

In the following result, we show that ρ(t) is constant when ν(t) is linear.

(a) Simulated instances with orange dots indi-
cating the local maxima

(b) Correlation

(c) σ(t) and σ̃(t) (d) ρ(t)

Figure 5.4. Simulated instances of the Gaussian process with non-constant bandwidth, its spatial
correlation, and the parameters σ(t), σ̃(t), and ρ(t).
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Theorem 6. Consider the non-stationary Gaussian process

X(t) =
∫

∞

−∞

1√
ν(t)

k
(

t − s
ν(t)

)
dB(s),

where k(s), s ∈R, is a smooth kernel with
∫

k(s)2ds = 1. If the bandwidth function ν(t) is linear

in t, then the parameter ρ(t) = Cor(X(t),X ′′(t)|X ′(t) = 0) is independent of t.

Theorem 6 also indicates the peak height distribution is independent of t when the

bandwidth function ν(t) is linear. This property is particularly interesting, considering the field

X(t) is non-stationary, and helps to reduce the computation time of evaluating the peak height

distribution over a certain domain.

5.2.5 The Gaussian process with non-constant bandwidth: Gaussian
kernel

As an example, we demonstrate the explicit calculation of ρ(t) when the kernel function

k(·) in (5.14) is Gaussian, i.e.

X(t) =
∫

∞

−∞

√
2π1/4√
ν(t)

φ

(
t − s
ν(t)

)
dB(s),

where φ(x) is the standard Gaussian density.

We first compute Var(X ′(t)), Var(X ′′(t)) and E[X ′(t)X ′′(t)] and use (5.8) to get ρ(t).

Taking the first and second order derivative of X(t), we obtain

X ′(t) =
√

2π
1/4
∫

∞

−∞

(
− ν ′(t)

2ν(t)3/2 −
t − s

ν(t)5/2 +
3(t − s)2ν ′(t)

ν(t)7/2

)
φ

(
t − s
ν(t)

)
dB(s),

and

X ′′(t) =
√

2π
1/4
∫

∞

−∞

(
ν ′(t)2

ν(t)13/2 (t − s)4 − 2ν ′(t)
ν(t)11/2 (t − s)3 +

(
ν ′′(t)
ν7/2 +

2−9ν ′(t)2

2ν(t)9/2

)
(t − s)2
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+
5ν ′(t)
ν(t)7/2 (t − s)− ν ′′(t)

2ν(t)3/2 +
3ν ′(t)2

4ν(t)5/2 −
1

ν(t)5/2

)
φ

(
t − s
ν(t)

)
dB(s).

Var(X ′(t)), Var(X ′′(t)) and E[X ′(t)X ′′(t)] can be computed using the property of Wiener integral:

Var(X ′(t)) =
1

π1/2

∫
∞

−∞

(
− ν ′(t)

2ν(t)3/2 −
t − s

ν(t)5/2 +
3(t − s)2ν ′(t)

ν(t)7/2

)2

e
− (t−s)2

ν(t)2 ds

=
1+ν ′(t)2

2ν(t)2 .

Similarly

Var(X ′′(t)) =
51ν ′(t)4 +68ν ′(t)2 +12

16ν(t)4 − ν ′′(t)(3ν ′(t)2 −2)
2ν(t)3 +

ν ′′(t)2

2ν(t)2 ,

and

E[X ′(t)X ′′(t)] =−ν ′(t)3 +ν ′(t)
2ν(t)3 +

ν ′(t)ν ′′(t)
2ν(t)2 .

Applying (5.8), we have

ρ(t) =
−1
2

ν ′(t)2 +1√√√√ 51
16ν ′(t)4 +(68

16 −
3ν ′′(t)ν(t)

2 )ν ′(t)2 + 3
4 +ν ′′(t)ν(t)+ 1

2ν ′′(t)2ν(t)2

− (−ν ′(t)3+(ν ′′(t)ν(t)−1)ν ′(t))2

2(ν ′(t)2+1)

=
−1
2

√√√√√ (ν ′(t)2 +1)3

43
16ν ′(t)6 +(103

16 − 1
2ν ′′(t)ν(t))ν ′(t)4 + 9

2ν ′(t)2 + 3
4

+ν ′′(t)ν(t)+ 1
2ν ′′(t)2ν(t)2

. (5.15)

It is straightforward from (5.15) that when ν(t) is linear in t, say ν(t) = ν ′t +ν0, ρ(t) is

constant:

ρ(t) =
−1
2

√
(ν ′2 +1)3

43
16ν ′6 + 103

16 ν ′4 + 9
2ν ′2 + 3

4

.
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5.2.6 The Gaussian process with non-constant bandwidth and variance

The parameter ρ(t) is non-positive when the field has constant variance, but can be

positive in general. To give an example of positive ρ(t), we generalize (5.14) to have non-

constant variance:

Y (t) = σ(t)X(t) (5.16)

= σ(t)
∫

∞

−∞

1√
ν(t)

k
(

t − s
ν(t)

)
dB(s),

where the standard deviation function σ(t), t ∈ R, is a positive non-constant smooth function so

that Var(Y (t)) = σ(t)2. We consider the following specification of Y (t)

k(s) =
√

2π
1/4

φ(s),

ν(t) = 0.5t +0.1,

σ(t) = 8t2 −10t +6. (5.17)

Simulated instances of this process on a grid ranging from 0 to 1 with a step size of 0.005 are

displayed in Figure 5.5a. Taking first and second derivatives on both sides of (5.16), we have

Y ′(t) = σ ′(t)X(t)+σ(t)X ′(t) and Y ′′(t) = σ ′′(t)X(t)+ 2σ ′(t)X ′(t)+σ(t)X ′′(t). We use the

variances and covariances of the first and second order derivatives of X(t) (see 5.2.5) as a bridge

for computing those of Y (t):

Var(Y ′(t)) =σ
′(t)2 +σ(t)2Var(X ′(t)),

Var(Y ′′(t)) =σ
′′(t)2 +(4σ

′(t)2 −2σ(t)σ ′′(t))Var(X ′(t))

+σ(t)2Var(X ′′(t))+4σ(t)σ ′(t)E[X ′(t)X ′′(t)],

E[Y (t)Y ′(t)] =σ(t)σ ′(t),

E[Y (t)Y ′′(t)] =σ(t)σ ′′(t)−σ(t)2Var(X ′(t)),
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E[Y ′(t)Y ′′(t)] =σ
′(t)σ ′′(t)+σ(t)σ ′(t)Var(X ′(t))+σ(t)2E[X ′(t)X ′′(t)].

Then ρ(t) and σ̃(t) can be obtained by applying (5.5) and (5.7). As displayed in Figure 5.5c,

ρ(t) reaches its minimum -0.54 at around t = 0.2 and maximum 0.38 at around t = 0.7. Taking

a closer look at t = 0.2 and 0.7 (Figure 5.6a), we compare the peak height distribution at t = 0.2

(negative ρ(t)) versus t = 0.7 (positive ρ(t)) in Figure 5.6b. Given that the field has zero mean

for all t, and in particular at t = 0.7, it is quite surprising that both the mean and median of

the peak height distribution are negative. In conclusion, for a general Gaussian process, the

parameter ρ(t) can have either a positive or negative value depending on the specification of the

field and the location t.

5.3 Multidimensional non-stationary Gaussian random
fields

We have explored the peak height distribution of 1D non-stationary Gaussian processes.

However, many real-world problems exist in higher dimensions. For example, the RFT-based

brain imaging analysis requires the model to be 3D due to the nature of fMRI data (see Worsley

et al., 1992; Worsley et al., 1996b). As we step into the realm of higher dimensional non-

stationary Gaussian random fields, the complexity of the Kac-Rice formula increases drastically,

making direct evaluation difficult.

In this section, with the results we have developed in 1D as a foundation, we explore

the properties of the peak height distribution of an important multidimensional non-stationary

Gaussian random field: the scale space Gaussian random field. Although these properties are

not enough to allow us to derive the explicit formula for the peak height distribution, they are

helpful for a better understanding of the spatial structure of these non-stationary random fields.

Moreover, these properties effectively increase the efficiency of the numerical methods we

highlight later in this chapter (see Section 5.5).
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(a) Simulated instances with orange dots indi-
cating the local maxima

(b) σ(t) and σ̃(t)

(c) ρ(t)

Figure 5.5. Simulated instances of the Gaussian process with non-constant bandwidth and
variance, and the parameters σ(t), σ̃(t), and ρ(t).

