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ABSTRACT OF THE DISSERTATION

Sparse Identification Modeling and Predictive Control of Nonlinear Processes

by

Fahim Abdullah

Doctor of Philosophy in Chemical Engineering

University of California, Los Angeles, 2023

Professor Panagiotis D. Christofides, Chair

Data is widely recognized as a crucial player in the fourth industrial revolution, in which

engineers and computers must harness data to enhance the efficiency of industrial processes and

their associated control systems. Traditional industrial process control systems rely on linear data-

driven models, with parameters fitted to experimental or simulated data. In specific control loops,

such as those critical for profit optimization, they may employ first-principles models describing

the underlying physico-chemical phenomena but with a few data-derived parameters. Neverthe-

less, modeling complex, nonlinear processes on a large scale remains an open challenge in process

systems engineering. The quality of these models depends on various factors, including model

parameter estimation, model uncertainty, the number of assumptions made during model develop-
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ment, model dimensionality, structure, and the computational demands for real-time model solu-

tions [1, 2]. This is especially pertinent as process models are integral to advanced model-based

control systems, such as model predictive control (MPC) and economic MPC (EMPC). Designing

MPC systems that utilize data-driven modeling techniques to account in real-time for large data

sets is a new frontier that will impact the next generation of industrial control systems. While a

significant body of research has been dedicated to the use of neural networks for nonlinear process

modeling and control, in both the theoretical [3] and practical [4] domains, more computationally

efficient models that can directly be used in MPC rather than their linearized counterparts, are still

an growing area of research that can lead to the design of more robust and efficient control systems.

Motivated by the above considerations, this dissertation presents the use of a computation-

ally efficient data-driven technique known as sparse identification in model predictive control for

chemical processes described by nonlinear dynamic models. The motivation and organization of

this dissertation are first presented. Then, the use of sparse identification to develop nonlinear dy-

namic process models to be used in model predictive controllers is presented, specifically address-

ing the challenges of two-time-scale systems, sensor noise, industrial nonlinearities, and process

shifts. The MPC and economic MPC schemes that use sparse identified models are presented in

detail with rigorous analysis provided on their closed-loop stability and recursive feasibility prop-

erties. Finally, the dissertation closes with an overview of the novelties introduced to overcome

the aforementioned challenges and a detailed guide to developing nonlinear process models for

complex chemical processes using sparse identification. Throughout the dissertation, the proposed

methods are applied to numerical simulations of nonlinear chemical process examples and Aspen

Plus simulations of large-scale chemical process networks to demonstrate their effectiveness.

iii



The dissertation of Fahim Abduullah is approved.

Carlos G. Morales-Guio

Samanvaya Srivastava

Tsu-Chin Tsao

Panagiotis D. Christofides, Committee Chair

University of California, Los Angeles

2023

iv



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Dissertation objectives and structure . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Data-based reduced-order modeling of nonlinear two-time-scale processes 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Class of systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Nonlinear principal component analysis . . . . . . . . . . . . . . . . . . . 26

2.2.3 Sparse identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 NLPCA-SI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Application of NLPCA-SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Example 1: Isothermal batch reactor with multiple reactions . . . . . . . . 37

2.4.2 Example 2: Non-isothermal CSTR with jacket . . . . . . . . . . . . . . . 41

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



3 Sparse-identification-based predictive control of nonlinear multiple time-scale pro-

cesses 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 Class of systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.3 Stabilizability assumption via control Lyapunov function . . . . . . . . . . 54

3.3 Sparse identification model for the slow subsystem . . . . . . . . . . . . . . . . . 56

3.3.1 Sparse identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Identifying a model for the slow subsystem . . . . . . . . . . . . . . . . . 60

3.4 Lyapunov-based MPC using SI Models . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Lyapunov-based control using SI models . . . . . . . . . . . . . . . . . . 61

3.4.2 Lyapunov-based MPC (LMPC) formulation . . . . . . . . . . . . . . . . . 70

3.5 Closed-loop stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 Application to a chemical process example . . . . . . . . . . . . . . . . . . . . . . 74

3.6.1 Process description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6.2 Data generation and model development . . . . . . . . . . . . . . . . . . . 77

3.6.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6.4 Effect of process model selection on computational time and maximum

allowable prediction horizon length . . . . . . . . . . . . . . . . . . . . . 84

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

vi



4 Handling noisy data in sparse model identification using subsampling 90

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.1 Class of systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.2 Sparse identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.3 Subsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.4 Co-teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Subsampling-based sparse identification with co-teaching . . . . . . . . . . . . . . 102

4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4.1 Data generation, sampling, and noise generation . . . . . . . . . . . . . . 110

4.4.2 Example 1: Predator-prey model . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.3 Example 2: CSTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4.4 Advantages of explicit methods . . . . . . . . . . . . . . . . . . . . . . . 123

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5 Modeling and control of nonlinear processes using sparse identification Using dropout

to handle noisy data 132

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2.2 Class of systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2.3 Stability assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

vii



5.2.4 Sparse identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2.5 Ensemble learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2.6 Model predictive control using sparse identification . . . . . . . . . . . . . 145

5.3 Ensemble-based sparse identification . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.4 Application to a chemical process modeled in Aspen Plus Dynamics . . . . . . . . 151

5.4.1 Dynamic model construction . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.4.2 Data generation and SINDy model development . . . . . . . . . . . . . . 156

5.4.3 Open-loop simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.4.4 Closed-loop simulation results . . . . . . . . . . . . . . . . . . . . . . . . 170

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6 Real-time adaptive sparse-identification-based predictive control of nonlinear pro-

cesses 177

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.2.2 Class of systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.2.3 Stabilization via control Lyapunov function . . . . . . . . . . . . . . . . . 184

6.3 Lyapunov-based MPC using sparse identification . . . . . . . . . . . . . . . . . . 186

6.3.1 Sparse identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.3.2 Lyapunov-based control using SINDy models . . . . . . . . . . . . . . . . 193

6.4 Error-triggered online update of SINDy models . . . . . . . . . . . . . . . . . . . 208

viii



6.4.1 Error-triggering mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.4.2 SINDy model update procedure . . . . . . . . . . . . . . . . . . . . . . . 212

6.4.3 Implementation strategy for error-triggered on-line model identification . . 215

6.4.4 Stability analysis of error-triggered feedback systems . . . . . . . . . . . . 216

6.5 Application of error-triggered on-line model update to plant variations: Applica-

tion to a chemical process example . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.5.1 Data generation and SINDy model development . . . . . . . . . . . . . . 226

6.5.2 Closed-loop simulation results . . . . . . . . . . . . . . . . . . . . . . . . 232

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

7 Data-based modeling and control of nonlinear process systems using sparse identifi-

cation: An overview of recent results 246

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

7.2 Class of nonlinear process systems . . . . . . . . . . . . . . . . . . . . . . . . . . 252

7.3 Methodology: Sparse identification of nonlinear dynamics . . . . . . . . . . . . . 253

7.3.1 Overview of the sparse identification method . . . . . . . . . . . . . . . . 253

7.3.2 Data generation and SINDy modeling considerations . . . . . . . . . . . . 256

7.3.3 Incorporation of SINDy within MPC . . . . . . . . . . . . . . . . . . . . 264

7.4 Reduced-order modeling for two-time-scale systems . . . . . . . . . . . . . . . . 267

7.5 Subsampling and co-teaching in the presence of high sensor noise . . . . . . . . . 272

7.6 Ensembled-based dropout-SINDy to model highly noisy industrial data sets . . . . 280

7.7 Demonstration of the use of SINDy to model a nonlinear chemical process . . . . . 285

ix



7.7.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

7.7.2 Candidate library of basis functions . . . . . . . . . . . . . . . . . . . . . 296

7.7.3 Summary of data generation and candidate library guidelines and final

steps to build the SINDy model . . . . . . . . . . . . . . . . . . . . . . . 303

7.8 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

7.8.1 Neural network basis functions . . . . . . . . . . . . . . . . . . . . . . . . 305

7.8.2 Real-time model updates . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

7.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

8 Conclusion 309

x



List of Figures

2.1 Structure of the neural network used for NLPCA-SI . . . . . . . . . . . . . . . . . 35

2.2 Comparison of original data (solid lines) with results from NLPCA-SI (dashed

lines) and only sparse identification (dotted lines) for Example 1. Slow states: CB

(blue lines), and CC (orange lines). Fast state: CA (green lines). . . . . . . . . . . . 40

2.3 A continuous-stirred tank reactor with jacket. . . . . . . . . . . . . . . . . . . . . 42

2.4 Comparison of original data (solid lines) with results from NLPCA-SI (dashed

lines) and only sparse identification (dotted lines) for Example 2. . . . . . . . . . . 47

3.1 A continuous-stirred tank reactor with jacket. . . . . . . . . . . . . . . . . . . . . 74

3.2 Plot of the constant residual term in Eq. (3.58) as a function of the total simulation

duration tf used for data generation. . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Plot of ˙̂
V and −kV̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Comparison of the slow state as computed by the first-principles slow subsystem

(solid line) of Eq. (3.52) and predicted by the SI slow subsystem (dashed line) of

Eq. (3.59) with u = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xi



3.5 State-space trajectories for the CSTR in closed-loop under the LMPC utilizing the

SI slow model for a range of initial conditions. Each line represents a trajectory

from an initial condition marked by a colored dot of the corresponding color. The

black dot is the origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6 State profiles for the CSTR in closed-loop under the LMPC utilizing the SI slow

model for a range of initial conditions, each line representing a trajectory from a

different initial condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.7 State-space profiles for the CSTR in closed-loop under the LMPC utilizing the

first-principles model (blue line) and the SI slow model (orange line) and in open-

loop with u = 0 (black line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.8 State profiles for the CSTR in closed-loop under the LMPC utilizing the first-

principles model (blue line) and the SI slow model (orange line) and in open-loop

with u = 0 (black line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.9 Input profiles for the CSTR in closed-loop under the LMPC utilizing the first-

principles model (blue line) and the SI slow model (orange line). . . . . . . . . . . 85

3.10 Cost function of LMPC for the CSTR in closed-loop under the LMPC utilizing the

first-principles model (blue line) and the SI slow model (orange line). . . . . . . . 85

3.11 Iteration time of each MPC step for prediction horizon lengths of N = 16 (blue

line) and N = 17 (orange line) when the LMPC utilizes the first-principles process

model, where the black dotted line represents the sampling time ∆ = 10 s. . . . . . 87

xii



3.12 Iteration time of each MPC step for prediction horizon lengths of N = 23 (blue

line) and N = 24 (orange line) when the LMPC utilizes the sparse-identified slow

model, where the black dotted line represents the sampling time ∆ = 10 s. . . . . . 87

3.13 Input profiles for the CSTR in closed-loop under the LMPC utilizing the first-

principles model with N = 16 (blue line) and the SI slow model with N = 24

(orange line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.14 State profiles for the CSTR in closed-loop under the LMPC utilizing the first-

principles model with N = 16 (blue line) and the SI slow model with N = 24

(orange line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1 Data flow diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Comparison of original noisy data (grey dots) with results from sparse identifica-

tion without any subsampling (blue line), subsampling without co-teaching with

p = 0.2 (green line), and subsampling with co-teaching and p = 0.16, q = 0.04

(red line) for the quantity x1 in the predator-prey system. . . . . . . . . . . . . . . 126

4.3 Comparison of original noisy data (grey dots) with results from sparse identifica-

tion without any subsampling (blue line), subsampling without co-teaching with

p = 0.2 (green line), and subsampling with co-teaching and p = 0.16, q = 0.04

(red line) for the quantity x2 in the predator-prey system. . . . . . . . . . . . . . . 127

4.4 Training set AIC and test set MSE for various λ ∈ [0, 4] for the base case with no

subsampling and σ = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5 A continuous-stirred tank reactor with a heating coil . . . . . . . . . . . . . . . . . 129

xiii



4.6 Comparison of original noisy data (grey dots) with results from sparse identifica-

tion without any subsampling (blue line), subsampling without co-teaching with

p = 0.2 (green line), and subsampling with co-teaching and p = 0.16, q = 0.04

(red line) for the concentration CA of the CSTR system. . . . . . . . . . . . . . . . 130

4.7 Comparison of original noisy data (grey dots) with results from sparse identifica-

tion without any subsampling (blue line), subsampling without co-teaching with

p = 0.2 (green line), and subsampling with co-teaching and p = 0.16, q = 0.04

(red line) for the temperature T of the CSTR system. . . . . . . . . . . . . . . . . 131

5.1 Data flow diagram for model construction. . . . . . . . . . . . . . . . . . . . . . . 149

5.2 A continuous-stirred tank reactor with a cooling jacket. . . . . . . . . . . . . . . . 152

5.3 Aspen Plus model process flow diagram of ethylbenzene production process. . . . 155

5.4 Training data set. Each line is one open-loop trajectory. . . . . . . . . . . . . . . . 160

5.5 Visualization of dropout-SINDy identified model. . . . . . . . . . . . . . . . . . . 165

5.6 Time-varying profiles of the states for the open-loop simulation using Aspen Plus

Dynamics (blue line) and the dropout-SINDy model (orange line) with two nonzero

input values of u1 = −8.9869 kg/s and u2 = −2.9869 kg/s applied over the inter-

vals t1 ∈ (0, 7.21] and t1 ∈ (7.21, 15.1], respectively. . . . . . . . . . . . . . . . . 171

5.7 State and input profiles for the CSTR in closed-loop under no control (blue line),

a P-controller (red line), and the LMPC utilizing the dropout-SINDy model (black

line) throughout the simulation period tp = 1.5 hr. . . . . . . . . . . . . . . . . . . 173

5.8 LMPC performance metrics throughout the simulation period tp = 1.5 hr. . . . . . 175

xiv



6.1 A diagram illustrating the sets ϕ̂u, Ωρ̂, Ωρmin
, Ωρsi , and Ωρs in concentric ellipses,

from outermost to innermost. The LMPC control strategy of Eq. (6.26) guides the

closed-loop state towards the origin and ensures that it eventually remains bounded

within Ωρmin
for any initial state x0 ∈ Ωρ̂. . . . . . . . . . . . . . . . . . . . . . . 204

6.2 Validation error as a function of γ for a coarse search of γ ∈ [−7000, 0]. . . . . . . 228

6.3 Validation error as a function of γ for a fine search of γ ∈ [−6500,−5500]. . . . . 229

6.4 Validation error as a function of λ for a coarse search of λ ∈ [0, 500] with zoomed-

in subplot for λ ∈ [0, 100]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

6.5 Validation error as a function of λ for a fine search of λ ∈ [0, 100]. . . . . . . . . . 230

6.6 State-space trajectories of the CSTR without catalyst deactivation under an LEMPC

based on the first-principles model and an LEMPC based on the initial SINDy model.233

6.7 State and input trajectories of the CSTR without catalyst deactivation under an

LEMPC based on the first-principles model and an LEMPC based on the initial

SINDy model. The grey dashed lines represent the upper and lower bound for the

inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

6.8 Value of error metric ed using the detector of Eq. (6.65) over the simulation dura-

tion for various values of Nw with and without SINDy model updates. The dashed

red line corresponds to ed,T = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

6.9 Details of the error detection and model update procedure occurring in the sixth

operating period from t = 1.0 h to t = 1.2 h. . . . . . . . . . . . . . . . . . . . . . 239

xv



6.10 Value of error metric ed using the detector of Eq. (6.65) and the integrated LEMPC

design with error-triggered on-line model updates at each sampling time (the time

axis starts from when there is sufficient data to begin calculating ed, i.e., after

Nw = 15 data points are collected). . . . . . . . . . . . . . . . . . . . . . . . . . . 240

6.11 State trajectories for the closed-loop CSTR under the LEMPC of Eq. (6.37) with

and without the online update of the SINDy model for the initial condition (0, 0).

They grey ellipse represents the stability region Ωρ̂. . . . . . . . . . . . . . . . . . 241

6.12 State and manipulated input profiles for the initial condition (0, 0) under the LEMPC

of Eq. (6.37) with and without the online update of the SINDy, respectively. The

grey dashed lines represent the upper and lower bound for the inputs. . . . . . . . . 242

7.1 Values of two error metrics, the Akaike Information Criterion (AIC) and the mean-

squared error, as functions of λ for model selection. . . . . . . . . . . . . . . . . . 263

7.2 Demonstration of the evolution of NLPCA based on PCA and its relation to non-

linear regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

7.3 Structure of the neural network used for NLPCA-SI . . . . . . . . . . . . . . . . . 271

7.4 Concentration (state) profile for a CSTR in closed-loop under the LMPC utilizing

the first-principles (FP) model with N = 16 (blue line) and the SINDy slow model

with N = 24 (orange line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

7.5 Data flow diagram of subsampling with co-teaching for noisy data. . . . . . . . . . 277

xvi



7.6 Comparison of original noisy data (grey dots) with results from sparse identifica-

tion without any subsampling (blue line), subsampling without co-teaching with

p = 0.2 (green line), and subsampling with co-teaching and p = 0.16, q = 0.04

(red line) for the temperature T of a CSTR system. . . . . . . . . . . . . . . . . . 279

7.7 Data flow diagram of Dropout-SINDy for noisy, industrial data. . . . . . . . . . . 283

7.8 Aspen Plus model process flow diagram of an ethylbenzene production process. . . 284

7.9 State and input profiles for a CSTR in closed-loop under no control (blue line), a

P-controller (red line), and the LMPC utilizing the dropout-SINDy model (black

line) throughout the simulation period tp = 1.5 h. . . . . . . . . . . . . . . . . . . 285

7.10 Three types of data generation for the nonisothermal CSTR operating at an unsta-

ble steady-state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

7.11 State-space profiles for open-loop simulation using the first-principles model of

Eq. (7.20) and the SINDy model obtained using type 1 data generation, respec-

tively, for various sets of inputs and initial conditions (marked as solid dots) x0 in

the vicinity of the desired operating point. . . . . . . . . . . . . . . . . . . . . . . 294

7.12 State-space profiles for open-loop simulation using the first-principles model of

Eq. (7.20) and the SINDy model obtained using type 2 data generation, respec-

tively, for various sets of inputs, starting from the steady-state. . . . . . . . . . . . 295

7.13 Validation error as a function of the numerator of the argument of the exponential

function in the candidate library for the original data set, (CA, T ). . . . . . . . . . 298

7.14 Validation error as a function of γ for the data set with dimensionless temperature,

(CA, T̄ ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

xvii



List of Tables

2.1 Parameter values for Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Neural network hyperparameters used for NLPCA in example systems of Section 2.4 45

3.1 Parameter values for chemical process example. . . . . . . . . . . . . . . . . . . . 76

3.2 Maximum allowable prediction horizon length and corresponding integral of cost

function over simulation period tp. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 Test set MSE for the predator-prey system . . . . . . . . . . . . . . . . . . . . . . 117

4.2 Test set MSE for the predator-prey system using coarse and fine searches for λ in

the No subsampling case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3 Parameter values for chemical process example . . . . . . . . . . . . . . . . . . . 121

4.4 Test set MSE for the CSTR system for four noise levels . . . . . . . . . . . . . . . 122

5.1 Parameter values for chemical process example. . . . . . . . . . . . . . . . . . . . 156

5.2 Open-loop prediction MSE results for the run shown in Fig. 5.6. . . . . . . . . . . 170

6.1 Parameter values for chemical process example . . . . . . . . . . . . . . . . . . . 224

7.1 Test set MSE for the CSTR system for four noise levels . . . . . . . . . . . . . . . 280

xviii



7.2 Parameter values for nonisothermal CSTR example . . . . . . . . . . . . . . . . . 286

xix



Acknowledgements

I would like to deliver my deepest gratitude to my advisor, Professor Panagiotis D. Christofides,

for his support, encouragement, and guidance throughout my academic journey over the past four

years. Professor Christofides exemplifies excellence as a researcher, mentor, instructor, and role

model. I consider myself fortunate to be his student, as this Ph.D. experience has provided me

with a solid foundation for my future career. I would also like to extend my sincere gratitude to my

doctoral committee: Professor Morales-Guio, Professor Srivastava, and Professor Tsao for their

time, comments, and valuable advice.

In addition, I would like to thank all of my colleagues in the Christofides research group,

including Dr. David Rincon, Dr. Zhihao Zhang, Dr. Scarlett Chen, Professor Mohammed Alha-

jeri, Dr. Sungil Yun, Aisha Alnajdi, Matthew Tom, Feiyang Ou, Atharva Suryavanshi, and Yash

Kadakia. I would like to particularly thank Professor Zhe Wu, Dr. Yi Ming Ren, Junwei Luo, and

Berkay Citmaci who worked closely with me to tackle significant challenges in my Ph.D. journey.

Last but not least, I would like to deliver my thanks to my parents for their endless love and

support and especially my sister, Anika, for her company and encouragement in the most difficult

times of my degree.

xx



Curriculum Vitae

Education

University of Alberta Sep 2014 - Jun 2018
B. Sc., Chemical Engineering Edmonton, Canada

Publications

1. Kadakia, Y., A. Alnajdi, F. Abdullah, and P. D. Christofides, “Encrypted Distributed Model
Predictive Control with State Estimation for Nonlinear Processes,” Dig. Chem. Eng., 9, 100133,
2023.

2. Kadakia, Y., A. Alnajdi, F. Abdullah, and P. D. Christofides, “Encrypted Decentralized Model
Predictive Control of Nonlinear Processes with Delays,” Chem. Eng. Res. & Des., 200, 312–
324, 2023.

3. Kadakia, Y., A. Suryavanshi, A. Alnajdi, F. Abdullah, and P. D. Christofides, “Integrating
Machine Learning Detection and Encrypted Control for Enhanced Cybersecurity of Nonlinear
Processes,” Comp. & Chem. Eng., 180, 108498, 2024.

4. Luo, J., B. Çıtmacı, J. B. Jang, F. Abdullah, C. G. Morales-Guio, and P. D. Christofides, “Ma-
chine Learning-Based Predictive Control Using On-line Model Linearization: Application to
an Experimental Electrochemical Reactor,” Chem. Eng. Res. & Des., 197, 721–737, 2023.

5. Abdullah, F. and P. D. Christofides, “Real-Time Adaptive Sparse-Identification-Based Predic-
tive Control of Nonlinear Processes,” Chem. Eng. Res. & Des., 196, 750–769, 2023.

6. Kadakia, Y., A. Suryavanshi, A. Alnajdi, F. Abdullah, and P. D. Christofides, “Encrypted
Model Predictive Control of a Nonlinear Chemical Process Network,” Processes, 11 (8), 2501,
2023.

7. Luo, J., F. Abdullah, and P. D. Christofides, “Model Predictive Control of Nonlinear Processes
Using Neural Ordinary Differential Equation Models,” Comp. & Chem. Eng., 178, 108367,
2023.

8. Alnajdi, A., F. Abdullah, A. Suryavanshi and P. D. Christofides, “Machine Learning-Based
Model Predictive Control of Two-Time-Scale Systems,” Mathematics, 11 (18), 3827, 2023.

9. Abdullah, F. and P. D. Christofides, “Data-based Modeling and Control of Nonlinear Process
Systems Using Sparse Identification: An Overview of Recent Results,” Comp. & Chem. Eng.,
174, 108247, 2023.

xxi



10. Suryavanshi, A., A. Alnajdi, M. S. Alhajeri, F. Abdullah, and P. D. Christofides, “Encrypted
Model Predictive Control Design for Security to Cyber-Attacks,” AIChE J., 69, e18104, 2023.

11. Dale P., O. AlShareedah, M. Sarkar, J. Arabit, I. Mehdipour, S. Afzal, J. Luo, F. Abdullah,
S. Yun, P. D. Christofides, D. Simonetti, and G. Sant, “Process Modeling Guides Operational
Variables that affect CO2 Utilization During the Accelerated Carbonation of Concrete,” AIChE
J., accepted.

12. Alnajdi, A., A. Suryavanshi, M. S. Alhajeri, F. Abdullah, and P. D. Christofides, “Machine
Learning-Based Predictive Control of Nonlinear Time-Delay Systems: Closed-loop Stability
and Delay Compensation,” Dig. Chem. Eng., 7, 100084, 2023.

13. Alhajeri, M. S., A. Alnajdi, F. Abdullah, and P. D. Christofides, “On Generalization Error
of Neural Network Models and its Application to Predictive Control of Nonlinear Processes,”
Chem. Eng. Res. & Des., 189, 664–679, 2023.

14. Abdullah, F., M. S. Alhajeri, and P. D. Christofides, “Modeling and Control of Nonlinear
Processes Using Sparse Identification: Using Dropout to Handle Noisy Data,” Ind. & Eng.
Chem. Res., 61, 17976–17992, 2022.

15. Ren, Y. M., M. S. Alhajeri, J. Luo, S. Chen, F. Abdullah, Z. Wu, and P. D. Christofides, “A
Tutorial Review of Neural Network Modeling Tools for Model Predictive Control,” Comp. &
Chem. Eng., 165, 107956, 2022.

16. Alhajeri, M., F. Abdullah, Z. Wu, and P. D. Christofides, “Physics-informed Machine Learning
Modeling for Predictive Control Using Noisy Data,” Chem. Eng. Res. & Des., 186, 34–49,
2022.

17. Abdullah, F., Z. Wu, and P. D. Christofides, “Handling Noisy Data in Sparse Model Identifica-
tion Using Subsampling and Co-teaching,” Comp. & Chem. Eng., 157, 107628, 2022.

18. Abdullah, F., Z. Wu, and P. D. Christofides, “Sparse Identification-Based Model Predictive
Control of Two-Time-Scale Processes,” Comp. & Chem. Eng., 153, 107411, 2021.

19. Abdullah, F., Z. Wu, and P. D. Christofides, “Data-Based Reduced-Order Modeling of Nonlin-
ear Two-Time-Scale Processes,” Chem. Eng. Res. & Des., 166, 1–9, 2021.

20. Binyaminov, H., F. Abdullah, L. Zargarzadeh, and J. A. W. Elliott, “Thermodynamic Investiga-
tion of Droplet–Droplet and Bubble–Droplet Equilibrium in an Immiscible Medium,” J. Phys.
Chem. B, 125 (30), 8636–8651, 2021.

xxii



Chapter 1

Introduction

1.1 Motivation

In numerous industries, predictive maintenance, production management/scheduling, opti-

mization of operating conditions, and advanced process control play central roles in the daily as

well as long-term functioning and economics of the plant. However, these technologies, among

others, require knowledge of the behavior of the process, specifically in the form of dynamic pro-

cess models that describe time-varying operation. Traditionally, industrial process control systems

rely on linear data-driven models with parameters derived from industrial or simulation data [5, 6].

