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ABSTRACT
�is paper expands on and re�nes the theoretical framework of
operational logics, which simultaneously addresses how games
operate at a procedural level and how games communicate these
operations to players. In the years since their introduction, oper-
ational logics have been applied in domains ranging from game
studies to game generation and game modeling languages. To sup-
port these uses and to enable new ones, we resolve some standing
ambiguities and provide a catalog of key, fundamental operational
logics.

Concretely, we provide an explicit and detailed de�nition of oper-
ational logics; specify a set of logics which seems fundamental and
su�ces to interpret a broad variety of games across several genres;
give the �rst detailed explanation of how exactly operational logics
combine; and suggest application domains for which operational
logics-based analysis and knowledge representation are especially
appropriate.

CCS CONCEPTS
•Computingmethodologies→Knowledge representation and
reasoning; Ontology engineering; •Applied computing→Me-
dia arts;
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1 INTRODUCTION
Since their initial development in [23, 24], operational logics (OLs)
have enjoyed broad use and inspired several approaches to game
studies. Besides their direct use in describing games [9], OLs under-
lie several approaches to understanding how games communicate
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ideas [3, 21] and a variety of projects in player/game modeling and
generation [4, 6, 7, 16–18]. �e key move in all these cases has been
to step away from considering games as bags of mechanics and
towards viewing them as assemblages of abstract operations from
diverse logics.

Outside of the game studies literature, in recent years the authors
have taught an introductory undergraduate game design class using
operational logics as the unifying theme. Each module of the course
addresses a di�erent set of operational logics, building up a core set
of literacies for interpreting and for designing games. Besides the
analysis of games, game-making tools are described in terms of the
logics they support and/or foreground, which gives students con-
text for understanding new tools’ authorial a�ordances. Students
progress through a variety of tools over the course of the quarter,
and the operational logics framework gives them a touchstone for
deciding which tool to use and how best to use it.

Although OLs have already proved useful, there remain some
ambiguities in the theory and its use despite a�empts at clari�ca-
tion [8]. In this work, we will therefore try to support the uses
to which OLs have already been put—and possibly enable new
uses—by taking on some of these ambiguities, re�ning the theory
of operational logics. Hopefully, this new account will enable more
scholars to use operational logics in their work, accounting for
phenomena that were previously inaccessible. Speci�cally, we aim
to address these questions:

(1) What operational logics are there besides collision, linking,
and resource logics?

(2) Is the number of operational logics small, large, or in�nite?
(3) What exactly is an abstract operation?
(4) How do logics communicate their operations to players?
(5) How are operational logics combined?
(6) How are operational logics di�erent from playable models?
(7) Why work from the perspective of operational logics rather

than some other theory?

In the following sections, we re�ne and reconcile previous de�ni-
tions of operational logics and playable models; provide a catalog of
operational logics with some old and new examples; and give a de-
tailed account of the ways in which operational logics can combine
together. To conclude, we argue for the utility of operational logics
as a knowledge representation both for human and computational
purposes.
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2 WHAT ARE OPERATIONAL LOGICS?
“Operational logics connect fundamental abstract operations, which
determine the state evolution of a system, with how they are un-
derstood at a human level [2009].” Ultimately, operational logics
provide the raw material from which game mechanics are built. At
the same time—and from a di�erent perspective—they tie together
low-level and abstract mechanics with the presentation of sensory
stimuli to players to enable an understanding of what the game is
doing and how it functions. Operational logics are not beneath or
above mechanics, but represent a di�erent slice through a game
which we feel is o�en a more useful view on how games function
in the space between designers and players. We begin by breaking
down and investigating extant de�nitions of operational logics,
explaining each component with small examples; following that,
we show some complete operational logics in the new, consolidated
terms.

According to Mateas and Wardrip-Fruin, an operational logic
is “a packaging of a rhetorical strategy—‘an authoring (representa-
tional) strategy’—with a process—‘supported by abstract processes
or lower-level logics’—in order to provide an e�ective authorial
a�ordance—supporting the speci�cation of ‘the behaviors a system
must exhibit in order to be understood as representing a speci�ed
domain to a speci�ed audience [2009].’ ” Osborn et al. write “op-
erational logics are combinations of abstract processes with their
communicative roles in a game, connected through an ongoing game
state presentation and supporting a gameplay experience [2015].”
�ese are similar but distinct in important ways: the former def-
inition refers to possible lower-level logics and calls out the role
of authorship in the logic, whereas the la�er emphasizes the conti-
nuity over time of the presentation. Both center the combination
of a communicative role and an abstract process so that idealized
players can interpret meaningful causal relationships between ob-
served phenomena and supposed underlying computations. We
proceed by breaking down the de�nitions above into their primary
components.

A communicative role (also called a communicative strategy) de-
scribes how the logic must be employed authorially to communicate
its operations to players as part of the larger game system. In other
words, we can group logics according to families which share the
same communicative role, though they might support that role
with di�erent processes or state presentations. For example, the
generic communicative role of collision detection could be stated
as “Virtual objects can touch, and these touches can have conse-
quences.” If this is not revealed to players—e.g., if the objects’ visual
locations fall out of sync with their simulated positions—the role is
not ful�lled and the logic falls apart. �e communicative role is the
phenomenon in terms of which designers author game rules, and
which designers hope that players engage with and understand. Of
course, such communication does not always succeed for all audi-
ences, but the most common logics are widely (if subconsciously)
understood by game-literate players. It is through this understand-
ing that players develop their ability to play: to understand the
game-world such that they can take action intentionally and inter-
pret its results, an important part of the experience of agency many
games provide [25].