5.3.1 The scale space Gaussian random field

First, we consider the following zero-mean unit-variance 2D scale space Gaussian random

field

X(t,ν) =
∫ 1√

ν
k
(

s− t
ν

)
dB(s), (5.18)

where k(s), s ∈ R, is a smooth kernel with
∫

k(s)2ds = 1. In the scale space field, the smoothing

bandwidth is not fixed and is treated as a parameter, so that the parameter space (t,ν) is 2D.

Solving the peak height distribution of a scale space field helps to detect peaks of unknown

location and scale.

84



(a) Selected simulated instances having a peak
near t = 0.2 versus those having a peak near
t = 0.7

(b) Peak height distribution at t = 0.2 versus
t = 0.7

Figure 5.6. The peak height distribution of the Gaussian process with non-constant bandwidth
and variance at t = 0.2 (negative ρ(t)) versus t = 0.7 (positive ρ(t)).

If we draw a slice plane ν = ν(t) for the 2D scale space field, the slice along the plane is

a 1D Gaussian process with non-constant bandwidth, the same process studied in Section 5.2.4

above. An example of the 2D scale space field and the slice plane is displayed in Figure 5.7a,

and the slice along the plane is displayed in Figure 5.7b. The 2D scale space field can be seen as

an extension of the Gaussian process with non-constant bandwidth.

For the Gaussian process with non-constant bandwidth, we have demonstrated that when

the bandwidth ν(t) is a linear function of t, the peak height distribution remains the same over

the domain. Therefore, the peak height distribution of the 1D process obtained by slicing a 2D

scale space field with a flat plane is independent of t. Next, we generalize this result to 2D scale

space fields and, even further, to scale space fields of any dimension.

To evaluate the Kac-Rice formula and compute the peak height distribution of the scale

space field, we once again need the variances and covariances of the first and second order

derivatives. To simplify the computation, we let v =− logν , so that X(t,v) is stationary in v for

any fixed t, and X(t,v) is also stationary in t for any fixed v (Siegmund and Worsley, 1995). We
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(a) X(t,ν) and a slice plane ν(t) = 0.5t +0.1 (b) Slice along the plane

Figure 5.7. A single instance of the 2D scale space field and a slice plane ν(t) = 0.5t +0.1.

replace ν in (5.18) with e−v and the covariance of X after the change of variable is

E[X(t1,v1)X(t2,v2)] = e(v1+v2)/2
∫

k((s− t1)ev1)k((s− t2)ev2)ds. (5.19)

Define

∇X =

(
∂X
∂ t

,
∂X
∂v

)T

, ∇
2X =

 ∂ 2X
∂ t2

∂ 2X
∂ t∂v

∂ 2X
∂ t∂v

∂ 2X
∂v2

 ,

and their joint distribution

 ∇X

vec(∇2X)

∼ N

0,

Σ11 Σ12

Σ21 Σ22


 .

The variances and covariances can be obtained using (5.5.5) in Adler and Taylor (2007).

Σ11 =

e2v ∫ k′(s)2ds 0

0
∫
(1

2k(s)+ sk′(s))2ds

 ,
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Σ22 =


e4v ∫ k′′(s)2ds e2v ∫ k′′(s)η(s)ds 0

e2v ∫ k′′(s)η(s)ds
∫

η(s)2ds 0

0 0 e2v ∫ (3
2k′(s)+ sk′′(s))2ds

 ,

Σ21 =


0 e2v ∫ k′′(s)(1

2k(s)+ sk′(s))ds

0
∫
(1

2k(s)+ sk′(s))η(s)ds

e2v ∫ (3
2k′(s)+ sk′′(s))(1

2k(s)+ sk′(s))ds 0

 ,

where η(s)= 1/4k(s)+2sk′(s)+s2k′′(s). Using the properties of conditional normal distribution,

we obtain

∇
2X |∇X = 0 ∼ N(0,Σ22 −Σ21Σ

−1
11 Σ12),

and

∇
2X |X = x,∇X = 0 ∼ N(Σ̃21Σ̃

−1
11 (x,0,0)

′,Σ22 − Σ̃21Σ̃
−1
11 Σ̃12),

where

Σ̃11 =

1 0

0 Σ11

 ,

Σ̃21 =


−e2v ∫ k′(s)2ds

1
4 −

∫
s2k′(s)2ds

0

Σ21

.

5.3.2 The scale space Gaussian random field: Gaussian kernel

Consider the special case when the kernel function is Gaussian, i.e.

k(s) =
√

2π
1/4

φ(s).
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The covariance matrices can be further simplified as

Σ11 =

1
2e2v 0

0 1
2

 , Σ22 =


3
4e4v 1

4e2v 0

1
4e2v 7

4 0

0 0 5
4e2v

 , Σ21 =


0 −1

2e2v

0 0

1
2e2v 0

 ,

and

∇
2X |∇X = 0 ∼ N

0,


1
4e4v 1

4e2v 0

1
4e2v 7

4 0

0 0 3
4e2v


 .

A pattern can be observed from these matrices: the variance of the derivative with respect

to v is constant, and the variance of the derivative with respect to t has the form of a constant

multiplied by e2v. The second-order derivatives show a similar pattern. This pattern is crucial for

proving the peak height distribution of the scale space field independent of t and v.

5.3.3 Peak height distribution of the scale space Gaussian random field

The following result is a generalization of Theorem 6 for the scale space field.

Theorem 7. Consider the (N+1)-dimensional scale space Gaussian random field

X(t,ν) =
∫ 1√

νN
k
(

s− t
ν

)
dB(s), (5.20)

where k(s), s ∈ RN , is an isotropic smooth kernel with
∫

k(s)2ds = 1. The peak height distribution

of X(t,ν) is independent of (t,ν).

Theorem 7 demonstrates the peak height distribution of the scale space field remains the

same across the domain although it is non-stationary. This discovery is helpful both in theoretical

calculation of the peak height distribution and in application. In theoretical calculation of the

peak height distribution, we can choose some specific ν that helps to simplify the evaluation

of the Kac-Rice formula, as the final result is independent of ν . In application, this property
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vastly reduces the running time, particularly when dealing with multidimensional data like fMRI

images.

5.4 Numerical implementation of the Kac-Rice formula

Gaussian random field theory is widely used as a statistical framework in the analysis

of fMRI images especially when we are dealing with thresholding problems (Worsley et al.,

1996b; Genovese et al., 2002). As we mentioned, the main bottleneck for peak inference in

fMRI analysis using RFT is the model assumptions (Chumbley et al., 2010) like the stationarity

assumption. Making the stationarity assumption is common in practice (Cheng and Schwartzman,

2017) to simplify the derivation of the analytical formula for the peak height distribution, but

sometimes, for example, if the images involve different regions of the brain, the stationarity

assumption would be unsuitable. For datasets exhibiting signs of violating the stationarity

assumption, instead of making false assumptions, we should explore ways to solve the problem

more generally.

5.4.1 Algorithm

In Section 5.2, we have derived the peak height distribution formula for 1D non-stationary

Gaussian processes. When it comes to multidimensional anisotropic and non-stationary Gaussian

random fields, evaluating the Kac-Rice formula is challenging. We here present two numerical

methods: Algorithm 1 and 2 for evaluating the Kac-Rice formula (5.1). Although in practice, the

numerical methods are convenient and accurate for a sufficiently large number of iterations, we

still recommend exploring the properties of the peak height distribution first to fully understand

its spatial structure and increase the algorithm efficiency. Theorem 7 is a good example. The peak

height distribution for the scale space field is independent of the location and scale parameter.

This allows us to compute the peak height distribution for a single point and generalize it to the

entire domain.

