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ABSTRACT
It is generally assumed that the latent trait is normally distributed in the population when estimating
logistic item response theory (IRT) model parameters. This assumption requires that the latent trait be fully
continuous and the population homogenous (i.e., not a mixture). When this normality assumption is
violated, models are misspecified, and item and person parameter estimates are inaccurate. When
normality cannot be assumed, it might be appropriate to consider alternative modeling approaches: (a) a
zero-inflated mixture, (b) a log-logistic, (c) a Ramsay curve, or (d) a heteroskedastic-skew model. The first 2
models were developed to address modeling problems associated with so-called quasi-continuous or
unipolar constructs, which apply only to a subset of the population, or are meaningful at one end of the
continuum only. The second 2 models were developed to address non-normal latent trait distributions
and violations of homogeneity of error variance, respectively. To introduce these alternative IRT models
and illustrate their strengths and weaknesses, we performed real data application comparing results to
those from a graded response model. We review both statistical and theoretical challenges in applying
these models and choosing among them. Future applications of these and other alternative models (e.g.,
unfolding, diffusion) are needed to advance understanding about model choice in particular situations.

Well-known assumptions of unidimensional item response the-
ory (IRT) models are unidimensionality, local independence,
and monotonicity. When estimating item parameters using
full-information maximum likelihood, it is commonly assumed
that the underlying latent trait is normally distributed in the
population. In specifying a normal distribution, it is implicitly
assumed that the latent variable scale and the estimated item
parameters apply to everyone in the calibration population
(i.e., there is no mixture). Further, it is assumed that the latent
variable is a continuous “bipolar trait” that has substantively
meaningful variation across the range of the latent variable
(Lucke, 2015, p. 273).

When the normality assumption, or its subsidiary
assumptions, are violated, parameter estimates can be highly
inaccurate (Azevedo, Bolfarine, & Andrade, 2011; DeMars,
2012; Kirischi, Hsu, & Yu, 2001; Sass, Schmitt, & Walker,
2008; Seong, 1990; Wall, Park, & Moustaki, 2015). Although
reviewing the extensive psychometric literature on the
effects of normality violations on IRT item parameter and
person estimates is beyond the scope of this article, Woods
and Thissen (2006) nicely summarized the consequences of
non-normality: “There is fairly consistent evidence that,
when normality of g(u) is assumed, MML estimates of more
extreme item parameters (e.g., thresholds around §2) are
nontrivially biased when the true population distribution is

platykurtic or skewed, and if g(u) is skewed, the bias
increases as the skewness increases” (p. 283).

Monroe and Cai (2014, p. 365) provided a compelling exam-
ple of the negative consequences of a misspecified normal dis-
tribution in the context of a drug abuse treatment outcome
studies measure of mental health and emotional distress.

Non-normal latent trait distributions present particular
challenges in the application of standard logistic IRT models to
personality and psychopathology measures (Reise & Rodriguez,
2016) because it is arguable that for many traits in these
domains (e.g., self-esteem [Gray-Little, Williams, & Hancock,
1997], borderline personality disorder [Michonski, Sharp,
Steinberg, & Zanarini, 2013], or dark triad traits [Webster &
Jonason, 2013]), an assumed normal distribution in a general
population might be untenable. In such cases, researchers need
to consider alternative IRT models designed to estimate non-
normal distributions.

Herein, we describe the strengths and limitations of two
such approaches, one nonparametric and the other parametric
(i.e., assumes a particular distributional form). Specifically, we
review a Ramsay curve model (Woods & Thissen, 2006) that
estimates the shape of the latent trait distribution simulta-
neously with the estimation of the item parameters. We also
review a heteroskedastic-skew model (Molenaar, Dolan, & de
Boeck, 2012) that both estimates the skewness of the latent trait
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and allows for error variances that increase or decrease as a
function of the latent trait. Using a real data set, the results of
these models will be compared with the results under a normal-
ity assumption.

A skewed latent trait distribution is one way that personality
and psychopathology data deviate from the normality assump-
tion. An additional complexity is that some personality and
psychopathology constructs are not fully continuous with
meaningful individual difference variation across the full range
of the latent trait continuum. Although some constructs such
as extraversion (vs. introversion), conscientiousness (vs. irre-
sponsibility), and subjective well-being (vs. subjective distress)
are, arguably, continuous and bipolar, other important con-
structs such as substance use or abuse, agoraphobia, and
somatic complaints, are not bipolar or fully continuous. We
argue that for such constructs, one would not expect a normal
distribution; more likely would be a highly skewed or a half-
normal distribution.

The challenges that certain personality and psychopathology
constructs present for IRT modeling have been long noted.
Almost 30 years ago, Reise and Waller (1990) stated that some
“personality traits may have an inherently quasi-categorical
rather than a full range continuum structure” (p. 57). Observ-
ing that clinical assessment instruments have highly peaked
information functions in the high (pathological) trait range and
a notable lack of items that provide discriminations among
individuals in low trait ranges, Reise and Waller (2007) stated,
“we believe that the peaked information function for many
clinical scales reflects the quasi-trait status of many psychopa-
thology constructs. By the term ‘quasi-trait,’ we mean that the
trait is unipolar (relevant only in one direction) and that varia-
tion at the low end of the scale is less informative in both a sub-
stantive as well as a psychometric sense” (p. 31).

Reise and Waller (1990, 2007) merged the concepts of uni-
polar trait and quasi-continuous trait (as opposed to fully con-
tinuous) to reference certain types of constructs that are
potentially problematic when fitting IRT models using a nor-
mality assumption. Here we use the term quasi-trait to refer to
constructs such as positive psychotic symptoms, where low
scores on symptom ratings reflect the absence or irrelevance of
the disorder for the individual. We use the term unipolar trait
to refer to constructs that are most substantively meaningful at
one end of the continuum (e.g., alienation, aggression).

Admittedly, the distinction between a quasi (apply only to a
subset of the population) and unipolar (only meaningful at one
end of the continuum) construct is murky in practice, but
needs to be drawn here because recently introduced IRT mod-
els were designed explicitly to handle these two types of mea-
surement situations.

Specifically, we review two alternative IRT modeling
approaches potentially applicable for quasi- and unipolar traits.
The first is a zero-inflated mixture model (Wall et al., 2015)
designed to handle the IRT modeling of quasi-traits—when the
population is heterogeneous and the continuous trait is only
applicable for a subset of the population. This model treats zero
and near-zero scores as a distinct latent class and then estimates
IRT item parameters with a normality assumption only for a
“traited class.” We also review a log-logistic model (Lucke,
2015) explicitly designed to handle unipolar traits—traits that

are not fully continuous and are only substantively meaningful
at one end of the trait continuum.