An abstract process is a speci�cation for how a process operates.
For example, the abstract process for collision detection could be
stated as, “When the coordinate spaces of two virtual objects inter-
sect, declare the intersection.” �is speci�cation is agnostic as to
the speci�c algorithm and implementation—the coordinate spaces
would be quite di�erent for 2D and 3D games, as well as for games
using rough bounding boxes versus pixel-accurate methods. Not
all possible implementations of an abstract process may succeed in
supporting the communicative role of the logic for all audiences
or in all contexts. Candidate implementations must therefore be
e�ective as well as feasible: as Mateas and Wardrip-Fruin assert,
the de�nition of the abstract process must be implementable on a
computer.

�e term “process” is used broadly here and covers both state-
altering procedures and predicates; we �nd it useful to call the
obligations a logic places on its implementation abstract operations,
which we may also call operators of the logic. Some abstract opera-
tions specify relations or invariants maintained by the logic, while
others describe the sorts of queries the logic supports, and still oth-
ers opportunistically trigger abstract operations when predicates
of a logic become true or false.

A game state presentation is how players see, hear, and feel the
speci�c behavior of the operational logic in the context of the
game. Games’ platforms can o�er diverse options for presentation:
compare vector versus raster graphics, stereoscopic 3D versus �at
images, and the proprioceptive experience of motion-controlled
versus keyboard-controlled games. Di�erent ways of presenting the
game state can require very di�erent data—o�en called game assets—
to support presentation of the logic’s operations. For example, the
only asset speci�c to the presentation of collision detection in
Pong is a sound triggered when the ball collides with a wall or
paddle. But in a Call of Duty game, the presentation of collision
detection for bullets and bodies alone may involve many animation
and sound assets required to realistically present di�erent types
and locations of damage. �is is a general trend as the level of
detail represented in a game grows �ner: more data assets are
required for a logic’s presentation. �e cra�ing and selection of
data is a key way game creators can suggest more concrete audience
interpretations, especially for logics that have been established with
relatively abstract communicative goals: pa�ern-matching logics
can readily support cra�ing if the pa�erns resemble the cra�ed
artifact, and linking logics can naturally evoke spatial connection if
the nodes and links are styled like a mass transit map.

�e gameplay experience is what happens when a player en-
counters the logic. �e player engages simultaneously with the
sensory experience of the game state presentation, the intentional
act of performing actions which change the game state, and the
interpretive process of determining a mapping between physical
interaction devices and the available actions (in terms of the opera-
tional logics’ abstract operations). �is is where the game’s creators
hope the communicative role will be ful�lled, and also where play-
ers may discover possibilities the designers never intended. O�en
player understanding and discovery is not immediate, and it may
be imperfect, especially in its details—players learn through ex-
perimentation, a�er all. �is is especially true on the boundaries
between logics.
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Even in a simple game such as Pong or Breakout, the physical
reaction triggered when a ball collides with a paddle can di�er
depending on where along the paddle the ball collides; this basic
connection between collision and physics may take time for players
to grasp. Nonetheless, the communication that balls and paddles
can collide, and that balls bounce o� the paddle when this happens,
takes place quickly in nearly all initial play sessions (con�rming
the expectations of game-literate players).

Note that players cannot have e�ective agency until they know
what operational logics are at work: if they cannot interpret the
events on the screen as being connected to some OL, such as physics
or collision or resource transactions, they have no way of knowing
their possible objectives, available actions, or even the system’s
current state. On the other hand, even a game with inconsistent
or nonsensical combinations of instantial assets can still be played
e�ectively. Treanor’s discussion of BurgerTime [19] drives home the
point that whether the player interprets BurgerTime as line cookery,
construction, the inventive and intellectually rewarding life of the
chef, or indeed combat with enormous animated foodstu�s, they
can still play and win the game. On the other hand, if a player fails
to recognize the logics at work—believing they are controlling the
food rather than the chef, or interpreting the chef as a cursor for
selecting burger components—their game will end with a very low
score.

While BurgerTime has many rhetorical interpretations, some
sensible and some ludicrous (indeed, the most obvious reading is
ridiculous), it is impossible to avoid concluding that the player
moves one character and not the others, that touching the egg or
hot dog ends the round, that pepper halts the movement of the
enemies, and so on. Operational logics communicate this la�er
kind of cause-and-e�ect relationship, enabling players to interpret
the game state and its change over time.

2.1 Playable Models and Proceduralist
Readings

Are all meaningful inferences about a game necessarily tied to op-
erational logics? BurgerTime supports a reading of being about
cooking, and in fact seems to communicate that cooking is taking
place through its instantial assets as well as its system; but an argu-
ment from e�ective agency suggests that the concept of a “cooking
logic” is not well-founded. Believing or not believing that cooking
is taking place has no impact on one’s performance of the game or
ability to achieve scoring or survival objectives; on the other hand,
it is vital to believe that pepper is a limited resource, that dropping
burger parts on enemies scores points, and so on. Operational logics
must be understood to be leveraged in play, and players that do not
comprehend the logics at work cannot play e�ectively. In that case,
what is this other class of interpretations which admits super�cial
or inconsistent readings? OLs have previously been discussed in re-
lation to at least two di�erent notions of procedural representation:
playable models [11] and the “representational considerations” of
proceduralist readings [22].

“Playable models compose structuring information with varying
operational logics to support the player in incremental exploration,
intention formation, and interpretation” of a concept or system [11].

�e authors distinguish between “fully playable” and “trivial” mod-
els. Playability seems to be used to measure both the model’s
complexity and the degree to or depth at which players come to
understand the system and form plans using it. How are these
models di�erent from operational logics, beyond comprising com-
binations of them? First, playable models rely more strongly (but
not exclusively) on cultural/social knowledge. A playable model of
combat needs the player to know what violence is, and a playable
model of securities exchange can only function for players familiar
with property and commerce (although with this background, even
an abstract game of squares and circles or randomly generated
stock ticker symbols would be su�cient). Second, a playable model
can be realized using a variety of di�erent combinations of logics,
whereas operational logics are themselves commi�ed to particular
abstract processes. Finally, one can a�empt to construct a playable
models for nearly any natural or social phenomenon, whereas op-
erational logics seem tied to questions of how players interpret
low-level interactions with a system.