In some cases, particularly for critical control loops that impact profitability, first-principles mod-

els are employed. These first-principles models are constructed either entirely based on knowledge

of the physico-chemical phenomena or proposed in a general form and (some of) its parameters

are then fitted to data from experiments or simulations. The resulting model usually describes the

underlying physico-chemical phenomena satisfactorily provided that the a priori knowledge was

accurate. Nonetheless, most engineering systems are highly complex, typically due to severe non-
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linearities, time-scale multiplicities, high dimensionality, and/or interactions between variables,

leading to a poor understanding of the internal mechanisms of the system which, in turn, com-

plicates the derivation of first-principle models following the aforementioned methodology. Fur-

thermore, model quality depends on various factors, including model parameter estimation, model

uncertainty, the number of assumptions made during model development, dimensionality, model

structure, and the computational burden of real-time model solving [1, 2]. While systems have

increased in scale and complexity over time, the availability of data due to sensors as well as

computational power of modern devices have increased exponentially over the last two decades,

resulting in a shift towards empirically constructing models for such complex systems from data

rather than first-principles.

The mathematical form of models for many physical systems, i.e., the laws governing their

dynamics, can be written as ordinary differential equations (ODE) or partial differential equa-

tions (PDE) in terms of time and/or space as independent variables. Prominent examples within

chemical engineering include the Boltzmann equation in thermodynamics and the Navier–Stokes

equations in fluid dynamics [7]. Practically, since PDEs can also be spatially discretized into a

finite set of ODEs, the dissertation focuses on ODEs rather than PDEs. For dynamic model build-

ing, data-based system identification techniques have been investigated since the twentieth century.

Input/output (I/O) system identification methods such as autoregressive moving average with ex-

ogenous input (ARMAX) that identify a system based on only input/output data were introduced

relatively early [8] and matured significantly over time. I/O methods were also readily extended to

nonlinear systems such as methods that identify Volterra series [9], polynomial models [10, 11],

and nonlinear autoregressive moving average with exogenous input (NARMAX) models [12], pos-
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sibly due to their specific structures/forms allowing for easier solutions with respect to finding the

model parameters. Other I/O methods such as Wiener models [13], Hammerstein models [14],

Hammerstein–Wiener models [15, 16], polynomial ARX models [17], multiple local linear mod-

els [18], and neural wiener models [19, 20] have also been developed and are established system

identification methods that are widely used for modeling dynamical systems in applications such

as model predictive control (MPC).

While I/O methods provide information on the input/output behavior of a dynamical system,

the states themselves may not necessarily be recoverable from the identified I/O model, possibly

providing only a minimal state-space realization. This limitation can be crucial in certain set-

tings such as economic MPC, wherin the MPC cost function depends on most, if not all, of the

states. The lack of state information in I/O methods led to the proposal and maturation of empirical

state-space methods that provide information on the states in addition to the inputs and outputs.

State-space methods mostly result in linear models but are widely used for dynamic systems due

to several advantages they provide. For example, they have been studied in-depth in various liter-

ature, and a robust framework for applying state-space methods to data exists. Furthermore, once

a state-space model is obtained, the breadth of functionality of such a model continues to expand

until present [21]. Additionally, for modeling multi-input-multi-output (MIMO) systems, state-

space methods have gained traction due to their ability to account for interactions between process

states and inputs [22–29]. Some subspace identification methods include the numerical method

for subspace state-space system identification (N4SID) based on Hankel singular values [30], the

multivariable output error state-space algorithm (MOESP) [31–34], and the canonical variate al-

gorithm (CVA) [35]. The incorporation of empirical state-space models into MPC has also been
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investigated [e.g., 36]. Nevertheless, the key limitation of linear state-space models is the fact that

most chemical processes are highly nonlinear, and the degree of accuracy and applicability of a

linear model in modeling a nonlinear system cannot be generally known. In theory, a nonlinear

system can be represented by an extensive array of linear equations across various regions within

the phase space. This can be accomplished by constructing Jacobian matrices over a suitable grid

that encompasses the phase-space area of interest [37, 38]. Nevertheless, ensuring the accuracy and

robustness of such an approach poses significant challenges, primarily due to the computational

complexities involved. To effectively predict the dynamics of highly nonlinear systems, merely

performing local reconstruction of multiple linearized dynamics is often insufficient and, instead,

an accurate nonlinear equation is required. Furthermore, under certain conditions, such as when

operating at an unstable steady state, the region of validity for the linear model can be extremely

small, which can lead to poor performance of an MPC incorporating the linear model once the

state exits the region of model validity. Consequently, the need for nonlinear state-space models

was realized.

While I/O methods were already extended to their nonlinear counterparts unlike state-space

methods, they were not without limitations in terms of capturing nonlinear dynamics. Most nonlin-

ear I/O methods were easily tractable using classical computers and used widely due to the specific

forms they were restricted to, facilitating computations and optimization of model parameters. For

example, Hammerstein models assume the dynamics of a nonlinear system can be decomposed

into a dynamic linear component and a static nonlinear component, with the nonlinear steady-

state gain being applied to the linear dynamics. This assumption greatly simplifies the problem

but also limits the applicability of models of this structure (e.g., Wiener models, which are of the
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same structure but with the components reversed) to processes where the nonlinearities cannot

be decoupled from the dynamics. Other polynomial forms that have been used in nonlinear I/O

modeling include Chebyshev polynomials [39], Volterra polynomials [10, 40], polynomial ARX

models [17], Laguerre polynomials [41], and polynomial neural networks [10]. However, similar

restrictions apply to the above methods, with some being derivatives of or closely interconnected to

others (e.g., the Hammerstein model can be shown to be described fully by a second-order Volterra

kernel).

To overcome the challenges of a presumed model structure that is encountered in both nonlin-

ear I/O methods as well as linear state-space methods, research in process systems engineering and

data-driven modeling has continued to progress, with significant advances in the last two decades,

with the ultimate goal being to impose as few assumptions and restrictions on the model form as

possible. In this vein, a nonlinear state-space method, polynomial nonlinear state-space (PNLSS),

was recently proposed for MIMO systems as a system identification method that yields multivari-

able nonlinear models based on input/output data [42–47]. As a nonlinear state-space technique,

PNLSS encompasses a significantly wider range of nonlinear systems than those accommodated

by bilinear models, Hammerstein-Wiener models, or models featuring nonlinearities in either the

states, inputs, or both. Due to the model itself being both nonlinear and dynamic, PNLSS models

enabled operation across a broader state-space region. Since the PNLSS algorithm can produce

ill-conditioned models that need an extremely small time step to be numerically integrated using

explicit methods, additional constraints have been incorporated into the algorithm to enforce the

identification of well-conditioned models [48]. While the bank of possible nonlinear functions for

a dynamic model was significantly expanded via PNLSS to include monomials of any order, the
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overall model was restricted to be a polynomial, barring the possibility of other nonlinear functions

such as trigonometric or exponential functions, which are ubiquitous in engineering systems.

However, due to the remarkable surge in data production within modern industries in the

past ten years, with an estimated annual generation of over 1000 Exabytes by machines and de-

vices [49], the explosive growth of computing resources, the widespread availability of cloud plat-

forms/resources, the development of numerous open-source software libraries tailored for machine

learning applications [e.g., 50–52], the paradigm of data-driven modeling has experienced a signif-

icant shift, with machine learning techniques, especially neural network (NN) models, being used

to solve longstanding problems in classical engineering fields [53–59]. This is primarily due to

their large number of tunable hyperparameters (leading to an even larger set of trainable parame-

ters) leading to their ability to capture complex relationships between variables in a “black-box”

manner, i.e. the model parameters are known and stored, but the exact input-output mapping found

by the model cannot be expressed explicitly. In essence, NN models impose no restrictions on

model form at the expense of significantly higher computational burden in both the training and

testing phases of the model, compared to classical methods such as I/O models or state-space

models, whether linear or nonlinear. When the required amount and quality of data is provided, a

feedforward NN can capture any static nonlinearities extremely accurately if trained appropriately

due to its universal approximation property [60, 61]. Recurrent NNs are another type of NN mod-

els that can accurately capture dynamics of a system from time-series data and have been proposed

and used widely in process systems engineering in the last decade [3, 62]. The incorporation of

both types of NNs into model-based controllers has also been investigated in-depth [63, 64] and

reviewed at large [65, 66]. However, two limitations associated with NN models are their higher
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computational burden and black-box nature, which constrain their utility and acceptance within

the field of process systems engineering and, especially, control loops with shorter sampling times.

In particular, NN models typically require an exorbitant amount of data to be trained. While 1000

Exabytes of data may be generated annually, this applies neither to every industrial system nor to

every quantity within a system. For example, a pilot plant based on a novel process such as an elec-

trochemical reactor may not produce enough data until sufficient time passes, but a model-based

controller may be required prior to that. Additionally, even if high-frequency measurements are

available in a plant for a certain state such as a temperature, which can be easily and rapidly mea-

sured using a thermocouple, another quantity, such as gas-phase concentrations/compositions may

require slower methodologies like gas chromatography, greatly reducing the sampling rate of cer-

tain variables. Due to NN models being, at their core, interpolators, NN models are also practically

never extrapolated beyond the training data. Hence, an NN model trained on a certain region of

the state-space or one steady state will likely not be accurate in another region or at another steady

state and, even if it is accurate, this is not generally the case and is inadvisable to do so. Hence,

despite the advancements in nonlinear dynamical modeling via the introduction of recurrent neural

networks, other challenges were coupled with NN models that have not yet been overcome. As a

result, the field of nonlinear dynamical modeling remains an open area of research. A more general

nonlinear method that produces an explicit and well-conditioned model as classical I/O and state-

space methods such as N4SID or PNLSS do is highly desirable from a control-centric perspective

due to the computational efficiency and similarity to the governing physical laws in terms of model

form, i.e., both the physical laws and state-space models are ordinary differential equations.

Regardless of the methodology used to obtain a data-driven model, in scenarios where the
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process is exposed to substantial plant disturbances, variations, actuator faults, or when there is a

need to adapt to a different operating region, the initial data-driven model(s) may not adequately

capture the dynamics that emerge under these new conditions. Consequently, depending on the

model’s structure and training requirements, it becomes essential to perform re-identification or

update of the process model in real-time, especially when significant prediction errors arise. This

re-identification/update is necessary to accommodate changes in the plant’s dynamic behavior.

Hence, when operational conditions undergo alterations, employing on-line model re-identification

or updates within an MPC design is essential to compensate for variations in the plant model, which

can prevent oscillations in the case of tracking MPC [67] or improve economic yield for economic

MPC.

1.2 Background

In the realm of chemical process systems, model predictive control (MPC) stands as an ad-

vanced control system widely adopted in the industry [68]. As its name implies, MPC employs

a dynamic model, often in the form of an ODE, to forecast process states (outputs) over a user-

defined prediction horizon. This predictive capability enables the system to take optimal control

actions based on anticipated future trajectories. A detailed review of classical methods as well as

recent advancements on data-driven modeling within the context of model-based control can be

found in [69], including entirely model-free controllers such as explicit MPC, where the control

law itself is replaced by a function [70].

In order to relax constraints on model structure, maintain explicitness, and better capture
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the physics of systems, several studies concentrated on symbolic regression. Despite being com-

putationally intractable for large-scale systems, symbolic regression was a successful direction in

dynamic modeling. Concurrently, the notion of compressive sensing was used widely in the model-

ing of various dynamic systems including catastrophe prediction [71], classification of bifurcation

regimes to derive low-dimensional Galerkin models [72], reconstruction of airfoil data [73], and

various PDE systems such as convection equations and diffusion equations [74], multiscale PDEs

[75], and elliptic PDEs [76]. Concepts from the simultaneous developments in symbolic regres-

sion and compressive sensing led to the development of a relatively modern technique known as

Sparse Identification for Nonlinear Dynamics (SINDy). SINDy uses only sensor measurements

to identify a dynamic model in the form of a system of first-order nonlinear ODEs expressed as a

linear combination of general nonlinear functions whose associated coefficients can be calculated

using established methods such as least-squares or LASSO (least absolute shrinkage and selection

operator). The nonlinear functions considered are not restricted to any particular form, greatly

increasing the range of systems that the method can be applied to. PNLSS, for example, can be

considered a special case of SINDy when using only monomial candidate functions (and their in-

teractions) for the nonlinear dynamics. It is important to note, while the initial aim of the SINDy

method was to discover interpretable ODEs/PDEs that capture the underlying physics using data

[e.g., 77, 78], SINDy’s utility extends beyond this objective. It can be employed to construct com-

putationally efficient, closed-form models for model-based control purposes. Moreover, the ODE

models derived via the SINDy method may or may not adhere to the physical laws, in general.

This is because the search across the set of nonlinear basis functions does not guarantee that the

resulting dynamic model will provide such valuable physical insights. In the realm of process
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systems engineering, the objective of employing SINDy for constructing process models is to fa-

cilitate the direct identification of explicit and closed-form nonlinear first-order ODEs from data.

These identified equations can be easily integrated into optimization problems, including MPC.

The computational burden associated with incorporating these explicit ODE models is generally

minimal, especially when the models are well-conditioned, due to the existence of efficient differ-

ential equation solvers that make use of established integration techniques, such as 4th/5th order

Runge-Kutta methods. Since its inception, SINDy has found applications across a wide spectrum

of problems in the natural sciences including power plants [79] and robotics [80].

A diverse array of literature can be found on advancements of SINDy to model chemical

processes as well. SINDy has been expanded to model stochastic dynamical systems, which are

commonly encountered in biophysical processes, in [81], and key challenges in its implementation

were discussed along with data requirements and the necessity for cross validation. [82] used

SINDy to develop reduced-order models for controlling hydraulic fracturing processes via SINDy-

based MPC. The use of SINDy to identify chemical reaction networks have been investigated

in several works [83–85]. SINDy was used to model the black-box component of a gray-box

model developed for nonlinear MPC in [86], and the resulting MPC was applied to the Chylla-

Haase benchmark reactor, whose temperature must be maintained in a narrow range of ±0.5 K

from its setpoint. In this case, interestingly, reaction kinetics, thermodynamic assumptions, and

other a priori knowledge of the chemical process were included as part of the white-box model

of the overall gray-box model, further emphasizing that SINDy is not restricted to the case of

obtaining the underlying physical laws of a system but can be used for optimization and model-

based control strategies. Dynamic models were constructed for a distillation column, which is
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the most common unit found in chemical processes, using both SINDy and symbolic regression in

[87] and compared with each other, where SINDy identified more accurate models (although not in

the form of the underlying equations) within the perturbation region. For the purpose of modeling

time-series data gathered from multiple air quality stations in Spain, a novel optimization approach

for solving the sparse identification problem was introduced in [88] and subsequently applied to

model ozone and nitrogen dioxide concentrations in the atmosphere as functions of time, taking

into account the issue of data corruption due to noise, which is prevalent in real-world datasets.

SINDy has also been attempted to be extended to large-scale systems such to model an overall

plant’s dynamics in [89], with varying degrees of success. The sparse identification problem was

modified to use constrained nonlinear optimization to improve the coefficient identification and

the resulting problem was solved using MATLAB’s fmincon, a sequential quadratic programming

(SQP) solver. However, since a model of the entire plant’s dynamics was required to account

for both short-term and long-term water availability arising from rain and drought, considering

streamflow dynamics was necessary. This complication introduced hysteresis in the SINDy model,

necessitating the inclusion of time-derivatives of the input terms in the SINDy function library and

subsequently deteriorating model performance when the hysteresis was significant. Most recently,

[90] used SINDy to model Li-ion batteries, which are characterized by not only highly nonlinear

dynamics but also time-scale separation due to the slow inter-cycle battery dynamics that determine

the remaining battery lifespan and fast intra-cyclic dynamics that dictate the level of charge/power

left within the current cycle. Two SINDy models were used to model the slow and fast dynamics

separately, and the proposed framework was successfully demonstrated on a LiFePO4/graphite

battery system. While sparse identification has been developing on several fronts as described,
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other challenges when modeling chemical processes remain to be addressed.

Numerous chemical processes exhibit dynamics with multiple time scales, including systems

like catalytic continuous stirred-tank reactors (CSTRs) [91], biochemical reactors [92–94], distilla-

tion columns [95], and fluidized catalytic crackers [91, 96, 97]. Nonlinear process models derived

from SINDy are represented as ODEs in time and require integration for state and/or output pre-

dictions. However, such processes with fast dynamics result in stiff ODEs that require very small

integration time steps to maintain numerical stability and accuracy when using explicit integration

methods such as forward Euler or Runge-Kutta methods. From a purely modeling perspective, this

may not necessarily be a limitation as models for both the slow and fast time scales were already

remarked to have been constructed successfully in [90]. Earlier, as well, [98] has addressed the

issue of modeling two-time-scale systems with SINDy, specifically focusing on data availability,

sampling, and periodic systems that evolve on an attractor. When full state measurements were

accessible, it was demonstrated that, while sparse identification could accurately identify single-

time-scale periodic systems with as little as 5% of data covering one period, the data requirements

increased linearly with the ratio of slow to fast dynamics in the case of two-time-scale systems, es-

pecially with naive simple uniform sampling. This increase in data requirements stemmed from the

necessity for a shorter sampling period for fast trajectories. In fact, even in single-time-scale sys-

tems, where 5% of data sufficed for system reconstruction, it had to be collected from the relatively

fast segments of the period at a notably high sampling rate because these fast regions contained

considerably more information than the slower segments. To address this challenge of escalat-

ing data requirements with increasing time-scale multiplicities, an alternative sampling strategy

was introduced in [98], known as burst sampling. Burst sampling enabled sparse identification
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to identify both the slow and fast subsystems using a significantly smaller dataset collected over

a single period. A key limitation of [98], however, was the assumption of linear coupling across

the time scales. While the advances and sampling strategies of [98] and [90] are significant and

may be used to build stiff yet accurate SINDy models, the incorporation of stiff systems of ODEs

directly into conventional nonlinear feedback control techniques can lead to issues such as con-

troller ill-conditioning or loss of closed-loop stability [99]. Therefore, from a control perspective,

an alternative approach is needed to handle the temporal evolution of fast states without relying

on numerical integration of stiff ODEs, even if they can be identified using SINDy with careful

tuning. Therefore, the construction of SINDy models for two-time-scale systems which can then

be incorporated into model-based controllers is a crucial area of research yet to be explored.

Another challenge of implementing SINDy to model chemical processes is the ubiquitous

presence of sensor noise in measurement data. This is due to the sparse identification algorithm

requiring time-derivatives of the states, which are typically unavailable in chemical processes. The

derivatives must then be numerically estimated, often by finite differences, which are unstable and

yield highly random estimates even at low levels of noise. While the initial paper [77] suggested

that the total-variation regularized derivative is robust to noise, a more detailed examination of

noise levels, data generation, and sampling intricacies reveals that this claim cannot be univer-

sally applied to every case, especially in practical scenarios. When confronted with high levels of

noise, the calculation of model parameters in sparse identification is significantly affected, with

various factors hypothesized in the literature, such as the violation of the incoherence property

[100–102] or the restricted isometry property [103–105]. Consequently, numerous investigations

have been conducted to explicitly outline the influence of noise on sparse identification, resulting
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in several extensions to the original sparse identification algorithm to accommodate noise and other

practical considerations. In [106], both noise and irregularly sampled data issues were addressed

by introducing an assimilation step using an autoencoder or ensemble Kalman filter before the

model-identification step. Partially available data and noise were also explored in [107], albeit at

relatively low noise levels, with a signal-to-noise ratio (SNR) of 22.33. In [78], the discrepancy

between the actual governing equations and the sparse-identified models, due to noise, was tackled

through the utilization of group sparsity, which involved grouping terms based on partial knowl-

edge of the underlying physics, ensuring that all or none of the terms appear in the model. It was

observed that smoothing the data and using centered finite-differences generally improved perfor-

mance. Furthermore, [108] utilized “algebraic operations”, specifically Laplace transforms and

inverse Laplace transforms, to reformulate the ODE model using integral terms, mitigating noise

in subsequent operations. In [109], the computation of the second derivative in mass-spring sys-

tems was avoided by using Duhamel’s integral, while further de-noising was proposed through the

RKHS (Reproducing Kernel Hilbert Space)-based non-parametric de-noise method. In addition,

while not discussed here in detail, various other methods have also been proposed to be combined

with SINDy throughout the last few years to combat the effects of noise, including but not limited

to the manifold boundary approximation method [110], spectral methods/filtering such as those

in [111] to estimate derivatives [112], and implicit modeling [113, 114]. However, two papers

pioneered the application of sparse identification to noisy data, [115], based on the second-order

Tikhonov regularization, and [116], which involved randomly subsampling a fraction of the entire

dataset multiple times, and then selecting the best model using a model-selection criterion. A key

limitation in most of the papers mentioned, except for two, was that derivatives were calculated
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either using the ODE in the data generation step, with noise subsequently added, or the derivatives

were estimated using numerical methods from the exact data generated, and noise was added to

both the data and computed derivatives afterward. Based on the varying results in the two excep-

tions, [112] and [115], it can be concluded that the use of sparse identification to model highly

noisy chemical processes where no clean data is available is still a significant challenge that re-

quires further investigation. The challenge of handling noisy measurements, however, is further

complicated by its close link to the data sampling period or rate. Specifically, data in industrial

process systems must be acquired at finite, discrete time intervals, otherwise referred to as the sam-

pling time. This limitation is inherent to the specific sensors and can vary depending on the type

of variable being measured (e.g., a thermocouple can sample temperature data much faster than a

gas chromatograph can provide compositional data). The sampling time plays a pivotal role in in-

fluencing the accuracy of SINDy, as the numerical estimation of derivatives relies on the temporal

spacing between data points. This point is often unaccounted for in papers developing SINDy to

handle noise since the data used may have been sampled on the order of microseconds, which is

extremely rare in chemical processes. Therefore, the challenge of noisy data must be addressed

together with the additional complication of data sampling rate, i.e., a robust algorithm to identify

SINDy models from noisy data measured at a reasonable sampling frequency is a highly relevant

challenge that has yet to be addressed in the current literature.

Finally, even when accurate SINDy models are obtained for a process from a large offline

data set, possibly using advanced novel algorithms to handle time-scale multiplicities and noise,

in real-world scenarios, process models are typically subject to changing dynamics over time due

to a multitude of factors. These include external influences such as the aging of equipment, unex-

15



pected disturbances, and the implementation of new operational technologies, as well as internal

factors like equipment fouling or catalyst deactivation. Consequently, the SINDy model, initially

trained on historical data under normal operating conditions, may struggle to accurately predict

process states in the presence of disturbances. The concept of updating SINDy models in real-time

was initially introduced in [117], where the proposed methodology allowed for the adaptation of

model coefficients, the addition/removal of terms, or a combination of these adjustments as re-

quired. The re-identification process was triggered by a noticeable deviation between the local

Lyapunov exponent and the prediction horizon estimate, although it is worth noting that their defi-

nition of “prediction horizon” differs from its usage in this dissertation. While the findings of [117]

were primarily limited to the modeling context and did not involve the use of closed-loop data in

model updates, this methodology was recently adapted in [118] for the modeling of ducted fan

aerial vehicles (DFAVs) with closed-loop control under MPC. Initially, an offline model was con-

structed using extensive knowledge of DFAVs, and then the model parameters were updated based

on the approach proposed in [117], using the same Lyapunov exponent-based trigger for model

updates. This methodology was, hence, demonstrated to be able to control DFAVs effectively, de-

spite the complexity of modeling their airflow distribution under the disturbances considered, such

as wind turbulence, which is a practical concern in the context of DFAVs. Most recently, within

the paradigm of chemical process systems, an MPC framework using SINDy models with updates

to accommodate changing process conditions was investigated in [119]. The focus of this work

was on updating the model when faced with entirely unknown or newly encountered process con-

ditions, and it considered processes operating under multiple operating conditions or steady states.

It employed the discrete-time formulation of SINDy with actuation and used the popular greedy
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algorithm, orthogonal matching pursuit, to efficiently calculate changes to the model coefficients.

During the model transition/update period, an elastic feedback correction method served as a tem-

porary solution. The proposed error-triggered adaptive sparse identification for predictive control

(ETASI4PC) method exhibited significant improvements over state-of-the-art methods, including

SINDy without model updates and the well-developed OASIS (operable adaptive sparse identifi-

cation of systems) approach, especially in the presence of significant disturbances in the feed flow

rate of a chemical reactor system. It’s important to note that the ETASI4PC method holds promise

for updating SINDy models in real-time for a basic tracking MPC. However, as of our literature

review, the operation of Lyapunov-based MPC, both Lyapunov-based tracking MPC (LMPC) and

Lyapunov-based economic MPC (LEMPC), under SINDy models updated in real-time has not

been thoroughly explored.

1.3 Dissertation objectives and structure

This dissertation presents numerous advancements to the sparse identification algorithm and

its overall methodology, with the aim of expanding and facilitating its use in process systems

engineering, along with control theoretic analyses and demonstration of the proposed algorithms

through their application to various nonlinear chemical process examples. The primary objectives

of this thesis can be outlined as follows:

1. To present a SINDy-based reduced-order modeling framework for two-time-scale systems

and the integration of such models into Lyapunov-based MPC.

2. To design a framework to mitigate the numerical and practical challenges arising from the
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use of noisy sensor data to develop nonlinear SINDy models.

3. To propose a SINDy-based online economic MPC methodology that updates its process

model as required online using an error-based detector.

4. To create SINDy-based MPC schemes, accompanied by comprehensive theoretical analysis

of their closed-loop stability properties.

5. To demonstrate how the proposed modeling and control frameworks can be applied to prac-

tical nonlinear chemical process scenarios.

