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Abstract 
 
Infrastructure management systems assist agencies in making decisions regarding maintenance, 
repair, and reconstruction of the facilities under their jurisdiction. The objective in these 
decision-making tools is to minimize the total expected cost of managing a system of facilities 
over a given planning horizon. Recent optimization models account for the uncertainty in the 
selection of facility performance models through an adaptive control approach. 
 
In this paper, we extend the methodology to jointly determine when to inspect and what 
maintenance activity to perform, while taking into account uncertainty in measuring facility 
condition. A parametric study is performed to analyze the effect of the initial performance model 
uncertainty and bias on the expected total cost of managing a facility over a finite horizon.  The 
parametric study shows that reducing model uncertainty leads, as expected, to lower costs.  The 
results also indicate that reducing the initial variance in model uncertainty is more important than 
reducing the initial bias.  In addition, our study shows that cost savings can result from relaxing 
the constraint of a fixed inspection schedule. 
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1. Introduction 
 
Infrastructure management is the process through which agencies collect and analyze data about 
infrastructure systems and make decisions on maintenance, repair, and reconstruction (MR&R) 
of facilities over a given planning horizon. Bridge maintenance, road improvement, and highway 
rehabilitation are examples of MR&R activities. 
 
In each period, usually every year, agencies face two types of decisions for each facility in an 
infrastructure network: whether to inspect or not, and which MR&R action to perform, if any. An 
agency’s objective is to minimize the expected total costs associated with a facility’s use and 
maintenance over a planning horizon. Infrastructure management systems (IMS) support 
agencies in performing the following functions: 

§ Data collection; 
§ Performance modeling and prediction; and 
§ MR&R decision-making. 

 
MR&R decisions are based on current condition, as well as performance models that predict 
future condition under MR&R policies. Typically, several competing models can be used to 
represent deterioration.  The multiplicity of models may result from different underlying 
assumptions about the physical process of deterioration, or they may represent different expert 
opinions about the future performance of a facility.  This leads to a situation where agencies face 
uncertainty in the choice of model.  This type of uncertainty is referred to as performance model 
uncertainty.  Note that this uncertainty is not a result of the underlying randomness in the 
deterioration process.  Indeed, each of the competing models may be probabilistic. 
 
We capture performance model uncertainty by including beliefs about deterioration in the set of 
information that is used to make MR&R decisions.  The beliefs correspond to an agency’s 
assessment about which model can be used to represent the physical deterioration process, i.e., 
which model governs the process.  Adaptive optimization models use observations of condition, 
obtained during the management of facilities, to update an agency’s beliefs.  Over time this 
results in an adequate representation of the physical deterioration process.  Adaptive 
optimization models for MR&R decision-making are introduced in Durango and Madanat (2002) 
and Durango (2002).  In this paper, we present an extension that jointly optimizes MR&R and 
inspection decisions. 
 
Facility inspections serve two purposes in the context of adaptive MR&R optimization models.  
First, they provide an assessment of the current facility condition.  Second, they provide 
information that is used to update an agency’s beliefs, which in turn determines predictions about 
future condition.  Adaptive MR&R optimization models assume that facilities are inspected in 
every period and that the inspection process is error-free, i.e., that it reveals the true facility 
condition.  This motivates the development of a methodology that captures both the optimal 
timing of inspections, as well as the uncertainty that is inherent in measuring facility condition. 
As argued in Madanat (1993), because the two sets of decisions are linked, inspection policies 
cannot be optimized in isolation of MR&R policies. 
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The methodology presented herein can be used for each facility that falls under an agency’s 
jurisdiction.  It constitutes a first step in developing a network-level MR&R planning system that 
captures administrative restrictions that link the facilities that comprise the network. A possible 
approach to incorporate these restrictions would be to consider formulations such as the one 
presented in Madanat et al. (1999). 
 
2. Literature review  
 
The graph below illustrates the chain of events that take place during each time period in the 
process of managing infrastructure facilities. 
 
