
Lawrence Berkeley National Laboratory
LBL Publications

Title
Applications of a Natural-Style Database Query Language to Statistical Database
Operations

Permalink
https://escholarship.org/uc/item/2jh39802

Authors
Laubenheimer, William J
Rosenberg, Steven

Publication Date
1981-09-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2jh39802
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

LBL-13348
Co d--

Lawrence· Berkeley Laboratory
UNIVERSITY OF CA!LIFORNIA

R E C ~ I V E"
Physics, Computer Science ~RI<El~;~;~;~ATOR~
Mathematics Division IIJOV ~ 4 1981

" LIBRARY AND
Submi tte'd to Statistical Database Management DOCUMENTS SECTION
Workshop, Menlo Park, CA, December 2.,...4, 1981

APPLICATIONS OF A NATURAL-STYLE DATABASE QUERY
LANGUAGE TO STATISTICAL DATABASE OPERATIONS

William J. Laubenheimer and Steven Rosenberg

September 1981
TWO-WEEK LOAN COpy

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Diuision, Ext. 6782

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product.
process, or servIce by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California. .

" ~ ,

~"" ..

l .:,,' ~" .

\~

lBl-13348

Applications of a Natural-Style Oatabase Query Language to

Statistical Oatabase Operations

William J. Laubenheimer
Steven Rosenberg

Computer Science and Mathematics Department
lawrence Berkeley Laboratory

University of California
Berkeley. California 94720

ABSTRACT

FRL (Frame Representation Language) is a knowledge
representation system suitable for use In database management
systems. One drawback of FRL for such uses is its lack of a
convenient mechanism for expressing queries. particularly for
the naive user. A language which alleviates this difficulty by
allowing queries to be expressed in a natural-sounding
(although not actually natural) form is presented. and its uses
and advantages in a statistical database environment are
explored.

I his· work was supported by the Applied Mathematical SCiences
Research Program of the Office of Energy Research. U.S. Department
of Energy under contract W-7405-ENG-48. and by the Defense Ad
vanced Research Projects Agency.

- 2 -

1. Introduction

An important part of any database management system (DBMS) is the

means with which it interacts with the user. This is particularly important if

a substantial fraction of the user community Is· to consist of people who are

not familiar with the intimate details of the DBMS. and indeed may not even

be fluent in the implementation language of the DBMS (or any computer

language). One' approach to allowing such people to use the DBMS is to

provide an interpreter which translates a natural (I. e. English-like) style of

command into actual DBMS commands. Such a system. currently under

development at the Lawrence Berkeley Laboratory of the University of Califor

nia; is described below.

The particular implementation language on which the DBMS and query

language are built is the FRL (Frame Representation Language) language

[RG77a. RG77bL which itself is implemented in LISP. FRL was originally

conceived as a knowledge representation system. but has many features

which make it suitable for database implementation on a hierarchical model.

In FRL data objects are represented by frames [M7SL which are nested

lists of associations between a name. called an indicator in FRL and a set

of values. A frame is a collection of slots, which give the data structure of

the frame. Slots are likewise collections of facets, which hold the data

associated with the Indicator of the slot procedures to be executed when

certain conditions regarding that slot are satisfied. and other items of

relevance to the FRL system. Data are commonly either names of other

frames. which allow the expression of relations. or outright values.

2. The FRL Interface

FRL provides. procedures~· for creating and destroying frames. fields of

frames. hierarchies of frames; for inserting and extracting data from

fi •

- 3 -

appropriate fields; for reading and printing frames; and for providing actions

to be performed either when a certain operation is performed on a desig

nated field or when a condition is satisfied by a particular field or combi

nation of fields. A LISP programmer can use FRL by means of these pro-

. "r cedures.

Another means of interaction with FRL is through a language called

Framish. which allows certain frame manipulations to be performed by typing

natural-sounding phrases as opposed to LISP code. Framish represents a

far more pleasant method of interaction between a user unfamiliar with LISP

and the FRL system. since many aspects of LISP (most notably quotation

and parenthesis balancing> are to a large extent unnecessary In Framlsh.

Framish is based on the top-down operator precedence technique of

Pratt [P73]. This technique creates parsers which can easily be extended in

scope. An extension of Framish was made which gave it sufficient power to

use FRL without having to understand LISP. This extension has resulted in a

language which includes many features especially convenient for statistical

database manipulations.

3. The Original Framish Language

As originally implemented. Framish supplied the following features:

Gl Arithmetic operations: sum. difference. product. quotient.

i Arithmetic relations: greater than. less than. equal to.

i Boolean operations: and. or. not.

i Membership operation: determine whether certain values are present in

a given slot of a frame. Since hlerarchichal information is maintained

within the frame structure. this operation also determines hierarchical

structure.