In what follows, we review emerging IRT models that might
be viable alternatives when the normality assumption for the
latent trait in IRT is implausible, either because the latent trait
distribution is suspected to be skewed, or the construct is not
fully continuous or a unipolar trait. For comparison purposes,
we fit a logistic graded response model (GRM; Samejima, 1969)
to 29 items from the Patient Reported Outcomes Measurement
Information Systems (PROMIS) Anger scale (Pilkonis et al.,
2011). We then compare this “business-as-usual” analysis with
the four alternative models cited earlier.

Each of the four alternative models makes different assump-
tions about the origin of the normality violation. Our specific
goal in each comparison is not only to highlight the strengths
and limitations of alternative modeling approaches, but also to
demonstrate how the models might yield different substantive
results, or not, in this particular data set. Our overarching goals
are to raise awareness of alternative IRT models, as well as to
motivate researchers to think more critically about latent
distributions.

Example data and psychometric characteristics

The calibration sample consisted of 1,498 nonclinical adults
who responded to 29 items administered in the develop-
ment of the PROMIS Anger measure (content available in
Supplemental Materials, Table 1). Anger is a historically
important construct in normal range personality, health
outcomes, and psychopathology research, and is one of
three constructs relevant to negative affect available through
the PROMIS (Pilkonis et al., 2011) initiative. As such it has
been extensively evaluated1 (e.g., Shalet et al., 2016). This
measure was selected because it is well suited for illustrating
the strengths and limitations of the alternative models pre-
sented here. We also believe the data are representative of
typical IRT applications to clinical measures as reviewed in
Reise and Waller (2007): unipolar, high skew for summed
scores, and few if any items providing discrimination in the
low trait range (see analyses that follow).

The first set of columns in Table 1 displays the percent-
age of responses in each category (0 D never, 1 D rarely, 2
D sometimes, 3 D often, and 4 D always).2 Relatively few
individuals respond in the two extreme categories, and for
many items, approximately 50% are responding 0 (never).
The last set of columns displays the item–scale (minus
the item) correlations, item means, and standard deviations.
When summed scores are calculated, coefficient alpha D
.97, M D 25.55, SD D 21.22, skewness D 0.96, and
kurtosis D .50.

As seen in Figure 1, the distribution of summed scores
appears to be more of a truncated-normal or half-normal dis-
tribution with zero inflation; best fitting skewed normal (solid
line) and normal distributions (long dashed line) are superim-
posed for illustrative purposes. Although the distribution of

1See healthmeasures.net.
2Item 29 used a different response format: not at all, a little bit, somewhat, quite a
bit, and very much.
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summed scores is not necessarily a good indicator of the distri-
bution of the latent trait,3 it is still critically important to
inspect it for observed non-normality in the data. Is the latent
distribution really normal but observed skew is due to “faulty”
item construction or is the latent distribution skewed, possibly
with zero inflation? Are excess zeros caused by poor sampling,
or is this attributable to a unipolar or quasi-trait? How a
researcher answers these questions affects model choice.

The graded response model

The GRM (Samejima, 1969) is commonly employed in the IRT
modeling of personality, psychopathology, and health out-
comes data. This model has well-known relations with the
parameters resulting from item-level ordinal factor analysis
(i.e., factor loadings and intercepts). In fact, some IRT software
packages report both the factor analytic and IRT parameteriza-
tion alongside each other in standard output. Herein, we con-
sider the GRM as the “default” or “business-as-usual” model.
In estimating the GRM, it is commonly assumed that there
exists an underlying normally distributed latent variable (trait)
with meaningful variation across the full range of the trait
continuum.

In the GRM for each item (i), one slope parameter (ai/ is
estimated. Items with larger slope parameters are considered
more discriminating or informative. For each item, K – 1 inter-
cept parameters g i jD 1...K ¡ 1ð Þ are also estimated where K is the
number of response options. These intercepts are then trans-
formed into K – 1 location parameters bi jD 1...K ¡ 1ð Þ, where
bij D ¡ g ij

aij
. Thus, the location parameter is not independent of

Figure 1. Histogram of composite scores for Anger scale with best fitting skewed
normal (solid line) and normal distribution (dashed line).

Table 1. Category response percentages and descriptive statistics for the PROMIS Anger scale.

Response percentages Descriptives

Scale item 0 1 2 3 4 rit M S

Item 1 Ang01 0.28 0.32 0.29 0.09 0.02 0.62 1.25 1.03
Item 2 Ang03 0.36 0.27 0.26 0.09 0.03 0.74 1.14 1.08
Item 3 Ang04 0.57 0.24 0.14 0.04 0.01 0.64 0.68 0.94
Item 4 Ang05 0.20 0.30 0.41 0.08 0.01 0.61 1.40 0.93
Item 5 Ang06 0.45 0.27 0.20 0.06 0.02 0.78 0.93 1.02
Item 6 Ang07 0.66 0.19 0.10 0.04 0.01 0.75 0.55 0.91
Item 7 Ang09 0.28 0.36 0.28 0.07 0.01 0.79 1.17 0.95
Item 8 Ang10 0.44 0.25 0.20 0.08 0.02 0.68 0.98 1.07
Item 9 Ang11 0.72 0.13 0.10 0.04 0.01 0.75 0.50 0.91
Item 10 Ang15 0.56 0.23 0.14 0.06 0.01 0.82 0.74 0.99
Item 11 Ang16 0.45 0.27 0.20 0.06 0.02 0.78 0.92 1.01
Item 12 Ang17 0.52 0.27 0.15 0.05 0.01 0.76 0.76 0.95
Item 13 Ang18 0.49 0.23 0.20 0.06 0.02 0.71 0.89 1.06
Item 14 Ang21 0.47 0.27 0.18 0.07 0.01 0.79 0.88 1.00
Item 15 Ang22 0.60 0.19 0.16 0.04 0.01 0.75 0.66 0.93
Item 16 Ang25 0.57 0.24 0.13 0.05 0.01 0.81 0.68 0.93
Item 17 Ang26 0.53 0.24 0.16 0.05 0.02 0.76 0.77 0.99
Item 18 Ang28 0.49 0.26 0.18 0.06 0.02 0.81 0.84 1.01
Item 19 Ang30 0.26 0.37 0.29 0.07 0.01 0.75 1.21 0.95
Item 20 Ang31 0.40 0.33 0.21 0.06 0.01 0.72 0.94 0.95
Item 21 Ang35 0.20 0.36 0.34 0.09 0.01 0.72 1.35 0.93
Item 22 Ang37 0.46 0.29 0.18 0.06 0.01 0.82 0.86 0.97
Item 23 Ang42 0.57 0.25 0.13 0.04 0.01 0.80 0.68 0.93
Item 24 Ang45 0.41 0.28 0.22 0.07 0.02 0.75 0.99 1.02
Item 25 Ang47 0.47 0.27 0.19 0.06 0.02 0.80 0.90 1.02
Item 26 Ang48 0.70 0.14 0.11 0.04 0.01 0.77 0.51 0.91
Item 27 Ang54 0.44 0.30 0.20 0.06 0.01 0.78 0.92 1.00
Item 28 Ang55 0.43 0.28 0.21 0.06 0.02 0.79 0.95 1.02
Item 29 Ang56 0.72 0.15 0.09 0.03 0.01 0.70 0.48 0.88