 

 
 
 
 

Figure 1. The event chain in infrastructure management 
 
The first event corresponds to facility deterioration during a period.  It can be caused by traffic, 
weather, or aging and results in changes in facility condition.  At the end of each period, an 
agency can choose to inspect a facility to assess its current condition and can use a performance 
model to predict its future condition.  Given the current condition and predictions about future 
condition agencies make decisions concerning the actions to be applied at the end of the period. 
The decision rule is to select actions that will minimize the sum of expected discounted costs 
until the end of the planning horizon.   Finally, the last event corresponds to the implementation 
of the action in the current period. 
 
State-of-the-art IMS assume that facility deterioration is both stationary and Markovian.  In the 
remainder of this section we provide a review of such systems.  At this point, we wish to 
emphasize that our contribution is general because uncertainties in selecting performance models 
or in measuring facility condition are also present in systems that do not rely on these 
assumptions. 
 
Markov Decision Process (MDP) Formulations 
 
MDP formulations take into account the inherent randomness in facility deterioration.  A finite 
set of states is used to represent facility condition, and the deterioration process is represented by 
transition probabilities as defined below: 

),|Pr()( 1 aaixjxa ttt
t

ij ==== +π     (1) 
where: 

§ 1+tx  is the state of the facility at the beginning of period t+1, 
§ tx  is the state of the facility at the beginning of period t, and 
§ ta  is the action taken in period t. 
§ i,j are elements of a set of states 
§ a is an element of a (finite) set of actions 

Physical 
Deterioration 

Condition        
Assessment 

MR&R 
Decision-
Making 

Implementation 
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The Markovian assumption implies that the probability of a transition between any pair of states 
during a period only depends on the state at the start of the period and the action applied during 
the period. 
 
The assumption that deterioration is stationary/time-homogeneous implies that the transition 
probabilities are constant over time.  Among other things, this means that deterioration is 
independent of facility age.  In this case, 
 
     )()( aa ij

t
ij ππ = , ∀t           (2) 

 
The transition probabilities can be arranged in a set of matrices (one for each MR&R activity).  
The transition probabilities can be derived from empirical data or from expert opinions. Several 
approaches to estimate the probabilities are reported in the literature.  Statistical estimation and 
time series approaches are discussed in Carnahan et al. (1987) and Olsonen (1988). Another 
approach based on a performance model and the properties of Markov Chains is proposed in 
Madanat (1991). Madanat and Wan Ibrahim (1995) describe how Poisson regression and, more 
generally, negative binomial regression can be used to estimate the probabilities.  These methods 
are statistically sound and recognize the discrete representation of condition. Finally, Mishalani 
and Madanat (2001) develop a stochastic duration-based method to estimate the probabilities, 
which specifically takes into account the effect of causal variables, and recognizes the correlation 
between successive observations. 
 
The MDP for the problem of finding optimal MR&R policies for infrastructure facilities is 
usually formulated as a dynamic program. The value function is defined as the expected, 
discounted cost until the end of the horizon. The cost incurred during each period includes both 
the user costs and the cost of applying MR&R actions.  The optimal policy corresponds to a list 
of actions for each period and every possible state of the facility.  
 
MDP formulations can be extended to the network-level with a linear programming formulation 
that is equivalent to the formulation described in the preceding paragraph.  The state and action 
spaces are approximated by continuous spaces.  This approximation is justified because of the 
large number of facilities that comprise infrastructure networks.  The optimal policy specifies the 
joint fraction of the network in a given state that receives an action in a given period.  The 
formulations can account for constraints that agencies face such as budget restrictions.  Arizona’s 
Pavement Management System was the first successful implementation of this type of 
formulation (Golabi et al. 1982). 
 
Two important limitations of these models are related to the implicit assumptions that the true 
condition of the facility or network is revealed in every period, and that agencies can select 
(without uncertainty) a deterioration model that provides a perfect representation of the physical 
deterioration process. 
 