- 4 -

$ Conditional evaluation: if-then. if-then-else.

$ Sequencing and grouping of expressions.

$ List building.

$ The ability to call LISP or FRL functions using algebraic notation. or to

revert temporarily to normal LISP syntax.

$ Data operations: retrieval. Insertion. deletion.

$ Frame creation and deletion.

Once Framish has been loaded into an active FRL system. it may be

used at any time. Framish commands may be mixed with LISP commands.

and in fact. as indicated above. expressions in Framish may be intermingled

with expressions in LISP.

Commands in Framish are expressed in a natural style. and it is not

necessary to comprehend the structure of the frames to use Framish. For

example. if. in a socio-economic setting. it was known that each state had

a field (called a slot in FRU called population which contained the popula

tion for that state. it Would suffice to enter:

{ Get the population of California

to retrieve the population of California. In order to find the total population

of Federal Region IX. one can say:

{ the sum of the population of California. the population of Nevada. the

population of Arizona. the population of Hawaii

Turning to a . business model. say. of a department store and its merchan

dise shipments. we might record a shipment of 500 television sets from a

warehouse in San Francisco to a store in San Jose by the following

sequence of steps:

" 'V

- 5 -

(Create a new shipment

Its item is tv-sets

Its quantity is 500

(Its warehouse is san-francisco

Its store is san-jose)

The FRL implementation of the DBMS would include instructions so that

specifying the warehouse would subtract 500 from th~ number of television

sets on hand in the San Francisco warehouse. and specifying the store

would add 500 to the number of television sets on hand in the San Jose

store.

It should be noted that although the style of statement used in Framish

is natural. Framish is not. In fact. a truly natural language .. In fact. the

parsing technique used [P731 is neither geared towards nor particularly

suited for natural-language parsing. and Framish statements may only devi

ate from the indicated form in such ways as have been anticipated by the

language builder. Against this. though. must be weighed the immense over

head in space and time required by "true" natural-language database query

languages and the general lack of ease with which such systems can be

modified. It is generally quite easy to add additional Framish statement types

to Framish. Although the intended purpose of Framish was to allow the

LISP-naive user to avoid the more awful features of LISP. the extensions

below turned it into a worthwhile tool for the experienced programmer as

well.

The major defects of Framish before its extension center primarily on

its incompleteness. the most notable aspects of which are:

$ Lack of a convenient selection operator for identifying a subset of data

satisfying a certain predicate:

.' ~f., I

- 6 -

$ Lack of a convenient iteration mechanism;

$ Lack of an aggregation operator over full or partial subsets of a given

range;

$ Restriction of frame manipulation operations to the facet (i.e. datum)

level; it is impossible to alter the basic structure of a frame;

$ Lack of access to the delayed-execution features of FRL. whereby a

section of code is to be executed only at such time as a certain set

of conditions has been met. Not only are these features a necessary

part of knowledge-based reasoning systems which are often built on the

frame databases of FRL. but they also allow the Implementation of such

common database operations as security and integrity constraints~

triggers. and views. [SJR81]

4. The Query Extension of Framish

The first extensions to Framish were in the realm of query expression.

An operation called "display· was added for those users who would rather

type in

(display the shipments of san-francisco)

in the earlier department-store example. than just

{ the shipments of san-francisco }.

To select certain items. any of the verbs ·which". "where". or "with" were
,.

made available to introduce a predicate against which each item in the

indicated slot could be tested. The modifiers "all" and "any" were also

added in order to provide whichever quantification was desired. Thus. to find

all shipments from the San Francisco warehouse to the Stockton store. any

of the following statements would serve:

- 7 -

{ display all shipments of san-francisco where their store is stockton }.

{ display all deliveries of stockton where their warehouse is san-

.francisco } .

. { display all instance of shipment where its warehouse is san-francisco.

its store Is stockton }

If only one such shipment is desired. the keyword "al/" could be replaced

by "any". or omitted. When applying the "where" construct. the data identi-

fied to the left of the "where" are assumed to be a set of frames. Predi-

cates needing to access data in those frames may refer to the frame as

"it". "them". or "they". Framish is capable of distinguishing certain posses-

sive forms of these.

If a truth value is desired instead of the actual values satisfying the

predicates. the verbs "have" or "has" may be used instead. For example.

the sentence:

{ if any shipments of san-francisco have their item is tv-sets then

display [tv sets have been shipped J else display [no tv sets have

been shipped J }

will display a message indicating whether any television sets· have been

shipped from the San Francisco warehouse.

