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Abstract

Infrastructure management systems assst agencies in making decisons regarding maintenance,
repar, and recondruction of the faciliies under ther jurisdiction. The objective in these
decisornrmaking tools is to minimize the totd expected cost of managing a sysem of fadlities
over a given planning horizon. Recent optimization models account for the uncertainty in the
sdection of facility performance modd s through an adaptive control gpproach.

In this paper, we extend the methodology to jointly determine when to inspect and what
maintenance activity to peform, while teking into account uncertainty in messuring fadility
condition. A parametric study is performed to anayze the effect of the initid performance modd
uncertainty and bias on the expected totd cost of managing a facility over a finite horizon. The
parametric study shows that reducing mode uncertainty leads, as expected, to lower costs. The
results dso indicate that reducing the initid variance in mode uncertainty is more important than
reducing the initid bias. In addition, our study shows that cost savings can result from relaxing
the congraint of afixed ingpection schedule.
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1. I ntroduction

Infrastructure management is the process through which agencies collect and analyze data about
infrastructure systems and make decisons on maintenance, repar, and recongruction (MR&R)
of faclities over a given planning horizon. Bridge maintenance, road improvement, and highway
rehabilitation are examples of MR&R activities.

In each period, usudly every year, agencies face two types of decisons for each facility in an
infrastructure network: whether to ingpect or not, and which MR&R action to perform, if any. An
agency’s objective is to minimize the expected totd costs associated with a fadlity’s use and
maintenance over a planning horizon. Infrastructure  management  systems  (IMS)  support
agencies in performing the following functions

= Datacollection;

=  Performance modding and prediction; and

» MR&R decisonmeaking.

MR&R decisons are based on current condition, as well as performance modes that predict
future condition under MR&R policies. Typicdly, severd competing modes can be used to
represent  deterioration. The multiplicity of modds may result from different underlying
assumptions about the physical process of deterioration, or they may represent different expert
opinions about the future performance of a facility. This leads to a Stuaion where agencies face
uncertainty in the choice of modd. This type of uncertainty is referred to as performance model
uncertainty. Note that this uncertainty is not a result of the underlying randomness in the
deterioration process. Indeed, each of the competing models may be probabiligtic.

We capture performance modd uncertainty by incuding beliefs about deterioration in the st of
information that is used to make MR&R decisons. The beiefs correspond to an agency’s
assessment about which modd can be used to represent the physical deterioration process, i.e,
which modd governs the process. Adaptive optimization models use observations of condition,
obtained during the management of facilities, to update an agency’s bdiefs.  Over time this
results in an adequate representation of the physical deterioration process.  Adaptive
optimization modds for MR&R decison-making are introduced in Durango and Madanat (2002)
and Durango (2002). In this paper, we present an extenson that jointly optimizes MR&R and
ingpection decisons.

Facility inspections serve two purposes in the context of adaptive MR&R optimization modds.
Firg, they provide an assessment of the current facility condition. Second, they provide
information that is used to update an agency’s beliefs, which in turn determines predictions about
future condition Adaptive MR&R optimization modes assume that facilities are ingpected in
every period and tha the ingpection process is eror-freg i.e, that it reveds the true facility
condition.  This motivates the devedlopment of a methodology that captures both the optima
timing of ingections, as well as the uncertainty that is inherent in measuring facility condition.
As argued in Madanat (1993), because the two sets of decisons are linked, ingpection policies
cannot be optimized in isolation of MR&R policies.



The methodology presented herein can be used for each facility that fals under an agency’s
jurisdiction. It conditutes a firs step in developing a network-levd MR&R planning system that
captures adminidrative redrictions that link the facilities that comprise the network. A possble
gpproach to incorporate these redrictions would be to consder formulations such as the one
presented in Madanat et al. (1999).

2. Literaturereview

The graph beow illudrates the chain of events that take place during each time period in the
process of managing infrastructure facilities.