Note. Response options include 0 D never, 1 D rarely, 2 D sometimes, 3 D often, 4 D always. Item–test correlation denoted (rit ). For raw scores, M D 25.55, SD D 21.22,
skewnessD 0.96, and kurtosisD 0.5.

3The observed summed score distribution is a function of both the true latent
trait distribution and the properties of the items (Lord, 1953). Thus, even if the
true distribution is normal, if a test was either too easy or difficult, or if the loca-
tion parameters are not symmetric around zero, the observed scores will be
skewed.
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the slope parameter, and, consequently, highly discriminating
items tend to have locations that are clustered around zero, and
less discriminating items have locations more spread out.

Item parameter estimates for the Anger scale under the
GRM are shown in Table 2. These parameters were estimated
using marginal maximum likelihood as implemented in
Multidimensional Item Response Theory (MIRT; see Chalmers,
2012) assuming a normally distributed latent trait with a mean
of 0 and variance of 1 in the population (for identification).
The default number of quadrature nodes used in MIRT is 61
(range specified to be ¡4 to 4). For informational purposes, the
log-likelihood of the model is ¡38135.64, Akaike’s information
criterion (AIC) D 76561.28, Bayesian information criterion
(BIC) D 77331.5, root mean square error of approximation
(RMSEA) D 0.04 (95% CI [0.038, 0.049]), standardized root
mean square residual (SRMSR) D .040, and comparative fit
index (CFI) D .989. The M2 fit index (Maydeu-Olivares & Joe,
2006) is 1027.31 with 290 df, p < .01. Thus, judging by the
practical fit indexes, the estimated parameters recover the data
well, but the M2 statistical index suggests that a closer examina-
tion of fit at the item level is needed.

To understand the parameters of the GRM, in Figure 2 we
display three plots based on the results for Item 1. In the top
panel is the log-odds of responding in and above Categories 1, 2,
3, and 4, respectively, as a function of the latent variable. This
plot makes clear the interpretation of the K – 1 D 4 intercepts;

they are the log-odds of responding in or above a category j D
1, 2, 3, and 4, for individuals with trait levels of 0 (the mean).
Moreover, the item slope parameter reflects the steepness of
these functions; for Item 1 with a slope D 1.7, the log-odds of
responding in the next highest category or above increases by a
factor of 1.7 for a 1 SD unit change on the latent variable.

In the middle panel of Figure 2 is shown the more familiar
threshold response curves (TRCs) for Item 1. These represent
the probability of responding in and above categories j D 1, 2,
3, and 4, respectively, as a function of the latent variable. The
vertical dashed lines show that the location parameters repre-
sent the point on the latent variable continuum where the indi-
vidual has a 50% chance of responding in and above a given
category j D 1 … 4. Finally, for the bottom panel, if we label
the K – 1 TRCs as TRC1, TRC2, TRC3, and TRC4, respectively,
then the probability of responding in a particular category is 1
– TRC1, TRC1 – TRC2, TRC2 – TRC3, TRC3 – TRC4, and TRC4

– 0. These are called category response curves (CRCs). For any
point on the latent variable, the sum of the CRCs equals 1.

Returning to Table 2, all PROMIS Anger items are highly
discriminating, but there is a large range. Item 4 (“I disagreed
with people”) has a slope of 1.57, and Item 26 (“I felt like I
needed help for my anger”) has a slope of 3.33. Item 26 is about
4.5 times more informative or discriminating than Item 4
(3.332/1.572), or, it would take about 4.5 items like Item 4 to
achieve the same precision as one Item 26.

Table 2. Item slope, location, and intercept parameter estimates under the graded response model, assuming a normally distributed latent trait.