It is also possible to iterate a statement over a set of objects by

enclosing the set to be iterated over in angle brackets "<H. ">". The advan-

tage of this notation over the standard means of expression used in alge-

braic query languages is that it is not necessary to introduce auxilliary

*This statement provides a clear example of the degree to which
Framish fails to be natural. Since the FRL field which identifies
hierarchical dependence is called "instance". it is not possible to say
"display all instances of shipment..."

- 8 -

variables into the query expression. As an example. a query producing a list

of locations to which refrigerators have been shipped from the Los Angeles

warehouse is:

{ display the store of < all shipments of los-angeles where its item is

refrigerator >

which is expected to be much easier than an approximate algebraic

equivalent 01:

{ display all store of x where x is a shipment of los-angeles. the item

of x is refrigerator }.

The iteration construct also serves as a set-former and aggregator. For

example. to find the number of ladders shipped from all points to the

Sacramento store. one need only write:

(display the sum of < the quantity of < all deliveries of sacramento

where its item is ladder » }

The second set of angle brackets causes the summation to be an aggrega

tion of the list formed by iterating the retrieval operation over the range

specified by the inner set of angle brackets.

Another statement which increases the power of the angle bracket con

struct in some cases is the "with" statement. which sets up a local context

of variables. Typing:

{ with var, as exp, varn as eXPn do stmt,: ... : stmtm }

causes the variables vari to be assigned the results of evaluating the

expressions eXPi while the statements Sj are executed.

A principal use of the "with" statement in statistical operations is in

cross-products. To obtain a listing of total deliveries by warehouse" store.

and item. it suffices to write:

\!

,.,

The

- 9 -

{ with the-warehouse as < the instance of warehouse >. the-store as <

the instance of store >. the-item as < the instance of item > display

the-warehouse. the-store. the-item. the sum of < all instance of delivery

where its warehouse is the-warehouse. its store·· is the store. its item is

the-item > }

result of this will be a listing of the form:

sa n-francisco oakland toaster SO

san-francisco oakland ladder 10

san-francisco oakland bed 20

san-francisco stockton bed 4

san-franCisco fresno hammer 68

los-angeles fresno ladder 10

los-angeles bakersfield dishwasher 14

This statement causes all shipments to be searched for each combination of

warehouse. store. and item. A modification of "where" to select from an

arbitrary list. which would allow a more efficient (although less clear) ver

sion of the above to be written. is planned.

An important feature of FAL which was made available in the extension

of Framish was the ability to execute groups of operations only when a

certain condition is met. This feature (called a sentinel [A79]) is useful in

maintaining consistency relationships. such as. in the department-store

example. ensuring that the store to which a shipment from a warehouse is

sent is allowed to receive products from that warehouse. It also has some

uses In the statistical realm. For example. suppose that quotas have been

set for toasters. such as:

{ the toaster-quota of oakland is 1000 }

- 10 -

{ the toaster-quota of san-jose is 800 }

{ the toaster-quota of stockton is 300 }

{ the toaster-quota of sacramento is 500 }

We can arrange to keep an up-to-date list of those stores which have sold

their quotas of toasters by having a frame called "toaster" with a slot called

"made-quota". and then creating the following sentinels:

{ whenever a shipment of <oakland. san-jose. stockton. sacramento>

having (the item of the current value is toaster) is added replace the

toaster-quota of the current frame with the difference of the toaster

quota of the current frame and the size of the current value }

{ with the-store as <oakland. san-jose. stockton. sacramento> when a

toaster-quota of the-store having not (the current value is greater than

0) is found put the-store in the made-quota of toaster }

Now. the San Francisco area manager can determine which of hiS stores Is

up to quota in toasters simply by typing:

display the made-quota of toaster }

He can find out how many more toasters the below-quota stores must sell

to meet their quotas with the query:

{ display the toaster-quota of < all store of san-francisco where not (its

toaster-quota is greater than 0) > }

The type of sentinel is selected by the keywords when, whenever which

appear at the beginning of the sentinel. and the keywords added, removed.

found which separate the condition from the actions to be performed when

the condition is satisfied. A sentinel containing the keyword when is

activated only once and then is destroyed; if the keyword whenever is used

- 11 -

instead, it is activated whenever the condition . Is satisfied. The second key

word determines what operation on the slot shall cause the condition of the

sentinel to be tested, with found meaning that the values on the slot when

the sentinel is initiated wiil be tested.

Two common constructs in Framish also appear in the statements

above. The second sentinel illustrates a common use of the with statement:

to name a value from an iteration list so that it can be used in more than

one spot (in this case, both to identify the data structure being altered and

again to name the data structure to add It to a list of stores which have

fulfilled their quota)." Also, an iterative expression can contain a list of

items to be iterated over should this be more convenient than expressing it

from the database.