Each playable model is a lens through which a group of phenom-
ena can be seen to represent a concept or system. For example, the
model of combat synthesizes a variety of somewhat independent
systems into a coherent argument. We might imagine reusing the
same systems, perhaps with di�erent instantial assets, to represent
dating and romance—but here players would be able to indepen-
dently form the idea that they are engaging in combat and this
doubling would be an argument in and of itself: the claim that
love is a ba�le�eld. Whereas an operational logic can be reused
in di�erent contexts and still be recognized—merely re�ned and
not altered—models are much more contingent. It is one thing if a
resource logic is used to govern interactions with a weapons shop
in a game; but if social interactions with non-player characters also
hinge on the exchange of money or gi�s, these characters quickly
come to feel like vending machines or shops themselves.

Apart from playable models, we have the kinds of meanings that
are o�en the target of proceduralist readings. Treanor et al. provide
examples of interpretations (evaluative, volitional, and rhetorical)
a�orded by graphical logics in the context of Kaboom! [20]. �is
is a more general type of aboutness which is o�en inextricable
from cultural knowledge. Moreover, these meanings are inherently
subjective and open to interpretation and argument. �is is not
meant as a value judgement; rather, the goal of their project is to
address how games make rhetorical claims, rather than how players
come to understand the workings of game systems. Proceduralist
readings are one strategy (among many) for making sense of games,
which happen to have been historically rooted in OLs.

Operational logic interpretations, distinct from both of these,
tend to halt at the level of cultural knowledge and determining their
presence or absence is less sensitive to argumentation. Some types
of literacy may be required to recognize or engage with a logic,
and of course these come from cultural experiences, but a (blurry)
line can be drawn between this kind of mechanical engagement
and more metaphorical interpretation. Looking to �lm, it’s the dis-
tinction that can be drawn between montage theory and the trope
of the training montage: the former is a logic of the juxtaposition
of instants of time, while the la�er suggests personal growth over
a period of time using the former. While we could argue that a
particular montage does not function as a training montage, we
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have speci�c conditions—the ful�llment of a communicative role—
that allow us to claim with some measure of certainty whether a
sequence of shots is a montage at all. �e ways that metaphor and
cultural knowledge are used in the communicative role of a logic
are usually relatively simple and straightforward. If interpretation
begins to make more complex metaphorical mappings, this is a
signal that one is moving out of the domain of the logic and into a
di�erent type of meaning. �ematically, Pong isn’t about collision—
it can be interpreted as tennis due to its playable model of re�ection
and momentum provided mainly by a collision logic.

Operational logics do present instantial assets to players, as de-
scribed earlier; but the OL functions and supports players’ agency
even if the player’s avatar is a hockey puck shooting co�ee cups at
swans. �is combination of assets is nonsensical from the stand-
point of playable models (neither co�ee cups nor hockey pucks are
implicated in the swan ecosystem) and from proceduralist readings
(while the swan wants to avoid the co�ee cup, we can’t argue in
good faith that the swan is a metonym for ca�eine-intolerant con-
sumers and that the hockey puck represents co�ee culture). But
a player could play and do well at this game, understanding its
physics, goals, and behaviors. All that ma�ers from an operational
logics perspective is that the objects’ appearances do not confound
the communicative role: if our co�ee cup projectiles had a visual ap-
pearance vastly larger or smaller than their actual collision bounds,
or if the enemy’s sprite were u�erly indistinguishable from the
background, players would not be able to make sense of the game
whatsoever.

If the operations of a logic are not communicated well—i.e., if the
communicative role is not ful�lled—then the authorial a�ordances
of the logic do not successfully translate into a�ordances for the
players. �ey are in e�ect trying to play a di�erent game from the
one they are actually interacting with; there is a bug either in the
realization of the abstract process or in the game state presentation
(or perhaps the player does not possess the required literacies).
�e Breakout player who does not realize that the paddle has �ve
segments will see the ball’s movement as random, when in fact
no chance logic is at work. If the ball occasionally passes through
the paddle due to a bug, players can only choose to accept the bug
or to invent an explanation to assign a cause to the phenomenon.
We can distinguish partial understanding (not knowing about the
segments) from the inability to form an understanding due to an
inconsistent system.

We also have the case of full understanding: not only when
the player knows the rules as the designer does, but when the
player understands the logics at work be�er than the designer.
Imagine a player who understands how pseudo-random numbers
are generated within a game—for example, that the frame count
modulo 60 is used to generate numbers. �is player can manipulate
luck as they please, while still engaging with the notion that a
chance logic is at work.

�e purpose of this distinction is to shi� the in�nity of concepts
a game can be about squarely into the domain of playable models
and other forms of interpretation and, hopefully, away as much as
possible from operational logics. �is is a vital precondition for our
project of cataloging and classi�cation.

2.2 How Operational Logics Communicate
Compared to abstract operations, the communicative roles and
game state presentations of operational logics are relatively under-
theorized. While the translation from abstract operations to imple-
mented code can be fairly natural, most examples of communicative
roles and presentations have been either very speci�c (e.g., how
a health bar shows the state of the health resource) or extremely
broad (e.g., two-dimensional shapes on a screen standing in for
colliding objects); this is true even in the discussion above! It is
clear that the role and state presentation of the logic are tightly con-
nected, just as the role and abstract operations are tightly connected.
A concrete presentation must e�ectively reveal the workings of
a logic in the same way that an implementation of the abstract
processes must e�ectively enact them.