Physcd Condition MR&R Implementation
Deterioration Assessment Decison
Making

Figure 1. The event chain in infrastructure management

The first event corresponds to facility deterioration during a period. It can be caused by traffic,
weather, or aging and results in changes in faclity condition. At the end of each period, an
agency can choose to ingpect a facility to assess its current condition and can use a performance
moded to predict its future condition. Given the current condition and predictions about future
condition agencies make decisons concerning the actions to be applied at the end of the period.
The decison rule is to sdect actions that will minimize the sum of expected discounted cods
until the end of the planning horizon.  Findly, the last event corresponds to the implementation
of the action in the current period.

State-of-the-art IMS assume that facility deterioration is both dationary and Markovian. In the
remainder of this section we provide a review of such sysems. At this point, we wish to
emphasize that our contribution is generd because uncertainties in sdecting performance modds
or in measuring fadlity condition are dso present in sysems that do not rdy on these
assumptions.

Markov Decision Process (MDP) Formulaions

MDP formulaions take into account the inherent randomness in facility deterioration. A finite
st of dates is used to represent facility condition, and the deterioration process is represented by
trangtion probabilities as defined below:
Py (@) =Pr(X. = jlx =i.a =a) 1)

where:

= X, ISthedate of thefacility at the beginning of period t+1,

= X, isthe date of the fadility a the beginning of period t, and

= @, istheactiontakenin period t.

= |, aedementsof aset of Sates
= aisandement of a(finite) set of actions



The Markovian assumption implies that the probability of a trangtion between any pair of dates
during a period only depends on the dtate at the start of the period and the action applied during
the period.

The assumption that deterioration is dationary/time-homogeneous implies that the trangtion
probabilities are congant over time. Among other things this means that deterioration is

independent of facility age. Inthis case,
pitj(a):pij(a)1"t ()

The trangtion probabilities can be arranged in a set of matrices (one for each MR&R activity).
The trangtion probabilities can be derived from empirica data or from expert opinions. Severd
gpproaches to estimate the probabilities are reported in the literature. Statigtical estimation and
time series gpproaches are discussed in Carnahan et al. (1987) and Olsonen (1988). Another
approach based on a performance model and the properties of Markov Chains is proposed in
Madanat (1991). Madanat and Wan lbrahim (1995) describe how Poisson regresson and, more
generdly, negative binomid regresson can be used to esimate the probabilities. These methods
ae datidtically sound and recognize the discrete representation of condition. Findly, Mishaani
and Madanat (2001) develop a stochastic duration-based method to estimate the probabilities,
which specificdly takes into account the effect of causa variables, and recognizes the corrdation
between successve observations.

The MDP for the problem of finding optima MR&R policies for infrastructure fadilities is
usudly formulated as a dynamic program. The vdue function is defined as the expected,
discounted cost until the end of the horizon. The cost incurred during each period includes both
the user cogsts and the cost of applying MR&R actions. The optima policy corresponds to a list
of actionsfor each period and every possible sate of the facility.

MDP formulaions can be extended to the network-leved with a linear programming formulation
that is equivdent to the formulation described in the preceding paragraph. The state and action
goaces are approximated by continuous spaces.  This gpproximation is judtified because of the
large number of facilities that comprise infrastructure networks. The optima policy specifies the
joint fraction of the network in a given dae that receives an action in a given period. The
formulaions can account for condraints that agencies face such as budget redtrictions.  Arizona's
Pavement Management Sysem was the fird successful implementation of this type of
formulation (Golabi et al. 1982).

Two important limitations of these models are rdated to the implicit assumptions that the true
condition of the facility or network is reveded in every period, and tha agencies can sdect
(without uncertainty) a deterioration modd that provides a perfect representation of the physica
deterioration process.

The incorporation of joint decisons that include ingpections and MR&R actions is rdatively
graightforward. Klein (1962) and Mine and Kawa (1982) among others present formulations
that include inspection decisons. These modds, referred to as joint modes, do not account for



uncertainty in the process of measuring facility condition. Among other things, this uncertainty
is inherent to measuring technologies. Madanat (1993) compares vaious formulaions of the
joint MR&R and ingpection optimization problem and presents a Latent MDP formulation for
the problem that accounts for measurement errors. Durango and Madanat (2002) present an
adaptive control formulation that accounts for the uncertainty in choice or specification of
performance models to represent facility deterioration.  The formulation introduced in this paper
relaxes both assumptions smultaneoudy by combining the Latent MDP formulation and the
adaptive control formulations.  In the remainder of this section, we discuss Laent MDP
formulations and adaptive control formulations in more detall.