The incorporation of joint decisions that include inspections and MR&R actions is relatively 
straightforward. Klein (1962) and Mine and Kawai (1982) among others present formulations 
that include inspection decisions. These models, referred to as joint models, do not account for 
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uncertainty in the process of measuring facility condition.  Among other things, this uncertainty 
is inherent to measuring technologies.  Madanat (1993) compares various formulations of the 
joint MR&R and inspection optimization problem and presents a Latent MDP formulation for 
the problem that accounts for measurement errors.  Durango and Madanat (2002) present an 
adaptive control formulation that accounts for the uncertainty in choice or specification of 
performance models to represent facility deterioration.   The formulation introduced in this paper 
relaxes both assumptions simultaneously by combining the Latent MDP formulation and the 
adaptive control formulations.  In the remainder of this section, we discuss Latent MDP 
formulations and adaptive control formulations in more detail. 
 
Latent MDP Formulations 
 
Research by Humplick (1992) has shown that there are significant measurement errors in 
existing inspection technologies. Measurement errors can lead to the selection of inappropriate 
actions when a policy specifies different actions for the true condition and the measured 
condition.   
 
Latent MDP formulations are extensions of MDP formulations that include the inspection 
decision and account for uncertainty in the inspection process, i.e., measurement error. The 
possibility of a flexible inspection schedule and the presence of measurement errors constitute a 
violation of the basic premise that the true facility condition is revealed at the end of each period.  
Madanat and Ben Akiva (1994) present a Latent MDP formulation where the state-space of the 
problem is augmented as described in Bertsekas (1987).  This technique takes advantage of the 
fact that the decision-maker knows the history of the past transitions and actions, and can capture 
this information in what is referred to as a sufficient statistic.  
 
Under the state augmentation technique, the state of the system at stage t takes into account all 
the information available to the decision maker, since the beginning of the planning horizon, and 
that is relevant for decision-making. This is summarized by the information sets It, ∀t.  At the 
end of period t, the set can be represented as follows: 
 
     { }tttt xaxaxaII ˆ,,ˆ,...,,ˆ,, 111000 −−= ,    (3) 
where I0  represents the initial information available at the start of the planning horizon, and tx̂  is 
the measured state during period t. 
 
The set can also be defined recursively as { }tttt xaII ˆ,, 11 −−= .  
 
Formulating a dynamic program with a state-space that corresponds to the information set 
constitutes a natural extension of the framework described earlier.  The MDP formulations are 
adjusted by considering the conditional distribution of states for the given information set.  The 
probability that the facility is in state xt given the information set It is denoted ( )tt Ix |Pr .  The 
vector of probabilities for each state is denoted tt IP | .  This vector is referred to as the 

information vector or as the sufficient statistic.  Similarly, the expected cost incurred during 
period t is defined as ( ) ( )[ ]ttt

x
tt IaxgEaIg

t

|,,~ = .  
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Due to the presence of measurement errors, the measured facility condition is now only 
probabilistically related to its true condition. We assume that the distribution of the measurement 
relative to the true state is known and depends on the technology used. The relationship between 
measured and true states is given by measurement probabilities: 
    ( )rRjxkx ttt

r
jk ==== ,|ˆPrε     (4) 

where: 

§ tx̂
and tx

 are respectively the observed and true condition state of the facility, and 
 
§ Rt is the technology used for measurement. 

 
Measurement probabilities can be derived from empirical measurement error models as 
discussed in Humplick (1992). 
 
Adaptive Control Formulations 
 
The models described in the preceding sections all refer to one deterioration model that can be 
specified with a single set of transition probabilities.  This stems from the assumption that 
agencies can choose and specify (without uncertainty) a perfect, albeit probabilistic, 
representation of the physical deterioration process.  Performance model uncertainty was 
identified early on as an important consideration in developing MR&R policies.  For example, 
Carnahan (1988) states that MR&R policies are sensitive to the transition probabilities and that 
care should be taken in the choice and specification of a deterioration model.   
 