The remainder of this dissertation is organized as follows: Chapter 2 focuses on data-based

reduced-order modeling of nonlinear processes that exhibit time-scale multiplicity. Using time-

series data from all the state variables of a nonlinear process, an approach that involves nonlinear

principal component analysis and neural network function approximators is employed to identify

the fast and slow process state variables as well as to compute a nonlinear slow manifold function

approximation in which the fast variables are “slaved” in terms of the slow variables. Subse-

quently, a nonlinear sparse identification approach is employed to calculate a dynamic model of

nonlinear first-order ordinary differential equations that describe the temporal evolution of the slow

process states. The method is applied to two chemical process examples, and the advantages of

the proposed method over using only sparse identification for the original two-time-scale process

are discussed. The approach can be thought of as a data-based analogue of the classical singular

perturbation modeling of two-time-scale processes where explicit time-scale separation is assumed

(and expressed in terms of a small positive parameter ϵ multiplying the time derivative of the fast

states), and the reduced-order slow subsystem is calculated analytically.
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Chapter 3 focuses on the design of model predictive controllers for nonlinear two-time-scale

processes using only process measurement data. By first identifying and isolating the slow and

fast variables in a two-time-scale process, the model predictive controller is designed based on

the reduced slow subsystem consisting of only the slow variables, since the fast states can de-

teriorate controller performance when directly included in the model used in the controller. In

contrast to earlier works, in the present work, the reduced slow subsystem is constructed from pro-

cess data using sparse identification, which identifies nonlinear dynamical systems as first-order

ordinary differential equations using an efficient, convex algorithm that is highly optimized and

scalable. Results from the mathematical framework of singular perturbations are combined with

standard assumptions to derive sufficient conditions for closed-loop stability of the full singularly

perturbed closed-loop system. The effectiveness of the proposed controller design is illustrated via

its application to a non-isothermal reactor with the concentration and temperature profiles evolv-

ing in different time-scales, where it is found that the controller based on the sparse identified slow

subsystem can achieve superior closed-loop performance versus existing approaches for the same

controller parameters.

In Chapter 4, a novel algorithm based on sparse identification, subsampling and co-teaching

is developed to mitigate the problems of highly noisy data from sensor measurements in modeling

of nonlinear systems. Specifically, sparse identification is combined with subsampling, a method

where a fraction of the data set is randomly sampled and used for model identification, as well as

co-teaching, a method that mixes noise-free data from first-principles simulations with the noisy

measurements to provide a mixed data set that is less corrupted with noise for model training. The

proposed method is bench-marked against sparse identification without subsampling as well as
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subsampling but without co-teaching using two examples, a predator-prey system and a chemical

process, both of which are modeled as nonlinear systems of ordinary differential equations. It

was shown that the proposed method yields better models in terms of prediction accuracy in the

presence of high noise levels.

Chapter 5 studies the impact of noise on the SINDy algorithm, especially when applied to

industrial processes with severe nonlinearities that cannot be adequately captured with an easily

derivable first-principles model, hindering the use of co-teaching methods. SINDy is used with

ensemble learning, where multiple models are identified to improve the overall/final nonlinear

model’s performance. Specifically, in the SINDy algorithm, a fraction of the library functions

considered for the ODE model representation are randomly dropped out in each sub-model to favor

model sparsity and stability at the possible risk of lowering the model accuracy. This trade-off is

controlled by manipulating the fraction of the library functions dropped out and the total number

of models generated, both of which are considered as hyper-parameters to be tuned in the proposed

algorithm. Data from open-loop simulations of a large-scale chemical plant are generated using the

well-known high-fidelity process simulator, Aspen Plus Dynamics, and corrupted with substantial

sensor noise to be implemented in the newly proposed algorithm, dropout-SINDy. The dropout-

SINDy models obtained from training with the noisy data are then tested in open-loop simulations

to demonstrate accurate identification of the steady-state and reasonably close transient behavior

under a variety of initial conditions and manipulated input values. Finally, the constructed models

are used in a Lyapunov-based model predictive controller to control the large-scale Aspen process,

meeting desired closed-loop stability requirements and performance specifications.

Chapter 6 introduces a sparse identification-based model predictive control (MPC) frame-
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work that incorporates on-line updates of the sparse-identified model to account for nonlinear

dynamics and model uncertainty in process systems. The methodology involves obtaining a non-

linear first-order ordinary differential equation model using sparse identification for nonlinear dy-

namics (SINDy), which is integrated into two control schemes: Lyapunov-based MPC (LMPC)

for achieving steady-state operation and Lyapunov-based economic MPC (LEMPC) for achieving

both closed-loop stability and optimal economic performance. To improve prediction accuracy,

an on-line model update scheme is proposed for the SINDy models. Specifically, an error-trigger

mechanism that utilizes prediction errors and then uses the most recent process data to update

the parameters of the SINDy model in real-time is designed. By incorporating the error-triggered

on-line model updates in the SINDy-based LMPC and LEMPC, the dynamic performance of the

process is enhanced, ensuring closed-loop stability, optimality, and smooth control actions. Fol-

lowing theoretical results on the boundedness of the closed-loop states and detailed discussions

on the selection criteria for parameters of the error-triggered SINDy update scheme, the effec-

tiveness of the proposed methodology is demonstrated through a chemical process example with

time-varying disturbances under the LEMPC framework.

Chapter 7 discusses recent developments in the data-based modeling and control of nonlin-

ear chemical process systems using sparse identification of nonlinear dynamics (SINDy). SINDy

is a recent nonlinear system identification technique that uses only measurement data to identify

model dynamical systems in the form of first-order nonlinear differential equations. In this work,

the challenges of handling time-scale multiplicities and noisy sensor data when using SINDy are

addressed. Specifically, a brief overview of novel methods devised to overcome these challenges

are described, along with modeling guidelines for using the proposed techniques for process sys-
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tems. When applied to two-time-scale systems, to overcome model stiffness, which leads to ill-

conditioned controllers, a reduced-order modeling approach is proposed where SINDy is used to

model the slow dynamics, and nonlinear principal component analysis is used to algebraically

“slave” the fast states to the slow states. The resulting model can then be used in a Lyapunov-

based model predictive controller with guaranteed closed-loop stability provided the separation

of fast and slow dynamics is sufficiently large. To handle high levels of sensor noise, SINDy is

combined with subsampling and co-teaching to improve modeling accuracy. The challenges of

modeling and controlling large-scale systems using noisy industrial data are then addressed by us-

ing ensemble learning with SINDy. Finally, several future research directions for the incorporation

of SINDy into process systems engineering are proposed.

Chapter 8 summarizes the main results of the dissertation.
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Chapter 2

Data-based reduced-order modeling of

nonlinear two-time-scale processes

2.1 Introduction

Advanced control methods such as model-predictive control (MPC) require a process model

for predicting the states and/or outputs for the control and optimization of chemical processes.

However, most chemical processes exhibit nonlinear behavior and, often, also multiple-time-scale

dynamics. A number of such processes that have been studied include biochemical reactors [92–

94], catalytic continuous stirred-tank reactors (CSTRs) [91], fluidized catalytic crackers [91, 96,

97], and distillation columns [95]. If the time-scale separation in such systems is neglected, directly

implementing standard nonlinear feedback control methods may lead to controller ill-conditioning

or loss of closed-loop stability [99].

As nonlinear process models are in the form of ordinary differential equations (ODEs) in

time, they need to be integrated to predict the states and/or outputs. However the presence of fast
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dynamics in such processes result in stiff ODEs. Such stiff ODEs require a very small integration

step size when using explicit integration methods to avoid numerical instability and to produce

accurate solutions. An alternative is to compute the temporal evolution of the fast states using a

different method than numerical integration of a stiff ODE.

Specifically, utilizing the mathematical framework of singular perturbations [99], the stiff

ODE system is written in the standard singularly perturbed form, where a small positive param-

eter, ϵ, is used to multiply the time-derivative of the fast states. Using singular perturbations, the

original system is decomposed into two lower-order subsystems by utilizing the inherent two-time-

scale property of the system. Each lower-order subsystem separately represents the slow and fast

dynamics of the original stiff ODE model and may be simpler to study individually. The asymp-

totic behavior (for small ϵ) of the original system can then be inferred based on the behavior of the

lower-order subsystems. In particular, once the fast states converge to the slow manifold after a

short transient period, there exists a nonlinear relationship between the slow and fast states, which

can be taken advantage of.

To capture nonlinear relationships in data, Ref. [120] suggested a nonlinear generalization of

principal component analysis, termed nonlinear principal component analysis (NLPCA). This was

developed further in Ref. [121], where it was proved that this new method could accurately capture

significant nonlinear relationships between the variables in a time-series data set. Furthermore, for

the reconstruction of ODEs from data, a procedure known as sparse identification was devised in

Ref. [77].

In a two-time-scale system, if the nonlinear relationships between the slow and fast states

can be derived using NLPCA, then the fast subsystem may be predicted using a deterministic
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neural network (NN) model obtained from NLPCA with the slow subsystem as its input, with

the results being valid after a short transient period. The evolution of the system on the slow

manifold, on the other hand, can be predicted by integrating the sparse identified model with a

larger integration step size compared to the one needed to integrate the original system of stiff

ODEs. The objective of this work is to investigate an approach of combining NLPCA with sparse

identification to efficiently predict the full state of the original stiff ODE system with minimal

loss of accuracy except for a short transient period. Neural networks have already been used

effectively in another two-time-scale process, chemical vapor deposition, for parameter estimation

under uncertainty [122], dynamic optimization [123], and nonlinear control using MPC [124].

2.2 Preliminaries

2.2.1 Class of systems

The general class of continuous-time nonlinear systems with m states considered in this work

has the following general form:

˙̄x = f(x̄) (2.1)

where x̄ ∈ Rm is the state vector, and the vector function f(x̄) contains the dynamic modeling

constraints that are inherently present in the system due to its physics. We assume that the system

of Eq. (2.1) exhibits time-scale separation in the sense that it involves coupled slow and fast states

where x ∈ Rn and z ∈ Rp are the slow and fast state vectors, respectively, with n+ p = m.

Traditionally, the system of Eq. (2.1) has been studied within the framework of singular per-

turbations where a small positive parameter ϵ representing the speed ratio of the slow to the fast
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dynamics of the system is used to write the system of Eq. (2.1) in the following standard singularly

perturbed form:

ẋ = f1(x, z)

ϵż = f2(x, z)

(2.2)

where x ∈ Rn and z ∈ Rp are the slow and fast state vectors, respectively, with n + p = m.

The vector functions f1(x, z) and f2(x, z) are sufficiently smooth vector functions in Rn and Rp,

respectively. In the system of Eq. (2.2), after a short transient period, the fast states, z, converge to

a slow manifold (provided such an isolated manifold exists) and can be expressed by a nonlinear

algebraic expression in x, the slow states. In this work, nonlinear principal component analysis

(NLPCA) is utilized to capture this nonlinear manifold relationship between the slow and fast

states, while sparse identification is used to reconstruct the slow dynamic model for the slow states.

Remark 2.1. Traditionally, two-time-scale systems of the form of Eq. (2.2) have been analyzed by

setting ϵ to zero in Eq. (2.2) and calculating the slow manifold and the slow subsystem analytically.

This requires knowing the vector functions f1(x, z) and f2(x, z). The objective of this work is to

calculate the slow manifold and the slow subsystem using only time series data of x̄(t).

2.2.2 Nonlinear principal component analysis

Principal component analysis (PCA) is a well-established dimensionality reduction technique

for linearly mapping higher-dimensional data onto a lower-dimensional space with marginal loss of

information by minimizing the sum of orthogonal deviations from a line. It is applicable to chem-

ical processes as they contain voluminous data but much less information. However, as chemical

processes are usually nonlinear, this can introduce inaccuracies [125] such as the minor compo-
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nents containing more than just noise or insignificant variance [126]. Therefore, for nonlinear

dynamical systems such as chemical processes, NLPCA was developed.

2.2.2.1 Principal curve

In NLPCA as defined in Ref. [121], a “principal curve” [127] passing through the “middle”

of the data set is first fitted to the data. This curve captures the nonlinear relationship between the

variables by minimizing the sum of orthogonal deviations between the data and the curve. If not,

analogously to PCA, the procedure can be carried out successively on the residuals to compute

more components as required to capture the desired variance.

The principal curve is a 1-D curve in the m-D space of the states. It is represented by a

vector function, f(µ), consisting of m functions of only the ordered arc-length along the curve,

µ. If x̄ ∈ Rm is a continuous random vector with probability distribution, h, and∥·∥ denotes the

Euclidean norm of a vector, then the projection index, µf : Rm → R, can be defined as

µf (x̄) = sup
µ∈R
{µ :

∥∥x̄− f(µ)
∥∥ = inf

ν∈R

∥∥x̄− f(ν)
∥∥} (2.3)

where ν is a substitute for µ, and also represents the arc length. Hence, µf is the value of µ for

which the curve, f(µ), is nearest to x̄. In the case of multiple such values, the largest is used. A

principal curve with distribution h can now be defined as the curve, f , such that

E
(
x̄|µf (x̄) = µ

)
= f(µ) (2.4)

where E is the expectation operator.
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The procedure to estimate the principal curve represented by Eq. (2.4) is described next. The

challenge is that the expectation operator E in Eq. (2.4) can be computed only if the distribution

of x̄ is known. However, in most engineering applications, including the systems of interest in

this work, x̄ is a discrete, multivariate data set with unknown distribution sampled from a process.

Hence, as suggested in Ref. [127], we estimate the principal curve, given by the left-hand side of

Eq. (2.4), E
(
x̄|µf (x̄) = µ

)
, using scatter-plot smoothing with locally weighted regression. This is

implemented through a two-step iteration procedure. To initialize the iterations, the first linear PCA

line, f 0, is used as the initial guess. Then, in each iteration, first, the data points are orthogonally

projected onto the current estimate of the curve, f i, and their ordered arc lengths are calculated

from the “first” projected point on the curve. Since the points are joined by line segments in this

work, this is equivalent to a cumulative sum of successive Euclidean distances. The “first” data

point is taken as the data point with the lowest value of x̄1 (first dimension of the data set) after

projection onto f i. In the second step, the new curve, f i+1 = E
(
x̄|µf i(x̄) = µ

)
, is estimated by

using locally weighted regression [128] on the data set where the neighborhood of each point is

based on the ordering from the first step. The number of points used for smoothing is based on the

“span” parameter, 0 < s ≤ 1, representing the percentage of points to be used. Specifically, for r

data points, sr rounded to the nearest integer would be the number of points used for smoothing.

The weights are assigned to the neighboring points using the tri-cube weight function,

wij(µ) =


(
1−

∣∣∣µj−µi

di

∣∣∣3)3

if |µj − µi| < di

0 if |µj − µi| ≥ di

(2.5)
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where wij is the weight assigned to point j when computing the new point i with i, j = 1, . . . , r,

and di is the distance from point i to the furthest neighboring point considered. For further details

regarding locally weighted regression, the reader is referred to Ref. [128]. This second step yields

the new curve, f i+1. The two steps described are then repeated with the new curve in the next

iteration until a stopping criterion is met. The criterion used in this work is the relative change in

the Euclidean distance from a point x̄ to its projection on the principal curve, f . Specifically, if ε

is a small, positive number, we iterate until

∣∣∣∣∣
∥∥x̄− f i(µf )

∥∥−∥∥x̄− f i+1(µf )
∥∥∥∥x̄− f i(µf )

∥∥
∣∣∣∣∣ < ε

The principal curve, however, is not a model and cannot generate an output from a new input

sample. Therefore, the principal curve is approximated using a feedforward neural network, which

is then used as the model to query new data.

2.2.2.2 Neural network

A two-layer feedforward neural network model that approximates a nonlinear function of the

form, y = f(x), can be written in the general form,

y = σ(3)(W (3)h(2) + b(3)) (2.6)

h(2) = σ(2)(W (2)h(1) + b(2)) (2.7)

h(1) = σ(1)(W (1)x+ b(1)) (2.8)
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where x ∈ Rn is the NN input vector, y ∈ Rp is the NN output vector. Each layer has a bias vector

b(i) with i = 1, 2, 3, and an activation function σ(i) with i = 1, 2, 3, which is a nonlinear activation

function such as the sigmoid function, σ(x) = 1/(1+ e−x). The hidden layers have output vectors

h(i) with i = 1, 2. Every pair of units in two consecutive layers has an associated weight, which is

stored in the weight matrix W (i).

2.2.3 Sparse identification

Sparse identification is a technique developed to identify dynamical systems made possible

due to recent advances in sparsity algorithms. Sparsity methods have been applied to dynamic

system modeling in recent works [71–76, 129, 130]. Sparse identification attempts to reconstruct

the original ODE using only measured data from the system and identifies dynamical systems

expressed in the form given in Eq. (2.1).

Sparse identification takes advantage of the fact that f(x̄) in Eq. (2.1) typically contains very

few nonzero terms, which makes it sparse in a higher-dimensional space of many candidate nonlin-

ear functions. This sparsity allows calculation of the nonzero terms using scalable convex methods

while avoiding a prohibitively expensive brute-force search.

In sparse identification, time-series data of the state x is first collected by sampling the process

with sampling period, ∆, over a range of initial and operating conditions. The concatenated data

matrix, X , is then, of the form,

X =

[
x1 x2 · · · xm

]
(2.9)

where each xi is a column of time-series data for state i for i = 1, . . . ,m. The matrix of the
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derivative of X ,

Ẋ =

[
ẋ1 ẋ2 · · · ẋm

]
(2.10)

is estimated in this work using second-order central finite differences (except the first and last

points, which use second-order forward and backward finite differences, respectively). Next, a

library, Θ(X), of q nonlinear functions of the columns of X is created. These functions are candi-

date terms for f , the right-hand side of Eq. (2.1). The objective is to find which of these terms are

active by leveraging sparsity. An example of an augmented library or Θ(X) is

Θ(X) =

 1 X XP2 · · · sinX tanhX

 (2.11)

where, for example, XP2 denotes all quadratic nonlinearities, given by

XP2 =

[
x2
1 x1x2 · · · x2

2 x2x3 · · · x2
n

]
(2.12)

The sparse identification problem is to determine the q coefficients associated with the q

candidate nonlinear functions considered in Θ(X) for each of the m states. The m coefficient

vectors, each denoted by ξ, can be compactly written as a matrix,

Ξ =

[
ξ1 ξ2 · · · ξm

]
(2.13)

Each ξi ∈ Rq is a sparse vector of coefficients indicating the active terms in the dynamical equation

of the corresponding row, ẋi = fi(x). The equation that must now be solved to determine Ξ can
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be set up as

Ẋ = Θ(X)Ξ (2.14)

The above equation is solved using least-squares after zeroing all coefficients in Ξ that are smaller

than a threshold, λ, known as the sparsification knob since this single parameter controls the spar-

sity of Ξ. This is repeated until the non-zero coefficients converge, which is very rapid in practice.

As expected, the effectiveness of sparse identification is intrinsically related to the candidate

nonlinear functions used to compute the sparse dynamics. However, as discussed in Ref. [77],

polynomials and trigonometric functions are a natural basis for many systems and may be used as

an initial bank of basis functions. More nonlinear functions may be added to the bank based on

physical knowledge of the specific system such as exponential terms for systems with chemical

reactions.

2.3 NLPCA-SI implementation

In this work, the two methods described—NLPCA and sparse identification—are used to-

gether to identify the original two-time-scale system dynamics. The objective is to use NLPCA for

deriving nonlinear relationships between the slow and fast dynamics and use sparse identification

to reconstruct the slow dynamics. Thus, the final system is in the form of ODEs for the slow states

and a neural network for the fast states. The method is abbreviated as NLPCA-SI.

The NLPCA-SI procedure is as follows: 1) a large data set is generated through open-loop

simulations of the original nonlinear system in Eq. (2.1) using different initial conditions in a

reasonable operating region, 2) a time-series plot of the states is used to separate the slow and fast
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states, 3) the collected data is then auto-scaled by subtracting the mean and dividing by the standard

deviation since NNs have activation functions with relatively small ranges, (often 0 to 1), making

them inaccurate or difficult to train if the data varies too widely, 4) the principal curve is computed

using the entire m-dimensional data set, 5) and a feedforward NN as described in Section 2.2.2.2

is built using only the slow states as the inputs and the fast states as the outputs. Two remarks

are made regarding the procedure. In the second step, another, possibly more robust, method to

identify the slow and fast states a priori is to plot the time-series gradients of the data. For the fast

states, due to the stiffness, the magnitudes of the gradients are extremely large initially. For every

simulation of the ODE systems for data generation, the initial gradients of the fast states were at

least one order of magnitude greater than that of the slow states. In most runs, the differences

were two orders of magnitudes. Therefore, the ratio of initial gradients of the states can be used

as a criterion to identify the slow and fast states a priori. This idea can be further developed

as well. For example, norms of the ratios at multiple time instances can be used, where several

orders of magnitudes separate the slow and fast states. In the final step of building the NN, an

open-source platform for machine learning, Tensorflow, is used to solve the required optimization

problems and obtain the optimal weight matrices, W (i), which minimize the loss function used:

the mean-squared error between the predicted and actual outputs.

The NN used in the NLPCA is a two-hidden-layer network with a linear output layer. Ref.

[121] used an overall five-layer network with the principal scores (defined as the arc length, µ,

along the principal curve) as a middle layer, based on the initial structure proposed by Ref. [120].

However, it treated the network as two three-layer networks, with the third layer of the first network

being the first layer of the second network. This was done because five-layer networks were con-
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sidered difficult to train. However, with the recent advances in data science and machine learning,

this is not intractable anymore. Hence, a four or even five-layer network may be trained without

splitting it into two networks. However, the number of hidden layers is not arbitrary. Ref. [60, 61]

proved that at least one sigmoidal hidden layer is required for a feed-forward neural network to

have the universal approximation property. However, this is in theory and the parameters may be

extremely specific to achieve the required accuracy. In addition, for nonlinear control systems,

two layers may be required for closed-loop stabilization [131]. Finally, the function to be approx-

imated by the NN may have regions where it behaves differently from its behavior in most of its

domain. This can lead to the failure of a one-hidden-layer network and might even require a sep-

arate NN for distinct regions. Due to these considerations, two hidden layers are used in this NN

with the number of hidden neurons in each hidden layer being determined by a grid search and

cross-validation as in Ref. [121]. However, it is noted that these two parameters—the number of

hidden layers and the number of neurons in each hidden layer—which define the structure of the

NN should be based on the complexity of the nonlinear relationship between the inputs and outputs

of the NN. Typically, as seen in the examples considered in this work, a shallow neural network

(i.e., an NN with only one or two hidden layers) is sufficient for most chemical process modeling

problems. However, a deep neural network can be used for a large-scale, complex system with a

large number of process states when a shallow neural network cannot achieve the desired model

accuracy. In practical implementation, to obtain a well-conditioned neural network model with

sufficiently high model accuracy on both training and testing data sets, we will start with a one-

hidden-layer neural network, and gradually increase the number of layers and of neurons until no

further improvement is noticed. Following these steps, a well-conditioned NN model is obtained
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to predict the fast states from the slow states. Once the optimal structure of the NN is determined,

the NN is trained 10 times and the most accurate model is chosen based on the test set accuracy.

The structure of the NN used in NLPCA-SI is shown in Fig. 2.1.

Figure 2.1: Structure of the neural network used for NLPCA-SI

For the activation functions of the two hidden layers, the first hidden layer uses a sigmoidal

activation since, as mentioned, this is required for the universal approximation theorem to hold.

For the second activation function, several common activation functions are tested, and the model

with the minimal test set error is selected. The most important metric used in the NN training,
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however, was the learning rate, which typically requires significant tuning. In this method, the

learning rate can significantly affect the results for some systems and is tuned until satisfactory

performance is observed.

Finally, sparse identification is used on the data containing only the slow states. This identifies

the slow dynamics in the form of ODEs containing only the slow states in the vector function f in

Eq. (2.1). For predicting the states of the original system, new initial conditions are first used to

integrate the sparse identified ODEs in time to yield the slow manifold. It is then used as input for

the NN built during NLPCA to predict the fast states, neglecting a short transient period. In this

way, the full state of the original system is recovered for any initial condition without integrating

the fast dynamics.

The alternative is to simply reconstruct the entire system using only sparse identification and

integrate it to predict the full state of the system at any time. The results from the NLPCA-SI

method are compared with the results from this aforementioned brute-force approach using only

sparse identification, abbreviated SI.

Remark 2.2. It is important to note that, as opposed to classical singular perturbation modeling

of two-time-scale processes where the dimension of the slow state vector and of the fast state vector

are fixed once the singular perturbation parameter is specified and the process model is written

in the standard singularly perturbed form, the proposed approach uses process data to determine

the number of fast and slow states and, therefore, leads to a more accurate representation of the

dimensions of the slow and fast states. Furthermore, it directly accounts for “hidden” time-scale

multiplicity in the right hand-side of the process dynamic model owing to the presence of large or
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small parameters there and yields a slow subsystem of the lowest order as a result of the application

of NLPCA to the overall process state data set. Therefore, this approach can be viewed as a way of

carrying out index reduction in high-order (higher than 1) differential-algebraic equation systems

(which arise as slow subsystems of two-time-scale systems) to yield a slow subsystem of the lowest

order.

2.4 Application of NLPCA-SI

The method explained in Section 2.3 is applied to two reactor systems. In the first example,

a two-time-scale system due to multiple reactions with different rate constants is studied. Next,

a CSTR with a single reaction but fast temperature dynamics is considered. In this section, a

“proper” solution refers to a sparse identified system that can be integrated until the end of the

time span without early termination due to divergence to infinity during numerical integration.

2.4.1 Example 1: Isothermal batch reactor with multiple reactions

An isothermal, constant-volume batch reactor with the following reaction scheme is consid-

ered:

A ↽−−
k−1

k1−−−−⇀ B
k2−−→ C (2.15)

where ki is the rate constant associated with the corresponding reaction. The forward reaction

in A ↽−−−⇀ B is much faster than both the backward reaction and the B −−→ C reaction such

that k1 ≫ k−1 > k2. This causes a two-time-scale separation in this system since species A is

consumed much faster than the rate of consumption of species B or production of species C.
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If the reactor has volume, V , and the concentration of species i is denoted by Ci, the material

balances that govern the dynamical behavior of the batch reactor take the following form:

ĊA = −k1CA + k−1CB (2.16)

ĊB = k1CA − k−1CB − k2CB (2.17)

ĊC = k2CB (2.18)

CA(0) + CB(0) = constant (2.19)

CC(0) = 0 (2.20)

The initial concentration of species C is assumed to be zero, and Eq. (2.19) ensures that the final,

steady-state concentration of species C is constant for each initial condition chosen. Therefore,

only one species’ initial concentration can be arbitrarily chosen. Note that an explicit ϵ is not

necessary in the left-hand side of the fast ODE as seen in this example. Therefore, for this system,

standard singularly perturbed methods for analytically separating the slow and fast states would

not be adequate.