Recall that the communicative role is what we must explain to
support an interpretation that the logic is present. �e presenta-
tion maps the underlying game state into sensory phenomena to
support that role. Every game takes its own approach to that map-
ping for each of its logics, ful�lling their respective communicative
roles—exactly as every game has its own concrete implementations
of operational logics’ abstract processes. Just as we can recognize
the abstract operations of resource transactions independently of
their concrete implementation in di�erent games, we can discuss
approaches to game state presentation that are common across
games. Resource logics, for example, are o�en presented by placing
numbers next to icons and/or textual labels, or animating a �oat-
ing number near the resource pool whose quantity of contained
resources has just changed.

Every logic can be identi�ed with a somewhat open-ended set
of presentation strategies, although these necessarily depend on
the literacies of the target audience. O�en, these strategies may
overlap in some ways with those of other logics. As an example, the
two-dimensional combat game Worms expresses both its collision
and physics logics by drawing all simulated characters and terrain
on the same plane, so that visual overlaps and perceived movement
re�ect simulated collisions and physical dynamics. When charac-
ters in Worms are injured, the amount of damage is displayed as
a �oating number originating at the character’s head and rising
upwards while fading out. �e resource logic leverages some of the
same channels used by the collision and physics logics’ game state
presentation.

Ultimately, game state presentation can only be de�ned com-
pletely when logics are composed into a game. It is the composition
proper that provides the set of communication channels used to
ful�ll the communicative role according to the appropriate presen-
tation strategies. We save a complete discussion of how operational
logics compose for Sec. 4.

3 ENUMERATING OPERATIONAL LOGICS
�e most commonly cited operational logics in the literature are col-
lision, resource, and linking logics. Additionally, terms like textual
logics and graphical logics were included in the �rst formulations
of operational logics. Readers of earlier texts on operational logics
may have concluded that these �ve terms comprise the whole uni-
verse of operational logics. Occasionally, systems emerge that posit
new operational logics [9], but the canonicity of these examples
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is not completely clear. We know from Mateas and Wardrip-Fruin
that the preconditions of communicative intent and implementable
process exclude large classes of candidate operational logics [2009],
but we have no standard catalog of logics. In fact, we do not even
know whether the number of logics is small (fewer than ten), mod-
erate (a few dozen), large (several hundred), or in�nite! Answering
this question is a central goal of this paper.

We argue that this uncertainty is essentially a category error.
“Collision logic” is not a single, monolithic entity, but a family of
operational logics which all possess su�cient communicative roles,
abstract operations, etc to function as collision logics. “Physics
logics” could address momentum, gravity, wind-shear, or other
physical behaviors; each pairing of the operation simulating that
system with the human-visible phenomena which communicate it
could be seen as a tiny operational logic in the family of physics log-
ics, working in concert to form one speci�c larger physics logic (or,
equivalently, the larger physics logic could be seen as comprising a
superset of the abstract operations and game state presentations of
the constituent physical behaviors). Likewise, “graphical logics” are
exactly those logics whose game state presentations are primarily
graphical, and by convention refers to the composition of collision,
physics, character-state, and simple resource logics.

Mateas and Wardrip-Fruin exemplify their de�nition of opera-
tional logics with a random event resource management logic which
merely parameterizes a resource logic with random chance; this
seems to immediately open the door to an unbounded number
of logics, all on equal footing with each other. �is reduces the
power of operational logics as an underpinning for game mechan-
ics, because it seems that nearly every mechanic could be phrased
as having a corresponding special-cased operational logic. It is
more useful to separate the random event part from the resource
management part, yielding a resource logic and a chance logic; this
also removes the dependency on another speci�c logic’s presence.
While it is certainly possible to delineate an unbounded number of
logics, we prefer to focus on families of logics, generally grouped
by their abstract operations and communicative roles. While the
number of concrete logics is limited only by human imagination,
the number of families is potentially amenable to enumeration.

Guided by the utility of graphical logics as an umbrella term to
characterize what is the same and what is di�erent between arcade
games and other games featuring colliding characters, we cataloged
the main families of operational logics by examining particular
games and genres [10] (some entries are reproduced in Fig. 2). Our
catalog describes, for each logic, its main components: the abstract
process and commonly-seen abstract operations, the communica-
tive role, and conventional game state presentation strategies. We
must stress that this is preliminary work biased towards home con-
sole games of the 1980s and 1990s. Future work could perform a
grounded analysis or some other rigorous approach to sampling
games and coding them in terms of which logics are present and in
what ways. So far, we have identi�ed ��een prominent operational
logics that appear widely (see Fig. 1); as we identify new ones they
will be added to the catalog.

We assembled our catalog by playing and analyzing games, ac-
counting for high-level concepts like power-ups or turn scheduling
in terms of existing and candidate operational logics. We consider

Camera Chance Character-State
Collision Control Game Mode
Linking Persistence Physics
Progression Recombinatory Resource
Selection Spatial Matching Temporal Matching

Figure 1: Fi�een key operational logics

both the abstract operations that could be used to implement a con-
cept and the communicative roles that must be ful�lled to obtain
a satisfactory reading. �is approach mirrors that taken in [11] to
identify how models are built up from groups of operational logics’
abstract operations.

We chose a set of around two dozen home console games from
1984-1998, with a few additions to include some rhythm games. For
the initial set of logics in our catalog, we tried to address a breadth of
loose (and admi�edly ill-de�ned and overlapping) genre categories:
action, �ghting, puzzle, rhythm, role-playing, simulation, sports,
and strategy. Games were selected for their notability and for
diversity within genre groupings. �e full list is available alongside
the catalog [10]; these speci�c games are not intended to form any
kind of canon or authoritative resource, only to act as a starting
point for seeding the catalog.