Algorithm 1 is a faster method compared to Algorithm 2, and is recommended for
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Algorithm 1. Numerical Kac-Rice
Input

fv the variance of the field
dv the d by d variance-covariance matrix of the first derivatives of the field
d2v the d ∗ (d +1)/2 by d ∗ (d +1)/2 variance-covariance matrix of the second

derivatives of the field
fdcov the 1 by d covariance matrix between the field and its first derivatives
fd2cov the 1 by d ∗ (d + 1)/2 covariance matrix between the field and its second

derivatives
dd2cov the d by d ∗ (d +1)/2 covariance matrix between the first and second deriva-

tives of the field
u a vector giving the thresholds
niters the number of iterations used to calculate the expectation

Ensure: the variance-covariance matrix is positive definite
Compute the covariance matrix ΣΣΣ of (X ,∇2X)|∇X = 0
Compute the probability density p∇X of ∇X
Generate i.i.d. sample (Xi, HessianMati) (i = 1...niters) from the multivariate Gaussian distri-
bution N(000,ΣΣΣ)
for i = 1...niters do

Compute det(HessianMati)
end for
for j = 1...length(u) do

Compute KRexpectation[j] = 1
niters ∑ |det(HessianMati)|1HessianMati≺01Xi>u[ j]

end for
Update KRexpectation by multiplying p∇X(0)
return KRexpectation

computing the peak height distribution over a range of u. Algorithm 1, however, is not optimal

for large threshold u which is common in the peak detection setting. This is due to the indicator

term 1{X(t)>u} in (5.1). As u → −∞, the indicator has no effect, so that all samples of X(t)

contribute to the numerical approximation. However, as u → ∞, the probability of X(t) > u

shrinks to zero, leading to a significantly smaller effective sample size compared to the number

of simulated instances. If we take the 3D scale space field as an example and set u = 3.91 which

is the 99th percentile of the peak height distribution. It can be shown that the effective sample

size is only about 1−Φ(3.91) = 0.005% of the total number of simulated instances. In order

to achieve the same accuracy, we need to sample about 1/0.005% = 20000 times more data for

u = 3.91 compared to u =−∞ which is computationally intensive. In Algorithm 2, we solve this

90



issue by computing the numerator of (5.1) as

E[|det∇2X(t)|1{∇2X(t)≺0}1{X(t)>u}|∇X(t) = 0]

=E[|det∇2X(t)|1{∇2X(t)≺0}|X(t)> u,∇X(t) = 0]p(X(t)> u|∇X(t) = 0).

We generate X(t) from a truncated normal distribution to bound X(t) from below by u, and

therefore X(t) has to be resampled for different u making it slower compared to Algorithm 1 but

having a better accuracy for large u.

Algorithm 2. Numerical Kac-Rice for large u
Input

Same as Algorithm 1
Compute the covariance matrix ΣΣΣ of ∇2X |X ,∇X = (0,0)
Compute the probability density p∇X of ∇X
Compute the tail distribution PX |∇X=0 of X |∇X = 0
Generate i.i.d. sample HessianMati (i = 1...niters) from the multivariate Gaussian distribution
N(000,ΣΣΣ)
for j = 1...length(u) do

Generate i.i.d. sample XTruncatedi (i = 1...niters) from a truncated Gaussian distribution
X |X > u[ j].

for i = 1...niters do
Update HessianMati by adding a correction term (the conditional mean

E[∇2X |X ,∇X = (XTruncatedi,0)]) so that the updated term HessianMatNewi has the same
distribution as ∇2X |X ,∇X = (XTruncatedi,0)

Compute det(HessianMatNewi)
end for
Compute KRexpectation[j] = 1

niters ∑ |det(HessianMatNewi)|1HessianMatNewi≺0
Update KRexpectation[j] by multiplying p∇X(0)PX |∇X=0(u[ j])

end for
return KRexpectation

The most difficult part of the Kac-Rice formula (5.1) is to compute the expectation

of the determinant of the Hessian matrix ∇2X(t) given the field X(t) and the gradient ∇X(t).

Deriving the joint distribution of (X(t), ∇X(t), ∇2X(t)) is usually easy especially when the field

is defined with convolution. Our numerical algorithms solely require the computation of the joint

distribution of (X(t), ∇X(t), ∇2X(t)), and evaluate the expectation by simulation.

91



5.4.2 Relative efficiency

A common and straightforward way of estimating the peak height distribution is direct

simulation. This is achieved by generating a sufficiently large number of instances of the random

field of interest on a discrete lattice, and recording the height of all observed local maxima from

these simulated instances. The empirical distribution of the simulated peak heights can be used to

approximate the true peak height distribution. Direct simulation is easy to implement but requires

a significant amount of time to run. The low efficiency can be attributed to two primary factors.

First, generating the field itself provides more information than we actually need to estimate the

peak height distribution. Second, the performance heavily depends on the granularity and the

size of the grid and when we use a discrete lattice to approximate the continuous domain.

To compare the performance between direct simulation and the numerical Kac-Rice

algorithm, we apply these two approaches to estimate the peak height distribution of a scale

space field while controlling the number of simulations. In the direct simulation, the 3D scale

space field is generated from (5.20) over a grid of size 20 × 20 × 20 pixels with scale parameter

ν ranging from 0.2 to 1.2. For the numerical Kac-Rice method, we apply Algorithm 1. The

comparison of runtime for the two methods is presented in Table 5.1, and the simulated CDF is

displayed in Figure 5.8.

Table 5.1. Runtime of direct simulation versus numerical Kac-Rice algorithm for estimating the
peak height distribution of a scale space field.

# of simulations 10,000 100,000

Direct simulation 1,306.42s (221 peaks) 13,293.85s (2441 peaks)
Numerical Kac-Rice 0.20s 1.50s

As demonstrated in Table 5.1 and Figure 5.8, our numerical Kac-Rice algorithm performs

comparably to direct simulation with much less runtime. Neither of the two methods can produce

a smooth simulated CDF curve for 10,000 simulations, and when the number of simulations

increases to 100,000, they both perform well. Therefore, if estimating the peak height distribution
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(a) 10,000 simulations (b) 100,000 simulations

Figure 5.8. Simulated CDF of the 3D scale space field, direct simulation versus numerical
Kac-Rice.

is the only goal, the numerical Kac-Rice algorithm is preferable. This is the case when we

explore the theoretical properties of the peak height distribution, such as how different parameters

affect the CDF.

5.5 Validation via simulations

In this section, we present simulation results to validate the theoretical properties of the

Gaussian process with non-constant bandwidth and the scale space field.

5.5.1 The Gaussian process with non-constant bandwidth

To validate Theorem 5 and 6, we generate 100,000 Gaussian processes with non-constant

bandwidth. t is sampled from a grid of [0,1] containing 200 points. As defined in (5.14), each

process is obtained as the convolution of Gaussian white noise with a Gaussian kernel of non-

constant bandwidth function ν(t) = 0.5t +0.1. Simulated instances of the process are displayed

in Figure 5.4a.

Since ν(t) = 0.5t + 0.1 is a linear function of t, according to Theorem 6, both the

parameter ρ(t) and the peak height distribution should be independent of t. Figure 5.9a shows

strong evidence that ρ(t) is constant and the simulated value matches the theoretical value.
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(a) ρ(t) (b) Peak height density

Figure 5.9. 1D simulation: ρ(t) and the peak height density of the Gaussian process with
non-constant bandwidth.

Figure 5.9b demonstrates that the theoretical density curve computed using (5.3) at a single

location closely resembles the empirical peak height density over the entire domain.

5.5.2 3D scale space Gaussian random field

Theorem 7 states that the peak height distribution of the scale space field does not vary

with respect to the location parameter t and scale parameter ν . To validate this, we apply the

numerical Kac-Rice algorithm to compare the peak height distribution of a 3D scale space

field with different t and ν . The simulation setup considers Gaussian kernel and three different

scenarios, each with a different set of parameters. For each scenario, we perform 1,000,000

simulations. The input of the algorithm, which are the variances and covariances of the first and

second order derivatives, is derived in 5.3.2. The parameter choices for the three scenarios are

listed in Table 5.2.

Table 5.2. Parameter choices for the three simulation scenarios to validate Theorem 7.

Parameter Scenario 1 Scenario 2 Scenario 3

t1 0.5 0.5 1
t2 0.5 0.5 0.5
ν 0.7 0.2 0.7
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Figure 5.10. Simulated CDF of the 3D scale space field under the three scenarios described in
Table 5.2.

As we can see from Figure 5.10, all three scenarios lead to the same peak height

distribution. Given the large number of simulations, this provides strong evidence to support

Theorem 7.