The rate constants in this system are chosen to be k1 = 5.0 h−1, k−1 = 1.0 h−1, k2 =

0.5 h−1. The constant in Eq. (2.19), which is the sum of initial concentrations of species A and

B, is 9.0molm−3. Ten initial conditions are chosen with CA(0) increasing from 0molm−3 to

9.0molm−3 in increments of 1.0molm−3, while CB(0) decreases to satisfy Eq. (2.19). Using

each of these initial conditions, the ODE system given by Eqs. (2.16) to (2.18) is numerically inte-

grated from 0.0 hr to 10.0 hr with a step size of 10−6 hr. The resulting data is sampled every 0.1 hr

and concatenated from the 10 runs into the X data matrix, which is used for NLPCA.

38



In NLPCA, a span of 0.25 is used, meaning 25% of the data points are used in the smooth-

ing step of each iteration when computing the principal curve. This value yielded the optimal

principal curve. The NN built to approximate this curve used a sigmoidal activation function for

the first hidden layer and the rectified linear unit (ReLU) for the second as this was sufficient to

accurately capture the curve. For both hidden layers, by testing 1 to 15 neurons using the sim-

plified cross-validation scheme, 13 neurons were found to be optimal. With these values of the

hyper-parameters, the learning rate did not significantly affect the results and 0.01 was used.

For sparse identification, the augmented library of functions consisted of the constant/bias

term (column of 1), polynomial terms up to fourth order, sin(X), cos(X), tan(X), tanh(X),

exp(X), and exp(−X). The exponential terms are added since the reaction terms in reactor mass

and energy balances often contain such terms. The optimal λ for the sparse identification algorithm

was found to be 0.5 for the NLPCA-SI and 0.05 for SI.

Figure 2.2 shows the results for this system. The reconstructed equations from the NLPCA-SI

and SI are not included due to their length. Instead, for brevity, only the reconstructed states are

plotted and compared. Both NLPCA-SI and SI reproduce the dynamics very accurately. As seen

earlier, the NLPCA-SI does not model the transient regime well.

The differences between NLPCA-SI and only SI becomes apparent when the value of the

sparsification knob, λ, in sparse identification and the sampling period in the data generation step,

∆, are investigated.

The sparsification knob, λ, is tuned through extensive simulations to achieve the desired bal-

ance between sparsity and approximation accuracy for nonlinear dynamic systems—a larger λ

leads to more sparse but less accurate dynamics. However, the range of values of λ that yielded
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Figure 2.2: Comparison of original data (solid lines) with results from NLPCA-SI (dashed lines)
and only sparse identification (dotted lines) for Example 1. Slow states: CB (blue lines), and CC

(orange lines). Fast state: CA (green lines).

the optimal results shown in Fig. 2.2 were not similar in the two cases. For the NLPCA-SI, any

value of λ below the optimal 0.5 produced identical trajectories for the slow states, CB and CC.

This was tested until λ = 10−6. However, for SI, the value of λ that produced the ideal curves for

all three states was only 0.05. Several values did not yield a proper solution, while most of them

resulted in significantly inferior performance than shown in Fig. 2.2. It could not be determined

that the optimal solution has been found without extensive testing of a large number of values for

λ, as there was no range of values that consistently produced optimal or near-optimal solutions.
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For the sampling period, ∆, as expected, reducing the sampling period generally yields sig-

nificantly more accurate sparse identified models due to the greater number of data points and

more accurate gradient calculations from more closely spaced data points. However, it might not

be practically feasible to sample data at such short intervals due to, for example, limitations of

the measurement device, such as for concentration. Furthermore, this can cause chattering behav-

ior and numerical instabilities in the gradient estimation for the fast states, especially if noise is

present. If the sampling period is not small enough, and the fast dynamics are extremely fast (ϵ in

Eq. 2 is extremely small), it is possible that the fast transient takes place in a time shorter than the

sampling period. In this case, the sparse identification algorithm cannot, in general, capture the fast

dynamics and may predict a wrong steady-state value entirely. Therefore, the sampling period, ∆,

is also carefully chosen based on extensive simulations in this work. Conversely, since NLPCA-SI

only uses the slow manifold to predict the fast states, it is affected by neither the sampling period

nor the ϵ. However, the key advantage of NLPCA-SI over SI, as seen clearly in this example, is

that NLPCA-SI predicts the fast state at least as accurately as SI (after the short transient) without

requiring any integration of stiff ODEs with extremely small time steps.

2.4.2 Example 2: Non-isothermal CSTR with jacket

A single, endothermic, irreversible reaction of the form,

A
k−−→ B (2.21)

takes place in a perfectly mixed non-isothermal CSTR as shown in Fig. 2.3.
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Figure 2.3: A continuous-stirred tank reactor with jacket.

In this process, CA is the concentration of reactant A in the reactor, Vr is the volume of the

reacting liquid in the reactor (assuming the vessel has constant holdup), and Tr is the temperature

of the reactor. The inlet stream contains pure species A at a volumetric flow rate F , concentration

CA0, and temperature TA0. A heating jacket of volume, Vj , heats the reactor. The heat transfer fluid

is added to the jacket at a volumetric flow rate Fj and an inlet temperature Tj0. The reacting liquid

has a constant density of ρm and a heat capacity of cp,m, while the heat transfer fluid has a constant

density of ρj and a heat capacity of cp,j . The enthalpy of the reaction is ∆Hr. The heat transfer

coefficient is U , and the area of heat transfer between the jacket and the reactor is Ar. The rate of
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the reaction in Eq. (2.21) is assumed to be of the form,

r = −k0 exp
(−E
RTr

)
CA (2.22)

where k0, R, and E represent the pre-exponential constant, ideal gas constant, and activation en-

ergy, respectively. Under these assumptions, a material balance for species A, a reactor energy

balance, and a jacket energy balance can be formulated, respectively, as:

VrĊA = Fr (CA0 − CA)− k0e
−E/RTrCAVr (2.23)

VrṪr = Fr (TA0 − Tr) +
(−∆Hr)

ρmcp,m
k0e

−E/RTrCAVr

+
UAr

ρmcp,m

(
Tj − Tr

)
(2.24)

VjṪj = FjTj0 − FjTj −
UAr

ρjcp,j

(
Tj − Tr

)
(2.25)

If ϵ is defined as the ratio of the jacket volume to the reactor volume (ϵ = Vj/Vr), Eq. (2.25) can

be rewritten explicitly in ϵ and Vr only without a Vj term as follows:

ϵṪj =
1

Vr

(
FjTj0 − FjTj −

UAr

ρjcp,j

(
Tj − Tr

))

However, the right-hand sides of the equations are also relevant in determining the slow-fast dy-

namics of a process. Hence, writing the system in terms of ϵ is not crucial in our approach and

can also be misleading. In this system both temperatures have fast dynamics in comparison to the

concentration, which has much slower dynamics. In standard singularly perturbed methods, only

Tj would be considered the fast state, while, in fact, Tr is also a fast state in this system.
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The parameter values used for this system are given in Table 2.1. Ten initial conditions are

chosen with CA(0) increasing from 0molm−3 to 9.0molm−3 in increments of 1.0molm−3, Tr(0)

increasing from 280K to 370K in increments of 10K, and Tj(0) increasing from 300K to 390K

in increments of 10K. Using each initial condition, the ODE system given by Eqs. (2.23) to (2.25)

is numerically integrated from 0.0 hr to 1.0 hr with a step size of 10−6 hr. The resulting data is

sampled every 0.005 hr and concatenated from the 10 runs into the data matrix, X . A time-series

plot of X and/or gradient of X shows that only CA is the slow state in this system, while both

temperatures are fast. The NLPCA is carried out accordingly with CA being the input to the NN

and Tr and Tj being the outputs of the NN.

Table 2.1: Parameter values for Example 2

Vr = 1.0m3 k0 = 3.36× 106 h−1

Vj = 0.08m3 E = 8.0× 103 kcal kg−1

Ar = 6.0m3 TA0 = 310.0K
U = 1000.0 kcal h−1m−2K−1 Tj0 = 357.5K
R = 1.987 kcal kmol−1K−1 ρm = 900.0 kgm−3

CA0 = 3.75 kmolm−3 ρj = 800.0 kgm−3

cp,m = 0.231 kcal kg−1K−1 Fr = 3.0m3 h−1

cp,j = 0.200 kcal kg−1K−1 Fj = 20.0m3 h−1

∆Hr = 5.4× 104 kcalmol−1

The optimal span for NLPCA is 0.2 i.e. 20% of the data points are used for the smoothing

step when calculating the principal curve. The activation function for the second hidden layer in

the NN required tanh in this example. For the first hidden layer, only 5 neurons are required, while

13 is optimal for the second hidden layer. With these values of the hyper-parameters, the learning

rate does not significantly affect the results and 0.01 is used.

For sparse identification, the augmented library of functions consisted of the constant term,
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polynomials up to third order, sin(X), cos(X), tan(X), and tanh(X). The exponential terms are

omitted in this example because, if they are included, while NLPCA-SI results improve, SI does

not yield a proper solution. The optimal λ for the sparse identification algorithm was found to

be 2.0 for the NLPCA-SI and 1.0 for SI. The sampling period in this example was chosen to be

0.005 hr because any value larger than this caused SI to not produce a proper solution.

Figure 2.4 shows the results for this system. The reconstructed equations are omitted for

brevity. The prediction of the slow state, CA, is similar across both methods. The differences in

Fig. 2.4(a) appear more significant due to the scale of the figure. The fast states, both the reactor

and jacket temperatures, are reconstructed very accurately in the post-transient regime using both

methods.

Table 2.2: Neural network hyperparameters used for NLPCA in example systems of Section 2.4

Neural Network Learning First Hidden Layer Second Hidden Layer

in example rate Neurons Activation Neurons Activation

1 0.01 13 Sigmoid 13 ReLU
2 0.01 5 Sigmoid 13 tanh

Remark 2.3. It is noted that the computational time needed to solve the original two-time-scale

ODEs and the reduced-order slow model obtained with the proposed NLPCA-SI approach depends

on the numerical integration method and time step of integration adopted. However, the lack of

stiffness of the reduced-order slow model allows the use of larger time-steps leading to a reduced

solution time for the calculation of the system solutions at the expense of missing the initial sharp

transient of the fast states of the two-time-scale ODE system. Therefore, a fair comparison cannot

be made when using different integration time steps for the different ODE systems identified, while
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the advantage of the NLPCA-SI method is nullified if an identical, very small integration time step

is used for both systems.

2.5 Conclusion

In this work, reduced-order models were developed for nonlinear two-time-scale systems us-

ing measurement data. Nonlinear principal component analysis, a technique to extract nonlinear

relationships between variables, was combined with sparse identification, an algorithm to recon-

struct the underlying ODEs governing the system, to build a nonlinear model that can be used to

predict the full state of the original system. The effectiveness of this method was demonstrated

using two reactor-based examples and comparing the results with the original system and a purely

sparse identified system. In both examples, the results were in close agreement with the original

system and also the purely sparse identified system. It was observed, however, that the accuracy

of the sparse identification method for the full state was strongly linked to the sampling period

at which the original data was sampled and also, in some cases, required a very specific degree

of sparsity in the algorithm. Furthermore, the sparse identified stiff ODEs required a very short

integration time step of 10−6, while the NN model in NLPCA-SI could predict the fast state (after

a short transient) to at least a similar degree of accuracy without any integration. In the future,

we will focus on the designs of controllers for nonlinear two-time-scale systems using data-based

reduced-order models. The predicted states using NLPCA-SI can be used as the process model in

model-based control methods such as MPC.
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Figure 2.4: Comparison of original data (solid lines) with results from NLPCA-SI (dashed lines)
and only sparse identification (dotted lines) for Example 2.
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Chapter 3

Sparse-identification-based predictive

control of nonlinear multiple time-scale

processes

3.1 Introduction

Chemical processes such as fluidized catalytic crackers, biochemical reactors and distillation

columns, often involve physico-chemical phenomena occurring in vastly-different time scales.

In chemical process modeling, time-scale separation has been handled via singular perturbation

techniques [e.g., 132] in the context of first-principles modeling with the goal of building well-

conditioned ordinary differential equation (ODE) models that can be used for process analysis

and controller design. More recently, in [48], a constraint was incorporated in the optimization

problem of fitting a polynomial nonlinear state-space model to nonlinear process data to avoid

identified model ill-conditioning (stiffness) in the construction of nonlinear ODE models. To con-
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trol a two-time-scale system, a composite control system using multi-rate sampling was proposed

in [133], where a “fast” feedback controller was designed to stabilize the fast dynamics subsystem,

and a model predictive controller (MPC) was developed to stabilize the slow dynamic and opti-

mize closed-loop performance. Additionally, in [134], a composite controller which consisted of a

Lyapunov-based MPC for the fast subsystem, and a Lyapunov-based Economic MPC for the slow

subsystem, was developed to operate the system in a time-varying fashion in order to improve pro-

cess economics while achieving desired closed-loop stability properties. In all the above efforts,

an explicit nonlinear process model, typically obtained from first-principles, was assumed to be

available.

Model predictive control (MPC) is an optimization-based process control scheme that can

optimize process performance and account for state and control input constraints. Since the MPC

optimization problem relies on a process model for predicting the future state evolution, the per-

formance of MPC relies heavily on its model quality. In recent years, machine learning techniques

have been applied to model chemical processes from data when first-principle models are unavail-

able. For example, in [3, 62], recurrent neural networks were used to build the data-driven model

for a general class of nonlinear processes, and were then incorporated in Lyapunov-based MPC to

ensure desired closed-loop stability and performance. In [135], reduced-order data-driven models

were developed for nonlinear two-time-scale systems using nonlinear principal component analy-

sis and sparse identification methods. The simultaneous design and control of nonlinear dynamical

systems via the use of robust tools based on Lyapunov theory has been investigated generally in

[136, 137] and also under uncertainty in the context of MPC in [138].

In the field of nonlinear dynamical modeling, the technique of sparse identification devel-
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oped in [77] has successfully been applied to a diverse array of nonlinear regression problems,

including chaotic systems and nonlinear partial differential equations. However, its application

to two-time-scale systems has only recently been investigated. In [98], the authors extended the

sparse identification procedure to the discovery of two-time-scale systems when full or even par-

tial measurements of the variables are available under the assumption of linear coupling across

the time-scales. In particular, when full state measurements were available, it was shown that,

although sparse identification could correctly identify uni-time-scale systems with as little data as

5% of a period, for two-time-scale systems, the data requirement increased linearly with the ra-

tio of slow to fast dynamics under naive uniform sampling. This was due to the fast trajectories

requiring a smaller sampling period. In fact, even in uni-time-scale systems, when the aforemen-

tioned 5% of data was sufficient to rebuild the system, the data had to be captured at the relatively

fast segments of the period at a very high sampling rate, as the information contained in the faster

regions was much more than the information captured in the slower regions of the period. An alter-

native to overcome the linear increase in data requirement with diverging time-scale-multiplicities

was proposed and devised in [98] known as burst sampling, which allowed sparse identification to

identify both the slow and fast subsystems with a significantly smaller fragment of the data over

one period. However, since the present work aims to utilize sparse identification for the purpose

of control, identifying the fast subsystem as a stiff differential equation via a more complicated

composite multirate sampling is not advantageous. Instead, sparse identification is only used to

identify the slow subsystem, which is incorporated into the controller. The application of sparse

identification in closed-loop control is an area that has not been investigated in-depth yet.

Inspired by these results, in this work, we use time-series data from the slow process vari-
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ables (subset of process state variables in some coordinate system) to construct well-conditioned

data-driven models for a general class of two-time-scale nonlinear processes, and evaluate their

performance in the context of MPC of two-time-scale processes. The rest of this article is orga-

nized as follows: in Section 3.2, the notations, and the class of nonlinear two-time-scale systems

considered are given. In Section 3.3, the sparse identification (SI) model for the slow subsystem

is introduced. In Section 3.4, the formulation of LMPC using SI models is presented, while the

closed-loop singularly perturbed system stability analysis showing the boundedness of closed-loop

states in a small neighborhood around the origin is given in Section 3.5. In Section 3.6, a chemical

reactor example which exhibits two-time-scale behavior is simulated to demonstrate the effective-

ness of the proposed modeling and control approaches.

3.2 Preliminaries

3.2.1 Notation

The notation |·| denotes the Euclidean norm of a vector. x⊤ is used to denote the transpose of

x. The notation LfV (x) denotes the standard Lie derivative LfV (x) := ∂V (x)
∂x

f(x). Set subtraction

is denoted by “\”, i.e., A\B := {x ∈ Rn | x ∈ A, x /∈ B}. The function f(·) is of class C1 if it

is continuously differentiable in its domain. A continuous function α : [0, a) → [0,∞) is said to

belong to class K if it is strictly increasing and is zero only when evaluated at zero. A continuous

function β : [0, a)× [0,∞)→ [0,∞) is said to belong to class KL if, for each fixed t, the function

β(·, t) is of class K, while, for each fixed s, the function β(s, ·) is decreasing and tends to zero as

s→∞.
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3.2.2 Class of systems

The general class of two-time-scale continuous-time nonlinear systems with m states consid-

ered in this work has the following general form:

ẋ = f1(x, z, u, ϵ) (3.1a)

ϵż = f2(x, z, ϵ) (3.1b)

where x ∈ Rn and z ∈ Rp are the slow and fast state vectors, respectively, with n+p = m. u ∈ Rq

is the manipulated input vector with constraints defined by u ∈ U := {umin
i ≤ ui ≤ umax

i , i =

1, ..., q} ⊂ Rq. ϵ is a small positive parameter representing the speed ratio of the slow to the fast

dynamics of the system. The vector functions f1(x, z, u, ϵ) and f2(x, z, ϵ) are sufficiently smooth

vector functions in Rn and Rp, respectively. In the system of Eq. (3.1), after a short transient

period, the fast states, z, converge to a slow manifold (provided such an isolated manifold exists)

and can be expressed by a nonlinear algebraic expression in x, the slow states. Therefore, following

the standard two-time scale decomposition procedure in [139], we can set ϵ = 0 in Eq. (3.1) and

obtain:

ẋ = f1(x, z, u, 0) (3.2a)

0 = f2(x, z, 0) (3.2b)

Remark 3.1. The class of singularly perturbed system of Eq. 3.1 are presented for analysis pur-

poses, and will not be used to derive models that will be used in the controllers. Furthermore,
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to simplify the development, we focus on two-time-scale processes with stable fast dynamic, and

for this reason, we take f2(x, z, ϵ) to be independent of u. However, our analysis can be readily

adapted to deal with systems in which f2(·) is a function of u.

Assumption 3.1. Equation (3.2b) possesses a unique root given by

zs = f̂2(x) (3.3)

where zs is a quasi-steady state for the fast state z, and f̂2 : Rn → Rp and its derivative are locally

Lipschitz continuous.

Assumption 3.1 is standard in the singular perturbation framework as it ensures that the sys-

tem has an isolated equilibrium manifold for the fast dynamics on which z can be written as an

algebraic function of x. Substituting Eq. (3.3) into Eq. (3.2a) gives the reduced slow subsystem,

ẋ = f1(x, f̂2(x), u, 0) (3.4)

For the fast state, we define a fast time scale τ = t/ϵ and a new coordinate y := z − f̂2(x).

Rewriting Eq. (3.1b) as a derivative with respect to τ rather than t and setting ϵ = 0 yields the fast

subsystem,

dy

dτ
= f2(x, f̂2(x) + y, 0) (3.5)

We assume the input appears linearly in Eq. (3.4) and, therefore, rewrite the slow subsystem of
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Eq. (3.4) in the following form throughout the manuscript:

ẋ = F (x, u) := f(x) + g(x)u, x(t0) = x0 (3.6)

where f(·) and g(·) are sufficiently smooth vector and matrix functions of dimensions n × 1 and

n × q, respectively. Without loss of generality, throughout the manuscript, the initial time t0 is

taken to be zero (t0 = 0), and it is assumed that f(0) = 0, and thus, the origin is a steady-state of

the nonlinear system of Eq. (3.6), i.e., (x∗
s, u

∗
s) = (0, 0), where x∗

s and u∗
s represent the steady-state

slow state and input vectors, respectively.

Assumption 3.2. The origin of the closed-loop fast subsystem of Eq. (3.5) is globally asymptoti-

cally stable, uniformly in x in the sense that there exists a function βy of class KL such that for

any y(0) ∈ Rp,

|y(t)| ≤ βy

(
|y(0)|, t

ϵ

)
∀ t ≥ 0 (3.7)

3.2.3 Stabilizability assumption via control Lyapunov function

With respect to the stabilizability requirement for the slow dynamics, it is assumed that there

exists a stabilizing control law u = Φ(x) ∈ U (e.g., the universal Sontag control law [140]) such

that the origin of the nominal slow subsystem of Eq. (3.6) is rendered asymptotically stable in

an open neighborhood D around the origin in the sense that there exist a C1 control Lyapunov

function, V (x), and four functions, a1, a2, a3, a4 of class K such that ∀x ∈ Rn:

a1(|x|) ≤ V (x) ≤ a2(|x|), (3.8a)
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V̇ (x) =
∂V (x)

∂x
F (x,Φ(x)) ≤ −a3(|x|), (3.8b)∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ a4(|x|) (3.8c)

The Sontag law, a candidate controller for Φ(x), is given in the following form:

φi(x) =


−p+

√
p2 + q4

q⊤q
q if q ̸= 0

0 if q = 0

(3.9a)

Φi(x) =


umin
i if φi(x) < umin

i

φi(x) if umin
i ≤ φi(x) ≤ umax

i

umax
i if φi(x) > umax

i

(3.9b)

where p denotes LfV (x) and q denotes LgiV (x), f = [f1 · · · fn]⊤, gi = [g1i, ..., gni]
⊤, i =

1, 2, ..., q. φi(x) of Eq. (3.9a) represents the ith component of the control law φ(x). Φi(x) of

Eq. (3.9) represents the ith component of the saturated control law Φ(x) that accounts for the input

constraint u ∈ U .

First, a region where the conditions of Eq. (3.8) are satisfied under the controller u = Φ(x) ∈

U as ϕu = {x ∈ Rn | V̇ (x) = LfV + LgV u < −kV (x), u = Φ(x) ∈ U} ∪ {0}, where k > 0,

is characterized. Then the closed-loop stability region Ωρ for the nonlinear slow subsystem of

Eq. (3.6) is defined as a level set of the Lyapunov function, which is inside ϕu: Ωρ := {x ∈

ϕu | V (x) ≤ ρ}, where ρ > 0 and Ωρ ⊂ ϕu. Furthermore, the Lipschitz property of F (x, u)

combined with the bound on u implies that there exist positive constants M,L,L′ such that the
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following inequalities hold ∀x, x′ ∈ D, ∀u ∈ U :

|F (x, u)| ≤M (3.10a)

|F (x, u)− F (x′, u)| ≤ L|x− x′| (3.10b)∣∣∣∣∂V (x)

∂x
F (x, u)− ∂V (x′)

∂x
F (x′, u)

∣∣∣∣ ≤ L′|x− x′| (3.10c)

3.3 Sparse identification model for the slow subsystem

3.3.1 Sparse identification

Sparse identification is a nonlinear system identification method used to model dynamical

systems. The application of sparsity methods to dynamic system modeling can be found in the

recent literature [71–76, 129, 130]. Sparse identification is used to approximately reconstruct a

continuous-time ODE of the form,

˙̂x = f̂(x̂) (3.11)

using only numerical data from the system without requiring knowledge of the underlying physics

of the process.

Sparse identification exploits the sparsity of the right-hand side of Eq. (3.11) since f̂(x̂) con-

tains very few nonzero terms in practical systems, rendering it sparse in a higher-dimensional space

of candidate nonlinear functions. The nonzero terms can then be calculated using scalable convex

methods. To carry out sparse identification, the open-loop process is simulated over a wide range

of initial conditions. From the resulting data, the slow state measurements are sampled with a
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sufficiently small sampling period and concatenated into a data matrix, X , of the form,

X =

[
x1 x2 · · · xn

]
(3.12)

where each xi is a column of time-series data for state i for i = 1, . . . , n. The time-derivative of

X , denoted by Ẋ , is estimated in this work using second-order central finite differences since the

noise-free case is considered and since the sampling period is sufficiently small. Subsequently, a

function library, Θ(X), is created consisting of r nonlinear functions of the columns of X . The r

functions represent possible terms for f , the right-hand side of Eq. (3.6). The goal of the sparse

identification algorithm is to identify the active terms in this library by taking advantage of sparsity.

The augmented library, Θ(X), considered in this work is of the form,

Θ(X) =

 1 X XP2 XP3 sinX cosX tanX tanhX

 (3.13)

where, for example, XP2 denotes all quadratic nonlinearities, given by

XP2 =

[
x2
1 x1x2 · · · x2

2 x2x3 · · · x2
n

]
(3.14)

The above choice of candidate nonlinear functions was motivated by the fact that polynomials and

trigonometric functions form a basis for many practical systems as mentioned in [77].

Remark 3.2. As this is a novel method, only the noise-free case is considered in this work. How-

ever, if the method is applied to noisy data, the time-derivative Ẋ cannot be computed using regular
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finite difference methods as such methods will amplify the noise present and not yield meaningful

values. Instead, the derivative approximation will require the application of more advanced tech-

niques such as the total-variation regularized derivative [141] or smoothed finite difference, where

the noisy data is first smoothed out using a filter (such as the Savitzky–Golay filter) before calcu-

lating the finite differences [142].

In sparse identification, for each of the n slow states, we determine the r coefficients that pre-

multiply the r candidate nonlinear functions considered in the function library, Θ(X). Denoting

each corresponding coefficient vector by ξ, the n coefficient vectors can be compactly written in

matrix form as

Ξ =

[
ξ1 ξ2 · · · ξn

]
(3.15)

where each ξi ∈ Rr is a sparse column vector of coefficients identifying the nonzero terms in the

dynamic model of the corresponding slow state, ẋi = fi(x). Therefore, to determine Ξ, we need

to solve the following equation:

Ẋ = Θ(X)Ξ (3.16)

In brief, Eq. (3.16) can be solved using a straightforward least-squares routine after neglecting

and zeroing all coefficients in Ξ that are smaller than a threshold, λ. The least-squares problem

associated with Eq. (3.16) can most generally be formulated as follows:

Ξ = argmin
Ξ′

∥∥∥Ẋ −Θ(X)Ξ′
∥∥∥
2
+ λ
∥∥Ξ′∥∥

1
(3.17)

where Ξ′ is a notational substitute for Ξ, and the second term enforces sparsity of Ξ. Practically,
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we first define the matrix Ξ′′ to be the matrix Ξ′ with all coefficients with magnitudes below λ

set to zero, which is the practical implementation of the L1 regularization term in Eq. (3.17).