3.1 Fundamental Logics
Generally, we identify logics by going from perception down to
abstract operations: reasoning from observed behavior towards
an underlying process. Where possible, we have tried to explain
observed phenomena in terms of previously-known logics; if these
explanations were awkward or did not re�ect both the abstract
process and the communicative role of the candidate logic, we
acquiesced and formalized it as a new logic. While a logic or com-
bination of logics can su�ce to implement an abstract process of
another logic, this can feel abstract and allegorical even in the best
case. For example, a full resource pool inhibits the addition of new
resources in a similar way as a collision logic inhibits the movement
of objects into occupied space; but this blockage is hard to interpret
successfully as collision, being more adequately interpreted as satu-
ration or exceeding capacity. To detect a redundancy, ful�lling the
abstract process is important; but we only have a truly redundant
set if the communicative role—broadly construed—can be readily
expressed by other logics.

It is not, however, the case that every notion we might wish to
communicate to players has a corresponding operational logic. We
set aside the primarily culturally-informed concepts which support
interpretative frameworks such as proceduralist readings along
with the complex playable models which are evidently built out of
multiple logics: combat, for example, or cooking. A�er this step, we
still have to apply some selection process to determine if a concept
is or is not backed by a novel logic. We want, as much as possible,
a parsimonious catalog. We would prefer to work with a collision
logic, but not a logic of space; a physics logic, but not a logic of
driving or running; a resource logic, but not a logic of growth. While
collision logics may be used to model space, and physics logics may
be used to communicate running, and resource increase may be
used to model personal growth, the la�er set of concepts do not
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Name Collision Logics
Communicative role Virtual objects can touch, and these touches can

have consequences.
Abstract process Detection of overlaps between subsets of entities

and the automatic triggering of reactions when
these occur.

Abstract operations Determine or alter which entities may collide
with each other.
Determine which entities are overlapping.
Determine or alter the size of an entity.
Separate the positions of two or more entities
such that they do not overlap
Whenever one of the above predicates is or be-
comes true or false, trigger an operation of this
or another logic.

Presentation Shapes, images, or 3-D models for each entity
whose dimensions match those of the correspond-
ing entity, projected on a plane.
Audiovisual e�ects when a collision occurs.
�e presence or absence of text indicating
whether two entities are in physical contact.

Required concepts Entities and their positions; space.
Provided concepts Collision, overlapping, the extents of objects.

Name Resource Logics
Communicative role Generic or speci�c resources can be created, de-

stroyed, converted, or transferred between ab-
stract or concrete locations.

Abstract process Enacting resource transactions within or between
locations and triggering actions when conditions
are met.

Abstract operations Check if a transaction involving some units of
certain resources is possible for some given loca-
tions.
Perform a resource transaction.
Perform an action of another logic when a trans-
action occurs.
Perform an action of another logic when the
quantity of resources within a location crosses a
threshold.

Presentation Indicating resource types by icon or text, loca-
tions by distinct regions of the screen, and re-
source quantity by numeric labels.
Trigger an audiovisual e�ect at the instant a trans-
action occurs.
Intertwined type and quantity representation,
e.g., ten units of resource R appear as ten icons.
Transactions described as lists of prerequisite re-
sources and quantities and lists of product re-
sources and quantities, graphically dimmed if in-
su�cient.

Required concepts Resource types and locations, including a way to
count resources of a type in a location and a way
to add/remove resources.

Provided concepts Resource transactions and aggregate quantities.
Name Persistence Logics
Communicative role Some things in the world stay the same across

sessions or between rooms or when scrolled o�-
screen, while others change or reset.

Abstract process Determining which entities, assets, and variables
are in a particular scope (e.g., saved-game scope,
current-level scope, visible-area scope) and per-
sisting or rese�ing those as the scope changes.

Abstract operations Determine or alter which persistence scopes are
active.
Set, clear, or restore the facts associated with a
particular scope.
Trigger an action of another logic when scopes
change, are saved, or are restored.

Presentation Give audiovisual feedback when scopes change
or when variables have been reset.
When the player is about to leave a scope, give
textual descriptions of what data will be pre-
served and what will be lost.

Required concepts Abstract objects and facts governed by scoping
rules.

Provided concepts Active and inactive scopes, saves, and resets.

Name Character-State Logics
Communicative role Virtual agents can act in di�erent ways at di�er-

ent times.
Abstract process Governing the �nite, discrete states of a set of

game characters or other entities, and the auto-
matic triggering of reactions when states change.

Abstract operations Determine or alter the discrete state of an entity
according to a given transition system.
When an entity’s discrete state changes, perform
some operators of this or another logic.
Synchronize state changes between several enti-
ties.

Presentation Change a character’s sprite, animation, or visual
e�ects according to current state.
Trigger an audiovisual e�ect at the instant the
state changes.
Textual or iconic depictions of the character’s
state.

Required concepts Entities and condition predicates for making tran-
sitions.

Provided concepts Entities in/out of a state; state transition events.

Figure 2: Four example catalog entries.

qualify as primary or fundamental logics: we can �nd other logics
that model space, running, or growth equally well using completely
di�erent game state presentations and abstract processes. �e
“growth” of an object increasing in size is quite di�erent from the
“growth” of a character’s strength statistic increasing. While we

could imagine a category of growth logics which include collision
logics, resource logics, linking logics, et cetera, this is best le� as a
grouping by possible interpretive a�ordances (similarly, graphical
and textual logics are groupings of related logics).
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Consider, for example, how vision works in three games: �e
Legend of Zelda: A Link to the Past, DOOM, and Metal Gear Solid. In
the �rst and third, we generally see a rectangular region around
our avatar which stops at linked room boundaries; this region
slides around as we move, like a camera on a rig might. DOOM,
on the other hand, provides a �rst-person view from our avatar’s
perspective; the camera does move along with our movements, but
in a much more direct and immediate way, as if it were hand-held
or helmet-mounted.