Latent MDP Formulations

Research by Humplick (1992) has shown tha there are dgnificant measurement erors in
exiging ingpection technologies. Measurement errors can lead to the sdection of inappropriate
actions when a policy specifies different actions for the true condition and the measured
condition.

Laent MDP formulations are extendons of MDP formulaions that include the ingpection
decison and account for uncertainty in the ingpection process, i.e, measurement error. The
posshility of a flexible ingpection schedule and the presence of measurement errors conditute a
violation of the basic premise that the true facility condition is reveded a the end of each period.

Madanat and Ben Akiva (1994) present a Latent MDP formulation where he state-space of the
problem is augmented as described in Bertsekas (1987). This technique takes advantage of the
fact that the decison-maker knows the history of the past trangitions and actions, and can capture
thisinformation in whet is referred to as a sufficient datistic.

Under the state augmentation technique, the date of the system a stage t takes into account all
the information avalable to the decison maker, snce the beginning of the planning horizon, and
that is rdevant for decison-meking. This is summarized by the information sts I, " t. At the
end of period t, the set can be represented as follows:

It :{IO’aO'§<0’a1""’§(t—l’at—l’§(t}’ (3)
where b represents the initid information available at the start of the planning horizon, and X, is
the measured state during period t.

The set can dlso be defined recursivly as |, ={1,,,a,_,,%,}.

Formulating a dynamic program with a dSate-space that corresponds to the information set
conditutes a naturd extenson of the framework described earlier.  The MDP formulations are
adjused by condgdering the conditiond didribution of dates for the given information set. The
probability thet the fadility is in state x; given the information set |, is denoted Pr(x |1,). The

vector of probabilities for each date is denoted R |I,. This vector is refered to as the
information vector or as the aufficient datistic.  Similaly, the expected cost incurred during
period t is defined asg(,,a, ) = Ela(x.a, )| 1, ]




Due to the presence of measurement erors, the measured facility condition is now only
probabiligticaly related to its true condition. We assume that the didtribution of the measurement
relative to the true state is known and depends o the technology used. The relationship between
measured and true Saesis given by measurement probabilities:

ej =Pr(% =klx =j,R =) 4
where:

~

. X‘and % are repectively the observed and true condition state of the facility, and
» R isthetechnology used for measurement.

Measurement probabilities can be derived from empiricd measurement eror modds as
discussed in Humplick (1992).

Adaptive Control Formulations

The models described in the preceding sections dl refer to one deterioration model that can be
goecified with a dngle set of trandtion probabilities. This sems from the assumption that
agencies can choose and goecify (without uncertainty) a pefect, dbet probabilitic,
representation of the physcad deterioration process.  Peformance modd uncertainty was
identified early on as an important consideration in developing MR&R policies. For example,
Carnahan (1988) dates tha MR&R policies are sendtive to the trangtion probabilities and that
care should be taken in the choice and specification of a deterioration model.

Durango and Madanat (2002) present two adaptive control formulations, an open-loop-optimal
feedback control formulation and a closed-loop control formulation, for the facllity-levd MR&R
problem under performance model uncertainty. Model uncertainty is captured with a probability

mass function over a finite set of modes. It is denoted Q :{Qtl,Qf,...,QtD} where D is the
number of candidate models. The eements of the vector repr_esent the probability assgned to the
event that deterioration is governed by each of the models, i.e.,

“di [L..D, Q=P (d=d|1,) (5
where d isarandom variable that represents the true deterioration mode.

The adgptive control formulations do not alow for flexible ingpection schedules and do not
account for uncertainty in the measurement process. In the next section we introduce a closed-
loop control formulation for the fadlity-levd problem that smultaneoudy accounts for
uncertainties in measurements and in the choice or specification of performance models.