Slope Location Intercept

a b1 b2 b3 b4 g1 g2 g3 g4

Item 1 1.71 ¡0.77 0.40 1.72 2.98 1.31 ¡0.69 ¡2.94 ¡5.09
Item 2 2.25 ¡0.40 0.46 1.52 2.48 0.90 ¡1.03 ¡3.42 ¡5.58
Item 3 1.80 0.26 1.18 2.21 3.26 ¡0.47 ¡2.12 ¡3.98 ¡5.86
Item 4 1.57 ¡1.21 0.04 1.96 3.60 1.90 ¡0.06 ¡3.08 ¡5.65
Item 5 2.65 ¡0.13 0.70 1.69 2.55 0.34 ¡1.86 ¡4.48 ¡6.75
Item 6 2.92 0.47 1.16 1.81 2.70 ¡1.38 ¡3.39 ¡5.28 ¡7.87
Item 7 2.85 ¡0.66 0.42 1.59 2.75 1.87 ¡1.20 ¡4.53 ¡7.86
Item 8 1.97 ¡0.17 0.69 1.68 2.77 0.34 ¡1.36 ¡3.32 ¡5.46
Item 9 3.14 0.65 1.13 1.77 2.65 ¡2.03 ¡3.55 ¡5.56 ¡8.32
Item 10 3.35 0.18 0.89 1.62 2.52 ¡0.61 ¡2.97 ¡5.42 ¡8.46
Item 11 2.76 ¡0.12 0.71 1.67 2.53 0.33 ¡1.95 ¡4.61 ¡6.98
Item 12 2.60 0.08 0.94 1.85 2.79 ¡0.20 ¡2.45 ¡4.81 ¡7.25
Item 13 2.25 0.01 0.76 1.76 2.52 ¡0.02 ¡1.72 ¡3.96 ¡5.67
Item 14 2.75 ¡0.05 0.75 1.63 2.84 0.14 ¡2.06 ¡4.48 ¡7.80
Item 15 2.62 0.32 0.97 1.97 2.94 ¡0.83 ¡2.54 ¡5.16 ¡7.69
Item 16 3.30 0.21 0.98 1.75 2.69 ¡0.70 ¡3.23 ¡5.78 ¡8.88
Item 17 2.62 0.13 0.90 1.82 2.55 ¡0.33 ¡2.34 ¡4.76 ¡6.67
Item 18 3.23 0.01 0.76 1.64 2.42 ¡0.03 ¡2.47 ¡5.30 ¡7.83
Item 19 2.49 ¡0.76 0.39 1.62 2.75 1.88 ¡0.98 ¡4.04 ¡6.86
Item 20 2.20 ¡0.28 0.76 1.90 3.11 0.62 ¡1.67 ¡4.17 ¡6.82
Item 21 2.19 ¡1.05 0.20 1.60 2.96 2.30 ¡0.45 ¡3.51 ¡6.47
Item 22 3.21 ¡0.08 0.78 1.68 2.62 0.25 ¡2.51 ¡5.38 ¡8.42
Item 23 3.27 0.21 1.01 1.84 2.54 ¡0.68 ¡3.31 ¡6.03 ¡8.31
Item 24 2.38 ¡0.24 0.64 1.69 2.72 0.57 ¡1.52 ¡4.01 ¡6.45
Item 25 3.00 ¡0.07 0.72 1.62 2.47 0.21 ¡2.17 ¡4.87 ¡7.41
Item 26 3.33 0.59 1.11 1.84 2.54 ¡1.98 ¡3.69 ¡6.12 ¡8.46
Item 27 2.68 ¡0.16 0.73 1.71 2.61 0.43 ¡1.96 ¡4.57 ¡7.00
Item 28 2.79 ¡0.17 0.65 1.65 2.53 0.47 ¡1.82 ¡4.60 ¡7.05
Item 29 2.42 0.69 1.34 2.06 2.79 ¡1.66 ¡3.23 ¡4.97 ¡6.75
M 2.63 ¡0.09 0.76 1.75 2.73 0.10 ¡2.08 ¡4.59 ¡7.09
SD 0.50 0.47 0.30 0.15 0.26 1.12 0.95 0.86 1.04
Ma 2.17 ¡0.19 0.81 2.04 3.15
SDa 0.43 0.65 0.55 0.43 0.47

Note. a D slope; b D location; g D intercept.
aPilkonis et al. (2011) results.
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Despite there being five response options designed to spread
measurement precision across the trait range, there are no items
with location parameters below ¡1.21 (Item 4, the least discrimi-
nating item). With few exceptions, even the first location param-
eter tends to be around zero, or only slightly negative, suggesting
that an individual has to be around the mean on the latent vari-
able to have a 50% chance of responding in the second category
or above. On the positive side of the theta continuum, the fourth
location parameters are extreme, suggesting that to respond in
the highest category, individuals must be around 2.5 to 3.6 SDs
above the mean on the latent variable. Clearly, the Anger scale is
a “peaked test,” with location parameters clustered in the positive
end of the continuum, and few, if any, items that discriminate
best in the low trait range. This is the type of psychometric situa-
tion that Reise and Waller (1990, 2007) referred to in their dis-
cussion of quasi-continuous traits.

Models for quasi- and unipolar traits

The previously described GRM assumed a continuous, nor-
mally distributed latent variable. Nevertheless, the observed
item and summed scores are highly skewed, and when a model
was fit, threshold parameters were highly concentrated at the
high end of the trait continuum. To justify this incongruity,
one might attribute this to problems with the measure or the
data, that is, faulty item construction (e.g., not enough response
options, or, the anchors somehow are too extreme and thus
cannot distinguish between low trait individuals), or

oversampling individuals from low trait ranges. Alternatively,
we can reconceptualize the construct with a corresponding
change in model and assumptions. In the following two sec-
tions, we consider two alternative modeling strategies.

A zero-inflated mixture model

Wall et al. (2015) developed a zero-inflated mixture (ZIM) IRT
model in the context of psychiatric symptom measurement
where it is common to find many individuals responding with
zero or few symptoms. In other words, the model was devel-
oped explicitly to handle measurement situations where the
construct is a so-called quasi-trait (a trait applicable to only a
subset of the population) and the population is heterogeneous;
for one pathological class of individuals, the trait is meaningful
and symptoms can be used to scale individuals along a contin-
uum, whereas for another untraited or nonpathological class,
the construct is inapplicable. Wall et al. (2015) cited studies
that documented the severe bias in IRT item parameter esti-
mates, especially the discrimination parameter, when a normal
distribution is assumed, but the data are zero inflated. In turn,
the authors demonstrated that their ZIM model yields more
accurate calibration.

The basic idea underlying the ZIM model is to estimate
the percentages in the population that belong to the traited
and untraited classes and then estimate the item parameters
for the GRM in the traited class only. The latent trait is
assumed to be normal in both classes, but one class is

Figure 2. Log-odds, threshold response curves, and category response curves for PROMIS Anger Item 1 under the graded response model.
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degenerate; item parameters are not estimated for the
degenerate class. This is similar to, but not exactly the
same, as discarding cases scoring zero or near zero, and
estimating item parameters based on the remaining cases.
The authors argue that the mixture approach has a superior
statistical justification because due to measurement error,
some people with zero raw scores are likely in the traited
class, whereas some people with nonzero raw scores likely
belong to the untraited class.

We estimated a ZIM model using Mplus (Muth�en &
Muth�en, 2016) code supplied by the authors, with modification
for these data. Results showed that the percentage of individu-
als estimated to be in the untraited class was 5.5% (a subset of
the 6.0% of individuals with 0 raw total scores) and, thus,
94.5% was in the traited class. In comparison to GRM parame-
ter estimates shown in Table 2, the slope parameters in the
ZIM model for the traited class are much lower (M D 1.94 vs
2.63); controlling for the zero inflation leads to smaller slope
parameters (see Supplemental Materials Table 2).