5.6 Discussion

5.6.1 Peak height distribution in 1D

In this chapter, we have derived the explicit formula for the peak height distribution

of non-stationary Gaussian processes in 1D, and demonstrated the formula has a similar form

as that for stationary Gaussian processes while using a different parameterization. Cheng and

Schwartzman (2018) defined the parameter κ for isotropic Gaussian random fields because it has

the nice property of being invariant to the scaling of the parameter space and equal to 1 when the

covariance is Gaussian. However, here we discovered ρ(t) is a better parameterization, as it has

a clear statistical meaning (the conditional correlation of the process and its second derivative

given the gradient is 0) and allows characterizing a larger range of possible processes.
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5.6.2 Peak height distribution of the scale space field

With the help of the peak height density function in 1D, we discover an interesting

property of the Gaussian process with non-constant bandwidth and generalize it to the multidi-

mensional scale space field. This property shows the peak height distribution of the scale space

field does not vary over the domain. Studying the peak height distribution of the scale space

field helps to choose the proper threshold to control the type I error when the signal peaks we

aim to detect have different shapes. However, the scale space field is not optimal for detecting

peaks that are not rotationally symmetric. In future work, we plan to investigate the Gaussian

random field defined on the scale-rotation space and explore the properties of the peak height

distribution.

5.6.3 Numerical Kac-Rice algorithm

Apart from the theoretical discoveries, we also provide numerical algorithms for com-

puting the peak height distribution of any smooth Gaussian random field. One inconvenience

of the numerical algorithms is that the user needs to compute the variances and covariances

of the field and its first and second order derivatives. Since deriving the analytical form for

the covariance matrices, like what we have done for the scale space field, involves only taking

derivatives of the covariance function (5.19), the slight inconvenience of extra computation is

usually not a big issue in practice. Also, the derivation can be automated by employing symbolic

computation tools (e.g. Symbolic Math Toolbox in Matlab and WolframAlpha) as such tools are

effective in performing and simplifying complicated differentiation. Alternatively, it is feasible

to estimate these variances and covariances empirically from the real or simulated data, as it

typically requires a smaller number of data instances to obtain accurate estimates for them

compared to estimating the peak height distribution considering not all data instances have local

maximum.

The amount of time required to generate the field and search for local maxima has
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always been an issue for evaluating the theoretical properties of the peak height distribution

by simulation, especially when the field is multidimensional. We anticipate that the numerical

Kac-Rice algorithm will facilitate and accelerate the exploration of the peak height distribution

of multidimensional Gaussian random fields.
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Appendix A

Supplementary materials for Chapter 2

A.1 Proofs

Derivation of equation (2.12). To derive the variance term in equation (2.12), we need to find

the bottom right corner of (X ′
iV

−1
i Xi)

−1. By equation (15) in de Leeuw and Kreft (1986),

V−1
i = (XiDXT

i +σ
2
ε I)−1

= σ
−2
ε I −σ

−2
ε Xi(X ′

i Xi)
−1X ′

i +Xi(X ′
i Xi)

−1(σ2
ε (X

′
i Xi)

−1 +D)−1(X ′
i Xi)

−1X ′
i .

Substituting and collecting terms,

(X ′
iV

−1
i Xi)

−1 = σ
2
ε (X

′
i Xi)

−1 +D,

and

[(X ′
iV

−1
i Xi)

−1]22 = σ
2
ε /∑(t j − t̄)2 +σ

2
b1
.
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A.2 Implementation of the random effects model with
random slopes and intercepts in R

The random effects model with random slopes and intercepts can be performed with the

lmer function within the R package lmerTest (Kuznetsova et al., 2017). To test for differences in

slopes between groups under the assumption of equal covariance structure in the two groups, the

lmer model call is

lmer(Y ~ GROUP*TIME+(TIME|ID))

where ID indexes individual subjects, GROUP is a 0, 1 variable indicating placebo (0) and active

treatment (1), and TIME are times of repeated observations on the dependent variable Y.

To test for differences in slopes between groups under the assumption of unequal covari-

ance structure in the two groups, as implemented in power formula (2.14), the lmer model call

is

TIME_0 <- ifelse(GROUP==0,TIME,0)

TIME_1 <- ifelse(GROUP==1,TIME,0)

lmer(Y ~ TIME*GROUP+(TIME_0|ID)+(TIME_1|ID))
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Appendix B

Supplementary materials for Chapter 3

B.1 Proofs

Derivation of equation (3.8). Restricting to completers only, there is only one drop-out pattern

in equation (3.6) (the complete data pattern, with design matrix Xk, an m by m identity matrix).

Hence, the asymptotic variance of α̂ reduces to

(nX ′
kV

−1
k Xk)

−1 =Vk/n,

where

Vk = ZkDZ′
k +σ

2
ε I

=


1 t1
... . . .

1 tm


 σ2

b0
σb0,b1

σb0,b1 σ2
b1


1 . . . 1

t1 . . . tm

+σ
2
ε I

=

(
σ2

b0
+ tiσb0,b1 + t jσb0,b1 + tit jσ

2
b1

)
i, j=1...m

+σ
2
ε I.

Applying elements of this matrix to the variance of α̂m − α̂1, we obtain

Var(α̂m − α̂1) =Var(α̂m)+Var(α̂1)−2Cov(α̂m, α̂1)
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=
1
n
[σ2

b0
+2tmσb0,b1 + t2

mσ
2
b1
+σ

2
ε

+σ
2
b0
+2t1σb0,b1 + t2

1 σ
2
b0
+σ

2
ε

−2(σ2
b0
+ t1σb0,b1 + tmσb0,b1 + t1tmσ

2
b1
)]

=
1
n
[2σ

2
ε +(tm − t1)2

σ
2
b1
].

This completes the proof.

B.2 Explicit expression of W in equation (3.10)

Let Vm be the covariance of repeated measures of completers defined above. Study

subject dropout defines m−1 additional covariance matrices

Vk =

Uk 0

0 0

 ,

k = 1, ...,m−1 Where Uk are the k by k upper left submatrices of the completers’ covariance

matrix Vm. Then by equation (3.6)

W = nV (α̂) =

(
∑
k

pkV−1
k

)−1

.
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Appendix C

Supplementary materials for Chapter 4

C.1 Proofs

Proof of Proposition 1. Let θ̃(s) = θ(s)−θ0 = h(s)+0 and M̃u be the number of local maxima

of the random field X̃(s) = Z(s)+ θ̃(s) above u over D. Considering the definition of power, we

have

F(u−θ0) = P[M̃u−θ0 ≥ 1] = P[Mu ≥ 1].

Given that E[M̃u−θ0] = E[Mu], is is also straightforward to show E[Mu] is translation equivariant

with respect to θ0.

Proof of Theorem 1. The proof is based on the proof of Lemma 3 in Piterbarg (1996) and Lemma

4.1 in Cheng and Schwartzman (2015).

E[Mu(Mu −1)] =
∫

Dε

∫
Dε

∫
∞

u

∫
∞

u
E

|det∇2X(s)||det∇2X(t)|

∣∣∣∣∣∣∣
X(s) = x1,X(t) = x2

∇X(s) = ∇X(t) = 0


PX(s),X(t),∇X(s),∇X(t)(x1,x2,0,0)dx1 dx2 dsdt.

(C.1)

Let

E1(s, t) = E

|det∇2X(s)||det∇2X(t)|

∣∣∣∣∣∣∣
X(s) = x

∇X(s) = ∇X(t) = 0

 ,
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and replace one of the integration limits in (C.1) by −∞, we have

E[Mu(Mu −1)]≤
∫

Dε

∫
Dε

P∇X(s),∇X(t)(0,0)dsdt
∫

∞

u
E1(s, t)PX(s) (x|∇X(s) = ∇X(t) = 0)dx.

Then we can take the Taylor expansion

∇X(t) = ∇X(s)+∇
2X(s)(t − s)+ ||t − s||1+αYs,t ,

where Ys,t = (Y 1
s,t , ...,Y

N
s,t)

T is a Gaussian vector field. Note that the determinant of ∇2X(s) is

equal to the determinant of



1 −(t1 − s1) . . . −(tN − sN)

0
... ∇2X(s)

0


. (C.2)

For i = 2, ...,N +1, multiply the ith column of this matrix by (ti − si)/||ti − si||2, take the

sum of all such columns and add the result to the first column. Since ∇X(s) = ∇X(t) = 0, we can

derive ∇2X(s)(t − s) =−||t − s||1+αYs,t , and obtain the matrix below with the same determinant

as (C.2)



0 −(t1 − s1) . . . −(tN − sN)

−||t − s||−1+αY 1
s,t

... ∇2X(s)

−||s− t||−1+αY N
s,t


.
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Let r = max1≤i≤N |ti − si|,

As,t =



0 −(t1 − s1)/r . . . −(tN − sN)/r

Y 1
s,t
... ∇2X(s)

Y N
s,t


.