Since the last example, which is typical of statements involving iterative

expressions and sentinels, is rather unwieldy to type In all at once, a

me"ans of breaking the task up into smaller segments using the underlying

FRL system is available. There Is a frame called a context, having slots

called environment and action, which can be used in this fashion. A sample

sequence of Framish statements presenting the previous example shows this

feature:

{ create a new context called toaster-quota-context }

.. (Creates the context.)

{ put <the-store as oakland, san-jose, sacramento, stockton> in its

environment }

(Establishes the range over which the actions of the context will be

iterated'>

{ put (the-update as: the item of the current value is toaster) in its

environment }

- 12 -

(A sentence fragment. which in this case is a predicate.>

{ put (the-update-action as: replace the toaster-quota of the current

frame with the difference of the toaster-quota of the current frame and

the size of the current value) in its environment

(Another sentence fragment: this time. an action.>

{ put (the-fulfillment as: the current value is less than 0) in its

environment }

(Still another sentence fragment.>

{ an action is: whenever a shipment of the-store having the-update is

added do the-update-action }

<Defines the first sentinel from the previous example.>

{ an action is: when a toaster-quota of the-store having the-fulfillment

is found put the-store in the made-quota of toaster

(Defines the second sentinel from the previous example.>

{ execute it }

The last Framish statement causes the context to be executed. The expres

sions in the environment are associated with the variables and then the

actions are performed in sequence.

The true power of using the context as opposed to the previous means

of setting up the sentinels becomes apparent when we take every

occurrence of the word "toaster" and replace it with ·object". A mechanism

which will interrogate the manager about which item he wishes to have

quota maintenance on can now be set up with the following statements:

create a new context called set-quota-context }

{ put (object as: request a response to :What do you wish to set quo-

V ,"

- 13 -

tas on?:) in its environment }

(put (object-quota as: request a response to :What is the name of the

quota?D in its environment)

(its action is:. execute the object-quota-context)

Typing:

(execute the set-quota-context)

will cause a dialogue between computer and user to take place as illus

trated below. with the user responses to set up a quota system for ladders

italicized:

What do you wish to set quotas on? ladder

What is the name of the quota? ladder-quota

Further additions to the object-quota-context could be made which would

interrogate the user for the specific quotas to be established and place

them in the appropriate spots.

5. Summary

In conclusion. it can be seen that the Framish language offers a

means of expressing on a frame-based system many of the kinds of opera

tions required in statistical database management. The syntax of the

language is reminiscient of a natural language. and represents an effective

intermediate stage between the computational power of the implementation

language and the expressive flexibility of a natural-language approach.

avoiding the esoteric nature of the first while not requiring the excessive

time and space demands of the second. While this makes it attractive in

the non-expert user environment typical of many statistical database systems.

the features available make it a useful tool for the expert programmer and

- 14 -

DBMS designer as well.

The features of FRL and Framish suggest interesting possibilities for

statistical database management system design. The natural style and rela

tive power of Framish would allow a non-expert user to augment a "stan

dard" DBMS in many useful ways. The capability of introducing rule-based

reasoning could be used to create "intelligent" database systems which

might blend database operations with artificial-intelligence reasoning. We

hope to pursue these concepts in the near future.

6. Bibliography

[F79] Findler, Nicholas V. (ed.>' Associative Networks - The Representation

[M7S]

[P73J

[RG77a]

[RG77b]

and Use of Knowledge in Computers. Academic Press. New York.

1979.

Minsky, Marvin. "A Framework for Representing Knowledge". in P. H.

Winston (Ed'>. The Psychology of Computer Vision, McGraw-Hili, New

York. 1975,

Pratt, Vaughan Roo "Top-Down Operator

SIGACT /SIGPLAN Symposium on Principles of

Languages. Boston. 1973. 41-S1

Roberts, R. Bruce and Ira P. Goldstein. "The FRL

Artificial Intelligence Laboratory Memo 408. 1977

Roberts, R. Bruce and Ira p, Goldstein. "The FRL

Artificial Intelligence Laboratory Memo 409. 1977

Precedence",

Programming

Primer", MIT

Manual". MIT

(R79] Rosenberg. Steven. "Reasoning in Incomplete Domains", Lawrence

Berkeley Laboratory Memo LBL-8721. 1979

u

~ ;.

- 15 -

[SJR81J Stonebraker. Michael. Rowland Johnson. Steven Rosenberg. "Extend

ing INGRES With a Rules System". Forthcoming.

[W77J Winston. Patrick H .. Aritficial Intelligence. Addison-Wesley. 1977.

"

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

':' ~ .• I

TECHNIC.blL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

---.......

~."

'1: -,..;.-