When test information curves are drawn that reflect the pre-
cision of measurement across the trait range, the test informa-
tion functions for the GRM and mixture model are peaked at
relatively high trait levels, but the mixture model, which is pre-
sumably more accurate, provides about half the information of
the GRM (see Figure 3), and thus larger standard errors (which
equal approximately 1 divided by the square root of test infor-
mation). Finally, the Pearson correlation between latent trait
estimates for the 1,406 individuals in the traited class from the
mixture and GRM was .994. Thus, the models provide essen-
tially the same relative ordering of individuals albeit with much
larger standard errors in the ZIM model.

There are three important limitations of the mixture model
applied in this context. First, the model assumes that the non-nor-
mality arises from a degenerate class, and once this degenerate class
is removed from the calibration sample (down-weighted during
estimation), the distribution is normal. The model, as presently
implemented, does not allow for a skewed distribution to be

applied after removing the untraited class. Thus, the parameters
might still be biased due to an incorrect latent distribution.

Second, and resulting from the first limitation, one loses sample
size because no meaningful latent trait estimates can be derived for
the degenerate class. If this approach were to be applied in multi-
variate research where many constructs are measured, it is not at
all clear how researchers are to proceed with such missing data
when the data are missing as a consequence of construct irrele-
vance. Our third concern is purely substantive. As noted, themodel
was derived in the context of psychiatric constructs (alcohol use or
abuse in particular) where the mixture formulation of nonpatho-
logical and pathological groups might make relatively more sub-
stantive sense. It is not clear to us what the interpretation of a class
of “no anger” group would mean substantively, unless we view
anger as measured in the PROMIS items as a pathological
condition.

A unipolar log-logistic model

In the model presented in this section, a skewed distribution is
treated as an inherent result of the measurement of unipolar
constructs, especially for disorders such as alcohol, nicotine,
and substance abuse, where it makes little sense to create a
norm-referenced score. Lucke (2015) stated, “it makes little or
no sense to assert that a person has a below-average level of
addiction to alcohol or an above-average level of addiction to
gambling.” He then further argued that “The anchor for the
scale should therefore be ‘no disorder’” (p. 272).

To put these views into practice, Lucke (2015) proposed a
log-logistic (LL) model for dichotomous item response data.
This model was proposed in the context of unipolar traits and
applied to a measure of gambling addiction. In the LL model,
the latent trait begins at zero and continues to positive infinity.
Response patterns of all zeros are assigned uD 0: A polytomous
LL TRC for responding in or above category j (j D 1 … 4) is
then defined:

TRCij D P x�j j uð ÞD λijuhi

1C λijuhi

CRCs are defined in the same way as the GRM: CRC0 D
1¡ TRC1, CRC1 D TRC1 ¡ TRC2; CRC2 D TRC2 ¡ TRC3;
CRC3 D TRC3 ¡ TRC4; CRC4 D TRC4 ¡ 0. Model parame-
ters are defined as follows. The λij parameters, K – 1 per item,
are analogous to the intercept parameters in the GRM and
have been referred to as easiness parameters. The λ parame-
ters are always positive, and higher values signify that a large
proportion of people respond in or below a given category.
The hi parameter, one per item, is a discrimination parameter
and analogous to the slope in the GRM; in fact, it is exactly
the same so items are no more or less relatively discriminating
in either model. Finally, for each item, K – 1 location parame-
ters, the point on the latent trait where the probability of
responding in or above category j D 1 … K – 1 is .50, is

dij D 1
λij

� � 1
hij .

The parameters of the dichotomous or polytomous log-
logistic model can be estimated using Bayesian methods.

Figure 3. A comparison of test information for the graded response model (solid
line) and the zero-inflated mixture model (dashed line).
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However, for present purposes, we take advantage of the fact
that logistic models and LL models are transformations of each
other (e.g., if the latent variable in the GRM is normal with a
mean of zero and standard deviation of 1, then in the LL model,
the distribution is log-normal with the same mean and stan-
dard deviation).4 Thus, using the parameters for the GRM
shown in Table 2, we can transform to an LL model as follows:
λD exp gð Þ; hDa; and dD exp bð Þ. Latent trait scores estimated
in the GRM can also be transformed to the LL metric as
ûLL D exp ûGRM

� �
.

Item parameter estimates for the LL model are available
in the Supplemental Materials Table 3. Understanding the
difference between the GRM and LL rests on understanding
the effects of the transformation of the latent scale. To clar-
ify, what the LL model does is massively compress negative
theta estimates and estimates that are around 0 in the GRM
metric. For example consider that exp(¡3.0) D 0.049; exp
(¡2.0) D 0.135; exp(¡1.0) D 0.367; exp(0) D 1.0; exp(1.0)
D 2.71; exp(2.0) D 7.38; and exp(3.0) D 20.08. For this rea-
son, theta estimates are very highly skewed in the LL model.
In turn, this new metric has profound implications for the
item and test information functions. Due to the metric
“squeezing” at the low end and expansion at the high end,
test information is very peaked and extremely high at the
low end, as shown in Figure 4. The corresponding standard
errors, also shown, indicate that the standard errors for a
trait-level estimate change remarkably as a function of
theta. The correlation between trait-level estimates in the
GRM and LL is r D .72. Despite the fact that the two esti-
mates are simple nonlinear tranforms of each other where
the rank ordering remains the same, the correlation is far
from perfect due to scale compression and expansion noted
earlier.

In our view, the LL model has many virtues to recom-
mend it in terms of the present Anger measure. Most
important, it does not assume normality, it allows for the
scoring of all individuals, and it appears consistent with
theory if the researcher believes the construct to be a unipo-
lar trait. On the other hand, this is a relatively recently pro-
posed model, and much remains unknown (e.g., how to
evaluate fit, test for differential item functioning, its robust-
ness to zero inflation, etc.). Some of our concerns are prac-
tical (e.g., accuracy of parameter estimation under varying
distribution conditions) and some are technical (e.g., the
information function in this model has some implausible
properties; it gets very high at low trait levels due to the
“squeezing” effect of the transformation).

Models for non-normal latent traits

The preceding models treat the non-normality in the data as
arising from very different mechanisms, zero inflation and the
unipolar nature of the construct, respectively. In this section,
we review two models that assume a continuous underlying

latent distribution, but allow that distribution to be non-
normal.5

Ramsay-curve IRT

When a normal latent trait distribution is (incorrectly) assumed
during parameter estimation, this misspecification can lead to
distorted item parameter estimates. One possible remedy to
this problem is to estimate the shape of the latent trait distribu-
tion and then estimate parameters based on a correctly speci-
fied latent trait distribution. In Ramsay-curve (RC) IRT
(Woods, 2006, 2015; Woods & Thissen, 2006), the latent trait
distribution is estimated at the same time as the item
parameters.