Durango and Madanat (2002) present two adaptive control formulations, an open-loop-optimal 
feedback control formulation and a closed-loop control formulation, for the facility-level MR&R 
problem under performance model uncertainty. Model uncertainty is captured with a probability 
mass function over a finite set of models.  It is denoted { }D

tttt QQQQ ,...,, 21=  where D is the 

number of candidate models. The elements of the vector represent the probability assigned to the 
event that deterioration is governed by each of the models, i.e.,     
 [ ] ( )tt

d
t IddQDd |

~
Pr,,..,1 ==∈∀        (5) 

where d
~

 is a random variable that represents the true deterioration model. 
 
The adaptive control formulations do not allow for flexible inspection schedules and do not 
account for uncertainty in the measurement process. In the next section we introduce a closed-
loop control formulation for the facility-level problem that simultaneously accounts for 
uncertainties in measurements and in the choice or specification of performance models. 
 
Finally, we summarize the contribution of the model we have developed by listing the 
assumptions used in the formulations presented in the literature.  The summary appears in Table 
1. 
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Model Choice and 
specification of 
performance 

model 

Condition 
assessment 

Decisions 

MDP Deterministic True state MR&R 
Joint MDP Deterministic True state MR&R 

Inspection 
Latent MDP Deterministic Measurement 

errors 
MR&R 
Inspection 

Adaptive Control Probabilistic True state MR&R 
Proposed model Probabilistic Measurement 

errors 
MR&R 
Inspection 

 
Table 1. Features of MR&R decision-making models 

 
 
3. Proposed Model 
 
Prior to presenting the formulation we introduce the following notation: 
 
N Number of possible states; 
A Number of possible actions; and 
α  Discount factor. 
 
Information sets are defined as in Equation (3) as follows: 
  
    { }ttttt RxaxaRxaII ,ˆ,,ˆ,...,,,ˆ,, 1110000 −−=     (6) 
 
The information sets include the measured state and the measuring technology used.  
Alternatively, the sets can be written recursively as: 
 
     { }11 ,,ˆ, −−= ttttt IRxaI       (7) 
 
The elements of the set of beliefs about deterioration are adjusted to fit this new information 
structure.  They are denoted ( )1111 ,,|,ˆ, −−−− tttttt

d
t aQIPxRQ , which we write as d

tQ . 

 
Decision-making involves the choice of action to perform during time period t, as well as 
whether to inspect or not at the beginning of the next period.  In this context, inspections provide 
information that reveals information about the current condition of a facility, that reveals 
information about the deterioration process, and that reveals information about measurement 
errors associated with the technology. 
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Prior to presenting the formulation we describe assumptions related to costs, performance 
models, and measurement errors. 
 
Model Specification 
 
Transition Probabilities  
A set of transition probabilities is specified for each of the deterioration models.  They are 
denoted as: 
 
   ( ) ( )tttt

d
ij aixddjxa ,,

~
|Pr 1 ==== +π     (8) 

 
Measurement error 
The notation for modeling measurement error is the same as the one presented for the Latent 
MDP formulation.  The inspection decision is represented by a choice between two classes: one 
with the measurement precision associated with each inspection technology, and the other with a 
measurement error of infinite variance. The model can accommodate a set of different 
technologies. However, in the computational study we reduce the choice to a binary decision.  
Rt=1 denotes an inspection and Rt=0 for no inspection. 
 
The “no inspection” decision (Rt=0) refers to a technology where for each state the probability of 
measuring any state is uniformly distributed: 
 

  [ ] ( )
N

RjxkxNkj tttjk
1

0,|ˆPr,,...,1, 0 =====∈∀ ε    (9) 

 
This case, where every condition state is equally likely to be observed regardless of the true state, 
is shown to be equivalent to not inspecting in Madanat and Ben Akiva (1994). The associated 
cost is set to zero. 
 