Findly, we summarize the contribution of the modd we have devdoped by liging the
assumptions used in the formulations presented in the literature.  The summary appears in Table
1



Model Choiceand Condition Decisons
specificationof | assessment
performance
modd

MDP Determinigtic True date MR&R

Joint MDP Determinigtic True state MR&R
Ingpection

Latent MDP Determinigtic Measurement MR&R
errors Inspection

Adaptive Control | Probabiligtic True date MR&R

Proposed model | Probabiligtic Measurement MR&R
errors Ingpection

Table 1. Features of MR& R decision-making models

3. Proposed Model

Prior to presenting the formulation we introduce the following notation:
N Number of possble states;

A Number of possible actions, and

a Discount factor.

Information sets are defined as in Equation (3) as follows:

e ={15,80, %0, Ry @y g0 %, R} (6)

The information sets include the messured Sate and the measuring technology  used.
Alternatively, the sets can be written recursively as.

L, ={a... % R.1.} 7

The dements of the st of beiefs about deterioration are adjusted to fit this new information
sructure. They are denoted Q° (Rt,fg Pl Qu ,at_l), whichwewriteas Q° .

Decison-making involves the choice of action to perfform during time period t, as wel as
whether to inspect or not a the beginning of the next period. In this context, inspections provide
information that reveds information about the current condition of a facility, that reveds
information about the deterioration process, and tha reveds information about measurement
errors associated with the technology.



Prior to preserting the formulation we describe assumptions related to cods, performance
models, and measurement errors.

Modd Specification

Transition Probabilities
A st of trandtion probabilities is specified for each of the deterioration models. They ae
denoted as:

pd(a)=Prlx..=jl1d =d,x =i,a) ®

Measurement error

The notation for modeling measurement error is the same as the one presented for the Latent
MDP formulation. The inspection decison is represented by a choice between two classes: one
with the measurement precison associated with each ingpection technology, and the other with a
measurement  error  of infinite variance. The modd can accommodate a st of different
technologies. However, in the computationd study we reduce the choice to a binary decison.
R:=1 denotes an inspection and R.=0 for no ingpection.

The “no ingpection” decison (R;=0) refers to a technology where for each date the probability of
messuring any ate is uniformly distributed:

" j,kT [1,..., N], e9k :Pr()A(t =k|x, =,R :0):i 9)

J N

This case, where every condition Sate is equdly likdy to be observed regardiess of the true date,
is shown to be equivdent to not ingpecting in Madanat and Ben Akiva (1994). The associated
cost is st to zero.

Cost
In the remainder of this section we will use the notation g(x,,a,,R,,) for the generic cost

incurred during period t associated with activity & on a fadlity in sate %, and choosing to use
ingpection technology R.+1 at the beginning of next period. The cost per period conssts of:

User cost: Assumed function of the state of the facility.

I nspection cost: Assumed congtant.

MR&R cost: Assumed function of the action and of the state.

Savage cost: Assumed function of termina State at the end of the planning horizon.

Dynamic Programming Formulation

The formulation of the fadlity-levd joint ingpection and MR&R problem conssts of the
objective vaue function definition, the recursive relation, and a set of boundary conditions. The

information available a the sat of each period congsts of R [I, and Q . The first vector
summarizes the information about the current facility condition. The second vector captures the



beliefs about deerioration which in turn determine an agency’s predictions about future
condition. The formulation is presented below.

Recursive relation
At the gart of each period, the minimum expected, discounted cost until the end of the planning
horizon is defined as f, (R | It,g) and it can be written as.

tR11.Q)=
. €8 & R ( )Ou
M|nQa Pr.(x =i[l, )Kég ', Rt+l +a><a Qt Xap.,( ) e’ xfia Pt+l||t+1’%:l¢|
a, R @i=l d=1 j=1 k=1 [ 9]
(10)

Note that this expresson explains why the inspection decison for period t+1 is made in period t:
the ingpection in t+1 directly influences the informetion vector P,, |I,,,, which is used for the
recursve computation of the objective function in period t and the measurement probabilities
eijgl. The recurdve reaion is defined for every decison-making period and every possble

date of the facility. For computationa reasons the continuous spaces of the state vectors, R |1, ,
Q , arediscretized.