At its most basic level, the latent trait distribution in RC IRT
is estimated using a smooth function to describe the density for
the latent trait; this is a nonparametric technique, but there are
limits on the type of distribution that can be reasonably
approximated. To date, all research on parameter recovery
under RC IRT relies on creating non-normal distributions
through the mixture of normal distributions. We know of no
studies of parameter recovery in the presence of zero inflation.
In this analysis, we used RCLOG V2 (Woods, 2006) to estimate
a latent density underlying the Anger items. There are several
important user options in running RCLOG. For the sake of
brevity, for technical details and suggested user defaults, we
refer readers to the original research and user manual.

In this analysis, we allowed RC IRT to evaluate solutions
running from 2 degrees and 2 knots (a normal distribution) to
6 degrees and 6 knots. Knots and degrees are technical jargon.
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Figure 4. Test information (solid line) and standard errors (dashed line) in the log-
logistic model.

4With the caveat that if the parameters in the GRM are biased, their translation
must be in error as well. This is why future work should consider the Bayesian
estimation of the LL GRM where a researcher can have better control over prior
distributions.

5In the original presentation of the Anger item bank (Pilkonis et al., 2011), the
authors assumed a continous latent variable but acknowledged that the normal-
ity assumption for the calibration might be questionable. Nevertheless, they con-
cluded that the effects of violations, if any, were minimal, and proceeded with a
standard calibration with normality assumption.
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Degrees refers to the degrees of the polynomial for the Ramsay
curves used to approximate the latent distribution. Knots refers
to the number of joinings of the Ramsay curves. Together,
degrees and knots refer to the flexibility of the possible distribu-
tion; fewer are more restricted with the limiting case of a nor-
mal distribution, whereas more allow for greater departures
from non-normality (i.e., skew and kurtosis). Examination of
fit indexes output from RCLOG suggested that the solution
with 6 knots and 2 degrees was best, although alternative solu-
tions were very close. In this solution, the log-likelihood was
¡38102.47, which differed significantly from a normal distribu-
tion, x2(4) D 67.11. Most importantly, skewness of the latent
distribution was estimated to be ¡1.96 and kurtosis was esti-
mated to be 8.78. The specific distribution estimated is shown
in Figure 5, which displays one small hump at low trait levels,
and then an essentially normal distribution.

Item parameter estimates based on the best fitting model are
available in Supplemental Materials Table 4. Comparing these
values to the GRM, the glaring difference is that the slopes are
all much higher in the RC model than GRM (M D 3.75 in RC
and M D 2.63 in GRM), implying that the RC model yields
more precise trait-level estimates. However, we caution that
these parameter estimates might be misleading. The basis of
our concern is the negative skew estimate and unusually high
kurtosis. In particular, the negative skew estimate for data that
are clearly positively skewed indicates that the estimation might
be problematic due to the excess zero distribution or prepon-
derance of people clustered around raw total scores of zero.6

The correlation between trait level estimates in the GRM and
RC models is .99.

The heteroskedastic-skew graded response model

The preceding model attempts to estimate a nonparametric but
smooth density function to represent the latent trait distribu-
tion. The model in this section, called the heteroskedastic-skew
(HS) model (Molenaar et al., 2012), also attempts to estimate a
non-normal density, but with a specific parametric form,
namely, a skewed normal distribution (Azzalini, & Capatanio,
1999). In addition, the HS model also attempts to account for
violations of homogeneity of variance, which is one possible,
but seldom discussed source of observed non-normality in item
response.

Three features of the HS model are critical to understand.
First, the model is based on the normal-ogive version of the
GRM. This makes the model akin to an item-level ordinal fac-
tor analytic model—a “factor loading and intercept” parameter-
ization easily transformable into an IRT “slope and threshold”
parameterization. For example, we can describe item function-
ing as:

y�i D ni C λiuC ei

where y�i is a continuous normal response propensity that is
“polytomized” through the K ordinal item response catego-
ries, ni is the item intercept (the expected score on y�i
when uD 0/, λi is the (unstandardized) factor loading (regres-
sion slope), and ei is a residual with variance, s2

e . For each
item, a linear regression is estimated with the latent variable
as the predictor and a normally distributed latent response
propensity as the outcome. In the preceding, error variances
for each item are assumed to be homoskedastic, with an
expected value of zero.

Second, the logistic GRM described previously imposes sym-
metric category response curves, which can lead to problems in
scoring individuals on the latent variable (Samejima, 2000). By
virtue of allowing for heteroskedastic errors, the HS model
does not necessarily produce symmetric CRCs (see Molenaar
et al., 2012, p. 473). Third, the developers of the HS model
noted that observed skewness in the data can be caused by at
least two factors: (a) the latent trait distribution could be
skewed, and, (b) heteroskedasticity of residuals. In theory, the
HS model allows for skewness to be estimated after separating
out the effects of heteroskedastic error and, thus, can provide a
“cleaner” estimate.

With this foundation in mind, the basic idea of the HS
GRM is to simultaneously estimate: (a) the parameters of
the normal-ogive GRM, (b) a heterogeneity parameter for
each item that allows items to violate homoskedasticity, and
(c) the skewness of the latent trait distribution. This latter
estimate is based on assuming a parametric skewed-normal
distribution. For specific details of the model, and conver-
sion of factor analytic to IRT model parameters, we refer
readers to Molenaar et al. (2012).

We estimated two nested models using an OpenMx (Boker
et al., 2011) program provided by the model developers: (a)
baseline model with no skew or heteroskedasticity, and a full
model with both skew and heteroskedasticity estimated. To
identify the model, we fixed the first two threshold parameters
to their values estimated in the GRM. Item parameter estimates
(i.e., factor loadings, thresholds, intercepts, residual variance,
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Figure 5. The latent density estimated by Ramsay curve logistic.

6We note that Woods (2015) successfully implemented Davidian curves to Anger
items drawn from the PROMIS project. However, there is currently no available
software to implement this method so we could not explore that alterative to
Ramsay curves here.
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heteroskedastic residuals, and IRT slope) for the baseline and
full models are available in Supplemental Materials Tables 5
and 6.