Subsequently, we solve the following least-squares problem

Ξ = argmin
Ξ′′

∥∥∥Ẋ −Θ(X)Ξ′′
∥∥∥
2

(3.18)

in each iteration using MATLAB’s built-in linear solver called with A\b where A = Ẋ and b =

Θ(X) until the big/nonzero coefficients (larger than λ in each iteration) converge.

To find the Pareto optimal value of the parameter λ that balances model complexity with

accuracy, methods such as cross-validation from machine learning may be utilized [77]. In this

work, a broad sweep of λ is first used to identify the order of magnitude above which the model

has too few nonzero terms to capture the dynamics, resulting in large error values. Subsequently,

a narrower sweep in the relevant order of magnitude is used to refine this value of λ. Further

refinement was not found to be necessary as a wide range of values from the first refinement yielded

identical and optimal models. Once Ξ is found, the overall model is written as the continuous-time

differential equation,

ẋ = Ξ⊤(Θ(x⊤))⊤

where Θ(x⊤) is not a data matrix but a column vector of symbolic functions of elements of x

corresponding to the functions considered in the function library. It is noted that the sampling

period of the discrete-time data used to carry out sparse identification affects the accuracy of the

finite-difference estimate of the time-derivative, which significantly affects the accuracy of the

continuous-time model identified by sparse identification.
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3.3.2 Identifying a model for the slow subsystem

In this work, sparse identification (SI) is used to reconstruct the slow dynamic model for the

slow states. The following slow dynamic model is developed to approximate the slow subsystem

of Eq. (3.5).

˙̂x = Fsi(x̂, u) := f̂(x̂) + ĝ(x̂)u, x̂(t0) = x0 (3.19)

where f̂(·) and ĝ(·) are sufficiently smooth vector and matrix functions of dimensions n × 1 and

n × q that approximately capture the functions f(·) and g(·), respectively. Specifically, we first

construct the following slow dynamic model using the data set generated with various initial states

and u = 0 (i.e., steady-state input value):

˙̂x = f̂(x̂) (3.11)

Subsequently, we use the data set generated with various inputs u ∈ U and initial states to ap-

proximate the function g(x) associated with the input u in the right-hand side of Eq. (3.6) as

ĝ(x̂) =
˙̂x−f̂(x̂)

u
where u ̸= 0. Finally, the model performance is evaluated using unseen data in

the testing data set, and is shown to achieve a good representation of f̂(·) and ĝ(·) with a desired

accuracy.

Remark 3.3. An alternative method to find ĝ(·) is to use a more advanced sparse identification

algorithm that expands the function library Θ(X) to include input terms (i.e., Θ(X, u)) [143].

However, due to the presence of feedback control in this work, this method would require further

development before implementation, and the method described above was considered sufficiently
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accurate.

3.4 Lyapunov-based MPC using SI Models

This section proposes the design of a Lyapunov-based MPC (LMPC) that incorporates the

SI model to predict future slow states, followed by a stability analysis of the closed-loop sys-

tem of Eq. (3.6) in the succeeding section. Specifically, the stability of the nonlinear system of

Eq. (3.6) under a Lyapunov-based controller associated with the SI model of Eq. (3.19) is first

analyzed. Subsequently, the SI model of Eq. (3.19) is incorporated into the design of the LMPC

under sample-and-hold implementation of the control action to drive the state of the closed-loop

system to a small neighborhood around the origin.

3.4.1 Lyapunov-based control using SI models

For the slow dynamics, it is assumed that there exists a stabilizing control law u = Φsi(x) ∈ U

such that the origin of the SI slow subsystem of Eq. (3.19) is rendered asymptotically stable in an

open neighborhood ϕ̂u around the origin in the sense that there exist a C1 control Lyapunov function

V̂ (x) and four functions, â1, â2, â3, â4 of class K such that ∀x ∈ Rn:

â1(|x|) ≤ V̂ (x) ≤ â2(|x|), (3.20a)

˙̂
V (x) =

∂V̂ (x)

∂x
Fsi(x,Φsi(x)) ≤ −â3(|x|), (3.20b)∣∣∣∣∣∂V̂ (x)

∂x

∣∣∣∣∣ ≤ â4(|x|) (3.20c)
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We first characterize the region ϕ̂u ⊂ Rn in which the conditions of Eq. (3.20) are satisfied under

the controller u = Φsi(x) ∈ U . Therefore, starting from inside ϕ̂u, the sparse identified slow

subsystem of Eq. (3.19) can be rendered asymptotically stable under the controller u = Φsi(x) ∈

U . The closed-loop stability region of the sparse identified slow subsystem of Eq. (3.19) is defined

as a level set of the Lyapunov function inside ϕ̂u: Ωρ̂ := {x ∈ ϕ̂u | V̂ (x) ≤ ρ̂}, ρ̂ > 0. The

assumptions of Eq. (3.8) and Eq. (3.20) are essentially the stabilizability requirements of the first-

principles slow model of Eq. (3.6) and the sparse identified slow model of Eq. (3.19), respectively.

Since the dataset for developing the sparse identified slow model of Eq. (3.6) is obtained from

open-loop simulations for x ∈ Ωρ and u ∈ U , we have Ωρ̂ ⊆ Ωρ. Additionally, there exist positive

constants Msi and Lsi such that the following inequalities hold for all x, x′ ∈ Ωρ̂ and u ∈ U :

|Fsi(x, u)| ≤Msi (3.21a)∣∣∣∣∣∂V̂ (x)

∂x
Fsi(x, u)−

∂V̂ (x′)

∂x
Fsi(x

′, u)

∣∣∣∣∣ ≤ Lsi|x− x′| (3.21b)

The following proposition demonstrates that the feedback controller u = Φsi(x) ∈ U is able to

stabilize the nominal slow subsystem of Eq. (3.6) in the presence of model mismatch between the

nominal subsystem of Eq. (3.6) and the sparse identified slow model of Eq. (3.19), provided that

the modeling error is sufficiently small.

Proposition 3.1. (c.f. proposition 2 in [3]) Under the assumption that the closed-loop sparse

identified slow subsystem of Eq. (3.19) is rendered asymptotically stable under the controller u =

Φsi(x) ∈ U ∀x ∈ Ωρ̂, if there exists a positive real number νm < â3(|x|)/â4(|x|) that constrains

the modeling error |ν| = |F (x, u) − Fsi(x, u)| ≤ νm, ∀u ∈ U and ∀x ∈ Ωρ̂, then the nominal
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closed-loop system of Eq. (3.6) under u = Φsi(x) ∈ U is also asymptotically stable ∀x ∈ Ωρ̂.

Proof. To prove that the nominal slow subsystem of Eq. (3.6) can be rendered asymptotically

stable ∀x ∈ Ωρ̂ under the controller based on the sparse identified model of Eq. (3.19), we show

that ˙̂
V based on the state of the nominal slow subsystem of Eq. (3.6) can still be rendered negative

under u = Φsi(x) ∈ U , ∀ x ∈ Ωρ̂. Based on Eq. (3.20b) and Eq. (3.20c), the time-derivative of V̂

is computed as follows:

˙̂
V =

∂V̂ (x)

∂x
F (x,Φsi(x))

=
∂V̂ (x)

∂x

(
Fsi(x,Φsi(x)) + F (x,Φsi(x))− Fsi(x,Φsi(x))

)
≤ −â3(|x|) + â4(|x|)

(
F (x,Φsi(x))− Fsi(x,Φsi(x))

)
≤ −â3(|x|) + â4(|x|)νm

(3.22)

If νm is chosen to satisfy νm < â3(|x|)/â4(|x|), then it holds that ˙̂
V ≤ −ã3(|x|) ≤ 0 where

ã3(|x|) = −â3(|x|) + â4(|x|)νm > 0. This is possible because â3 and â4 are known functions. For

example, if we choose â3 = a3|x| and â4 = a4|x|, then νm = a3/a4. As a result, the closed-loop

state of the nominal slow subsystem of Eq. (3.6) converges to the origin under u = Φsi(x) ∈ U for

all x0 ∈ Ωρ̂.

After incorporating the SI model of Eq. (3.19) in the LMPC design, the control actions of

the LMPC will be implemented in a sample-and-hold fashion. Hence, the next two propositions

demonstrate the sample-and-hold properties of the Lyapunov-based controller u = Φsi(x). In

particular, the following proposition derives an upper bound for the error between the slow states

calculated by the nominal slow subsystem of Eq. (3.6) and the slow states predicted by the SI
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model of Eq. (3.19).

Proposition 3.2. (c.f. proposition 3 in [3]) For the nonlinear system ẋ = F (x, u) of Eq. (3.6)

and the SI model ˙̂x = Fsi(x̂, u) of Eq. (3.19) with the same initial condition x0 = x̂0 ∈ Ωρ̂, there

exist a class K function fw(·) and a positive constant κ such that the following inequalities hold

∀x, x̂ ∈ Ωρ̂:

|x(t)− x̂(t)| ≤ fw(t) :=
νm
L

(eLt − 1) (3.23a)

V̂ (x) ≤ V̂ (x̂) + â4
(
â−1
1 (ρ̂)

)
|x− x̂|+ κ|x− x̂|2 (3.23b)

Proof. Denoting the error vector between the solutions of the system ẋ = F (x, u) and the SI

model ˙̂x = Fsi(x̂, u) by e(t) = x(t)− x̂(t), the time-derivative of e(t) is obtained as follows:

|ė(t)| = |F (x, u)− Fsi(x̂, u)|

≤ |F (x, u)− F (x̂, u)|+ |F (x̂, u)− Fsi(x̂, u)|
(3.24)

From Eq. (3.10b), ∀x, x̂ ∈ Ωρ̂, it is derived that

|F (x, u)− F (x̂, u)| ≤ L|x(t)− x̂(t)| (3.25)

Since the second term |F (x̂, u)−Fsi(x̂, u)| in Eq. (3.24) represents the modeling error, it is bounded

by |ν| ≤ νm for all x̂ ∈ Ωρ̂. Hence, based on Eq. (3.25) and the bound on the modeling error, ė(t)

is bounded as follows:
|ė(t)| ≤ L|x(t)− x̂(t)|+ νm

≤ L|e(t)|+ νm

(3.26)

Based on the zero initial condition (i.e., e(0) = 0), the norm of the error vector can be bounded as
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follows ∀x(t), x̂(t) ∈ Ωρ̂:

|e(t)| = |x(t)− x̂(t)| ≤ νm
L

(eLt − 1) (3.27)

Subsequently, to derive Eq. (3.23b) for all x, x̂ ∈ Ωρ̂, we derive the Taylor series expansion of

V̂ (x) around x̂ as follows:

V̂ (x) ≤ V̂ (x̂) +
∂V̂ (x̂)

∂x
|x− x̂|+ κ|x− x̂|2 (3.28)

where κ is a positive real number. Using Eq. (3.20a) and Eq. (3.20c), it follows that

V̂ (x) ≤ V̂ (x̂) + â4
(
â−1
1 (ρ̂)

)
|x− x̂|+ κ|x− x̂|2 (3.29)

This completes the proof of Proposition 3.2.

The final proposition below proves that the closed-loop state of the nominal slow subsystem

of Eq. (3.6) remains bounded in Ωρ̂ for all times, and can be ultimately bounded in a small subset

Ωρmin
containing the origin under the sample-and-hold implementation of the Lyapunov-based

controller u = Φsi(x) ∈ U .

Proposition 3.3. Consider the nominal slow subsystem of Eq. (3.6) under the controller u =

Φsi(x̂) ∈ U that is designed to stabilize the SI system of Eq. (3.19) and meets the conditions of

Eq. (3.20). The controller is implemented in a sample-and-hold fashion, i.e., u(t) = Φsi(x̂(tk)),
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∀ t ∈ [tk, tk+1), where tk+1 := tk +∆. Let ϵs, ϵw > 0, ∆ > 0 and ρ̂ > ρmin > ρsi > ρs satisfy

− â3
(
â−1
2 (ρs)

)
+ LsiMsi∆ ≤ −ϵs (3.30a)

− ã3
(
â−1
2 (ρs)

)
+ L′M∆ ≤ −ϵw (3.30b)

and

ρsi := max{V̂ (x̂(t+∆)) | x̂(t) ∈ Ωρs , u ∈ U} (3.31a)

ρmin ≥ ρsi + â4
(
â−1
1 (ρ̂)

)
fw(∆) + κ(fw(∆))2 (3.31b)

Then, for any x(tk) ∈ Ωρ̂\Ωρs , there exists a class KL function βx and a class K function γ̄ such

that the following inequality holds:

|x(t)| ≤ βx(|x(0)|, t) + γ̄(ρmin) (3.32)

and the slow states x(t) of the nominal subsystem of Eq. (3.6) is bounded in Ωρ̂ for all times and

ultimately bounded in Ωρmin
.

Proof. Part 1: Assuming x(tk) = x̂(tk) ∈ Ωρ̂\Ωρs , we first show that V̂ (x̂) is decreasing under

the controller u(t) = Φsi(x(tk)) ∈ U for t ∈ [tk, tk+1), where x(t) and x̂(t) denote the solutions

of the nominal slow subsystem of Eq. (3.6) and the SI subsystem of Eq. (3.19), respectively. The

time-derivative of V̂ (x̂) along the trajectory x̂(t) of the SI model of Eq. (3.19) for t ∈ [tk, tk+1) is

computed as follows:
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˙̂
V (x̂(t)) =

∂V̂ (x̂(t))

∂x̂
Fsi(x̂(t),Φsi(x̂(tk)))

=
∂V̂ (x̂(tk))

∂x̂
Fsi(x̂(tk),Φsi(x̂(tk))) +

∂V̂ (x̂(t))

∂x̂
Fsi(x̂(t),Φsi(x̂(tk)))

− ∂V̂ (x̂(tk))

∂x̂
Fsi(x̂(tk),Φsi(x̂(tk)))

(3.33)

Combining Eq. (3.20a) and Eq. (3.20b), the following inequality is derived:

˙̂
V (x̂(t)) ≤− â3

(
â−1
2 (ρs)

)
+

∂V̂ (x̂(t))

∂x̂
Fsi(x̂(t),Φsi(x̂(tk)))

− ∂V̂ (x̂(tk))

∂x̂
Fsi(x̂(tk),Φsi(x̂(tk)))

(3.34)

Using the Lipschitz condition of Eq. (3.21) and the fact that x̂ ∈ Ωρ̂, u ∈ U , the upper bound of

˙̂
V (x̂(t)) is obtained ∀ t ∈ [tk, tk+1):

˙̂
V (x̂(t)) ≤− â3

(
â−1
2 (ρs)

)
+ Lsi|x̂(t)− x̂(tk)|

≤ − â3
(
â−1
2 (ρs)

)
+ LsiMsi∆

(3.35)

Hence, if Eq. (3.30a) is satisfied, the following inequality holds ∀ x̂(tk) ∈ Ωρ̂\Ωρs , ∀ t ∈ [tk, tk+1):

˙̂
V (x̂(t)) ≤ −ϵs (3.36)

Integrating the above differential equation with respect to time over t ∈ [tk, tk+1), it is derived

that V (x̂(tk+1)) ≤ V (x̂(tk)) − ϵs∆. We have shown thus far that for all x̂(tk) ∈ Ωρ̂\Ωρs , the

closed-loop state of the SI slow subsystem of Eq. (3.19) is bounded inside the closed-loop stability

region Ωρ̂ for all times and moves towards the origin under the controller u = Φsi(x̂) ∈ U when

implemented in a sample-and-hold fashion.

We note, however, that Eq. (3.36) may fail to hold when x(tk) = x̂(tk) ∈ Ωρs , which would

imply that the state may exit Ωρs within one sampling period. Hence, we design another region
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Ωρsi according to Eq. (3.31a), which ensures that the closed-loop state x̂(t) of the SI model does

not leave Ωρsi for all t ∈ [tk, tk+1), u ∈ U and x̂(tk) ∈ Ωρs within one sampling period. If

the state x̂(tk+1) leaves Ωρs , Eq. (3.36) is satisfied again at t = tk+1, reactivating the controller

u = Φsi(x(tk+1)) and driving the state towards Ωρs over the next sampling period. As a result,

it is shown that the state converges to Ωρsi for the closed-loop SI subsystem of Eq. (3.19) for all

x̂0 ∈ Ωρ̂. In Part 2, we show that the closed-loop state of the nominal slow subsystem of Eq. (3.6)

can also be bounded in Ωρ̂ for all times and ultimately bounded in a small neighborhood around

the origin under the sample-and-hold implementation of the controller u = Φsi(x) ∈ U .

Part 2: Repeating the analysis performed for the SI subsystem of Eq. (3.19), we first assume

x(tk) = x̂(tk) ∈ Ωρ̂\Ωρs and compute the time-derivative of V̂ (x) for the nominal slow subsystem

of Eq. (3.6) (i.e., ẋ = F (x, u)) as follows:

˙̂
V (x(t)) =

∂V̂ (x(t))

∂x
F (x(t),Φsi(x(tk)))

=
∂V̂ (x(tk))

∂x
F (x(tk),Φsi(x(tk))) +

∂V̂ (x(t))

∂x
F (x(t),Φsi(x(tk)))

− ∂V̂ (x(tk))

∂x
F (x(tk),Φsi(x(tk)))

(3.37)

From Eq. (3.22), ∂V̂ (x(tk))
∂x

F (x(tk),Φsi(x(tk))) ≤ −ã3
(
x(tk)

)
holds for all x ∈ Ωρ̂\Ωρs where

ã3(·) was defined at the end of Proposition 3.1. Using Eq. (3.8a) and the Lipschitz definition in

Eq. (3.10), the following inequality is obtained for ˙̂
V (x(t)), ∀ t ∈ [tk, tk+1) and ∀x(tk) ∈ Ωρ̂\Ωρs:
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˙̂
V (x(t)) ≤− ã3

(
â−1
2 (ρs)

)
+

∂V̂ (x(t))

∂x
F (x(t),Φsi(x(tk)))−

∂V̂ (x(tk))

∂x
F (x(tk),Φsi(x(tk)))

≤− ã3
(
â−1
2 (ρs)

)
+ L

′ |x(t)− x(tk)|

≤ − ã3
(
â−1
2 (ρs)

)
+ L

′
M∆

(3.38)

Consequently, if Eq. (3.30b) is satisfied, the following inequality holds ∀x(tk) ∈ Ωρ̂\Ωρs , ∀ t ∈

[tk, tk+1):

˙̂
V (x(t)) ≤− ϵw (3.39)

Integrating the above differential equation with respect to time between any two points in [tk, tk+1),

it is derived for all x(tk) ∈ Ωρ̂\Ωρs:

V̂ (x(tk+1)) ≤ V (x(tk))− ϵw∆ (3.40)

V̂ (x(t)) ≤ V̂ (x(tk)),∀ t ∈ [tk, tk+1) (3.41)

Therefore, the state of the closed-loop system of Eq. (3.6) remains in Ωρ̂ for all times. Furthermore,

it follows that the controller u = Φsi(x) is still able to drive the state of the nominal slow subsystem

of Eq. (3.6) towards the origin within every sampling period. Moreover, if x(tk) ∈ Ωρs , it was

already shown in Part 1 that the state of the SI model of Eq. (3.19) is maintained in Ωρsi for one

sampling period. Considering the bounded modeling error between the state of the SI model of

Eq. (3.19) and the state of the nominal slow subsystem of Eq. (3.6) given by Eq. (3.30a), there

exists a compact set Ωρmin
⊃ Ωρsi that satisfies Eq. (3.31b) such that the state of the nominal slow

subsystem of Eq. (3.6) remains within Ωρmin
during one sampling period if the state of the SI model
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of Eq. (3.19) is bounded in Ωρsi . If the state x(t) enters Ωρmin
\Ωρs , we have shown that Eq. (3.41)

holds, and thus, the state will be driven towards the origin again under u = Φsi(x) during the next

sampling period, ultimately bounding the closed-loop slow subsystem in Ωρmin
. Therefore, based

on the continuity of the Lyapunov function V̂ , there exist a class KL function βx and a class K

function γ̄ such that if x0 ∈ Ωρ̂, then x(t) ∈ Ωρ̂, ∀ t ≥ t0 and

|x(t)| ≤ βx(|x(0)|, t) + γ̄(ρmin) (3.42)

3.4.2 Lyapunov-based MPC (LMPC) formulation

The LMPC is based on the Lyapunov-based controller Φsi(x). The controller Φsi(x) is used

to define a stability constraint for the LMPC controller. This ensures that the LMPC controller in-

herits the stability and robustness properties of the Lyapunov-based controller Φsi(x). The LMPC

controller is given by the following optimization problem:

J = min
u∈S(∆)

∫ tk+N

tk

L(x̃(t), u(t)) dt (3.43a)

s.t. ˙̃x(t) = Fsi(x̃(t), u(t)) (3.43b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (3.43c)

x̃(tk) = x(tk) (3.43d)

˙̂
V (x(tk), u) ≤ ˙̂

V (x(tk),Φsi(x(tk)), if x(tk) ∈ Ωρ̂\Ωρsi (3.43e)

V̂ (x̃(t)) ≤ ρsi, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρsi (3.43f)
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where x̃ denotes the predicted trajectory of the slow states, S(∆) is the set of piece-wise constant

functions with period ∆, and N is the number of sampling periods within the prediction horizon.

˙̂
V (x, u) denotes ∂V̂ (x)

∂x
(Fsi(x, u)). Let u = u∗(t), t ∈ [tk, tk+N) denote the optimal input trajectory

calculated by the LMPC over the entire prediction horizon. It is noted that only the first control

action of the computed sequence, u∗(tk), which corresponds to the first sampling period of the

prediction horizon, is applied over the first sampling period, and the LMPC is resolved at the next

sampling time.

In the optimization problem of Eq. (3.43), the objective function of Eq. (3.43a) is equal to

the integral of L(x̃(t), u(t)) over the entire prediction horizon. The constraint of Eq. (3.43b) is

the approximate slow model of Eq. (3.19) that is used to predict the slow states of the closed-loop

slow subsystem. Eq. (3.43c) specifies the input constraints to be applied over the entire prediction

horizon. Eq. (3.43d) defines the initial condition x̃(tk) of Eq. (3.43b), which is the slow state

measurement at t = tk. The first Lyapunov constraint of Eq. (3.43e) guarantees that the closed-

loop state moves towards the origin if x(tk) ∈ Ωρ̂\Ωρsi . However, if x(tk) enters Ωρsi , the states

predicted by the approximate slow model of Eq. (3.43b) will be maintained in Ωρsi over the entire

prediction horizon.

3.5 Closed-loop stability analysis

The closed-loop stability of the singularly perturbed system of Eq. (3.1) under the LMPC of

Eq. (3.43) is established in the following theorem under appropriate conditions.

Theorem 3.1. Consider the system of Eq. (3.1) in closed-loop with u∗ computed by the LMPC of
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Eq. (3.43) based on the Lyapunov-based controller Φsi(x) that satisfies the conditions of Eq. (3.20).

Let Assumptions 3.1 and 3.2 and the conditions of Propositions 3.1–3.3 hold. Then there exist

functions βx, βy of class KL, a pair of positive real numbers (δ, d) and ∃ ϵ∗ > 0 such that if

max{|x(0)|, |y(0)|} ≤ δ and ϵ ∈ (0, ϵ∗], then ∀ t ≥ 0,

|x(t)| ≤ βx(|x(0)|, t) + γ̄(ρmin) + d (3.44)

|y(t)| ≤ βy

(
|y(0)|, t

ϵ

)
+ d (3.45)

Proof. The closed-loop system takes the following form after substituting the optimal control ac-

tion u∗ into Eq. (3.1).

ẋ = f1(x, z, u
∗, ϵ) (3.46a)

ϵż = f2(x, z, ϵ) (3.46b)

By setting ϵ = 0, we have

ẋ = f1(x, z, u
∗, 0) (3.47a)

0 = f2(x, z, 0) (3.47b)

Since Eq. (3.47b) has a unique, isolated solution zs = f̂2(x), following Eq. (3.4), Eq. (3.47) can be

written in the following form:

ẋ = f1(x, f̂2(x), u
∗, 0) (3.48)

When x(tk) ∈ Ωρ̂\Ωρsi , the constraint of Eq. (3.43e) requires that the Lyapunov function value de-
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crease at least at the rate under u = Φsi(x). As a result, the time-derivative of Lyapunov function V̇

under u = u∗ is rendered negative. Based on the results in Proposition 3, the state of the slow sub-

system of Eq. (3.46a) will approach the origin and enter Ωρsi within finite sampling steps provided

that the modeling error is sufficiently small. After x(tk) enters Ωρsi , the constraint of Eq. (3.43f)

maintains the predicted state within Ωρsi afterwards. Since the modeling error and sampling pe-

riod are sufficiently small, we have shown in Proposition 3 that the true state of Eq. (3.46a) can

be bounded in Ωρmin
, which is a slightly larger set containing Ωρsi . Therefore, for any initial state

x0 ∈ Ωρ̂, LMPC ensures that the state x(t) of the closed-loop slow subsystem of Eq. (3.46a) is

bounded in Ωρ̂ for all times, and satisfies the bound of Eq. (3.32) in Proposition 3.

Subsequently, by letting τ = t
ϵ
, y = z − f̂2(x) and ϵ = 0, we obtain the closed-loop fast

subsystem:

dy

dτ
= f2(x, f̂2(x) + y, 0) (3.49)

Note that the origin of the closed-loop system of Eq. (3.49) is assumed to be globally asymptoti-

cally stable such that Eq. (3.7) holds for any y(0) ∈ Rp in Assumption 2. Therefore, the closed-

loop system of Eq. (3.46) satisfies all the assumptions for Theorem 1 in [144], which implies that

there exist class KL functions βx(·) and βy(·), positive real numbers (δ, d), and ϵ∗ > 0 such that

if max{|x(0)|, |y(0)|} ≤ δ and ϵ ∈ (0, ϵ∗], then, the slow and fast system states are bounded by

Eqs. (3.44) and (3.45).
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3.6 Application to a chemical process example

3.6.1 Process description

We demonstrate the application of the LMPC of Eq. (3.43) based on the sparse-identified

slow subsystem using a chemical process example. We consider a perfectly-mixed, non-isothermal

CSTR as shown in Fig. 3.1.