Expresson (10) is for the minimum expected tota discounted codts given the information set.
The expectation is taken over the current state whose probability mass function is specified by
the information set. Thus, the expression can be rewritten as.

fB11.9)= Min Eu, s 190680 Ru) +a xfs (P 1110, Qs ) (11)

athﬂ

Boundary conditions
The boundary conditions for the problem are presented below. They are used to assign the
sdvage cod for the facility at the end of the planning horizon.

fr (PF—“T’%): Eon, [S(XT )]: éN.l Pry (XT =i IT)>G(i) (12)

The boundary conditions are defined for every possible termind sate of the facility.
Finaly, we describe how the beliefs about deterioration, Q. and the information s, | I

updated in each period. The updates reflect how an agency’s beliefs about deterioration change
to account for periodic meassurements of a facility’s condition. They dso reflect how
information from successve measurements can be used to reduce the variance in the ingpection
process.



Updating the beliefs about deterioration
Updati ng the beliefs about deterioration requires the following:

The ingpection technology R;
=  The measured sate x =k

= Theapriori beliefs about deterioration and the state, i.e. P, |1, and Q,_, ; and
*= Theaction gpplied a, ;.

After the observation phase in period t, the beliefs about deterioration are updated as follows:

Q¢ =pld=d|)=mld=d|%.a R 1.,
_ prdgid,a Rl perld =dlag Ryl

D

a Pr()A(t |d’at—1’ Rnlt-l)xPr(a: da.,, Rult-l)

d'=l

AsPr(d =d|a_,R,1.,)=P(d=d]l_)=Q",, wecanwite
Prix (d.a ;. R.1, Q0

Qtd - g _ .
4Pl (da, Rl ,)Q
d'=1
If we observe that;
.= yo - -
Pr(x =kld.a,,.R.1.) =& P& =kIx.d.a..R. 1, )Pk =j1d.a R, 1)
j=1
y oy |
=8 ef oA Prx = j1d,x, =ia, Prx, =i]1,,)
j=1 i=1
It follows that:
P& =kld.a R.1.) =8 elpd(a. )P (x,=ill,) (13)
i

As Pr_(x.,=jll.,) is a component of the state vector from the previous stage, we have a
recursive expression for Q° .
é eip i (a1 )Pres (%, =i11,)Q
Qtd = g o (14)
a a eJ plj (a(—l)ﬂt—l(xt—l =1 ||t—1)>Q31

d=1i,j

wherek= X, .

Note that when the decision is not to inspect, the bdiefs about deterioration are not updated.
Indeed, no additiond information is available to the decison-maker.

10



Updating the beliefs about the facility state
Given the updated beliefs about deterioration, the decison-maker then revises her beliefs about
the new date of the facility condition, taking into account:

» Thecurrent inspection decision R, and observed state X, =k ;

= Thenew beliefs about the deterioration Q, ;
* The past beliefs about the facility sate P_, |1, , ; and
» Thelagt actiontaken a, ;.

The State vector defines the beliefs about the fecility stateR |1, :
: S = <
Pr(x = i11) =& Prlx :J|D:d,|t)><Pr(D=d 1)

=d, a5, R, 1)l
5 d’at—l’Rt’It—l)

Prix, =j|D
il

49 g -
N

In the same fashion as earlier, we write:

~ P\ . .~ .
Pr(Xt:le:dyat-l’Rt’lt-l) =a Pr(xt:J|Xt-l:|!D:d1at-1!Rt’|t-1)>Pr(Xt-1:||It-1)

i=1

N
o

=a pi? (at-l)Prt-l(Xt-l =i lt-l) (15)

i=1

Again, wenoticethat Pr, (x_, = j|1,.,) hasaready been determined, so:

P ( ) tl(xtl_llltl)xeﬁt(
p. (at )Prt l(Xt-l =i |It-l)>eﬁk

a
Pr(x =jll,) =a?1Q:’é,1 (16)

d

I8

In the case where no ingpection has been performed a the beginning of the period, the dtate
vector is updated such that the new probabilities are the weighted trangtion probabilities.
Although no new information is avalable, the decison-maker updates her bdiefs usng the
performance models.