Cost 
In the remainder of this section we will use the notation ( )1,, +ttt Raxg  for the generic cost 
incurred during period t associated with activity at  on a facility in state xt and choosing to use 
inspection technology Rt+1 at the beginning of next period. The cost per period consists of: 
 
User cost: Assumed function of the state of the facility.  
Inspection cost: Assumed constant. 
MR&R cost: Assumed function of the action and of the state. 
Salvage cost: Assumed function of terminal state at the end of the planning horizon.   
 
Dynamic Programming Formulation 
 
The formulation of the facility-level joint inspection and MR&R problem consists of the 
objective value function definition, the recursive relation, and a set of boundary conditions.  The 
information available at the start of each period consists of tt IP |  and tQ . The first vector 

summarizes the information about the current facility condition.  The second vector captures the 
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beliefs about deterioration which in turn determine an agency’s predictions about future 
condition.  The formulation is presented below.    
 
 
Recursive relation 
At the start of each period, the minimum expected, discounted cost until the end of the planning 
horizon is defined as ( )tttt QIPf ,|   and it can be written as: 

 
( )=tttt QIPf ,|

( ) ( ) ( )



















⋅⋅⋅⋅+⋅=∑ ∑ ∑ ∑

= = = =
+++++

+

+

N

i

D

d

N

j

N

k
tttt

R
jkt

d
ij

d
ttttttt

Ra
QIPfaQRaxgIix t

tt

Min
1 1 1 1

11111
,

,|,,)|(Pr 1

1

επα   

 
(10) 

 
Note that this expression explains why the inspection decision for period t+1 is made in period t: 
the inspection in t+1 directly influences the information vector 11 | ++ tt IP , which is used for the 

recursive computation of the objective function in period t and the measurement probabilities 
1+tR

jkε .  The recursive relation is defined for every decision-making period and every possible 

state of the facility.  For computational reasons the continuous spaces of the state vectors, tt IP | , 

tQ , are discretized. 

 
Expression (10) is for the minimum expected total discounted costs given the information set.  
The expectation is taken over the current state whose probability mass function is specified by 
the information set. Thus, the expression can be rewritten as: 

 ( ) ( ) ( )[ ]11111|ˆ,|
,

,|,,,|
1

1

+++++ ⋅+=
+

+

tttttttIxIx
Ra

tttt QIPfRaxgEQIPf
tttt

tt

Min α    (11) 

 
Boundary conditions 
The boundary conditions for the problem are presented below.  They are used to assign the 
salvage cost for the facility at the end of the planning horizon. 

( ) ( )[ ] ( ) ( )∑
=

⋅===
N

i
TTTTIxTTTT isIixxsEQIPf

TT
1

| |Pr,|      (12) 

 
The boundary conditions are defined for every possible terminal state of the facility. 
Finally, we describe how the beliefs about deterioration, tQ , and the information set, tt IP | , are 

updated in each period.  The updates reflect how an agency’s beliefs about deterioration change 
to account for periodic measurements of a facility’s condition.  They also reflect how 
information from successive measurements can be used to reduce the variance in the inspection 
process. 
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Updating the beliefs about deterioration 
Updating the beliefs about deterioration requires the following: 

§ The inspection technology Rt;  
§ The measured state kx t =ˆ ; 
§ The a priori beliefs about deterioration and the state, i.e. 11 | −− tt IP and 1−tQ ; and 

§ The action applied 1−ta . 
 
After the observation phase in period t, the beliefs about deterioration are updated as follows: 
 

d
tQ  ( ) ( )11 ,,,ˆ|

~
Pr|

~
Pr −−==== ttttt IRaxddIdd  

 
( ) ( )

( ) ( )∑
=

−−−−

−−−−

=⋅

=⋅
= D

d
ttttttt

ttttttt

IRaddIRadx

IRaddIRadx

1'
1111

1111

,,|'
~

Pr,,,
~

|ˆPr

,,|
~

Pr,,,
~

|ˆPr
 

 
As ( ) ( ) d

ttttt QIddIRadd 1111 |
~

Pr,,|
~

Pr −−−− ==== , we can write: 

d
tQ  

( )
( )∑

=
−−−

−−−

⋅

⋅
= D

d

d
ttttt

d
ttttt

QIRadx

QIRadx

1'