Most important is the comparison of the baseline model
with the full model. For the baseline model (skewness D 0, het-
eroskedasticity D 0), model fit indexes were ¡2 the log-likeli-
hood D 76733.50, df D 43297, AIC D ¡9860.50, and BIC D
¡119924.62. For the full model, fit indexes were ¡2 the log-
likelihood D 76610.57, df D 43267, AIC D ¡9923.43, and BIC
D ¡119876.40. The chi-square difference between the baseline
and full model was 122.93 on 30 df, which is significant at p �
.01. The estimated skewness of the latent trait was 0.28, which
is essentially indistinguishable from a normal distribution. The
factor loadings (M D 0.96 vs. M D 0.92) and IRT slopes
(M D 2.22 vs. M D 2.05) are slightly lower in the full than the
baseline model. All other item parameter estimates in the full
model are essentially the same as the baseline, with the excep-
tion of the heteroskedasticity parameters (d1), which are now
estimated.

The critical issue with these parameters is whether they are of
sufficient magnitude to impact the CRCs relative to the baseline
model. To explore this issue, in the top two panels of Figure 6
are displayed the CRCs for Item 19 under the baseline and full
models. This item had a large positive heteroskedasticity parame-
ter (0.48). It appears that the CRCs under the two models are
nearly identical. In the bottom panel, we compare the item
response curves for Item 19 under the two models; they are
nearly overlapping except in the high trait ranges, where the

expected item scores are lower for the full model. In Figure 7,
we provide the comparison of test response curves (expected
summed score as a function of the latent trait) under the two
models. As one would predict from the slightly lower factor
loadings in the full model, expected scores are slightly lower in
the full model. This is likely a difference that makes no practical

Figure 6. Category response curves (CRCs) and item response curves (IRCs) for Item 19 under baseline model and heteroskedastic-skew model.
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Figure 7. Test response curves for baseline (solid line) and heteroskedastic-skew
(dashed line) models.
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difference. Note that trial-level estimates from the HS models
were not actually estimated due to software limitations, but given
the similarity in item parameters with the GRM it is reasonable
to expect that their correlation with the GRM would be near 1.0.

In review, although the HS full model with estimated skewed
distribution is statistically superior to the baseline GRM with
normal distribution, just as in the RC-IRT analysis, we question
whether the present data are consistent with the estimated
latent distribution. In RC-IRT the distribution is smooth but
nonparametric, and thus avoids misspecifications caused by
assuming a specific form. In the HS model, what is estimated is
the skew of a parametric skewed normal distribution. In this
regard, it is critically important to recognize that the limit of
this distribution is a skewness of 1.0. As a consequence, no mat-
ter how skewed the true latent distribution is, the model can
only accommodate that skew up to a certain point. Clearly,
more research is needed to clarify parameter estimates under
the HS model with unipolar traits, extreme skew, or excess
zeros present in the data. In addition, the substantive interpre-
tation and practical implications of heterogeneous residuals
requires further research. In this research, the role of estimating
heterogeneous residuals was merely to decontaminate the esti-
mate of skewness from one source of possible bias.

Discussion

IRT models are valuable psychometric tools when the model-
derived latent variable scale (u) accurately reflects individual
differences on the trait the researcher is trying to measure and
the estimated item parameters faithfully reflect the relation
between trait levels and the probability of category response.
To be used effectively, however, models such as the logistic
GRM (Samejima, 1969) make many assumptions about the
latent trait (causative, not emergent7), the item response data
(local independence), the calibration sample (homogeneous,
representative), the nature and shape of the latent variable
(continuous, normal), the distribution of errors, and the
parametric form of the model (linear relation between theta
and log-odds of responding). The validity of the conclusions
drawn from any IRT model application is threatened to the
degree that any of these assumptions are violated.

Similar to Pilkonis et al. (2011), we applied the logistic GRM,
with normality assumption, to responses to a 29-item measure of
anger.We then considered four alternativemodels that relaxed one
or more of the assumptions listed previously. The RC-IRT (non-
parametric) and HS (parametric) models allow the researcher to
estimate a fully continuous latent distribution simultaneously with
the item parameters, and thus relax the normality assumption.
Both approaches also allow a likelihood ratio test to compare the
non-normal versus normal distributionmodel.

The ZIM and LL models relax normality in different ways,
and neither model allows for a simple likelihood ratio statistical
test of whether it is a significant improvement over the GRM.

The ZIM assumes that the population is heterogeneous and the
observed normality violations are caused by an untraited or
nonpathological latent class. When this subsample is estimated
and removed, the GRM with normality assumption is then
applied to the traited or “pathological” group. The LL model
replaces the logistic function in the GRM with the LL, and
replaces the normality assumption with an assumption of log-
normality. It can be used in the same situations as the ZIM
model.

Review of practical differences

An important practical concern is determining whether the
alternative models yield either different scalings of individual
differences, or provide a different view on the psychometric
properties of the items and the scale (CRCs, scale response
curves, scale information). In this section, we review model dif-
ferences for the Anger scale in terms of scoring and psychomet-
ric evaluation.

Correlations of latent trait estimates generated from the
GRM with estimates from the ZIM (for those in the traited
class), RC, and HS models are all nearly perfect. These
results suggest that these models make little difference in
terms of relative standing on the estimated latent trait. The
only real difference for the Anger data is in the standard
error, which would be larger in the ZIM model (because of
lower slopes) and smaller in the RC model (because of the
higher slopes).

The one distinctive model in terms of scoring was the LL
model, where latent trait estimates correlated rD .72 with those
from the GRM. Although some might view this as a high linear
correlation, implying similar patterns of external relations, it is
important to note two differences. First, the anchor for the scale
and the interpretation is very different. In the GRM, the anchor
is the mean of u D 0 and scores are interpreted relative to that
mean. In the LL, the anchor is u D zero—no disorder—and
scores reflect severity of the disorder. Second, relative to the
GRM, differences between people near the low end of the scale
are compressed, whereas differences between people toward
the high end of the scale are expanded. Thus, the substantive
(heritability coefficients, correlates with neurobiological param-
eters or life outcomes) and psychometric results (indexes of
clinically important differences) based on the Anger data under
these two models could differ dramatically.8

In terms of psychometric properties, as noted earlier, one major
difference was the reduced slope parameters in the ZIM model
compared to the GRM, suggesting that they are inflated in the
GRM due to excess zeros, roughly, more zero scores than expected
under a normal distribution. The implication is that if a sample
contains fewer or greater noncases, the slope parameters of the
GRM will change accordingly. On the other hand, the RC model
suggested higher slopes once a non-normal latent trait distribution
was estimated. Nevertheless, we believe that the RC results are

7It is also worth noting that not all constructs are best conceived as latent varia-
bles; some constructs are best represented as emergent variables (Bollen & Len-
nox, 1991; Fayers, Hand, Bjordal & Groenvold, 1997). IRT or factor-analytic
models are inappropriate for this latter type of construct. Full discussion of this
issue is beyond the scope of this article. We have assumed for simplicity that the
latent variable measure framework is sensible.