4, Computational study

We present a computationd dudy in the context of pavement management with a planning
horizon of 15 years and a discount rate r=5%, wherea = 1/(1-r).

As in Carnahan (1987), we assume that pavement condition is represented by 8 dates, each
representing 12.5 points on the PCl scde of 100. The agency can choose from the following
MR&R actions (1) do-nothing, (2) routine maintenance, (3) kin overlay, (4) 2in overlay, (5) 4
in overlay, (6) 6-in overlay, and (7) recongtruction.

11



Three possible deterioration models are considered: dow, medium and fast. With each modd
being characterized by a sat of 7 of trangtion probability matrices (one for each action). The
moddls are taken from Durango and Madanat (2002) and are such that:

» The efect of MR&R actions on trangtions is assumed to follow a truncated normd
digribution with the mean depending on the action and the modd and the variance
depending on the modd!;

= Actions ae less effective in improving pavement condition under faster deterioration
models, and

= Faster deterioration modds have higher variance in forecagting.

The means and standard deviations of the effects of actions are presented in Table 2.

Deterioration Model
Slow Medium Fast
Action Mean effect

1 -0.50 -0.75 -1.75

2 0.50 0.00 -0.50

3 1.75 1.00 0.25

4 3.00 2.00 1.00

5 4,25 3.00 1.75

6 5.50 4.00 2.50

7 6.00 6.00 4,00

Std. Dev. 0.30 0.50 0.70

Table 2. Mean effect of the MR& R activities

The measurement error is assumed to be zero i.e. e}k =1 if k5j, O otherwise. If an ingpection is

performed, the agency is sad to have “perfect date information”. This assumption was made to
reduce the number of parameters and Smplify the interpretation of the results.

The tota cost includes the cost of ingpection, the user cost and the cost of applying MR&R
actions. The user codt is st to redrict a condition of at least state 2. This is done by setting the
cost of reaching gate one to infinity and is shown in Table 3. Furthermore, in order to prevent
the facility from deteriorating too far a the end of the planning horizon, we set the salvage cost
to be infinite for any final state worsethan 5. Table 3 summarizes dl of the costs consdered.

MR&R Activity User | Salvage
Condition state 1 2 3 4 5 6 7] Cost | Cost
000 690 1990 2181 2561 2942 2797 ¥ ¥
000 200 1040 1231 1611 1992 2597| 2500 ¥
000 110 878 1069 1449 1830 2597 200| ¥
000 083 715 906 1286 1667 2597 1400| ¥
000 065 473 664 1043 1425 2597] 800 | 0.00
000 031 220 411 791 1172 2597] 400| 0.00
000 010 200 391 771 1152 25971 200 | 0.00
000 004 19 381 761 1142 2597] 000 ]| 0.00

O~ o U1 D W

Table 3. Input costs

12



Asin Madanat and Ben Akiva (1994), the inspection cost is assumed to be $0.065/lane-yard.

Reallts

Figure 3 (4) shows a comparison of the expected cost when the physical process corresponds to
the dow (fast) modedl. For these figures, the initid beliefs about the sate are P, | 1, = (0, 0.1, 0.1,

02, 04, 02, 0, 0). By “dow” bdiefs, we mean that the initid beliefs about deterioration are
such that %:(0.8, 0.1, 0.1). That is, a probability of 0.8 is assigned to the event that the

physica process is governed by the dow modd, 0.1 to the medium, and 0.1 to the fast modd.
Smilaly, “fast” bdiefs indicate that the initid beief vector is %: (0.1, 0.1, 0.8). We dso

condder an initid belief vector that corresponds to a case of high uncertainty. This vector is
labeled “no” which stands for the non-informetive initid bdiefs i.e Q,= (0.3, 0.4, 0.3). In

computing the expected cost, we assume that the pavement is in Sate 5 a the dat of the
planning horizon.