'
111

111

,,,
~

|ˆPr

,,,
~

|ˆPr
 

 
If we observe that: 

( )11 ,,,
~

|ˆPr −−= tttt IRadkx  ( ) ( )∑
=

−−−− =⋅==
N

j
ttttttttt IRadjxIRadxkx

1
1111 ,,,

~
|Pr,,,

~
,|ˆPr  

    ( ) ( )∑∑
=

−−−−
=

=⋅==⋅=
N

i
ttttt

N

j

R
jk Iixaixdjxt

1
1111

1

|Pr,,
~

|Prε  

It follows that: 
( )11 ,,,

~
|ˆPr −−= tttt IRadkx  ( ) ( )∑ −−−− =⋅=

ji
tttt

d
ij

R
jk Iixat

,
1111 |Prπε     (13) 

As ( )111 |Pr −−− = ttt Ijx  is a component of the state vector from the previous stage, we have a 

recursive expression for d
tQ . 

   d
tQ  

( ) ( )

( ) ( )∑∑

∑

=
−−−−−

−−−−−

⋅=⋅

⋅=⋅
=

D

d

d
t

ji
tttt

d
ij

R
jk

d
t

ji
tttt

d
ij

R
jk

QIixa

QIixa

t

t

1'

'
1

,
1111

'

1
,

1111

|Pr

|Pr

πε

πε
   (14) 

where k tx̂= . 
 
Note that when the decision is not to inspect, the beliefs about deterioration are not updated. 
Indeed, no additional information is available to the decision-maker. 
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Updating the beliefs about the facility state 
Given the updated beliefs about deterioration, the decision-maker then revises her beliefs about 
the new state of the facility condition, taking into account: 

§ The current inspection decision tR and observed state kx t =ˆ ; 
§ The new beliefs about the deterioration tQ ; 

§ The past beliefs about the facility state 11 | −− tt IP ; and  

§ The last action taken 1−ta . 
 
The state vector defines the beliefs about the facility state tt IP | : 

( )ttt Ijx |Pr =  ( ) ( )∑
=

=⋅===
D

d
ttt IdDIdDjx

1

|
~

Pr,
~

|Pr  

  
( )

( )∑ ∑ ⋅==

⋅==
=

−−

−−

d
j

R
kjtttt

R
jkttttd

t t

t

IRadDjx

IRadDjx
Q

'
'11

11

,,,~|'Pr

,,,
~

|Pr

ε

ε
 

 
In the same fashion as earlier, we write: 

( )11 ,,,
~

|Pr −−== tttt IRadDjx  ( ) ( )11111
1

|Pr,,,
~

,|Pr −−−−−
=

=⋅==== ∑ ttttttt

N

i

IixIRadDixjx  

    ( ) ( )∑
=

−−−− ==
N

i
tttt

d
ij Iixa

1
1111 |Prπ     (15) 

Again, we notice that ( )111 |Pr −−− = ttt Ijx  has already been determined, so: 
 

  ( )ttt Ijx |Pr =  
( ) ( )

( ) ( )∑ ∑
∑

⋅=

⋅=
=

−−−−

−−−−

d
ij

R
kjtttt

d
ij

R
jktttt

d
ij

id
t t

t

Iixa

Iixa
Q

,'
'1111'

1111

|Pr

|Pr

επ

επ
  (16) 

 
In the case where no inspection has been performed at the beginning of the period, the state 
vector is updated such that the new probabilities are the weighted transition probabilities. 
Although no new information is available, the decision-maker updates her beliefs using the 
performance models. 
 
4. Computational study 
 
We present a computational study in the context of pavement management with a planning 
horizon of 15 years and a discount rate r=5%, where α = 1/(1-r). 
 