Fr, CA0, TA0

Fr, CA, CB, Tr

Fj , Tj0

Fj , Tj

A
k−−→ B

Figure 3.1: A continuous-stirred tank reactor with jacket.

A single, endothermic, irreversible reaction of the form,

A
k−−→ B (3.50)
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occurs in the CSTR. The concentration of reactant A in the reactor is denoted by CA. Assuming

the vessel has a constant holdup, the volume of the liquid in the reactor is represented by Vr. The

temperature of the reactor contents is denoted by Tr. The feed to the reactor contains pure species

A with molar concentration CA0, at a flow rate F , and temperature TA0. Owing to the endothermic

reaction taking place in the reactor, energy must be provided to the reactor via a jacket. The heating

jacket has a volume Vj with heat transfer fluid at an inlet temperature of Tj0 being added to it at

a flow rate Fj . The reactor contents and the heat transfer fluid have constant densities of ρm and

ρj , respectively, and have constant heat capacities of cp,m and cp,j , respectively. ∆Hr denotes

the enthalpy of the reaction, U represents the heat transfer coefficient, and Ar is the heat transfer

contact area between the reactor and the jacket. The rate constant k in Eq. (3.50) is assumed to be

of the form,

k = k0 exp

(−E
RTr

)
(3.51)

where k0, R, and E denote the pre-exponential constant, ideal gas constant, and activation energy

of the reaction, respectively. Under these modeling assumptions, the dynamic equations governing

the behavior of the reactor are given by the following material and energy balances:

Vr
dCA

dt
= Fr (CA0 − CA)− k0e

−E/RTrCAVr (3.52)

Vr
dTr

dt
= Fr (TA0 − Tr) +

(−∆Hr)

ρmcp,m
k0e

−E/RTrCAVr +
UAr

ρmcp,m

(
Tj − Tr

)
(3.53)

Vj
dTj

dt
= Fj(Tj0 − Tj)−

UAr

ρjcp,j

(
Tj − Tr

)
(3.54)

with the process parameters’ values given in Table 3.1.

While we may define ϵ = Vr/Vj to rewrite Eq. (3.54) in the standard singularly perturbed
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Table 3.1: Parameter values for chemical process example.

Vr = 1.0m3 k0 = 3.36× 106 h−1

Vj = 0.08m3 E = 8.0× 103 kcal kg−1

Ar = 6.0m3 TA0 = 310.0K
U = 1000.0 kcal h−1m−2K−1 Tj0 = 357.5K
R = 1.987 kcal kmol−1K−1 ρm = 900.0 kgm−3

∆Hr = 5.4× 104 kcalmol−1 ρj = 800.0 kgm−3

cp,m = 0.231 kcal kg−1K−1 Fr = 3.0m3 h−1

cp,j = 0.200 kcal kg−1K−1 Fj = 20.0m3 h−1

CA0,s = 3.75 kmolm−3 CA,s = 2.54 kmolm−3

Tr,s = 274.4K Tj,s = 303.3K

form, in which case both temperatures have fast dynamics relative to the concentration dynamics,

this can also be deduced from the data generation outlined in the next subsection.

The initial operating point of the CSTR is its steady-state (CA,s, Tr,s, Tj,s) = (2.54 kmolm−3,

274.4K, 303.3K) and CA0,s = 3.75 kmolm−3. The manipulated input variable is the feed concen-

tration of reactant A, represented by the deviation variable ∆CA0 = CA0 − CA0,s and bounded as

per |∆CA0| ≤ 3.5 kmolm−3. Consequently, the states and manipulated input of the closed-loop

system in deviation form are represented by

x = CA − CA,s (3.55)

and

u = ∆CA0 (3.56)

respectively. Hence, the origin of the state-space, given by (x∗
s, u

∗
s) = (0, 0), is the equilibrium

point of the system.

It is desired to apply the SI-based LMPC of Eq. (3.43) to maintain the operation of the CSTR
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at the equilibrium point (CA,s, Tr,s, Tj,s) by manipulating the feed concentration ∆CA0. For the

simulation of the ODE system of Eqs. (3.52) to (3.54), the explicit Euler method is used to nu-

merically integrate the equations with an integration time step of hc = 0.1 seconds. Since the op-

timization problem in the LMPC of Eq. (3.43) is nonlinear, it is solved using PyIpopt, the python

interface of the IPOPT software package [145], with a sampling period of ∆ = 10 seconds.

3.6.2 Data generation and model development

To design the LMPC of Eq. (3.43), the slow subsystem must be first reconstructed as an

ODE to be incorporated as the process model. To identify the slow subsystem using data, a range

of 10 different initial conditions are chosen with CA(0) taking values between 0molm−3 and

9.0molm−3 in intervals of 1.0molm−3, Tr(0) taking values between 280K and 370K in intervals

of 10K, and Tj(0) varying between 300K and 390K in intervals of 10K. The system of differ-

ential equations described by Eqs. (3.52) to (3.54) is numerically integrated for each set of initial

conditions from the initial time of 0.0 hr to 1.0 hr with a step size of 10−6 hr to simulate the exper-

imental/industrial process. The generated data is then sampled with a sampling period larger than

the step size to simulate data collection via sensors and measuring instruments. This sampling is

conducted with a sampling period of 0.005 hr since any larger sampling period leads to inaccurate

estimates of the time-derivative, causing the sparse identification algorithm to fail for this system.

The sampled data from the 10 runs is finally combined into the data matrix, X . A plot of X and/or

the gradient of X versus time clearly indicates that both temperature variables, Tr and Tj , are the

fast states, while CA is the only slow state in this system. Examples of such plots can be found

in Figures 3.6, 3.7 and 3.8 in the simulation results (Section 3.6.3). Therefore, we only construct a
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model for the concentration CA using sparse identification, as it is the slow subsystem.

The sparse identification algorithm was applied to the concentration data from the open-loop

simulations. Ten iterations were completed, and the nonzero coefficients were confirmed to have

converged within five iterations. The coefficient threshold λ was fine-tuned to a value of 2.0 to

yield the following slow model,

dCA

dt
= 9.93101− 3.85957CA (3.57)

However, Eq. (3.57) needed to be converted to deviation variables and the input accounted for.

Hence, using Eq. (3.55), Eq. (3.57) was written as

dx

dt
= 9.93101− 3.85957(x+ CA,s) = 0.11901− 3.85957x (3.58)

In Eq. (3.58), the constant term, 0.11901, was due to numerical inaccuracies resulting from model-

ing via sparse identification and the lack of data near the origin of the system in deviation variables

(which corresponds to data near the steady-state of the original system). The data generation was

carried out over a 1-hour simulation duration, within which the system did not reach very close

to its steady-state. However, the simulation length can be increased beyond 1 hour to increase the

amount of data near the steady-state, which would improve model performance near the origin.

The value of this constant residual term in Eq. (3.58) was found to monotonically decrease with

increasing simulation length for the data generation step as shown in Figure 3.2. If the data gener-

ation is carried out over a simulation length of 20 hours, the value of the residual term reduces to

0.00562783. The optimal sparse identification model built from data generated over an infinitely
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long simulation would not contain the constant term. Furthermore, we know that the origin is an

equilibrium point for the system in deviation variables. Therefore, the constant term in Eq. (3.58)

was neglected. Additionally, the input term must be present in the closed-loop model. The pro-

cedure outlined in Section 3.3.2 was used to calculate ĝ(x), which was approximately between 3

and 4. Comparing this result to the first-principles model, where the term corresponding to the

manipulated input was known to be 3u, ĝ(x) is taken to be equal to 3. Hence, the sparse-identified

slow subsystem was identified as

dx

dt
= −3.85957x+ 3u (3.59)

While the above procedure required partial knowledge of the first-principles model of the process,

the stability results of Section 3.5 merely assumed an input-affine model as given in Eq. (3.19).

Hence, we could alternatively add a manipulated input term of u rather than 3u to Eq. (3.59), and

the stability results would hold, while the simulation results would scale accordingly. Furthermore,

the coefficient associated with u could also be found more accurately using steady-state data for

different input sequences and initial conditions. Henceforth, Eq. (3.59) will be referred to as the SI

slow subsystem or SI slow model for the CSTR system.

After the model identification, the Lyapunov functions for the nominal slow subsystem and

the SI slow subsystem are chosen to be identical i.e., V (x) = V̂ (x) = 0.01x2. The region ϕ̂u where

˙̂
V < −kV̂ under the controller u = Φsi(x) ∈ U is analyzed in Figure 3.3. The range x ∈ [−2, 2] is

considered because the steady-state concentration is 2.54 kmolm−3, and concentrations may not be

negative. As the Lyapunov function in this case is a quadratic function, its level sets are represented

79



1 10 20

Simulation Period, tf (hr)

0.000

0.050

0.100

0.119

V
al
u
e
o
f
co
n
st
an
t
te
rm

Figure 3.2: Plot of the constant residual term in Eq. (3.58) as a function of the total simulation
duration tf used for data generation.

by intervals in x. Hence, the closed-loop stability region Ωρ̂ for the reactor system described by the

SI slow subsystem is represented by the largest level set of V̂ in ϕ̂u. From Figure 3.3, it is observed

that ˙̂
V < −kV̂ is satisfied for the entire range of x. Therefore, the closed-loop stability region Ωρ̂

is also characterized as the entire range of x ∈ [−2, 2]. Considering |x| < 0.05 to be sufficiently

close to the origin, a value of 2.5 × 10−5 was calculated for ρsi. The cost function in Eq. (3.43a)

is chosen to be L(x, u) = |x|2Q1
+ |u|2Q2

where Q1 = 10 and Q2 = 1, such that L achieves its

minimum at the origin of the closed-loop system.

−2 −1 0 1 2

x

−0.3
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−0.1

0.0

˙̂ V
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−
k
V̂

˙̂
V

−kV̂

Figure 3.3: Plot of ˙̂
V and −kV̂ .
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3.6.3 Simulation results

First, simulations are conducted for the closed-loop system under the MPC using the nominal

slow subsystem and the SI slow subsystem as the process model of Eq. (3.43b), separately. While,

in practice, if solely data is available, only the sparse identification approach can be used, the

nominal slow subsystem is used to represent the experimental process. Hence, the LMPC utilizing

the nominal slow subsystem yields the ideal performance that an LMPC with a data-driven process

model can achieve and be compared against. Figure 3.4 shows that the open-loop state trajectory

of the slow state predicted by the sparse-identified concentration model of Eq. (3.59) with u = 0

is in close agreement with the first-principles concentration model of Eq. (3.52), for a fixed time

interval and the same initial condition of x0 = 1 ∈ Ωρ̂. As a result, it can be concluded that

the sparse-identified model of Eq. (3.59) can be considered a satisfactory approximation of the

first-principles process model of Eq. (3.52). Consequently, the sparse-identified slow model of

Eq. (3.59) is used as the process model in the LMPC of Eq. (3.43).
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Figure 3.4: Comparison of the slow state as computed by the first-principles slow subsystem (solid
line) of Eq. (3.52) and predicted by the SI slow subsystem (dashed line) of Eq. (3.59) with u = 0.

Figures 3.5 and 3.6 depict the closed-loop states of the CSTR for a range of initial conditions
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x0 ∈ Ωρ̂ under the LMPC utilizing the SI slow model. It is observed that the states converge to a

small neighborhood containing the origin, Ωρmin
, for all initial conditions studied. Therefore, the

LMPC with the SI slow model can be considered adequate to stabilize the CSTR system due to the

sufficiently small modeling error.
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Figure 3.5: State-space trajectories for the CSTR in closed-loop under the LMPC utilizing the
SI slow model for a range of initial conditions. Each line represents a trajectory from an initial
condition marked by a colored dot of the corresponding color. The black dot is the origin.
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Figure 3.6: State profiles for the CSTR in closed-loop under the LMPC utilizing the SI slow model
for a range of initial conditions, each line representing a trajectory from a different initial condition.

The closed-loop states and manipulated input profiles of the CSTR system of Eqs. (3.52)

to (3.54) under the LMPC are shown in Figures 3.7, 3.8 and 3.9. Figure 3.7 compares the state
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trajectories for the closed-loop system from an initial condition of (CA−CA,s, Tr−Tr,s, Tj−Tj,s) =

(1 kmolm−3, 30K, 40K) when the different process models are used in the controller. An MPC

prediction horizon length of N = 5 is chosen for both cases. In both simulations, it is observed

that the state trajectory is driven to Ωρmin
under the controller faster than in the open-loop scenario

without a controller. Analyzing the time-varying states more closely as shown in Figure 3.8, it is

demonstrated that the evolution of the states is nearly identical for both the nominal slow model

and the SI slow model. Figure 3.9 shows the manipulated input profiles for the closed-loop system,

which are observed to be within the range of permissible u. The results of Figures 3.7, 3.8 and 3.9

were also reproduced for other initial conditions, implying the LMPC incorporating the SI slow

model is able to stabilize the CSTR system and drive the states to the origin nearly as efficiently as

the LMPC utilizing the nominal slow model. Furthermore, when the integral of the cost function of

the LMPC
∫ tp
t=0

L(x(τ), u(τ)) dτ is calculated over the simulation period tp = 1hr, it is obtained

that L = 330.2 and L = 330.0 for the LMPC utilizing the first-principles model and the SI slow

model, respectively. The negligible difference indicates that the closed-loop performance under

both models is similar with respect to energy as well as speed of convergence to the origin. The

value of the cost J over the simulation period of 1 hr is shown in Figure 3.10, indicating that there

is no significant difference in the states and manipulated inputs computed by the LMPC using

either process model.
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Figure 3.7: State-space profiles for the CSTR in closed-loop under the LMPC utilizing the first-
principles model (blue line) and the SI slow model (orange line) and in open-loop with u = 0
(black line).
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Figure 3.8: State profiles for the CSTR in closed-loop under the LMPC utilizing the first-principles
model (blue line) and the SI slow model (orange line) and in open-loop with u = 0 (black line).

3.6.4 Effect of process model selection on computational time and maximum

allowable prediction horizon length

The choice of the process model for the LMPC has a significant effect on the total as well

as per iteration computational time of the MPC, directly limiting the maximum prediction horizon

length that can be implemented. Due to the increased complexity of the first-principles process

model, the computational time required to solve the LMPC optimization problem for the LMPC
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Figure 3.9: Input profiles for the CSTR in closed-loop under the LMPC utilizing the first-principles
model (blue line) and the SI slow model (orange line).
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Figure 3.10: Cost function of LMPC for the CSTR in closed-loop under the LMPC utilizing the
first-principles model (blue line) and the SI slow model (orange line).

incorporating the first-principles slow model is higher for any given prediction horizon length.

Consequently, the longest prediction horizon that can be implemented in the controller is lower for

the LMPC with the first-principles model, leading to a higher total of the integral of the LMPC

cost function over the simulation period.

Figures 3.11 and 3.12 depict the iteration time required for each of the 360 LMPC steps overs

the entire simulation period of 3600 s with a sampling period ∆ of 10 s for the LMPC under

the first-principles model and the SI slow model, respectively, while using the initial conditions,
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(CA − CA,s, Tr − Tr,s, Tj − Tj,s) = (1 kmolm−3, 30K, 40K). Practically, since the optimization

problem is solved in every sampling period ∆, the computational time for a single iteration cannot

exceed ∆. As ∆ is chosen to be 10 s in this application, for a feasible N , no iteration time can

exceed 10 s. From Figure 3.11, it is observed that, for the LMPC utilizing the first-principles

slow model, the maximum allowable prediction horizon length is N = 16. Numerically, it is

confirmed that, in this case, the longest iteration times when N = 16 and N = 17 are 9.59 s and

10.85 s, respectively. In contrast, for the LMPC with the SI slow model, the maximum allowable

prediction horizon length is N = 24 as seen in Figure 3.12. For this controller, the longest iteration

times for prediction horizon lengths of N = 24 and N = 25 were calculated to be 9.83 s and

13.6 s, respectively. Finally, the time-integral of the LMPC cost function
∫ tp
t=0

L(x(τ), u(τ)) dτ is

calculated over the simulation period tp = 1hr for the controller utilizing the first-principles model

with N = 16 and the the controller incorporating the SI slow model with N = 24. It is found that

the costs are L = 243.8 and L = 225.9 for the first-principles model-based controller and SI-based

controller, respectively. This implies that the LMPC based on the SI slow model, when maximizing

the prediction horizon length to N = 24, outperforms the LMPC based on the first-principles slow

model with its prediction horizon length maximized at N = 16, in terms of lower energy and faster

convergence to the origin. This fact can also be observed from the state and input profiles, shown in

Figures 3.13 and 3.14, respectively. The LMPC based on the SI slow model takes more aggressive

control action in the earlier MPC steps as seen in Figure 3.13, causing the state to converge slightly

faster to the origin as depicted in Figure 3.14. The maximum allowable prediction horizon lengths

and their corresponding costs are summarized in Table 3.2.
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Figure 3.11: Iteration time of each MPC step for prediction horizon lengths of N = 16 (blue line)
and N = 17 (orange line) when the LMPC utilizes the first-principles process model, where the
black dotted line represents the sampling time ∆ = 10 s.
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Figure 3.12: Iteration time of each MPC step for prediction horizon lengths of N = 23 (blue line)
and N = 24 (orange line) when the LMPC utilizes the sparse-identified slow model, where the
black dotted line represents the sampling time ∆ = 10 s.

Table 3.2: Maximum allowable prediction horizon length and corresponding integral of cost func-
tion over simulation period tp.

LMPC Process Model Max allowable N Integral of Cost Function

First-principles slow model 16 243.8
Sparse-identified slow model 24 225.9

87



0.00 0.25 0.50 0.75 1.00

Time (hr)

−1.0

−0.5

0.0

u
∗ FP

SI

Figure 3.13: Input profiles for the CSTR in closed-loop under the LMPC utilizing the first-
principles model with N = 16 (blue line) and the SI slow model with N = 24 (orange line).
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Figure 3.14: State profiles for the CSTR in closed-loop under the LMPC utilizing the first-
principles model with N = 16 (blue line) and the SI slow model with N = 24 (orange line).

3.7 Conclusion

This article focused on the design of a Lyapunov-based MPC for a class of nonlinear sin-

gularly perturbed systems using only measurement data from processes. In singularly perturbed

systems, due to the presence of time-scale multiplicities, a direct application of MPC without

accounting for the evolution of the states in different time scales can lead to closed-loop perfor-

mance deterioration or even closed-loop instability due to controller ill-conditioning. Hence, we

proposed a method to first separate the slow and fast variables in the system and then design the

MPC based on the reduced-order slow subsystem. Furthermore, due to the lack of a first-principles
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model in most practical applications, our method used only sampled experimental/industrial sim-

ulation data to reconstruct the reduced slow subsystem via a machine-learning method known as

sparse identification. Subsequently, the theory was developed by deriving sufficient conditions for

closed-loop stability under sample-and-hold implementation. Finally, the proposed LMPC design

was applied to a non-isothermal reactor that exhibited time-scale separation. It was observed that

the controllers yielded nearly identical performance for the same controller parameters. However,

the LMPC based on the sparse-identified slow subsystem could implement superior controller pa-

rameters, such as a longer prediction horizon, due to its reduced complexity and, hence, lower

computational time. As a result, the SI based LMPC outperformed the LMPC utilizing the first-

principles model when the superior parameters were used for the former controller, demonstrating

the practicality and benefits of designing MPC by reconstructing the reduced slow subsystem from

measurement data.
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Chapter 4

Handling noisy data in sparse model

identification using subsampling

4.1 Introduction

Historically, a key focus of research in the fields of science and engineering has been the dis-

covery of physical laws in the form of governing equations. In recent years, however, the focus has

shifted to data-driven discovery of these laws. These fundamental laws are often in the form of dy-

namical models i.e., ordinary differential equations (ODE) or partial differential equations (PDE)

in time. Examples include the Maxwell equations from electromagnetism, Boltzmann equation

from thermodynamics, Navier-Stokes equations from momentum transfer, Black-Scholes equation

from finance, and predator-prey equations from biology [7]. In other words, the laws are discov-

ered as time-series predictive models, which are a necessary building block in many engineering

applications, from predictive maintenance in industrial engineering to advanced control systems

such as model predictive control (MPC) that are widely found in chemical process systems. MPC
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requires a dynamical model to predict the states and/or outputs of the process over a prediction

horizon. As a result, considerable work on data-driven modeling can be found in the context of

MPC [135, 146–155]. Some of the data-driven system identification methods developed and inves-

tigated in the recent literature include singular value decomposition [156], Numerical algorithms

for Subspace State Space System Identification (N4SID) [30], and auto-regressive models with

exogenous inputs (ARX/ARARX) [157–159]. Due to the exponential increase in computational

power over the past decade, machine learning methods, a subset of data-driven modeling meth-

ods, have produced remarkable results when utilized to their fullest extents due to their ability to

capture complex, interacting nonlinearities by tuning numerous hyper-parameters [53, 160–162].

Machine learning methods are a broad class of data-driven modeling methods including linear

regression, support vector machines, deep neural networks, sparse identification, etc. [77]. The

primary method investigated and improved in this article is sparse identification. While sparse

identification has already been developed in many facets [81, 113, 163–170], the aspect of noisy

data remains largely a challenge for the method.

Since machine learning methods have mostly been developed in the domain of computer sci-

ence, they often either assume the availability of high-fidelity data or use the term “noisy data” to

refer to mislabels in classification problems rather than numerical inaccuracies in regression prob-

lems [171]. Hence, the reported accuracy and success of these methods stem from application of

the algorithms to standard, clean data sets. However, in the field of engineering, particularly chem-

ical engineering, the availability of noise-free data remains a challenge. Most engineering systems

contain at least sensor and measurement noise, if not disturbances. Consequently, when machine

learning methods are applied to noisy data from process engineering systems, the results may
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be unexpectedly inferior. To mitigate the subpar performance of traditional system identification

methods when using noisy data, a significant amount of effort surfaces when the recent literature is

reviewed. Examples include the extension of the ARX and ARARX methods to input/output data

with additive white noise [172], estimation of the noise term using methods involving principal

component analysis [173], applying subspace identification methods to closed-loop operation data

[174], and the Kalman filter for linear dynamical systems with Gaussian white noise [175, 176].

For nonlinear systems, methods investigated in the literature include the extended Kalman filter

and moving horizon estimation [175]. However, the methods described incorporate numerous as-

sumptions regarding the structure of the system and noise distribution, limiting their applicability

to industry [175]. As a result, the field of data-driven process modeling for dynamical systems us-

ing noisy sensor data requires further innovation and improvement to be implemented in practice.

Although the initial paper, [77], remarked that the total-variation regularized derivative is ro-

bust to noise, a deeper investigation into the levels of noise as well as the data generation and

sampling details reveals that the claim cannot be broadened to every case, or even many practical

cases. Under high levels of noise, the calculation of the model parameters in sparse identification

suffers greatly. This is due to the dynamics possibly being sparse only in a non-orthonormal basis,

such as monomials, or due to the sampling of the variables following the system dynamics instead

of being random or experimentally designed, which can lead to ill-conditioning measurement data

matrices [177]. Due to these two issues in the measurement data matrix, the matrix may gener-

ally violate the incoherence property [100–102] or the restricted isometry property [103–105] in

the underdetermined problem, or not satisfy the incoherence property [178, 179] in the overdeter-

mined problem. Therefore, a number of investigations have been carried out to explicitly detail the
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impact of noise on sparse identification, and several extensions have been proposed to the original

sparse identification algorithm to account for noise and other practical concerns. In [106], the is-

sues of both noise and irregularly sampled data are addressed by using an assimilation step with an

autoencoder or ensemble Kalman filter before the model-identification step to use recovered states

in the identification step. Partially available data and noise have also been investigated in [107],

although the noise levels considered are relatively low with a signal-to-noise ratio (SNR) of 22.33.

In [78], the discrepancy between the true governing equations and the sparse-identified models

due to noise is addressed by exploiting group sparsity, where partial knowledge of the underlying

physics is used to group terms together and ensure all or none of the terms appear in the model.

[78] used a smoothed finite-difference approach using the Savitzky-Golay filter, as will be used in

this paper, and deeply studied the effect of most of the parameters and possible variables in the

derivative estimation step. [78] provides the highest level of detail regarding the numerical differ-

entiation procedure used in this paper. In summary, it was shown that smoothing the data generally

improves performance, changing the type of finite-difference or smoothing weakly affect the re-

sults at sufficiently high noise levels, and that the default window used in the filter is appropriate

for highly noisy data. These results further demonstrate the necessity to develop novel methods to

extend sparse identification to the case of highly noisy data. [117] proves that when sparse iden-

tification is used to update an existing model in real-time by using only new data as it becomes

available, the algorithm is less susceptible to noise than re-identifying a new model. The focus of

[117] was on real-time model updates, which are highly applicable to many practical problems.

Hence, the first and perhaps most important step of identifying a model from the bulk of the raw

data collected did not include any noise. Hence, the derivative estimation was carried out using
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a simple first-order forward finite-difference routine, which causes no significant inaccuracies or

even numerical instabilities. However, the effect of noise was studied in the sense that noise was

added to the new data as it becomes available, which were used to update the model in real-time.

However, as shown in their results, the amount of new data collected to update a model is much

less than the amount of total data used to initially identify an accurate model. Furthermore, in this

step, the noise was added directly to the derivative rather than using the forward finite-difference

scheme used in the main data set. Due to these two factors, it is ambiguous what the effect of

the new noisy data would be if a finite-difference method was used to compute the derivatives, or

if the original data itself was corrupted with noise. [108] uses an “algebraic operation”, specif-

ically Laplace transforms and inverse Laplace transforms, to reformulate the ODE model using

integral terms, which mitigates noise in successive operations. In [109], the computation of the

second derivative in mass-spring systems is avoided by using the Duhamel’s integral, while further

de-noising is proposed by means of the RKHS (Reproducing Kernel Hilbert Space)-based non-

parametric de-noise method. Sparse identification has also been assisted by the manifold boundary

approximation method in [110] to extend it to power systems, which involve differential algebraic

equations (DAE), stiff ODEs, and low measurement noise. Although the application was to PDEs

rather than ODEs, [112] studied a large number of example systems using sparse identification and

employed spectral methods/filtering [111] to estimate the derivatives.

To deal with implicit ODEs as well as noise, sparse identification was extended in [113].