So we have

E1(s, t)≤ ||t − s||αE2(s, t),

where

E2(s, t) = E

|detAs,t ||det∇2X(t)|

∣∣∣∣∣∣∣
X(s) = x,∇X(s) = 0

∇2X(s)(t − s) =−||t − s||1+αYs,t

 .
Using the inequality of arithmetic and geometric means, we can bound the determinant

|det∇2X(t)| ≤ N2N−2
∑
i, j

|Xi j(t)|N ,

|detAs,t | ≤ (N +1)2N
∑
i, j

|ai j|N+1,

where ai j is the i, j entry of As,t . Apply the inequality again

|det∇2X(t)||detAs,t | ≤
1
2

N2N−2(N +1)2N+1

(
∑
i, j

|Xi j(t)|2N +∑
i, j

|ai j|2N+2

)
.

For any Gaussian variable X and integer N ≥ 0, the following inequality holds

E[X2N ]≤ 22N(E[X ]2N +CNVar(X)2N),

where CN is a constant depending on N. Next, we can focus on the conditional expectation and

conditional variance of Xi j(t) and Ys,t .
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By Assumption 1 and 2 and the fact that the conditional variance of a Gaussian variable

is less or equal to the unconditional variance, we can conclude that the conditional variance of

Xi j(t) and Ys,t are bounded above by some constant.

Summarizing the results above,

sup
s,t∈Dε ,s ̸=t

|E2(s, t)| ≤C1

for some constant C1 > 0 and

E1(s, t)≤ ||t − s||αE2(s, t)≤C1||t − s||α .

Combine the results above and with a fixed threshold u

∫
∞

u
E1(s, t)PX(s) (x|∇X(s) = ∇X(t) = 0)dx

≤C1||t − s||α
∫

∞

u
PX(s) (x|∇X(s) = ∇X(t) = 0)dx

=C1||t − s||α
∫

∞

u
exp(−(Ax−B)2)dx for some constant A, B

=C2||t − s||α

for some constant C2 > 0.

Next, by the proof of Lemma 4.1 in Cheng and Schwartzman (2015)

p∇X(s),∇X(t)(0,0)≤C3||t − s||−N

for some constant C3 > 0.

Therefore, there exists C4 such that

E[Mu(Mu −1)]≤C4

∫
Dε

∫
Dε

1
||t − s||N−α

dt ds = o(εN).

105



For E[Mu], by Kac-Rice formula in Adler and Taylor (2007)

E[Mu] =
∫

Dε

p∇X(s)(0)E
[
|det∇2X(s)|1{∇2X(s)≺0}1{X(s)>u}|∇X(s) = 0

]
ds.

Denote the integrand by g(s). The function g(s) is continuous and positive over the

compact domain Dε . Thus infs∈Dε
g(s)≥ g0 > 0, implying

E[Mu]≥ g0ε
N .

Then (4.7) is an immediate consequence of (4.5).

For E[M−∞], by Kac-Rice formula

E[M−∞] =
∫

Dε

p∇X(s)(0)E
[
|det∇2X(s)|1{∇2X(s)≺0}|∇X(s) = 0

]
ds.

The integrand is also continuous and positive over the compact domain Dε indicating E[M−∞] =

o(1) for small ε . Thus we have

E[Mu]adj = E[Mu]/max(1,E[M−∞]) = E[Mu]/max(1,o(1)) = E[Mu]

for sufficiently small ε .

Proof of Theorem 2. By lemma 3 of Piterbarg (1996), as u → ∞, the factorial moment is super-

exponentially small. That means ∃α > 0 s.t.

E[Mu(Mu −1)] = o(e−
u2
2 −αu2

).

Also

E[Mu]≥ P[Mu ≥ 1]≥ P[supX(s)≥ u] = O(e−
u2
2 ).

Thus, the factorial moment decays exponentially faster than E[Mu]. The result is an immediate
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consequence of (4.5).

Proof of Theorem 3. By lemma A.1 of Cheng and Schwartzman (2017), as a → ∞

P(M−∞ = 1)≥ 1−O(exp(−ca2)),

where c > 0 is some constant. Therefore M−∞

p→ 1.

Since Mu ≤ M−∞ and both of them only take non-negative integer values, |Mu(Mu −1)|

and |M−∞(M−∞−1)| are bounded above by |M(M−1)| where M is the number of critical points

of the random field X . Apply Kac-Rice formula

E[M(M−1)] =
∫

D

∫
D
E
[
|det∇2X(s)||det∇2X(t)|

∣∣∇X(s) = ∇X(t) = 0
]

P∇X(s),∇X(t)(0,0)dsdt.

Denote the integrand by g(s, t,a). The function g(s, t,a) is continuous and positive

over the compact domain D and M(M−1)
p→ 0 as a → ∞. Thus there exists g0 > 0 such that

E[M(M−1)]≤ g0. Then by dominated convergence theorem

E[Mu(Mu −1)]→ 0

as a → ∞. Since M−∞

p→ 1, the adjusted E[Mu]

E[Mu]adj = E[Mu]max(1,E[M−∞]) = E[Mu](1+o(1)) = E[Mu]+o(1).

To calculate E[Mu], apply Kac-Rice formula

E[Mu] =
∫

D
p∇X(s)(0)E

[
|det∇2X(s)|1{∇2X(s)≺0}1{X(s)>u}|∇X(s) = 0

]
ds

=
∫

D
p∇X(s)(0)E

[
|det∇2X(s)|1{∇2X(s)≺0}1{X(s)>u}|∇X(s) = 0

]
ds

=
∫

D

1
(2π)N/2

√
det(Λ)

exp(−a2(∇h(s))T
Λ
−1

∇h(s)/2)
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E
[
|det(∇2Z(s)+a∇

2h(s))|1{∇2X(s)≺0}1{X(s)>u}|∇X(s) = 0
]

ds, (C.3)

where Λ is the covariance matrix of ∇h(s). Let f (s) = (∇h(s))T Λ−1∇h(s)/2 which attains its

minimum 0 only at s0. Similar to the proof of A.4 in Cheng and Schwartzman (2017), as a → ∞,

(C.3) can be approximated by applying Laplace’s method

E[Mu] =
det(a∇2h(s0))

(2π)N/2
√

det(Λ)

(
(2π)N det(Λ)

a2N det(∇2h(s0))

)1/2

Φ(θ0 −u)+O(a−2)

=Φ(θ0 −u)+O(a−2).

This finishes the proof.

Proof of Lemma 3. Part (i) is a direct consequence of Lemma 2. For part (ii), note that

(∇2X(s)|X(s) = x) is equivalent to (∇2Z(s)|Z(s) = x−θ(s))+∇2θ(s), and the result follows

immediately from Lemma 2.

Proof of Theorem 4. By the Kac-Rice formula

E[Mu] =
∫

D
p∇X(s)(0)E

[
|det∇2X(s)|1{∇2X(s)≺0}1{X(s)>u}|∇X(s) = 0

]
ds

=
∫

D
p∇Z(s)+∇θ(s)(0)E

[
|det∇2X(s)|1{∇2X(s)≺0}1{X(s)>u}|∇X(s) = 0

]
ds

=
∫

D

1
(2π)N/2(−2ρ ′)N/2 e

∥∇θ(s)∥2

4ρ ′ E
[
|det∇2X(s)|1{∇2X(s)≺0}1{X(s)>u}|∇X(s) = 0

]
ds

=
∫

D

(8ρ ′′2)N/2

(2π)N/2(−2ρ ′)N/2 e
∥∇θ(s)∥2

4ρ ′
∫

∞

u
φ (x−θ(s))E

[
|det(Matrix(s))|1{Matrix(s)≺0}

]
dxds

=
∫

D

(
2ρ ′′

−πρ ′

)N/2

e
∥∇θ(s)∥2

4ρ ′
∫

∞

u
φ (x−θ(s))E

[
|det(Matrix(s))|1{Matrix(s)≺0}

]
dxds

=

(
2ρ ′′

−πρ ′

)N/2 ∫
D

e
∥∇θ(s)∥2

4ρ ′
∫

∞

u
φ (x−θ(s))E

[
|det(Matrix(s))|1{Matrix(s)≺0}

]
dxds.
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Next, we show the derivation from the third to the fourth line in the equation above. Since

we assume ∇2θ(s) is a non-singular matrix at all critical points, then there exists an or-

thonormal matrix, denoted by A(s), such that A(s)T ∇2θ(s)A(s) = diag{θ ′′
1 (s),θ