�ese games model several distinct kinds of sight. Besides the
rectangular area in view of the camera, Zelda has some dark rooms
which are lit locally by the hero’s lantern and globally by lighting
wall or �oor sconces; the former, local light functions as a kind of
polygonal overlay, whereas the la�er acts more like a timed resource
whose quantity controls illumination. Moreover, enemies in Zelda
tend to ignore Link until he comes close or enters a region of space
just ahead of their current position and orientation. Enemies also
have a kind of sight more akin to the lantern’s light than to the
panning camera. �is type of vision is a de�ning characteristic of
Metal Gear Solid, and avoiding being seen is a key consideration
during play. Functionally, what an enemy can see (or not) is more
like DOOM’s perspective camera than it is like the panning camera
used in scrolling through the space of a level.

It is clear that vision is a concept that games can and do model in
a variety of ways. We can imagine many implementations (colliding
with vision volumes, being on the other side of a closed or open
door, being in shadows or in a spotlight, drawing or not drawing a
sprite) and ways to communicate that status (changes in character
behavior or background music). �ere is, however, a key distinction
to be drawn between, on the one hand, the communicative role of
indicating that agents may or may not see other agents in particular
situations; and on the other hand, communicating to a player that
they are seeing part of a larger environment.

We could hypothesize a single vision logic, but we have seen
that this is too open-ended and does not have one clear commu-
nicative role. �en, why not have both a vision logic and a camera
logic, separating out the role of showing who can see what and
the role of showing the player a sub-region of the level? Neither
candidate logic depends signi�cantly on cultural knowledge, which
is promising; but the former is readily explained in terms of e.g.,
collision or resource logics, while the la�er does not have such
a clean decomposition. A moving camera could be expressed, in
some cases, as a stage which is moving around under the lens; but
it is strange to think of the DOOM avatar as a stationary object in
a rapidly-moving jumble of walls. We are forced to posit a camera
logic, one of whose uses might even be the modeling of vision (e.g.,
in a multiplayer game).

To generalize from this example, we ask two questions when
a�empting to explain a modeled concept and determine whether
it justi�es the introduction of a new operational logic: First, does
this candidate logic have a distinctive role? Second, does the candi-
date logic admit a usefully concrete implementation? Spli�ing out
cameras from other types of vision is an example of distinguish-
ing based on the �rst question; but what does it mean to ask if a
candidate logic has an implementable or usefully concrete abstract
process?

We o�en see scheduling in games: for example, the turn order of
a role-playing game or the alternation between players in a turn-
taking game. But the abstract process this suggests—“determine
who goes next and whose turn it is, and give the current player
control”—is at once too generic and too speci�c. A good operational
logic has a process which is abstract but puts constraints on possible
implementations, and at the same time does not over-constrain its
set of abstract operations and limit the contexts in which the logic
can be used (recall that abstract operations describe the sorts of
game state transitions that the logic enables). A scheduling logic
phrased as above excludes the possibility of simultaneous turns, and
if it expands any further to incorporate that it morphs into a version
of the more general control logic (“di�erent entities are controlled by
di�erent inputs at di�erent times”). For an example of applying both
considerations, consider menus in games. �eir abstract process is
“select from some possibly hierarchical options and trigger actions
based on those options” and their communicative role is that the
player has many options of which they may choose one. �ese
are already so close to each other that something seems amiss;
moreover, the candidate menu logic seems to step on both selection
logics (governing which of a set of items is currently designated
as selected) and control logics, overlapping with them while also
overly specializing them to the case of menus. We also see many
di�erent kinds of menus in games: we could press a keyboard key
to activate a menu item, or move a cursor to select and then press
a key to con�rm, or move the player character into one or another
doorway or region of space to activate a menu item.

We see from this breadth of implementations (in some cases
engaging totally di�erent logics) that menus are not likely to have
their own operational logic; or, rather, that the explanatory power
of menu logics is poor. �e candidate “menu logic” fails to have a
distinctive role.

�ese questions also allow us to distinguish, for example, game-
mode logics (characterized by state machines) from character-state
logics (also characterized by state machines). Although their ab-
stract processes are similar in the sense that both transition some
entity through a state transition system, they have completely dis-
tinct communicative roles.

4 HOW DO OPERATIONAL LOGICS
COMPOSE?

Mateas and Wardrip-Fruin assumed that there were low- and high-
level operational logics, with the la�er being strictly built out of the
former; playable models were not strongly positioned with respect
to this hierarchy [2009]. Treanor et al. explicitly distinguished logics
from rhetorical argumentation and illustrated how the la�er could
be justi�ed in terms of the former [2011]. Osborn et al. showed
an example of how multiple logics could form a playable model
when taken together [2015]. �ese works established that logics
compose and for what purposes, but not in what ways. We argue
that operational logics do not combine in a simple hierarchy; in
fact, they compose in a variety of cross-cu�ing, overlapping, highly
contextual, and complex ways.

Fortunately, the composition of operational logics is not totally
unstructured. We identify three main points of contact or sharing
between logics: communicative channels, operational integration,
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and structural synthesis. Every composition of multiple logics (e.g.,
a game, genre, or game-making tool) must de�ne the semantics
of each of these interfaces. Even if the same logics are deployed,
di�erent choices for this glue can result in very di�erent games.