As in Carnahan (1987), we assume that pavement condition is represented by 8 states, each 
representing 12.5 points on the PCI scale of 100.  The agency can choose from the following 
MR&R actions: (1) do-nothing, (2) routine maintenance, (3) 1-in overlay, (4) 2-in overlay, (5) 4-
in overlay, (6) 6-in overlay, and (7) reconstruction.  
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Three possible deterioration models are considered: slow, medium and fast. With each model 
being characterized by a set of 7 of transition probability matrices (one for each action).  The 
models are taken from Durango and Madanat (2002) and are such that:  

§ The effect of MR&R actions on transitions is assumed to follow a truncated normal 
distribution with the mean depending on the action and the model and the variance 
depending on the model;  

§ Actions are less effective in improving pavement condition under faster deterioration 
models; and 

§ Faster deterioration models have higher variance in forecasting. 
 
The means and standard deviations of the effects of actions are presented in Table 2. 
 

Slow Medium Fast
Action

1 -0.50 -0.75 -1.75
2 0.50 0.00 -0.50
3 1.75 1.00 0.25
4 3.00 2.00 1.00
5 4.25 3.00 1.75
6 5.50 4.00 2.50
7 6.00 6.00 4.00

Std. Dev. 0.30 0.50 0.70

Deterioration Model

Mean effect

 
Table 2. Mean effect of the MR&R activities 

 
The measurement error is assumed to be zero i.e. 11 =jkε  if k=j, 0 otherwise. If an inspection is 
performed, the agency is said to have “perfect state information”. This assumption was made to 
reduce the number of parameters and simplify the interpretation of the results. 
 
The total cost includes the cost of inspection, the user cost and the cost of applying MR&R 
actions. The user cost is set to restrict a condition of at least state 2. This is done by setting the 
cost of reaching state one to infinity and is shown in Table 3.  Furthermore, in order to prevent 
the facility from deteriorating too far at the end of the planning horizon, we set the salvage cost 
to be infinite for any final state worse than 5.  Table 3 summarizes all of the costs considered. 
  

Condition state 1 2 3 4 5 6 7
1 0.00 6.90 19.90 21.81 25.61 29.42 27.97
2 0.00 2.00 10.40 12.31 16.11 19.92 25.97 25.00
3 0.00 1.10 8.78 10.69 14.49 18.30 25.97 22.00
4 0.00 0.83 7.15 9.06 12.86 16.67 25.97 14.00
5 0.00 0.65 4.73 6.64 10.43 14.25 25.97 8.00 0.00
6 0.00 0.31 2.20 4.11 7.91 11.72 25.97 4.00 0.00
7 0.00 0.10 2.00 3.91 7.71 11.52 25.97 2.00 0.00
8 0.00 0.04 1.90 3.81 7.61 11.42 25.97 0.00 0.00

MR&R Activity User 
Cost

Salvage 
Cost

∞ ∞
∞
∞
∞

 
Table 3. Input costs 
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As in Madanat and Ben Akiva (1994), the inspection cost is assumed to be $0.065/lane-yard.  
 
Results 
 
Figure 3 (4) shows a comparison of the expected cost when the physical process corresponds to 
the slow (fast) model. For these figures, the initial beliefs about the state are 00 | IP = (0, 0.1, 0.1, 

0.2, 0.4, 0.2, 0, 0).  By “slow” beliefs, we mean that the initial beliefs about deterioration are 
such that 0Q =(0.8, 0.1, 0.1).  That is, a probability of 0.8 is assigned to the event that the 

physical process is governed by the slow model, 0.1 to the medium, and 0.1 to the fast model.  
Similarly, “fast” beliefs indicate that the initial belief vector is  0Q = (0.1, 0.1, 0.8).  We also 

consider an initial belief vector that corresponds to a case of high uncertainty.  This vector is 
labeled  “no” which stands for the non-informative initial beliefs i.e. 0Q = (0.3, 0.4, 0.3).  In 

computing the expected cost, we assume that the pavement is in state 5 at the start of the 
planning horizon. 
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Figure 3. Expected cost: Physical deterioration = Slow 
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Figure 4. Expected cost: Physical deterioration = Fast 
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As expected, in both instances, whether the deterioration is slow or fast, when the initial beliefs 
are close to the physical process, the expected cost is the lowest.  The expected costs are higher 
in Figure 4 than in Figure 3 because it is costlier to maintain a pavement that deteriorates faster.  
A noteworthy result is that the non-informative initial beliefs are the worst in both instances.  
This result seems to indicate that biased, but precise, beliefs about the deterioration model are 
preferred to less biased beliefs of higher variance. 
 