However, the method suffered from an explosive increase in the sensitivity to noise. This was

subsequently addressed and improved in [114] via parallel processing and multiple optimization

algorithms, making the new method, SINDy-PI, orders of magnitude more robust to noise than
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before. However, from the case studies in [114], the improved method still failed at noise levels

above variances of 10−4, which is very low for practical purposes. Furthermore, as the method is

implicit, the derivative terms and their interactions must all be included in the function library for

this method, which can greatly expand the function space. Hence, even more caution is required in

building the library when using SINDy-PI. While the increase in computational expense is offset by

parallel processing, the additional infrastructure required for parallelization might not be available

in many applications.

Two papers, [115] and [116], have pioneered the application of sparse identification to noisy

data. In the first, [115] modified the original L1-regularized sequential least squares algorithm

from [77] by instead using a reweighted L1-regularized sequential least squares algorithm for the

optimization and the second-order Tikhonov regularization for the derivative approximation. The

regularization parameter was determined using a Pareto curve. The other paper, [116], proposed

a subsampling-based threshold sparse Bayesian regression or SubTSBR, where a fraction of the

entire data set is randomly subsampled a number of times and the best model selected using a

model-selection criterion.

In all of the papers mentioned above, with the exception of two, the derivatives were calcu-

lated either using the ODE in the data generation step with noise subsequently added to it, or the

derivatives were estimated using numerical methods from the exact data generated and noise was

added to both the data and computed derivatives afterwards. The only exceptions were [112] and

[115]. In [112], except the final example, the remaining examples were also carried out with noise

being added directly to the derivatives rather than the data sets themselves. However, in the final

example, it was noted that the underlying assumption of such an estimation methodology is that
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the derivatives themselves are more corrupted by the noise than the original data, which restricted

the scope of application of the method. Therefore, attempting to identify the governing PDEs with

only noisy data and estimating derivatives from the data was attempted. It was demonstrated that,

even with presmoothing and spectral filtering, the method worked until a noise level of 50% and

failed at 100%, the latter of which is the low level of noise considered in this work. In [115], despite

using Tikhonov regularization and reweighted L1-regularized sequential least squares, the authors

showed that the errors in both the derivative approximation and the solution increase rapidly in

orders of magnitude when the noise level increases beyond σ = 10−2, which is also very small for

all practical purposes. Moreover, their main results for all their studies are based on data with a

SNR of approximately 60. Furthermore, all the papers considered only zero-mean Gaussian white

noise. To the best of our knowledge, in the context of sparse identification, the direct impact of

noisy industrial data on the derivative computation as well as non-Gaussian noise have not been

studied in detail. The method used to approximate the derivatives, as well as the optimizer that is

used with the derivative approximator are crucial hyperparameters that require in-depth analysis as

will be seen in Section 4.4.

Beyond the domain of sparse identification, another recent method to prevent overfitting in

the presence of high noise in measured data that has received significant attention, developed pri-

marily in the context of neural networks, is co-teaching, where noise-free data from first-principles

simulations is used to assist the training process [153, 154]. The method proposed in this work

combines both subsampling [116] and co-teaching [153, 154] with sparse identification to deal

with even higher levels of noise than was previously possible to handle.

The rest of this manuscript is organized as follows: in Section 4.2, the class of nonlinear
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systems considered and the basic methods combined for the implementation of the proposed novel

method are reviewed in brief. In Section 4.3, the novel method combining sparse identification with

subsampling and co-teaching is introduced and described in detail. In Section 4.4, the proposed

method is applied to a predator-prey example and a chemical reactor example to demonstrate its

effectiveness, and the conclusions are summarized in Section 4.5.

4.2 Preliminaries

4.2.1 Class of systems

The class of continuous-time nonlinear systems considered in this work can be written in the

form,

ẋ(t) = f(x(t)), x(t0) = x0 (4.1a)

y = x+ w (4.1b)

where x ∈ Rn is the state vector, y ∈ Rn is the vector of sampled measurements of the states,

w ∈ Rn is the sensor noise, and the unknown vector function f(·) is the process model representing

the inherent physical laws constraining the system. Without loss of generality, the initial time t0 is

taken to be 0 throughout the article.

4.2.2 Sparse identification

Sparse identification is a relatively new method for identifying nonlinear systems based on

data. It has been effectively deployed on a wide range of engineering systems of relevance [71–
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76, 129]. Provided with only sensor measurements from a system of the form of Eq. (4.1), sparse

identification aims to reconstruct the system as a first-order differential equation of the form,

˙̂x = f̂(x̂) (4.2)

where x̂ ∈ Rn is the vector of state of the sparse-identified model f̂(·).

The central idea of sparse identification is to consider many possible nonlinear terms for the

right-hand side of Eq. (4.2), f̂ , and subsequently identify the few active terms in f̂ . This apparent

simplification stems from the fact that physical systems in practice only contain a small number

of nonzero terms when considering a large set of terms i.e., candidate basis functions. Hence, the

space of all nonlinear basis functions considered is sparse, and efficient algorithms may be used

to compute the pre-multiplying coefficients. To carry out sparse identification we first sample and

collect a set of measurements of the states x1, x2, . . . , xn at times t1, t2, . . . , tm from open-loop

simulations and concatenate them into the data matrix X ,

X =



x1 (t1) x2 (t1) · · · xn (t1)

x1 (t2) x2 (t2) · · · xn (t2)

...
... . . . ...

x1 (tm) x2 (tm) · · · xn (tm)


(4.3)

where xi(tj) denotes the measurement of state i at the j-th sampling time with i = 1, . . . , n and

j = 1, . . . ,m. The time-derivative of X is represented by Ẋ and is a required quantity in the

sparse identification procedure. However, in the presence of measurement noise, the estimation of

the derivative is a challenge. Although some methods to robustly approximate the derivative are
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detailed in [77], particularly the total-variation regularized derivative from [141, 180], the results

in this paper disagree in terms of its robustness and show that a smoothed finite difference can

often yield better results. After acquiring X and Ẋ , we build a function library, Θ(X), containing

p candidate nonlinear functions of X corresponding to the p basis functions that may be active or

inactive in the right-hand side of the ODE, f̂ . The sparse identification technique leverages sparsity

to identify the active terms in this library, Θ. The augmented library, Θ(X), is optimized like a

hyperparameter in this paper. Specifically, it is constructed using either only monomials up to

third-order including interaction terms or a combination of monomials, their interactions, and the

four common trigonometric functions: sin, cos, tan, and tanh. Hence, the latter library containing

all possible terms is of the form,

Θ(X) =

 1 X XP2 XP3 sinX cosX tanX tanhX

 (4.4)

In Eq. (4.4), XP2 represents all quadratic nonlinearities:

XP2 =

[
x2
1 x1x2 · · · x2

2 x2x3 · · · x2
n

]
(4.5)

The aforementioned choice of candidate basis functions is rooted in the observation that polynomi-

als and trigonometric functions can be found in the natural laws governing many known physical

systems [77].

The objective of the sparse identification algorithm is to find the p coefficients that pre-

multiply the p nonlinear basis functions considered in Θ(X) for each state xi. Each xi is associated
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with a corresponding sparse vector of coefficients, ξi ∈ Rp, that characterize the nonzero terms in

the respective ODE, ẋi = fi(x). Hence, n such coefficient vectors must be computed. In matrix

notation, the quantity to be found is

Ξ =

[
ξ1 ξ2 · · · ξn

]
(4.6)

Therefore, to determine the matrix Ξ, the following equation needs to be solved:

Ẋ = Θ(X)Ξ (4.7)

Equation (4.7) is solved using sequential least-squares by zeroing all coefficients in Ξ that are

smaller than a threshold λ, known as the sparsification knob, and repeatedly solving the resulting

equation with zeroed terms until the non-zero coefficients converge. Due to the sparse structure of

Ξ, convergence of the iterative step is rapid. Once Ξ is calculated, the overall model can be written

as the continuous-time differential equation,

ẋ = Ξ⊤(Θ(x⊤))⊤

where Θ(x⊤) is a column vector of symbolic functions of x from the function library, and x⊤

denotes the transpose of x.

4.2.3 Subsampling

Subsampling is a statistical technique where a subset of the entire data set is randomly selected

for analysis instead of the entire data set. While the method is typically employed to estimate
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statistical metrics [181] or speed up an algorithm [182], the objective of subsampling in this paper

is to increase the modeling accuracy in the presence of high levels of sensor noise. Specifically, in

regression, when the number of data points, m, is more than the number of unknown weights, as

is the case in most practical problems, the regression might be carried out with only a subset of the

entire data set to estimate the regression parameters. This may be considered because a fraction of

the data points are corrupted by high noise levels or are outliers. Traditional regression methods

like least squares use the entire data set by making the smoothing assumption, which states that

the larger proportion of low-noise or “good” values will sufficiently smooth out any large noise

in the data set. However, in practice, this assumption may not hold in the presence of either very

high noise or consistently high noise throughout the data set as the fraction of “good” data points

is inadequate to compensate the noise in these cases. The idea behind subsampling is to mitigate

the problem of data points with large noise by randomly subsampling to eliminate them before

carrying out the regression or model identification step.

4.2.4 Co-teaching

Co-teaching is a technique that improves the accuracy of a machine learning method by uti-

lizing noise-free data sets from first-principles models and simulations of a physical process. Co-

teaching originated in the field of classification problems, particularly image classification, where

neural networks are abundantly used to classify images into user-defined categories. However, a

fraction of the images can be miscategorized, which drastically reduces the data quality and, con-

sequently, neural network accuracy if used without accounting for the mislabeled data samples.

Such mislabels are termed “noisy labels” in machine learning.
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Although the co-teaching method has primarily been developed in the context of classification

problems and deep neural networks, there is nascent research into extending this method to regres-

sion problems using long short-term memory (LSTM) networks [153, 154]. Specifically, in [154],

co-teaching was compared to a Monte-Carlo dropout LSTM network, which is an advanced form

of the standard dropout neural network where weights are randomly omitted during the training

process to improve generalization and minimize overfitting. Dropout layers may be considered as

a regularization term in the context of neural networks. Carrying out regression on a subsampled

fraction of a data set repeatedly is analogous to a standard dropout neural network where the omis-

sion of the weights occurs only in the training and not the testing phase. In contrast to dropout

neural networks and subsampling, the key proposition of co-teaching is that the loss function value

is significantly lower for noise-free data as compared to noisy data. Therefore, mixing any propor-

tion of noise-free data with measured noisy data can guide the model training process to be more

robust to noise and overfitting. This assertion was proven in [154], where the co-teaching LSTM

outperformed even the Monte-Carlo dropout LSTM in terms of lower open-loop mean-square error

as well as computational time (without parallel processing in either case).

4.3 Subsampling-based sparse identification with co-teaching

In this paper, the original sparse identification method is improved by combining it with sub-

sampling and co-teaching as described in Section 4.2. The proposed method, Sparse Identification

with Subsampling and Co-teaching (SISC), aims to mitigate the problem of highly noisy measure-

ment data. When the measured data is either too noisy or consistently noisy, subsampling alone
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may not be sufficient as it will merely randomly choose the least noisy data in the subsamples,

which can still be heavily corrupted by noise in this case, or a very large number of subsamples

may be required to successfully isolate a relatively low-noise subsample, which can lead to an

excessive computational expense. Therefore, in this paper, we also add noise-free data into each

subsample to further improve the identification procedure.

In SISC (Algorithm 1), a subset of the total data set is randomly selected and mixed with

noise-free data from first-principles simulations. The mixed data subset is used to estimate the

model parameters. The resulting model is then evaluated using a model-selection criterion. After

repeating the above steps for each subsample, the best model is selected to be the model with the

lowest value of the model-selection criterion. Specifically, the algorithm is initiated with three

user-defined parameters: the subsampling fraction p ∈ (0, 1), the noise-free subsampling fraction

q ∈ (0, 1), and the number of times L ≥ 1 to subsample and identify a model. For each of the L

subsamples, a fraction containing p ×m randomly selected data points from the original data set

is mixed with q×m randomly selected data points from the noise-free data set. The resulting data

submatrix for subsample i, where i = 1, 2, . . . , L, is of the form

Xi =



x1 (t1) x2 (t1) · · · xn (t1)

x1 (t2) x2 (t2) · · · xn (t2)

...
... . . . ...

x1

(
tp×m+q×m

)
x2

(
tp×m+q×m

)
· · · xn

(
tp×m+q×m

)


(4.8)

The equation to be solved for each subsample is, instead of Equation (4.7),

Ẋi = Θ(Xi)Ξi (4.9)
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where Ξi is the coefficient matrix that needs to be computed. Each computed Ξi yields an ODE

model,

ẋ = Ξ⊤
i (Θ(x⊤))⊤ (4.10)

which is simulated and evaluated using the model-selection criterion against a portion of the data

that is reserved for validation. In this work, the Akaike Information Criterion (AIC) is used as

the model-selection criterion since it is calculated using not only the mean-squared error (MSE)

but also the number of terms in the model, promoting sparsity by penalizing models with a higher

number of terms. The AIC is defined in [183] as

MSE =
1

m

m∑
i=1

(
x(ti)− x̂(ti)

)2 (4.11)

AIC = m logMSE+2L0 (4.12)

where L0 is the 0-th norm, which is equal to the number of non-zero terms in the sparse-identified

model.

The hyperparameters to be tuned in the algorithm include the function library to be con-

structed, the method chosen to compute the derivative from noisy data, the optimizer, and the value

of the sparsification knob λ. The function library contains either only polynomial functions or both

polynomial and trignonometric functions. The derivatives are approximated using either the total

variation regularized derivative (TVRD) or smoothed finite-difference (SFD) after presmoothing

with the Savitzky-Golay filter. The optimization is carried out using sequential thresholded least

squares (STLSQ) or SR3, which is an enhancement of the least absolute shrinkage and selection

operator (LASSO) [184]. To find a suitable value of λ, values of 0.1, 0.2, and 0.3 were tested. A
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detailed justification for the choices of λ is given in Section 4.4.2.1. Once all the hyperparameters

have been tuned, a model is selected based on the AIC value of the validation set. Finally, out of

the L models obtained from L subsamples after tuning all hyperparameters, the sparse-identified

model with the lowest value of the AIC is taken to be the optimal model. The flow of the data

through the algorithm is depicted in Fig. 4.1.

Algorithm 1: Sparse Identification with Subsampling and Co-teaching (SISC)
Input: X,Θ, p, q, L
Output: Ξ
compute exact Ẋ of noise-free data using first-principles ODE model;
compute estimate of Ẋ of noisy data using SFD or TVRD;
for i← 1 to L do

randomly sample p fraction of industrial (noisy) data and its estimated derivative;
randomly sample q fraction of first-principles simulation (noise-free) data and its exact
derivative;

mix and concatenate the data into Xi and Ẋi;
calculate function library Θ(Xi) using only polynomial functions or a combination of
polynomial and trignonometric functions;

solve Ẋi = Θ(Xi)Ξi using STLSQ or SR3 with different values of λ to get Ξi;
with calculated Ξi, integrate ODE and compute AIC;

end
Let final R = argmini{AICi};
Let Ξ = ΞR.

Remark 4.1. Both of the derivative approximation algorithms utilize certain parameters that may

be tuned as well. For the Savitzky-Golay filter in SFD, the default values of a window length of

11 and cubic polynomials for curve-fitting were retained as they were satisfactory. For the TVRD,

the regularization term was set to 0.001 instead of the default 0.01 and the maximum number of

iterations with increased to 1000 to ensure convergence. Further tuning was infeasible due to the

large number of hyperparameters to be trained in the main algorithm.

Remark 4.2. It is noted that, due to the issues of noise and sparse identification, some works have
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Figure 4.1: Data flow diagram.
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attempted to find alternatives to explanatory dynamical modeling instead. Such methods include

black-box modeling using Runge-Kutta time-steppers embedding neural networks to account for

nonlinearities [185–188]. It is noted that these papers propose alternative methods to nonlin-

ear dynamical modeling rather than developing sparse identification further. Consequently, their

techniques of dealing with noisy data as well as the results obtained in this context cannot be di-

rectly inferred to sparse identification, where noisy data directly and heavily affects the derivative

estimation. For example, in [187], neural network function approximators are used in combina-

tion with classical linear multi-step time-stepping schemes (such as Runge-Kutta) to identify the

nonlinear dynamic constraints in the right-hand-side of an ODE model, similar to the problem

to be solved in sparse identification. However, when the effect of specifically the noise on the

results is analyzed, the pattern is initially unexpected. As the noise level in the input data is in-

creased, the results become more accurate and then less accurate. This was explained by neural

networks, in particular, benefiting from small noise levels in the input, which work as regular-

ization. At even higher noise levels, however, the results deteriorate due to the model not being

able to disambiguate the noisy dynamics from the ground truth. Clearly, this is not the case for

sparse identification and most system identification methods, where overfitting is not a common

issue to the extent that data needs to be intentionally corrupted with noise to increase a model’s

generalization capabilities. [188] presents a similar but slightly more advanced work, where the

data is decomposed into separate true dynamics and noisy dynamics, each of which are separately

modeled and predicted when forecasting. The modeling is similar to [187] in terms of combining

neural networks with time-stepping schemes, although constraints are added, making the overall

problem more complex. The effect of noise and general pitfalls of neural networks are discussed
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near the end of their work, where, for example, the point is made that a neural network is, at its

core, an interpolation technique. Hence, their proposed methods work best with systems where the

dynamics evolve on an attractor, especially if it can be sampled with a small sampling time. The

generated models also predict the trajectories to remain on the attractor for long simulation dura-

tions. If their method is used to integrate from new initial conditions or further from the attractor,

the models may be insufficient. This is particularly important in the context of control, where they

suggest collecting dynamic, transient data further from the attractor as perturbations and actua-

tors must be considered. [189] reformulates the ODE model using integral terms, which can be

approximated using piecewise constant quadrature, and the resulting equations efficiently solved

using the Douglas-Rachford algorithm. However, [189] mostly restricts its candidate functions

for the model to polynomial terms and further notes that their method works better on fact and/or

chaotic manifolds rather than slower, equilibrium behavior, which is more relevant in chemical

process systems. A recent, novel method that has shown promise, especially when the data is cor-

rupted by high noise or outliers, is entropic regression [190]. We remark that these methods may

be used instead of or in combination with our method.

Remark 4.3. While the focus of this work is the modeling of nonlinear dynamical systems, the

ultimate objective is to incorporate the developed models into model predictive control (MPC) as

the process model, which will be explored in a future work. Real-time optimization has been stud-

ied in several recent papers. [191] incorporated feedforward neural networks and first-principles

process models into real-time optimization RTO and MPC. In the event of an increase in energy

prices or in the presence of a large error in the feed concentration, it was shown that the perfor-
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mance of the controller with RTO outperforms the one without RTO. In [67], a recurrent neural

network (RNN) was used as the process model for a Lyapunov-based model predictive controller

(LMPC) and a Lyapunov-based economic model predictive controller (LEMPC). The RNN model

was updated in real-time based on event-triggers and/or error-triggers, which improved closed-

loop performance in terms of stability, optimality, and smoothness of control actions. Hence, the

extension of our proposed modeling approach to include both real-time optimization and model

predictive control can be investigated in a future work after first extending it to solely model pre-

dictive control.

Remark 4.4. The proposed method is applicable to any dynamic system where data is obtained

as time-series measurements. This includes most chemical processes and plant data. The method

would not be directly applicable to data that are in other formats and structures such as images.

An example is the sequence of moving digits from the Modified National Institute of Standards and

Technology (MNIST) database, also known as the moving MNIST data set, where digits are moving.

However, such data sets are mostly relevant in other disciplines of engineering and computer

science rather than chemical engineering.

4.4 Applications

In this work, the effect of Gaussian white noise w ∼ N (0, σ2) in the sensor measurement y

in Eq. (4.1) is analyzed. Specifically, the predictive ability of the model developed using SISC is

benchmarked against the original sparse identification (SI) method as well as sparse identification

with subsampling without co-teaching (SIS). First, the details of the demonstration procedure are
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outlined. Subsequently, the two examples, a predator-prey system and a chemical reactor example,

are individually studied.

4.4.1 Data generation, sampling, and noise generation

The data generation procedure for both examples consists of first integrating the correspond-

ing system of ODEs using 50 different initial conditions over a wide range of values to maximize

coverage of the operating region of interest. The integration is carried out using the explicit Euler

method with an integration time step of hc = 10−4, while the sampling time ∆ varies between the

examples. This yields the noise-free or clean data set.

For both examples, four levels of noise are considered in this study. Noise levels 1 (very

low), 2 (low), 3 (medium), and 4 (high) refer to white Gaussian noise with standard deviations

σ1 = 0.02, σ2 = 0.1, σ3 = 0.2 and σ4 = 0.3, respectively. For each level, white Gaussian noise

is generated and amplified as necessary to account for any disparate scales of variables, and then

added to the clean data set to generate the noisy data set.

Once the 50 different state trajectories are obtained from the open-loop simulations described

above, the data set is split into 60% training, 20% validation, and 20% testing data, respectively.

The train-validation-test split of 60-20-20 used is highly subjective, and many variations exist.

Other common choices include 50-25-25, 70-15-15, and 80-10-10. There is no “right ratio” and

tradeoffs exist. If the training proportion is increased, the model is able to use more data and pos-

sibly generalize better. A larger validation set provides greater confidence in the model selection

process, while a larger test set produces a better assessment of the ability of the model to gen-

eralize to new, unseen data. The 4 combinations suggested above attempt to balance these three
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objectives. However, as mentioned, these are not rigid rules and should be adjusted as required.

For example, if data is scarce due to expensive experimental trials required to collect data, as is

the case in several chemical processes, the smaller data set may warrant a larger training set to

maximize the model performance. In this scenario, the validation data set can be reduced and a

k-fold cross-validation technique may be used instead of information criteria. In fact, due to the

lower number of data, the most expensive yet accurate validation technique, leave-one-out-cross-

validation (LOOCV) can be used even though it is rarely used in practice for larger data sets due to

the computational expense. For this scenario, an 80-10-10 scheme may be preferable. If the data

set is extremely large, however, the preferred scheme may be 50-25-25 since there is sufficient data

for training even with only 50% of the data being used. Moreover, as the training process is likely

to be the most computationally expensive step, a smaller data set for training may also produce

models faster. This strategy is common in training neural networks, where “minibatches” are used

rather than the entire training data set.

For the base case with no subsampling, the entire training set is used for sparse identification

to generate a single model following hyperparameters tuning. For both subsampling methods, the

number of subsamples L is taken to be 5 in order to keep the computational burden reasonable.

Furthermore, the total subsampling fraction, which is equal to p for the SIS case and p+ q for the

SISC case, remains the same for both the SIS and SISC cases when compared. This is to ensure

that both methods use the same total number of data points for training but only differ in the nature

of the subsample used. The total subsampling fraction is assigned with the values of 0.2, 0.4, 0.6,

and 0.8. The p : q ratio is taken to be 4:1 throughout this paper as the goal is to demonstrate

that only a small fraction of noise-free data is sufficient to improve the performance when the SI

111



and SIS methods fail. For example, a total subsampling fraction of 0.2 indicates p = 0.2 for SIS

and p = 0.16, q = 0.04 for SISC. Hence, for the SIS case, 20% of the training data set will be

subsampled L = 5 times and a sparse-identified model will be trained for each subsample. For

the SISC case, each of L = 5 times, 16% of the noisy training data set will be subsampled and

then mixed with 4% of the noise-free training data set to yield a subsample that contains the same

number of data points as the SIS method. Once the subsamples are extracted, a model is identified

with sparse identification for each by tuning the hyperparameters and the best model based on the

AIC is isolated.

Remark 4.5. The sampling time in the data generation step greatly affects the results of any model

identification method because information is inevitably lost in the sampling step. A smaller sam-

pling time will generally yield better results due to the more accurate derivative computations and

a more comprehensive history of the trajectory of the state over the simulation duration. However,

a very small sampling time such as 10−4 or 10−6 may be infeasible in practice. Hence, even if

such a sampling time produces extremely accurate models, the variables, especially in a chemical

process, can rarely be measured with such short sampling periods between each measurement.

Hence, the values of the sampling period in this paper are of the order of 10−2, which balances

practicality with accuracy. This constitutes another limitation of past studies that primarily focus

on high-fidelity data with impractically small sampling times to identify models with a very high

accuracy that may not be immediately transferable to process engineering.

Remark 4.6. Apart from the sampling time and range of initial conditions chosen, the amount

of data generated is also dependent on the simulation duration tf . In case of a system with a
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steady-state solution, the simulation duration should be long enough for the system to reach the

steady-state, ensuring that the same steady-state is reached for every initial condition. However,

once the steady-state is reached, continuing the simulation for much longer is redundant as there

are no new dynamics to be captured. Instead, focus can be shifted to regions of the trajectories

with higher information density such as those with higher gradients and faster dynamics. For

example, in the case of multiscale systems, [98] suggests burst sampling—a sampling technique

where the sampling time is as short as possible in the region of change of the fast subsystem

before it converges to a slow manifold, and is much larger for the rest of the simulation duration

since the dynamics of the slow subsystem can be captured with significantly fewer data points.

Advanced sampling techniques such as burst sampling reduce the amount of data storage as well

as computational burden and must be considered when generating data from simulations instead

of following a simple, iterative procedure for data collection.

Remark 4.7. It is difficult to quantify the amount of data collection required to obtain an accurate

model in a general manner that is applicable to all systems. However, when investigating the data

structure required and attempting to train models for various patterns of generated data, it was

observed from extensive simulations and trials that the dynamics covered over the duration of the

simulation were key to identifying an accurate model as opposed to merely the amount of data

itself or even the sampling time. Hence, a very short period of data collection with an extremely

small, possibly physically infeasible, sampling time can yield a very high number of data-points

but will likely yield a poor model. Instead, a larger simulation period with a larger sampling time

where a fewer total number of data points are collected will yield a superior model. Therefore, the
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emphasis should be not on the amount of data but rather the dynamics captured over the range of

time of data collection. Once sufficient dynamic information is captured in the entire data set, the

aforementioned rules of determining the train-validation-test split can be used.

Remark 4.8. The primary reason that some parameters such as the p : q ratio were fixed as

constants instead of tuning by treating as a hyperparameter was due to the large number of hyper-

parameters to be tuned in this system, and because it was sufficient to demonstrate the results for

a low noise-free fraction as this implies that the results will generally improve when the noise-free

fraction is increased.