70 +
60 —+

50 +

40 +
30 +
20 +

ecost in $/lane- yard

10 +

fast no slow

Figure 3. Expected cost: Physical deterioration = Sow

70 T

60 +

50 4
40
30 +

ecost in $/lane-yard

20 +
10 +

0 } } !
fast no sow

Figure 4. Expected cost: Physical deterioration = Fast
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As expected, in both ingtances, whether the deterioration is dow or fast, when the initid beliefs
are close to the physica process, the expected cost is the lowest. The expected codts are higher
in Figure 4 than in Figure 3 because it is codtlier to maintain a pavemert that deteriorates faster.
A noteworthy result is that the nonrinformative initid beliefs ae the word in both ingances.
This result seems to indicate that biased, but precise, beiefs about the deterioration modd are
preferred to less biased beliefs of higher variance.

To undergtand this strange result, we conducted a smulation study whose results are presented in
Figure 5. That is indead of computing the expected costs andyticaly we generate instances for
the two cases described above. The physica process corresponds to the fast modd. The beliefs
about the model in each period are averaged over the 1,000 smulations. We plot the trgectory of

the average Q*=Pr(d = Fast | information).

1
0.9
0.8 1

0.7 —h—h—Ak
0.5 A//{ ’E/ —&—no
0.3 1
0.2 "
L
0.1 A

0

Pr(Fast)

0 5 10 15

time
Figure 5. Trajectories of Q°: Physical deterioration = Fast

As Q® converges much faster when the initid beliefs are biased (dow), than when they are non

informetive, the actions taken in the nonrinformetive Stugtion are not as efficient as those taken
when the initid beiefs are wrong. Hence the higher expected cost when the initid beliefs about
deterioration have a higher variance attached to them. The faster convergence of the beliefs in
the biased case compared to the norrinformetive case can be explaned quditaively by the
contrast between the observations and the expectations. This contrast is augmented by the action
taken in both cases when the initid beiefs are biased, the MR&R actions taken will be mild
compared to the non-informative case. Therefore, worse states are more likely to be observed.
Such unexpected outcomes provide feedback that leads to drastic and prompt revison of the
beliefsin the biased case.

Findly, we compare the formulation we introduce to the closed-loop control formulation with

fixed (yearly) inspections presented in Durango and Madana (2002). The results are presented
below:
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Figure 6. Comparison of expected cost: annual vs. optimal inspection:
Physical deterioration = Fast
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Figure 7. Comparison of expected cost: annual vs. optimal inspection:
Physical deterioration = Sow

Figures 6 and 7 show that rdaxing the condraint of annua inspections leads to a reduction in the
expected cods. This is due to the fact that an inspection is performed only when it provides
information that will improve future decisons. As a result, the expected number of inspections
is reduced.

A noteworthy festure of both figures is that when the variance in the bdiefs about the
deterioration is low, the larger reduction in expected cost is observed when the initid beiefs are
adequate.  This indicates that the benefit of a flexible ingpection schedule is grester when
ingpections provide less information, which is an intuitively correct result.

5. Conclusons

This paper presents an adaptive optimization mode for the problem of finding joint ingpection
and maintenance policies for infrastructure feciliiess The modd relaxes the assumption of a
fixed ingpection schedule while accounting for uncertainties in the choice or specification of a
peformance modd (to represent deterioration), and in the process of measuring facility
condition. The methodology we present is referred to as alaptive because the information from
measurements of condition is used to obtan an adequate representation of a facility’s physcd
deterioration process over time, i.e, to learn about deterioration. In addition, the formulation
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cgptures the vaue in inspecting facilities to assess current condition and/or to reduce the
measurement error associated with the technology used for inspections

A computational study in pavement management leads to severa indghts about the problem.
The results show that reducing the initid variance in modd uncertainty is more important than
reducing the initid bias. This means that providing the wrong information is less codly than
providing no information about deterioration. The reason for this srange result is that the beliefs
about deterioration can be adjusted drasticaly and quickly in response to unexpected events.
Another result is that substantid benefits can be achieved by implementing a flexible ingpection
schedule when the initid beliefs are adequate. The reason is that inspections are providing very
little information and so it is not necessary to perform them as frequently.

The scope of this research was purposdy limited to the facility-leve of the MR&R problem. An
immediate extension is to adgpt the formulation to the network-level problem with adminidtretive
restrictions. A possible approach to incorporate network-leve condraints is to formulate the
modd developed herein using randomized policies and to solve it using linear programming.
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