′′
2 , . . . ,θ

′′
N(s)},

where θ ′′
1 ≤ . . .≤ θ ′′

N(s) are ordered eigenvalues of ∇2θ(s). On the other hand, GOI matrices

are invariant under orthonormal transformations. By Lemma 3, the conditional expectation

E[|det(∇2X(s))|1{∇2X(s)≺0}|X(s) = x] is therefore

= E
[∣∣∣∣det

(√
8ρ ′′

[
G− κ(x−θ(s))√

2
IN

]
+∇

2
θ(s)

)∣∣∣∣1{Matrix(s)≺0}

]
= E

[∣∣∣∣det
(√

8ρ ′′
[

G− κ(x−θ(s))√
2

IN

]
+A(s)T

∇
2
θ(s)A(s)

)∣∣∣∣1{Matrix(s)≺0}

]
= (
√

8ρ ′′)NE
[∣∣∣∣det

([
G− κ(x−θ(s))√

2
IN

]
+A(s)T

∇
2
θ(s)A(s)/

√
8ρ ′′

)∣∣∣∣1{Matrix(s)≺0}

]
= (
√

8ρ ′′)NE
[∣∣∣∣det

(
G− κ(x−θ(s))√

2
IN +diag{θ

′′
1 (s), . . . ,θ

′′
N(s)}/

√
8ρ ′′

)∣∣∣∣1{Matrix(s)≺0}

]
.

Proof of Proposition 2. Since we assume that Z(s) is stationary, Z′(s) is independent of Z(s)

and Z′′(s), and ρ ′ =−Var(Z′(s))/2 = E[Z(s)Z′′(s)]/2 and ρ ′′ = Var(Z′′(s))/12 do not depend

on s. Therefore,

Var(X(s)) = 1, Var(X ′(s)) =−Cov(X(s)X ′′(s)) =−2ρ
′ and Var(X ′′(s)) = 12ρ

′′.

Note that, by the formula of conditional Gaussian distributions,

X ′′(s)|X(s) = x ∼ N(θ ′′(s)+2ρ
′(x−θ(s)),12ρ

′′−4ρ
′2).

By the Kac-Rice formula

E[Mu] =
∫

D
pX ′(s)(0)E[|X ′′(s)|1{X(s)>u}1{X ′′(s)<0}|X ′(s) = 0]ds
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=
∫

D
pX ′(s)(0)

∫
∞

u
φ(x−θ(s))

∫ 0

−∞

(−x′′)
1√

12ρ ′′−4ρ ′2

×φ

[
x′′−θ ′′(s)−2ρ ′(x−θ(s))√

12ρ ′′−4ρ ′2

]
dx′′ dxds

=
∫

D
pX ′(s)(0)

√
12ρ ′′−4ρ ′2

∫
∞

u
φ(x−θ(s))ψ

(
−2ρ ′(x−θ(s))−θ ′′(s)√

12ρ ′′−4ρ ′2

)
dxds

=
∫

D

1√
−2ρ ′

φ

(
θ ′(s)√
−2ρ ′

)√
12ρ ′′−4ρ ′2

∫
∞

u
φ(x−θ(s))

×ψ

(
−2ρ ′(x−θ(s))−θ ′′(s)√

12ρ ′′−4ρ ′2

)
dxds

=
∫

D

√
12ρ ′′−4ρ ′2√

−2ρ ′
φ

(
θ ′(s)√
−2ρ ′

)∫
∞

u
φ(x−θ(s))ψ

(
−2ρ ′(x−θ(s))−θ ′′(s)√

12ρ ′′−4ρ ′2

)
dxds.

The second to third line is due to the fact that

∫ 0

−∞

(−x)
1
b

φ

(
x+a

b

)
dx =

∫ 0

−∞

Φ

(
x+a

b

)
dx = b

∫ a/b

−∞

Φ(y)dy = bψ

(a
b

)
.

Recall the κ (4.10) and η (4.13) parameters defined before. We can rewrite E[Mu] as

∫
D

√
−2ρ ′(3−κ2)

κ
φ

(
θ ′(s)√
−2ρ ′

)∫
∞

u
φ(x−θ(s))ψ

(
κ[x−θ(s)−η(s)]√

3−κ2

)
dxds.

This finishes the proof.

Proof of Proposition 3. By Lemma 4 above with a = (κ2 −1)/(4−2κ2) and b = κ x̃/
√

2, and

Lemma 2.2 in Cheng and Schwartzman (2018),

EN
GOI((1−κ2)/2)

[
N

∏
j=1

∣∣∣∣λ j −
κ x̃√

2

∣∣∣∣ I(λN <− κ x̃√
2

)]

=
1

2
√

π(2−κ2)

∫
R2

exp
{
− 1

2
(λ 2

1 +λ
2
2 )+

1−κ2

4(2−κ2)
(λ1 +λ2)

2
}
(λ2 −λ1)
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×
∣∣∣∣λ1 −

κ x̃√
2

∣∣∣∣ ∣∣∣∣λ2 −
κ x̃√

2

∣∣∣∣1{λ2<
κ x̃√

2
}dλ1 dλ2

=
1√

3−κ2
e
− κ2 x̃2

2(3−κ2) Φ

(
κ x̃√

(2−κ2)(3−κ2)

)
+

κ2

2
(
x̃2 −1

)
Φ

(
κ x̃√

2−κ2

)
+

κ
√

2−κ2x̃
2
√

2π
e
− κ2 x̃2

2(2−κ2) . (C.4)

This simplifies to (4.19).

Proof of Proposition 4. This is a direct result of Lemma 5 above with a = 1− κ2 and b =

κ x̃/
√

2.
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Appendix D

Supplementary materials for Chapter 5

D.1 Proofs

Proof of Lemma 6. Following (5.2), the covariance function of X is

E[X(t)X(s)] = h
(

t + s
2

,(t − s)2
)
.

Taking partial derivatives on both sides, we have

∂

∂ t
E[X(t)X(s)] =

1
2

h′1

(
t + s

2
,(t − s)2

)
+2(t − s)h′2

(
t + s

2
,(t − s)2

)
,

∂ 2

∂ t2E[X(t)X(s)] =
1
4

h′′11

(
t + s

2
,(t − s)2

)
+2(t − s)h′′12

(
t + s

2
,(t − s)2

)
+4(t − s)2h′′22

(
t + s

2
,(t − s)2

)
+2h′2

(
t + s

2
,(t − s)2

)
,

∂ 2

∂ t∂ s
E[X(t)X(s)] =

1
4

h′′11

(
t + s

2
,(t − s)2

)
−4(t − s)2h′′22

(
t + s

2
,(t − s)2

)
−2h′2

(
t + s

2
,(t − s)2

)
,

∂ 3

∂ t2∂ s
E[X(t)X(s)] =

1
8

h′′′111

(
t + s

2
,(t − s)2

)
+

1
2
(t − s)h′′′112

(
t + s

2
,(t − s)2

)
−2(t − s)2h′′′122

(
t + s

2
,(t − s)2

)
−8(t − s)3h′′′222

(
t + s

2
,(t − s)2

)
−h′′12

(
t + s

2
,(t − s)2

)
−12(t − s)h′′22

(
t + s

2
,(t − s)2

)
,
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∂ 4

∂ t2∂ s2E[X(t)X(s)] =
1
16

h′′′′1111

(
t + s

2
,(t − s)2

)
−2(t − s)2h′′′′1122

(
t + s

2
,(t − s)2

)
+16(t − s)4h′′′′2222

(
t + s

2
,(t − s)2

)
−h′′′112

(
t + s

2
,(t − s)2

)
+48(t − s)2h′′′222

(
t + s

2
,(t − s)2

)
+12h′′22

(
t + s

2
,(t − s)2

)
.

By (5.5.5) in Adler and Taylor (2007),

Var(X(t)) = E[X(t)X(s)]|s=t = h0(t),

Var(X ′(t)) =
∂ 2

∂ t∂ s
E[X(t)X(s)]

∣∣∣∣
s=t

=
1
4

h′′11(t)−2h′2(t),

Var(X ′′(t)) =
∂ 4

∂ t2∂ s2E[X(t)X(s)]
∣∣∣∣
s=t

=
1

16
h′′′′1111(t)−h′′′112(t)+12h′′22(t),

E[X(t)X ′(t)] =
∂

∂ t
E[X(t)X(s)]

∣∣∣∣
s=t

=
1
2

h′1(t),

E[X(t)X ′′(t)] =
∂ 2

∂ t2E[X(t)X(s)]
∣∣∣∣
s=t

=
1
4

h′′11(t)+2h′2(t),

E[X ′(t)X ′′(t)] =
∂ 3

∂ t2∂ s
E[X(t)X(s)]

∣∣∣∣
s=t

=
1
8

h′′′111(t)−h′′12(t).