For example, a side-scrolling beat-em-up may use a collision
logic to determine damage, a character-state logic to determine
character behaviors, and a resource logic to track the health of each
character. Here, the display of characters’ health bars over their
heads (as opposed to pu�ing them in corners of the screen) is a
shared communicative channel (to wit, the character’s embodied
sprite); the triggering of resource transactions in response to colli-
sions is an operational integration; and the precise, frame-by-frame
data-�ow and mapping between a character’s position in the world,
its current character-state, and the positions of its hit-boxes and
hurt-boxes (damaging and vulnerable collision areas) is a natural
example of structural synthesis.

�e composition of operational logics opens up four key ques-
tions:

(1) How do the logics ful�ll their communicative role, i.e., how
do they enact their game state presentation?

(2) Where logics overlap and depend on each other, o�en in
cyclic ways, how is this condition expressed in the rules
and resolved at runtime?

(3) What is the game state, exactly, and how is that initialized
and managed across time?

(4) When logics demand di�erent parts of the game state, or
have di�erent sorts of inputs and outputs or world models,
how is this mapping done?

�estion one is addressed by communicative channels; the second
is the subject of operational integration. �e last two concerns are
the domain of structural synthesis.

4.1 Communicative Channels
�e simplest way for logics to overlap is by sharing communicative
channels. �is can be seen as a kind of semantic multiplexing, where
a�ordances o�ered by one logic can be leveraged by another. Of
course, operational logics must be de�ned independently of their
possible relations to other logics, so it falls on the composition of
logics to de�ne how one logic’s communicative role and game state
presentation strategy are ful�lled in the context of another’s.

Games with distinct characters or sprites, e.g., from character-
state or collision logics, commonly share the space around the sprite
as a channel. Regardless of how the sprites are positioned in the
world, additional regions of the screen might be allocated for indi-
vidual characters (for example the status displays in a �ghting or
role-playing game). Channels can also be duplicated or parameter-
ized: games with split-screen multiplayer provide several distinct
copies of the same con�guration of channels (one for each player).
Ultimately, what pixels get drawn to the screen (or which tokens
are positioned around a board) has to be de�ned somewhere, and
that display has to incorporate information from every logic. �is
type of composition is always present, even if the individual logics
interact in no other ways.

Compared to operational logics, graphical and textual design are
relatively well-understood. All the laws of composition and infor-
mation design apply, and a complete discussion of how a designer

may choose to enact the game state presentation of a logic is outside
the scope of this project. Su�ce it to say that each logic has its own
universe of discourse—the colliders of a collision logic, the resource
quantities and types of a resource logic—and it falls to designers and
programmers to decide upon and realize a game’s eventual sensory
output, consistent with the communicative roles and game state
presentation of the involved operational logics. �ese two aspects
of operational logics are a bridge to these other, well-established
disciplines.

4.2 Operational Integration
Sometimes, an operational logic may need to make a decision based
on a fact determined in another logic, or it may need to trigger
an action drawn from its own operators or those of another logic.
Examples include a character who is injured when collisions occur,
an enemy that changes behavior when the player comes close, or a
resource transaction which is only available when a specially timed
sequence of bu�on inputs occurs. We call this kind of composition
operational in the sense that it has to do with combining the abstract
operations of several logics.

�e example catalog entries in Fig. 2 include, in their abstract
operations, phrases like “trigger an operation of this or another
logic.” �ese are explicit sites of composition where logics can
integrate their operators together.

One way to think about this type of composition is that every
logic de�nes a set of logical predicates and a set of actions: ques-
tions that can be asked about the logic’s view of the game world
and changes in the world that this logic is competent to make. Op-
erational integrations are a type of composition that can be de�ned
almost exclusively at this level, mostly agnostic of the underlying
implementation of the integration. While their concrete semantics—
how data about character positions are used to determine whether
character behavior changes should take place—are up to the imple-
mentation, they at least have a clear implementation-independent
abstract semantics. Communicative channels and structural syn-
thesis, on the other hand, admit much less space between the im-
plementation and the speci�cation.

�is operational integration might be implemented by a black-
board where the programmatic systems implementing logics write
their calculated facts and desired actions, through object-oriented
messaging and observation, via forward-chaining inference, or by
an event propagation mechanism. If the game speci�es, for exam-
ple, an ordering among logics—that movements are resolved before
collisions, and the collision handling code is processed before deter-
mining the applications of a spatial pa�ern matching logic—then
shared variables could su�ce to implement the operational integra-
tion.

4.3 Structural Synthesis
We have accounted for how operational logics’ concepts are pre-
sented to players via (possibly shared) communicative channels
and how mechanics can be built out of several logics through oper-
ational integrations. But we have glossed over how concepts like
characters and space—which are required and provided by a variety
of logics—are eventually resolved and uni�ed. �is is di�erent from
referring to a black-box predicate (are two characters touching?)
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or triggering an opaque action (perform a resource transaction): a
character-state logic and a physics logic need to somehow refer to
the same set of characters. Structural synthesis de�nes how game
state �ows between operational logics, how it is mapped between
their di�erent internal representations, and so on.

In the catalog entries above, one pair of �elds has so far gone
unexplained: required and provided concepts. �is is a kind of onto-
logical free variable, a placeholder for terms which can’t be de�ned
within the logic itself or which could be converted into the native
terms of other logics (in the style of modular action languages [5]).
Consider, for example, graphical logic games comprising collision,
physics, character-state, and resource logics. A game character is
not just a collision volume, nor just a point mass, nor just a state
machine, nor just a resource pool. �e same character identity has
to be consistent across all of these logics. �e physics logic reposi-
tions the point mass subject to the constraints of the collider, and
with velocity and acceleration determined by the state machine;
if a projectile hits the collider, the corresponding resource pool
must have health resources removed; and so on. Some of these
integrations are operational, but all assume an external mapping to
place them into the same conceptual framework.