8We note that IRT models have been criticized (Goldstein, 1980) exactly because if
you change the basic model from a logistic model, very different scaling of indi-
vidual differences might occur. Historically, the choice of a logistic function was
not based on any substantive consideration or proven validity, but rather simply
on mathematical convenience. This remains true today.
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untrustworthy in this particular application due to the extreme
skew caused by the excess zeros identified in the ZIMmodel.

This same concern with the possibility of excess zeros
applies to the interpretability of the HS model as well. The HS
model that contained item heterogeneity parameters (allowing
error variances to increase or decrease as a function of trait
level) and estimated a skewed normal distribution fit better
than the GRM. Moreover, because the estimated skewness was
very small, the better fit could be mostly attributable to the esti-
mated item heterogeneities. Nevertheless, allowing for heterog-
enous variances did not result in item or TRCs that differed
appreciably from the GRM. Because of a lack of research on
this model, we do not know the degree to which possible excess
zeros lead to biases in heterogeneity or skewness estimates.

Finally, as in the case of scoring, the LL model provided the
largest contrast with the normal theory GRM. In relative terms,
items are just as discriminating in the GRM and LL model, but
where that discrimination is located is vastly different. In the
LL model, information is very high in the near-zero trait range,
indicating that the item set yields a precise discrimination
between people who are low on Anger (i.e., the majority of sub-
jects) and those who are not. In terms of differentiating among
individuals at the positive end of the scale, standard errors are
relatively larger. These psychometric differences have implica-
tions for all types of applications of IRT models including link-
ing, computerized adaptive testing, and the study of differential
item functioning. We note in closing that just as GRM slope
parameters can be inflated by excess zeros, so can the analogous
parameters in the LL model. In short, the LL results presented
here could be misleading if one considers some zero scores as
excess zeros.

Deciding between approaches in practice

Throughout, we have not considered whether the alternative
models provide a statistically better fit than the GRM that
assumes normality; with a large enough sample, we assume
that any model without a restrictive normality assumption will
display a superior statistical fit. In practice, there are no ready
fit indexes or rules of thumb for deciding between the models
considered here. Rather, what is required is the thoughtful con-
sideration of mostly theoretical questions. For example, if a
researcher considers the latent variable to be fully continuous
with meaningful variation on both ends of the scale (bipolar),
but the latent trait distribution might be skewed, then RC and
HS models are viable candidates.

However, we warn that not only do these methods have lim-
itations in the type of distribution that can be estimated, but
the item response data must allow for the accurate estimation
of a non-normal latent trait. For short scales (e.g., five items),
and for scales that do not include items that discriminate well
across the trait range,9 the ability of any algorithm to correctly

estimate a latent distribution is severely compromised. More-
over, if the skew is caused by excess zeros, possibly due to poor
sampling, estimating a true latent distribution would be nearly
impossible.

If the construct is considered unipolar or a quasi-trait, then
the ZIM and LL models can be considered. In deciding between
these two models, a researcher must ask questions such as this:
What do low scores reflect, low trait standing or absence of the
trait? A critical difference between these models is that the ZIM
model assumes a normal distribution for the population, but
the sample is contaminated by excess zeros. To obtain correct
population parameters, one needs to identify and eliminate
these cases from the calibration. The LL assumes a highly
skewed distribution in the population. If that assumption is jus-
tifiable, and it make sense to reference scores and clinical
change relative to a zero anchor, the LL model might be the
more appropriate choice. It is clear to us that more research is
needed on the robustness of LL model parameters to excess
zeros. It is also possible, in theory, to develop an LL model with
excess zeros analogous to the ZIM model.

Conclusion

Lucke (2015) argued that a chief virtue of IRT modeling is
that it allows researchers to develop measurement models
that are consistent with the theory of the construct (see also
Asparouhov & Muth�en, 2015). Indeed, his LL model was
selected not merely because it can account for highly
skewed response data—dozens of monotonically increasing
functions can do that—but rather because the LL model
and log-normal trait scale are potentially more consistent
with the cognitive neuroscience of addictive behavior. Lucke
is by no means alone in proposing that measurement mod-
els need to be consistent with the hypothesized underlying
response processes and what is known about the nature of
specific constructs.

Stark, Chernyshenko, Drasgow, and Williams (2006) and
Weekers, Anke, and Meijer (2008) considered the IRT
modeling of personality data in terms of an unfolding
response process.10 Van der Maas, Molenaar, Maris, Kievit,
and Borsboom (2011) considered a diffusion model for the
response process that might be appropriate for bipolar
traits, but not for unipolar traits that are anchored at no
ability or no trait at the low end. Although neither of these
models was detailed here, they are examples of new psycho-
metric developments of potential value as we move toward
the next generation of IRT applications in the personality,
psychopathology, and health outcomes domains. We hope
that this article provides motivation for researchers to more
carefully consider the nature of the latent trait, and to
explore the application of alternative models. Only then can

9We note that the sole psychometric justification for having multiple, ostensibly,
ordered response options, rather than yes–no, true–false, is to allow for better
differentiation among individuals across the assumed latent trait continuum.
When location parameters in the GRM are bunched at one end of the continuum
(e.g., all in the positive trait range), the items are not differentiating among indi-
viduals across the continuum. One possible reason is that the low end of the trait
does not exist—it is a unipolar or quasi-trait.

10By response process, we mean the theory of how trait levels are linked to item
responses. Traditional test theory models are dominance models: The probability
of item endorsement depends on the degree to which an individual’s trait level
is higher than an item’s location (e.g., easy vs. hard). In an “unfolding” response
process, the probability of endorsement is determined by the absolute distance
between trait level and item location. The closer the trait level is to the item loca-
tion, the more likely an endorsement.
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we obtain additional substantive insights and findings from
these models.
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