Proof of Theorem 5. Let Z(t) = X(t)/σ(t) so that Z(t) has unit variance. To apply the Kac-Rice

formula (5.1) to compute the peak height distribution, we need the variances and covariances

of the first and second order derivatives. Suppose the random vector (Z(t),Z′(t),Z′′(t)) has the

covariance structure
Var(Z(t)) E[Z(t)Z′(t)] E[Z(t)Z′′(t)]

E[Z(t)Z′(t)] Var(Z′(t)) E[Z′(t)Z′′(t)]

E[Z(t)Z′′(t)] E[Z′(t)Z′′(t)] Var(Z′′(t))

=


1 0 −λ1(t)

0 λ1(t) r1(t)

−λ1(t) r1(t) λ2(t)

 ,

where Z′(t) and Z′′(t) are the first and second order derivatives of Z(t). E[Z(t)Z′(t)] = 0 and

Var(Z′(t)) =−E[Z(t)Z′′(t)] can be derived from taking the first and second derivatives on both
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sides of Var(Z(t)) = 1.

With a minor abuse of notation, we use ρ , λ1, λ2, r1 to represent ρ(t), λ1(t), λ2(t) and

r1(t), and σt , σ ′
t , σ ′′

t , σ̃t to represent σ(t), σ ′(t), σ ′′(t), σ̃(t). Following this notation, we have

X ′(t) = σ ′
t Z(t)+σtZ′(t) and X ′′(t) = σ ′′

t Z(t)+ 2σ ′
t Z′(t)+σtZ′′(t). X(t), X ′(t) and X ′′(t) are

Gaussian distributed with mean 0, and variance-covariance matrix


Var(X(t)) E[X(t)X ′(t)] E[X(t)X ′′(t)]

E[X(t)X ′(t)] Var(X ′(t)) E[X ′(t)X ′′(t)]

E[X(t)X ′′(t)] E[X ′(t)X ′′(t)] Var(X ′′(t))



=


σ2

t σtσ
′
t σtσ

′′
t −σ2

t λ1

σtσ
′
t σ ′2

t +σ2
t λ1 σ ′

t σ ′′
t +σtσ

′
t λ1 +σ2

t r1

σtσ
′′
t −σ2

t λ1 σ ′
t σ ′′

t +σtσ
′
t λ1 +σ2

t r1 σ ′′2
t +(4σ ′2

t −2σtσ
′′
t )λ1 +σ2

t λ2 +4σtσ
′
t r1



=


a d f

d b e

f e c

 ,

where a, b, c, d, e, f are some constants for fixed t. Therefore

E[X(t),X ′′(t)|X ′(t) = 0] = (0,0),

and

Var(X(t),X ′′(t)|X ′(t) = 0) =

a f

f c

−

d

e

 1
b

(
d e

)
=

a− d2

b f − de
b

f − de
b c− e2

b

 .

According the definition, we have

ρ := Cor(X(t),X ′′(t)|X ′(t) = 0)
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=
f b−de√

(ab−d2)(bc− e2)

=−
σ2

t λ 2
1 +(2σ ′2

t −σtσ
′′
t )λ1 +σtσ

′
t r1√

λ1(σ
2
t (3σ ′2

t −2σtσ
′′
t )λ

2
1 +(σtσ

′′
t −2σ ′

t )
2λ1 +σ4

t λ1λ2 +2σ3
t σ ′

t λ1r1
+σ2

t σ ′2
t λ2 −σ4

t r2
1 +(4σtσ

′3
t −2σ2

t σ ′
t σ ′′

t )r1)

,

and

σ̃
2
t := Var(X(t)|X ′(t) = 0) = a− d2

b
=

σ4
t λ1

σ ′2
t +σ2

t λ1
.

The peak height density is given by the derivative of (5.1)

ft(x) =
E[|X ′′(t)|1{X ′′(t)<0}|X(t) = x,X ′(t) = 0]pX(t)(x|X ′(t) = 0)

E[|X ′′(t)|1{X ′′(t)<0}|X ′(t) = 0]
.

First, we compute the denominator

E[|X ′′(t)|1{X ′′(t)<0}|X ′(t) = 0] =−
∫ 0

−∞

x√
c− e2

b

φ

 x√
c− e2

b

dx =

√
c− e2

b√
2π

.

Similarly, X ′′(t)|X(t) = x,X ′(t) = 0 is Gaussian distributed with mean

E[X ′′(t)|X(t) = x,X ′(t) = 0] =
(

f e

)a d

d b


−1x

0

=
f b− ed
ab−d2 x =−ηx,

and variance

Var(X ′′(t)|X(t) = x,X ′(t) = 0) =c−
(

f e

)a d

d a


−1 f

e


=c− f 2b−2 f ed +ae2

ab−d2 = c−ξ ,

115



where η := (ed − f b)/(ab−d2) and ξ := ( f 2b−2 f ed +ae2)/(ab−d2). Now the numerator

of the Kac-Rice formula becomes

E[|X ′′(t)|1{X ′′(t)<0}|X(t) = x,X ′(t) = 0]
1
σ̃t

φ

(
x
σ̃t

)
=− 1

σ̃t
φ

(
x
σ̃t

)∫ 0

−∞

y√
c−ξ

φ

(
y+ηx√

c−ξ

)
dy

=ηxΦ

(
ηx√
c−ξ

)
1
σ̃t

φ

(
x
σ̃t

)
+
√

c−ξ φ

(
ηx√
c−ξ

)
1
σ̃t

φ

(
x
σ̃t

)
.

Combine the results above and consider (5.4), we have

ft(x) =
ηxΦ

(
ηx√
c−ξ

)
1
σ̃t

φ

(
x
σ̃t

)
+
√

c−ξ φ

(
ηx√
c−ξ

)
1
σ̃t

φ

(
x
σ̃t

)
√

c− e2
b√

2π

=
1
σ̃t

φ

(
x
σ̃t

)√
2π(c−ξ )

c− e2

b

[
φ

(
ηx√
c−ξ

)
+

ηx√
c−ξ

Φ

(
ηx√
c−ξ

)]

=
1
σ̃t

φ

(
x
σ̃t

)√
2π(c−ξ )

c− e2

b

ψ

(
ηx√
c−ξ

)
.

Using the fact that

ξ = σ̃
2
t η

2 +
e2

b
= σ

2
t λ

2
1 −2(σtσ

′′
t −2σ

′2
t )λ1 +

r2
1σ2

t

λ1
+4σtσ

′
t +σ

′′2
t ,

we have

1− (c−ξ )

c− e2

b

=
ξ − e2

b

c− e2

b

=
σ̃2

t η2

c− e2

b

=
( f b−dc)2

(ab−d2)(bc− e2)
= ρ

2,

and

1+ σ̃
2
t

η2

c−ξ
=

c− e2

b
c−ξ

=
1

1−ρ2 .
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Therefore, the peak height density can be further simplified as

ft(x) =
1
σ̃t

φ

(
x
σ̃t

)√
2π(1−ρ2)ψ

(
−ρx√

1−ρ2σ̃t

)
.

The mean and variance of the peak height can be derived from its density function. Using

the properties of Gaussian integrals (Owen, 1980), we have

∫
∞

−∞

x ft(x)dx

=
∫

∞

−∞

√
2π(1−ρ2(t))

x
σ̃(t)

φ

(
x

σ̃(t)

)
φ

(
−ρ(t)x√

1−ρ2(t)σ̃(t)

)
dx

−
∫

∞

−∞

√
2π(1−ρ2(t))

x
σ̃(t)

φ

(
x

σ̃(t)

)
ρ(t)x√

1−ρ2(t)σ̃(t)
Φ

(
−ρ(t)x√

1−ρ2(t)σ̃(t)

)
dx

=−
√

2πρ(t)σ̃(t)
∫

∞

−∞

x2
φ(x)Φ

(
−ρ(t)x√
1−ρ2(t)

)
dx

=−
√

π

2
ρ(t)σ̃(t),

∫
∞

−∞

x2 ft(x)dx

=
√

2π(1−ρ2(t))σ̃2(t)
∫

∞

−∞

x2
φ(x)φ

(
−ρ(t)x√
1−ρ2(t)

)
dx

−
√

2πρ(t)σ̃2(t)
∫

∞

−∞

x3
φ(x)Φ

(
−ρ(t)x√
1−ρ2(t)

)
dx

=(1−ρ
2(t))2

σ̃
2(t)−ρ

2(t)(ρ2(t)−3)σ̃2(t)

=(ρ2(t)+1)σ̃2(t).