To understand this strange result, we conducted a simulation study whose results are presented in 
Figure 5.   That is instead of computing the expected costs analytically we generate instances for 
the two cases described above.  The physical process corresponds to the fast model.  The beliefs 
about the model in each period are averaged over the 1,000 simulations. We plot the trajectory of 
the average 3

tQ =Pr(d = Fast | information). 
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Figure 5. Trajectories of 3

tQ : Physical deterioration = Fast 
 
As 3

tQ  converges much faster when the initial beliefs are biased (slow), than when they are non-
informative, the actions taken in the non-informative situation are not as efficient as those taken 
when the initial beliefs are wrong. Hence the higher expected cost when the initial beliefs about 
deterioration have a higher variance attached to them.  The faster convergence of the beliefs in 
the biased case compared to the non-informative case can be explained qualitatively by the 
contrast between the observations and the expectations. This contrast is augmented by the action 
taken in both cases: when the initial beliefs are biased, the MR&R actions taken will be mild 
compared to the non-informative case. Therefore, worse states are more likely to be observed. 
Such unexpected outcomes provide feedback that leads to drastic and prompt revision of the 
beliefs in the biased case.  
 
Finally, we compare the formulation we introduce to the closed-loop control formulation with 
fixed (yearly) inspections presented in Durango and Madanat (2002).   The results are presented 
below: 
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Figure 6. Comparison of expected cost: annual vs. optimal inspection:  

Physical deterioration = Fast 
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Figure 7. Comparison of expected cost: annual vs. optimal inspection:  

Physical deterioration = Slow 
 
Figures 6 and 7 show that relaxing the constraint of annual inspections leads to a reduction in the 
expected costs.  This is due to the fact that an inspection is performed only when it provides 
information that will improve future decisions.  As a result, the expected number of inspections 
is reduced. 
 
A noteworthy feature of both figures is that when the variance in the beliefs about the 
deterioration is low, the larger reduction in expected cost is observed when the initial beliefs are 
adequate.  This indicates that the benefit of a flexible inspection schedule is greater when 
inspections provide less information, which is an intuitively correct result. 
 
5. Conclusions 
 
This paper presents an adaptive optimization model for the problem of finding joint inspection 
and maintenance policies for infrastructure facilities.  The model relaxes the assumption of a 
fixed inspection schedule while accounting for uncertainties in the choice or specification of a 
performance model (to represent deterioration), and in the process of measuring facility 
condition.  The methodology we present is referred to as adaptive because the information from 
measurements of condition is used to obtain an adequate representation of a facility’s physical 
deterioration process over time, i.e., to learn about deterioration. In addition, the formulation 
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captures the value in inspecting facilities to assess current condition and/or to reduce the 
measurement error associated with the technology used for inspections 
 
A computational study in pavement management leads to several insights about the problem.  
The results show that reducing the initial variance in model uncertainty is more important than 
reducing the initial bias.  This means that providing the wrong information is less costly than 
providing no information about deterioration.  The reason for this strange result is that the beliefs 
about deterioration can be adjusted drastically and quickly in response to unexpected events.   
Another result is that substantial benefits can be achieved by implementing a flexible inspection 
schedule when the initial beliefs are adequate.  The reason is that inspections are providing very 
little information and so it is not necessary to perform them as frequently.    
 
The scope of this research was purposely limited to the facility-level of the MR&R problem. An 
immediate extension is to adapt the formulation to the network-level problem with administrative 
restrictions. A possible approach to incorporate network-level constraints is to formulate the 
model developed herein using randomized policies and to solve it using linear programming. 
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