Cra�ing systems in games are o�en designed as simple resource
transactions: take three of item A and combine them with two of
item B to make one of item C. When inventories are also described
in terms of item types and quantities, the mapping seems natural:
a movement from one resource pool to another. On the other hand,
many games feature inventories with a spatial embedding—multiple
packs and satchels, with items taking up di�erent numbers and
arrangements of slots, where items may form stacks of bounded
size—implicating e.g., a collision or linking logic alongside resource
logics in the determination of what items are available for cra�ing.
In cases like these, the resource logic behind the cra�ing system
must have a way of counting resources of a given type in a given
abstract location, and a way of inserting any newly created or trans-
ferred resources into an abstract location. �e resource transaction
should be disallowed, for example, if the pack has no room for an
object with the product’s shape. �is mapping is (and must be) spe-
ci�c to the concrete composition in question, and it is a question of
structural data-�ow. How is the game state (opaque and inscrutable
to individual logics and operators) projected out onto the terms of
a particular logic or set of operations? And how are the e�ects of
these operations merged back in to the global state? What is the
game state, exactly, and how is it set up and managed across time?

For example, in arcade games of the sort produced by Game-
o-Matic, li�le bundles of arbitrary, isolated mechanics are glued
together into characters [22]. �e game-making toolkit Game
Maker emphasizes essentially the same logics as Game-o-Matic,
but its characters are instead described as coherent sets of condi-
tion/reaction pairs.

�ese trade-o�s do not only happen in game engines, but in
individual games. If a character moves too far from an active enemy,
that enemy might despawn or reset; from an operational integration
standpoint it does not ma�er whether the enemy continues to exist
in the world, but the actual game state might reuse the memory
associated with that enemy for some other purpose. If persistence
logics are used to determine what characters might be active for
the purpose of low-level collision checking or state updating, that

Camera Interval logics
Chance Bayesian graphical models
Character-state Networks of �nite state machines
Collision �alitative/quantitative spatial constraints
Control Action logics, event calculi
Game mode Hierarchical �nite state machines
Linking Second-order logic over �xed graphs
Persistence Separation logic, nominal logic
Physics Switched systems of di�erential equations
Progression Modal logics
Recombinatory Production systems, automata
Resource Multiset rewriting, numerical transition systems
Selection Monadic second-order logic
Spatial Matching Term rewriting
Temporal Matching (Metric) temporal logic
Table 1: Key operational logics and formal correspondents

is an example of structural synthesis; so is the use of a linking logic
to help determine which region of 2D space a camera is scrolling
over. Operational integrations and communicative channel sharing
are, eventually, built on top of this structural synthesis.

5 APPLICATIONS
At this point, we have a complete account of operational logics: their
constituent de�nitions, a (partial) catalog of fundamental logics,
and a description of the ways in which they compose, both at the
level of abstract semantics and concrete implementations. Why
go to the e�ort of constructing this conceptual apparatus? What
is the bene�t of an operational logics approach? In fact, we have
already seen cases where a more developed theory of operational
logics has proved useful. We divide these applications into two
rough categories: human interpretation and machinic knowledge
representation.

What do humans get out of operational logics? �e utility of
operational logics in game studies has already been shown in the
works cited in our introduction. Hopefully, this new account will
enable more scholars to use operational logics in their work, ac-
counting for phenomena that were previously inaccessible to the
theory.

Operational logics are also a useful basis for knowledge represen-
tation in and around games, mainly in the areas of game modeling
and reverse-engineering. Several projects in this area were cited
earlier, but now we have the theoretical foundation that helps ex-
plain why they were successful. �e key move in these projects has
been to step away from considering games as bags of mechanics
and towards viewing them as assemblages of abstract operations
from diverse logics, with suitable formal mappings. Formal logic
has clear applications to games—both the linear-logic-based Ceptre
and the answer set semantics [14, 15] have been used to great e�ect
in design and prototyping. We therefore include a provisional map-
ping between operational logics and well-understood formal logics
(Tab. 1), for potential integration in a logical framework such as Sat-
is�ability Modulo �eories [2]. �is mapping aims to be as natural
as possible, preserving the qualitative and human-relevant aspects
of the communicative roles while �nding concrete semantics for
the abstract processes. �is has clear applications in game design
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Figure 3: (Simpli�ed) Super Mario as a hybrid automaton.

1 2 3 4
0

8
9

5
6
10

7
11 12 13

Figure 4: Hypothesized structure of the �rst few rooms of
The Legend of Zelda (reproduced from [12]).

veri�cation and a potential further generalization of the automated
proceduralist readings work above.

If we have a well-de�ned way to compose operational logics and
a well-de�ned way to compose formal logics, we could potentially
bridge these to obtain modular, compositional speci�cation and
veri�cation of game designs. As an example of the bene�ts of this ap-
proach, the authors have seen productive connections between the
theory of hybrid automata (a combination of �nite state machines
and switched systems of di�erential equations) [1] and graphical
logic games; this has led to work both in modeling languages (as in
Fig. 3) and in reverse-engineering game mechanics [16], recover-
ing hybrid automata speci�cations from game characters [17], and
automatically mapping game levels (as in Fig. 4) from observations
of game play [12].

Finally, we also see applications to AI general videogame play-
ing: the GVG-AI competition speci�cally targets graphical logic
games, and recent years’ progress on general videogame playing
has focused more on exploring causal and relational aspects of
these games’ collision logics [13]. We believe that an expanded
operational logics approach could lead to even more generalized
approaches, moving from the domain of speci�c mechanics into
general combinations of abstract operations.

Operational logics are a versatile and powerful formalism ad-
dressing both perception and simulation. We hope that this work

and the catalog of logics encourage their broader use both by schol-
ars and by designers of game-making tools, modeling languages,
and other computational systems. Games are more than just loose
collections of homogeneous mechanics, and operational logics yield
a clear alternative representation.
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