The mean and variance are direct results of the first and second moments.

Proof of Proposition 5. Since the derivation for ρ(t) = −1 and ρ(t) = 1 follows a similar ap-
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proach, here we only illustrate the method for ρ(t) =−1. With ρ(t) = Cor(X(t),X ′′(t)|X ′(t) =

0) =−1, the numerator of the Kac-Rice formula (5.1) becomes

E[|X ′′(t)|1{X ′′(t)<0}1{X(t)>u}|X ′(t) = 0]

=E[|X ′′(t)|1{X ′′(t)<−
√

Var(X ′′(t)|X ′(t)=0)/Var(X(t)|X ′(t)=0)u}|X
′(t) = 0]

=
∫ −

√
Var(X ′′(t)|X ′(t)=0)/σ̃(t)u

−∞

x√
Var(X ′′(t)|X ′(t) = 0)

φ

(
x√

Var(X ′′(t)|X ′(t) = 0)

)
dx

=
√

Var(X ′′(t)|X ′(t) = 0)φ
(

u
σ̃(t)

)
.

The denominator is the same as the non-boundary case

E[|X ′′(t)|1{X ′′(t)<0}|X ′(t) = 0] =

√
Var(X ′′(t)|X ′(t) = 0)√

2π
.

The peak height distribution

Ft(u) =
E[|X ′′(t)|1{X ′′(t)<0}1{X(t)>u}|X ′(t) = 0]

E[|X ′′(t)|1{X ′′(t)<0}|X ′(t) = 0]
= 2πφ

(
u

σ̃(t)

)
.

Taking derivative, we obtain

ft(x) =

√
2πx

σ̃2(t)
φ

(
x

σ̃(t)

)
.

Proof of Theorem 6. Take the derivative on both sides of (5.14), we obtain

X ′(t) =
∫

∞

−∞

− ν ′(t)
2ν(t)3/2 k

(
t − s
ν(t)

)
+ k′

(
t − s
ν(t)

)
ν(t)− (t − s)ν ′(t)

ν(t)5/2 dB(s).

Using the property of Wiener Integral and applying the change of variable u = (t − s)/ν(t), we
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have

Var(X ′(t)) =
∫

∞

−∞

(
− ν ′(t)

2ν(t)3/2 k
(

t − s
ν(t)

)
+ k′

(
t − s
ν(t)

)
ν(t)− (t − s)ν ′(t)

ν(t)5/2

)2

ds

=
∫

∞

−∞

(
− ν ′(t)

2ν(t)
k(u)+

1−uν ′(t)
ν(t)

k′(u)
)2

du

=
1

ν(t)2

∫
∞

−∞

(
−1

2
ν
′(t)k(u)+(1−uν

′(t))k′(u)
)2

du

=
1

ν(t)2C1, (D.1)

where C1 is a constant when ν(t) is a linear function of t.

Take the derivative again, we have

X ′′(t) =
∫

∞

−∞

−1
2

(
2ν ′′(t)ν(t)3/2 −3ν ′(t)2ν(t)1/2

2ν(t)3 k
(

t − s
ν(t)

)
+

ν ′(t)ν(t)− (t − s)ν ′(t)2

ν(t)7/2 k′
(

t − s
ν(t)

))
+

(ν(t)− (t − s)ν ′(t))2

ν(t)9/2 k′′
(

t − s
ν(t)

)
− 2(t − s)ν ′′(t)ν(t)5/2 +5ν ′(t)ν(t)5/2 −5(t − s)ν ′(t)2ν(t)3/2

ν(t)5 dB(s).

Again, let u = (t − s)/ν(t) and use the fact ν ′′(t) = 0 and ν ′(t) independent of t when ν(t) is

linear,

Var(X ′′(t)) =
1

ν(t)4C2 (D.2)

for some constant C2. Similar to (D.1) and (D.2),

E[X ′(t)X ′′(t)] =
1

ν(t)3C3, (D.3)
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where C3 is a constant when ν(t) is linear. Combining (D.1), (D.2) and (D.3),

ρ(t) =− Var(X ′(t))√
Var(X ′′(t))− E[X ′(t)X ′′(t)]2

Var(X ′(t))

=
C1√

C2 −
C2

3
C1

.

This finishes the proof.

Proof of Theorem 7. For convenience, apply the change of variable v =−logν . The covariance

function

E[X(t,v)X(t̃, ṽ)] = eN(v+ṽ)/2
∫

k((s− t)ev)k((s− t̃)eṽ)ds.

At a fixed point, the first-order partial derivatives of X are Gaussian distributed with mean

0. The variances and covariances can be derived by applying (5.5.5) in Adler and Taylor (2007)

Var
(

∂X
∂ t

)
= e2v

∫
k̇(s)k̇(s)′dh,

Var
(

∂X
∂v

)
=
∫ (

s′k̇(s)+
N
2

k(s)
)2

ds,

E
[

∂X
∂ t

∂X
∂v

]
= 0.

We define a random vector G = (Gi)1≤i≤N+1 such that

Gi =


1
ev

∂X
∂ ti

i ≤ N

∂X
∂v i = N +1

.

Note that the distribution of G is independent of (t,v).

The second-order partial derivatives of X , i.e. entries of the Hessian matrix ∇2X are also

Gaussian distributed with mean 0.

∂ 2X
∂ t∂ t ′

= e2vA,
∂ 2X
∂ t∂v

= evB,
∂ 2X
∂v2 =C,
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where the distribution of A is proportional to GOI(1/2) (Cheng and Schwartzman, 2018). The

variance covariance matrix for vector B and scalar C are

Var(B) =
∫ (

k̈(s)s+
(

N
2
+1
)

k̇(s)
)(

k̈(s)s+
(

N
2
+1
)

k̇(s)
)′

ds,

Var(C) =
∫ (

s′k̈(s)s+(N +1)s′k̇(s)+
N2

4
k(s)

)2

ds,

and the covariance between A, B and C does not depend on the parameter (t,v).

∇
2X(t,v) =

( ∂ 2X
∂ ti∂ t j

)1≤i, j≤N ( ∂ 2X
∂ ti∂v)1≤i≤N

( ∂ 2X
∂v∂ t j

)1≤ j≤N
∂ 2X
∂v2

=

e2vA evB

evB C

 ,
and define the matrix H as

H =

A B

B C

 .
The distribution of H is again independent of (t,v) like G. Similarly, the covariance between X

and the entries of G, the covariance between X and the entries of H, and the covariance between

the entries of G and the entries of H are all independent of (t,v). Therefore, the joint distribution

of (X ,G,H) is independent of (t,v).

Next, we have

det∇
2X(t,v) = det(e2vA)det(C− evB′e−2vA−1evB)

= e2Nv det(A)det(C−B′A−1B)

= e2Nv det(H).

Note that the determinant of the kth principal minor of ∇2X(t,v) is equal to a positive number

times the determinant of the kth principal minor of H. By Sylvester’s criterion, ∇2X(t,v) being

negative definite is equivalent to H being negative definite. Applying the Kac-Rice formula (5.1),
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the peak height distribution of X(t,v) for any fixed point

Ft,v(u) =
E[|det∇2X(t,v)|1{∇2X(t,v)≺0}1{X(t,v)>u}|∇X(t,v) = 0}

E{|det∇2X(t,v)|1{∇2X(t,v)≺0}|∇X(t,v) = 0]

=

∫
∞

x E[|det∇2X(t,v)|1{∇2X(t,v)≺0}|X(t,v) = x,∇X(t,v) = 0]φ(x)dx

E[|det∇2X(t,v)|1{∇2X(t,v)≺0}|∇X(t,v) = 0]

=
e2NvE[|detH|1{H≺0}1{X>u}|G = 0]

e2NvE[|detH|1{H≺0}|G = 0]

=
E[|detH|1{H≺0}1{X>u}|G = 0]

E[|detH|1{H≺0}|G = 0]
.

This finishes the proof.
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