4.4.2 Example 1: Predator-prey model

The predator-prey system consists of two first-order differential equations describing the dy-

namics of two species: a predator and a prey. The equations take the form,

ẋ1 = a1x1 − a2x1x2 (4.13a)

ẋ2 = a3x1x2 − a4x2 (4.13b)

where x1 and x2 are the population (numbers) of the prey and the predator, respectively, with

parameters ai ∈ R, ai > 0 for i = 1, 2, 3, 4. In this paper, the specific system considered is

ẋ1 = 0.5x1 − 1.5x1x2 (4.14a)

ẋ2 = x1x2 − 0.5x2 (4.14b)
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The objective is to reconstruct Eq. (4.14) from noisy data using the methods described in the

previous section.

For data generation, using 40 out of 50 initial conditions between 0.01 and 2.0 for each vari-

able, the system of Eq. (4.14) is integrated using a time step of hc = 10−4 from t0 = 0 to tf = 20

and sampled with ∆ = 0.2 for a total of 100 data points per trajectory. This yields a total of 4000

data points to be split into training and validation sets. For the testing set, the remaining 10 initial

conditions are integrated identically as for the training/validation sets except tf is increased to 30.

The goal of extending the simulation period for the testing set beyond the training/validation sets

is to gauge the extrapolating capacity of the model since one supposed advantage of reconstructing

dynamical models as opposed to black-box models is the ability to extrapolate beyond the training

data.

Figure 4.2 shows the results of this system when the various model identification methods

are employed. The various identified models are used to predict the states forward in time using

the 10 initial conditions from the testing set and compared to the original testing data generated in

the data generation step. The results were similar for both variables but more pronounced in x1.

To evaluate the results numerically, the mean-squared error (MSE) is also calculated between the

original data and each predicted trajectory over the entire testing period. The MSE are summarized

in Table 4.1. At the lowest noise level (σ = 0.02), the base case achieves a low test set MSE, and

accurately models the system as seen in Fig. 4.2. However, further improvement is observed when

subsampling with or without co-teaching, with the order of magnitude of the MSE being one order

lower than the base case. Although it appears that the SISC method performed slightly inferior

to SIS, both MSE are extremely small, and the difference between the two MSEs, 0.00018 and

115



0.00021, is negligible in this context, especially as also observed in Figs. 4.2 and 4.3. As the noise

level is increased to low (σ = 0.1) and even medium (σ = 0.2) levels, the results do not change

significantly, except all the errors are now higher. At the highest noise level (σ = 0.3), the base

case deteriorates significantly, overpredicting during most of the simulation period. Subsampling

without co-teaching is not sufficient, and yields even poorer results than the base case in this

example. In contrast, mixing in only 20% of noise-free data to each subsample was sufficient to

improve the model with a much lower MSE than the runs with no subsampling or co-teaching.

Although specific time instances might have poor results in the case of SISC as well, this is not

across most of the simulation period, and the results are generally much more accurate, especially

as also proven by the lower MSE. It is noted that the test set MSE values are generally small, and

hence, even the percent decreases in the test set MSE between the SIS and SISC cases are more

significant than it appears, which confirms the large improvement in accuracy.

When the total subsampling fraction is increased from 0.2 to 0.4, 0.6, and 0.8, it is observed

that the test set MSE usually decreases in this example. However, the difference between the

MSE from the SIS and SISC methods also begins to decrease. This indicates that subsampling

alone without co-teaching can be a large source of improvement in some (but not all) examples.

However, there are two concerns to address if such a strategy is adopted. Firstly, the SISC method,

when using only 40% of the data (p+ q = 0.4), surpasses the accuracy of the SIS method under all

values of p that are used, even p = 0.8 where double the amount of data is being used to identify

a model. Secondly, as the proportion used for subsampling increases, the computational expense

increases. Hence, the SISC method outperforms the SIS method in the sense that it uses smaller

subsamples to identify a model with a lower (or even equal) MSE.
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Table 4.1: Test set MSE for the predator-prey system

σ No subsampling SIS SISC

0.02 0.00596 0.00018 0.00021
0.1 0.15925 0.05550 0.03851
0.2 0.34151 0.08472 0.07614
0.3 0.95057 1.70773 0.35808

4.4.2.1 Justification of coarse search for λ

The most important hyperparameter in the sparse identification algorithm is the sparsification

knob λ due to its impact on the model as well as the continuous nature of the parameter. It may

be considered analogous to the learning rate in neural networks in these aspects. Therefore, it is

typically tuned using either a fine search or a coarse-to-fine search. In this work, however, only 3

values were tested. To ensure the coarse search for the optimal λ did not invalidate the results, an

investigation into the effect of λ on the results was carried out.

To study the effect of λ only, since the best optimizer, derivative approximator, and function

library have already been determined, these parameters can be fixed at their optimal selections and

only λ can be varied. This yields the best possible model that can be achieved by finely tuning

λ while all other parameters have already been optimized. The results for σ = 0.1 are shown in

Fig. 4.4. A number of observations can be made from Fig. 4.4.

1. Values of λ above 1.0 zero too many terms, possibly all terms, leading to very high errors,

with the error remaining constant until λ = 4.0. Therefore, it is sufficient to only consider

values of λ between 0 and 1.

2. For values of λ below 1.0, smaller values generally yield lower values for both the AIC and
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the MSE. However, large differences, particular in orders of magnitude, occur at intervals of

approximately 0.1. Hence, a few small values of λ space 0.1 units apart can yield a model

very close to the best model possible and is sufficient for demonstration and comparison

purposes.

3. At the noise level considered in this investigation of σ = 0.1, our optimal model was found

to use the SR3 optimizer with the TVRD for derivative approximation and only a polynomial

library. The best λ from our coarse search was 0.2. The final training AIC and test set MSE

were -2617.451 and 0.15925, respectively.

4. In contrast, the best λ from the fine search is 0.03, which gives training AIC and test set MSE

of -2973.28 and 0.09942, respectively. The decrease in the metrics from the optimal model

from the coarse search is not very large. Moreover, the best λ from the fine search was only

0.03, requiring a grid spacing of 0.01 or smaller when searching for λ. The optimal model

from the coarse search, however, has a relatively wide range of values over which the same

model is obtained. Hence, a larger step can be used when searching for λ.

5. Due to the small differences in the metrics between the two optimal models in Fig. 4.4, it

is possible that the optimal models would be reversed if the penalty on the number of terms

were to be increased because the model from the coarse search only has 6 terms, while the

model from the fine search consists of 15 terms. Specifically, in Eq. (4.12), the first term

accounts for the model-fit or accuracy by using the MSE while the second term penalizes the

number of terms in the sparse-identified model. The pre-multiplier of “2” taken in Eq. (4.12)

can be increased to penalize the number of terms more heavily and compromise on the
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accuracy. In fact, if the pre-multiplier on the number of terms is larger than 41.54, the model

identified from the coarse search remains as the optimal model. Hence, a more elaborate

scheme to select a search method for λ can take into consideration the balance between

sparsity and accuracy. If a more sparse and less complex model is desired at the expense of

some loss of accuracy, a coarse search may be preferred. If accuracy is crucial, a coarse-to-

fine search may be the fastest method since a coarse search will determine the region for the

fine search and reduce the number of computations required. In the case study of Fig. 4.4, a

coarse search can reveal that values of λ below 0.5 require a finer search.

6. Finally, even the optimal model from the fine search for the base case is inferior in terms

of the test set MSE to both the subsampling cases. Hence, even if the subsampling cases

used a finer search for λ to yield a superior model, it would only increase the differences in

performance. The key findings of this work are the clear, qualitative improvements between

the three different methods rather than the exact quantitative improvement from one model

to another.

7. As seen in Table 4.2, at the lowest noise level, the models produced by the two searches were

identical. This is likely due to the optimal model being almost the exact model required to

be found in both cases. Hence, a finer search is not required.

8. From Table 4.2, at the higher noise levels, which are the highlight of this work, it is ob-

served that there is either an insignificant improvement in performance or no improvement

at all. Therefore, in this work, a finer search for λ was omitted due to both the extremely

heavy computational expense of optimizing such a continuous hyperparameter as well as the
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insignificant improvements that can be achieved from such an effort.

Table 4.2: Test set MSE for the predator-prey system using coarse and fine searches for λ in the
No subsampling case

σ No subsampling (coarse) No subsampling (fine) SIS SISC

0.02 0.00596 0.00596 0.00018 0.00021
0.1 0.15925 0.09942 0.05550 0.03851
0.2 0.34151 0.61213 0.08472 0.07614
0.3 0.95057 0.92768 1.70773 0.35808

4.4.3 Example 2: CSTR

A chemical process example with noisy sensor data is considered. In particular, a single

irreversible second-order exothermic reaction that converts a reactant A to a product B (A → B)

takes place in a perfectly mixed non-isothermal continuous stirred tank reactor (CSTR) as shown

in Fig. 4.5 described by the following set of ODEs:

dCA

dt
=

F

V
(CA0 − CA)− k0e

− E
RT C2

A (4.15a)

dT

dt
=

F

V
(T0 − T ) +

−∆H

ρLCp

k0e
− E

RT C2
A +

Q

ρLCpV
(4.15b)

The states are the reactant concentration CA and temperature T inside the reactor. The inlet con-

tains pure reactant A with concentration CA0 and temperature T0 at a flow rate F . A heating jacket

surrounding the CSTR provides/removes energy at a rate Q to adjust the temperature. The fluid

in the reactor is assumed to have a constant density of ρL with heat capacity Cp. The enthalpy of

reaction, Arrhenius constant, activation energy of reaction, and the ideal gas constant in appropri-

ate units are denoted by ∆H, k0, E, and R, respectively. Process parameter values are given in
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Table 4.3. The total subsampling fractions considered in this example were 0.3, 0.4, 0.6, and 0.8

since 0.2 caused numerical issues.

Table 4.3: Parameter values for chemical process example

F = 5.0m3/h V = 1.0m3

k0 = 8.46× 106m3 kmol−1 h−1 E = 5.0× 104 kJ/kmol
R = 8.314 kJ kmol−1K−1 ρL = 1000.0 kg/m3

∆Hr = −1.15× 104 kJ/kmol T0 = 300.0K
Q = 0kW CA0 = 4kmol/m3

Cp = 0.231 kJ kg−1K−1

The data generation for this process is carried out in a manner to ensure all 50 trajectories

converge to the same steady-state. In particular, the initial concentration CA(0) is assigned val-

ues between 0.01mol/m3 and 10mol/m3, while the initial temperature T (0) takes values between

290K to 320K. With each initial condition, the system of Eq. (4.15) is numerically integrated

with explicit Euler with a step size of 10−4 hr from 0.0 hr to 2.0 hr and then sampled every 0.05 hr

to generate the clean data set for this process. In this example, all data generation was carried

out until tf = 2.0 hr. After extensively tuning the hyperparameters, it was found that the sparse

relaxed regularized regression (SR3) optimizer [184] was consistently the superior optimizer for

this system. The function library that yielded the optimal results was the library with only poly-

nomial terms. In general, when selecting the function library, it is advisable to start with a small,

less complex library, such as a polynomial library, and including trigonometric or other terms only

when necessary.

The results for this system are plotted in Figs. 4.6 and 4.7 while the MSE are given in Ta-

ble 4.4. It is observed that, at the lowest two noise levels of σ = 0.02 or 0.1, both methods

satisfactorily capture the dynamics of the CSTR system, with small improvements from the base
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case to the SIS case and from the SIS case to the SISC case. However, as these differences are

only noticeable when analyzing either Fig. 4.6 or Table 4.4 very closely, they are not significant.

At the medium noise level of σ = 0.2, the differences become noticeable in some of the test tra-

jectories. It is observed in Fig. 4.6 that the SIS prediction marginally outperforms the base case,

but the SISC model significantly performs better than the SIS model, especially in the intervals

t ∈ (6, 10)∪ (12, 14). The MSE also decreases by roughly 20% from the base case to the SIS case

and a further 10% between the SIS case and the SISC case. The largest differences, however, are

seen at the highest level of noise i.e., σ = 0.3. In this case, the SIS model actually fails to capture

the dynamics completely and performs worse than the base case with almost twice the value of the

MSE. In contrast, the SISC model outperforms the base case even using only 20% of the data in

each subsample. There is a significant 21% drop in the MSE as seen from Table 4.4. However, the

difference can also be observed in Fig. 4.7, particularly in x1, which is the plotted variable, most

strongly between t = 8 and t = 10.

In this example, as the total subsampling fraction is increased, there does not appear to be a

consistent trend in the results. In fact, the results remain very similar for all the values of p and

q tested. Therefore, it may be desirable to use lower values of the subsampling fraction and only

increase it as required.

Table 4.4: Test set MSE for the CSTR system for four noise levels

σ No subsampling SIS SISC

0.02 0.01113 0.01059 0.01102
0.1 0.10510 0.09922 0.10370
0.2 0.49837 0.40037 0.36283
0.3 0.98210 1.89607 0.77613
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4.4.4 Advantages of explicit methods

The data generation in this paper is done via integrating the ordinary differential equation

systems of the case studies considered in time using the Runge-Kutta numerical integration method

with an integration time-step of hc = 10−4. As this is an explicit numerical integration method,

the calculation time is on the order of milliseconds. To be precise, for the 50 total trajectories that

the system is integrated along from the 50 initial conditions, the total time is around 0.1 seconds

and 0.13 seconds for the predator-prey and CSTR systems, respectively.

The integration of the identified models is also on the same order: 0.1/50 or 0.13/50 seconds

for a trajectory. The computational time for the 10 test trajectories was calculated and multiplied by

5 to make a fairer comparison to the times required for the first-principles system. The results had

a wider range from 0.170 seconds to 0.482 seconds, with an average of 0.266 seconds. Two points

must be emphasized here. Firstly, these times are slightly higher than those of the first-principles

model data generation. This can be due to the higher complexity of the models. However, some

of the models had the same number of terms as the first-principles model, with coefficients also

very close to the original system. This was usually seen in the lower noise levels where a near-

exact reconstruction was possible. These models should have required the same time to integrate

as the first-principles models. Therefore, the reason for the higher times can be attributed to (a) the

integration for the sparse-identified models being carried out by the PySINDy package’s internal

ODE integration function rather than Python’s ODE solvers, and (b) some of the models in some of

the subsamples might not be numerically stable, contributing to a large increase in the maximum

and average values reported above. The most important fact to note, however, is that these times,
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especially for one trajectory, are still all below one second, and this rapid prediction is a key

advantage of using ODE models with explicit nonlinearities in system identification as opposed to

ODEs with neural network function approximators for the nonlinear basis functions, which is as a

possibility if the identified model with the explicit functions is not accurate enough (not the case

in our studies) at the expense of increasing computational burden.

Lastly, although the above range and average of integration times for the sparse-identified

models are calculated from only the base (no subsampling) case of the predator-prey system, the

results generalize to both of the other cases and also the CSTR system. This is because, once the

ODE is identified, the data or procedure used to identify the ODE is irrelevant. Hence, even though

the model identification step is more complex and time-consuming for the subsampling scenarios,

once identified, the model is integrated using the same Runge-Kutta methods with the same step

sizes. Moreover, there was no clear correlation between the number of terms in the identified ODE

model and the integration time required, as long as the system was not unstable and did not diverge.

Hence, the times reported above can be extended to all the sparse-identified models considered in

this paper.

4.5 Conclusion

In this work, a novel algorithm was devised to build dynamical models that capture nonlinear

process dynamics given only highly noisy sensor data. The noise was assumed to follow a white

Gaussian distribution with different variances. A predator-prey model and a chemical process were

used to demonstrate the performance and applicability of the new algorithm. It was shown that the
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basic sparse identification algorithm was inadequate in identifying the model in the presence of

high noise in the data, particularly above a variance of 0.01 for normalized data. However, when

the subsampling technique was introduced, without co-teaching, by randomly subsampling to leave

out the more noisy data in some iterations, it could identify the dynamics satisfactorily up to a noise

variance of 0.04. Finally, the proposed algorithm combining subsampling with co-teaching, where

the original data is subsampled but also mixed with some noise-free data from first-principles

model simulations was used. Using the third algorithm, the performance improved slightly in the

presence of noise with variance up to 0.04. However, at the highest noise level studied, which was

characterized by a variance of 0.09, both the base case and the subsampling without co-teaching

failed and could not identify the models using the extremely noisy data. The subsampling with co-

teaching could accurately identify the models in this case, even when only 20% of the subsamples

consisted of noise-free data generated from first-principles model simulations. The performance

was evaluated based on plots of the outputs as well as the mean squared error (MSE) on the testing

data sets. The results were qualitatively similar in both systems investigated, with more accurate

models predicting the testing data set more accurately and yielding lower MSE values.
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Figure 4.2: Comparison of original noisy data (grey dots) with results from sparse identification
without any subsampling (blue line), subsampling without co-teaching with p = 0.2 (green line),
and subsampling with co-teaching and p = 0.16, q = 0.04 (red line) for the quantity x1 in the
predator-prey system.
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Figure 4.3: Comparison of original noisy data (grey dots) with results from sparse identification
without any subsampling (blue line), subsampling without co-teaching with p = 0.2 (green line),
and subsampling with co-teaching and p = 0.16, q = 0.04 (red line) for the quantity x2 in the
predator-prey system.
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Figure 4.5: A continuous-stirred tank reactor with a heating coil
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Figure 4.6: Comparison of original noisy data (grey dots) with results from sparse identification
without any subsampling (blue line), subsampling without co-teaching with p = 0.2 (green line),
and subsampling with co-teaching and p = 0.16, q = 0.04 (red line) for the concentration CA of
the CSTR system.
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Figure 4.7: Comparison of original noisy data (grey dots) with results from sparse identification
without any subsampling (blue line), subsampling without co-teaching with p = 0.2 (green line),
and subsampling with co-teaching and p = 0.16, q = 0.04 (red line) for the temperature T of the
CSTR system.
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Chapter 5

Modeling and control of nonlinear processes

using sparse identification Using dropout to

handle noisy data

5.1 Introduction

A significant amount of effort has been directed toward the development of mathematical

models that describe the physical laws that govern various systems of relevance in engineering

and the physical sciences. Although this has traditionally been achieved using mathematical and

first-principles frameworks, data-driven approaches have attracted much attention in more recent

endeavors. A large proportion of these physical laws are in the form of ordinary differential equa-

tions (ODEs) or partial differential equations (PDEs), which are dynamical time-varying models.

The Navier-Stokes equations in the domain of fluid mechanics are an ubiquitous model of this

form that is widely used in applications in chemical and mechanical engineering. Such time-
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series predictive models are vital to the design of advanced model-based control methodologies

such as model predictive control (MPC) and preemptive maintenance in industrial engineering ap-

plications. In predictive maintenance, the health of process equipment is modeled to minimize

downtime and increase manufacturing efficiency. An MPC uses a dynamic model to estimate pro-

cess variables over a finite prediction horizon to calculate optimal control actions. Consequently,

several recent articles have focused on the building and integration of data-based models in MPC

[e.g., 135, 146–155, 192, 193]. The bank of data-driven system identification algorithms is expan-

sive, ranging from traditional methods such as singular value decomposition [156] and numerical

algorithms for Subspace State Space System Identification (N4SID) [30] to more recent advances

such as auto-regressive models with exogenous inputs (ARX/ARARX) [157–159]. However, due

to the unprecedented increase in computational capacity and algorithmic development over the last

two decades, machine learning (ML) has become a popular option for modeling classical engineer-

ing systems due to its efficiency in providing inferences on big data and nonlinear behavior, both

of which are characteristics of industrial process systems. This advantage may be attributed to the

many tunable hyperparameters in the structure of ML models. In practical regression problems,

some ML models that are commonly used are support vector regression, deep neural networks,

and sparse identification (SINDy), among others. In the present article, sparse identification, con-

ceptualized by [77], is further developed. While the original intent of the SINDy method was

to try to learn governing laws from data as interpretable ODEs consistent with the physics [e.g.,

77, 78], the use case of SINDy is not restricted to learning governing laws from data and can be

used to build computationally-efficient, closed-form models for control. Furthermore, the ODE

models obtained from the SINDy method may or may not be consistent with physical laws as there
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is no guarantee that the search over the set of nonlinear basis functions would lead to a dynamic

model providing such physical insight. In the present work, we employ the SINDy method as a

system identification method to build dynamic models from noisy data using standard error met-

rics to determine their goodness of fit. With respect to noise, numerous efforts have been made to

improve the sparse identification in many aspects, as seen in the work of [81, 113, 163–170], but

most of these endeavors consider noise-free data from theoretical simulations. Hence, the practical

challenge of handling the inevitable measurement sensor noise present in industrial data remains

largely unresolved at the moment.

ML methods have mostly been pioneered in the field of computer science, where either high-

fidelity data is often readily available, or “noisy data” is used to refer to improper labels in clas-

sification rather than regression problems. Hence, many ML methods do not readily generalize

to the case of solving regression problems in the field of engineering applications, where noise

refers to numerical inaccuracies that are inherent in measurement devices. Thus, the performance

of ML methods may be unexpectedly poor when applied to such regression problems and noisy

data sets without consideration of the type and magnitude of noise present. This possible draw-

back was reconfirmed in [194], where machine learning and common statistical techniques both

performed poorly without any data preprocessing, but yielded satisfactory results following fea-

ture engineering. Hence, classical system identification methods recognize this challenge and have

expanded the traditional methods to counteract the issue of noise. For example, with respect to

linear systems, [172] extended ARX/ARARX methods to the case of additive white noise in in-

put/output data, [173] used principal component analysis (PCA) to estimate the noise term, [174]

applied subspace identification methods to closed-loop operational data, and [175, 176] handled
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Gaussian white noise in linear dynamical systems with the Kalman filter. However, as linear ap-

proximations may not perform adequately for nonlinear systems, [175] proposed methods such

as the extended Kalman filter and moving-horizon estimation for the case of nonlinear systems.

Nevertheless, many of the aforementioned methods restrict the class of systems and distribution of

noise that may be present, constricting their widespread use in an industrial setting. Consequently,

the problem of nonlinear process modeling using noisy time-series data from sensors remains an

open challenge for active researchers and control practitioners in the field.

In the recent literature surrounding SINDy, the work on the modeling front has been enumer-

ated and described in detail in [195]. This includes the use of an autoencoder and Kalman filter to

recover the denoised states [106], the use of the total-variation regularized derivative, the applica-

tion of a smoother such as the Savitzky-Golay filter to prefilter the data [78], updating rather than

re-identifying new models upon the availability of new data [117], the use of Laplace transforms

to rewrite ODE models using integral terms [108], the use of splines as basis functions to estimate

the parameters in the already known dynamic model structure [196], the use of Duhamel’s integral

for mass-spring systems [109], exploiting spectral methods [111, 112] or Tikhonov regularization

[115] to estimate the derivatives, the incorporation of weights in the least squares algorithm [115],

subsampling, and Bayesian regression [116], among others. A common inadequacy identified in

many of the articles [e.g., 106, 107] includes the addition of noise to the derivatives after its com-

putation rather than directly to the noisy data. However, when using SINDy, a significant part of

the challenge of handling noisy data, perhaps the most, is the estimation of the derivatives from

noisy data.

Beyond noise, a second challenge where a gap existed in the literature was the consideration
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of the sampling rate of the data. Data in industrial process systems must be measured at finite

time intervals, known as the sampling time. This is an inherent limitation of sensors and can be

dependent on the variable being measured. For example, a high-end thermocouple can measure the

temperature every 0.01 seconds, while a gas chromatograph can only yield interpretable results on

the composition of the substance every 15 minutes. The sampling time is also a key factor affecting

the accuracy of SINDy, as the numerical estimation of the derivative is closely linked to the spacing

of the data points in the time domain. Several articles that advanced sparse identification further

used data sampled at extremely small rates, such as 10−5 s, which is very rarely found in industrial

processes. The combination of noisy data and larger sampling times introduces new challenges,

where existing methods failed. Therefore, [195] studied in depth the dual effect of Gaussian noise

and large sampling times on sparse identified models and proposed a novel algorithm that com-

bined subsampling from statistics with co-teaching from the neural network context. Specifically,

subsampling refers to using a fraction of the data to identify a model with the aim of eliminating

outliers, while co-teaching takes advantage of noise-free data obtained by simulating simplified

first-principles models that can be derived theoretically. The resulting method significantly outper-

formed the state-of-the-art when sensor noise levels were very high.

However, first-principles models simplify the differential equations, thereby providing an im-

perfect representation of the real process. Industrial process systems may often be far too complex

with highly nonlinear behavior and input-output interactions that are impossible to reasonably

derive and capture in such a simplified physics-based first-principles model, leading to an exor-

bitant plant-model mismatch. While the initial transient behavior of a first-principles model may

agree with the industrial process, often, the long-term dynamics may deviate entirely, rendering the
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first-principles model ineffective for long-term predictions. While certain methods such as neural

networks may only train the model to predict the next sampling time i.e., capture short-term de-

pendencies, for a method like SINDy where the resulting model is an ODE that must be integrable

from a given initial condition for sufficiently long while remaining within close agreement of the

true trajectory, the method of co-teaching is not applicable if the plant-model mismatch is too large

in the long-term. This is especially relevant when the final steady-state value itself is not the same

between the two scenarios. In such a case, both the long-term dynamics and the final steady-state

values of the first-principles model are unrepresentative of the industrial process that is desired to

be captured. Hence, the goal of this article is to overcome the combined challenges of modeling

data that is 1) industrial, 2) highly noisy, and 3) coarsely sampled using sparse identification with

ensemble learning. To obtain such a data set, a chemical process simulator is used.

Chemical process simulators are a broad category of software that are used widely in indus-

try to design and optimize processes by conducting reliable steady-state and dynamic simulations.

Their superiority over first-principles simulations may be attributed to their built-in packages that

handle unit operations, thermodynamic properties, molecular interactions, as well as other features

[197]. Chemical process simulators can be broadly divided into equation-oriented and sequential

modular approaches such as EMSO software and Aspen Plus, respectively [198]. Moreover, [199]

investigated the integration of process control systems within process simulators since the two units

share decisions and information. Therefore, in this work, a large-scale chemical process is designed

in the high-fidelity process simulator, Aspen Plus Dynamics, and then dynamically simulated to

generate time-series industrial data. The data set is then corrupted with sufficiently high Gaussian

white noise to investigate the enhanced performance of sparse identification with ensemble learn-
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ing when standard sparse identification is inadequate and yields unstable models. The remainder

of this manuscript is outlined as follows: in Section “Preliminaries”, the general class of non-

linear process systems under consideration as well as the theoretical background of stabilization,

sparse identification, and ensemble learning are presented in brief. In Section “Ensemble-based

sparse identification”, the development of SINDy with dropout to produce an ensemble of models

is explained. Finally, a large-scale chemical process is used to assess the modeling and control

performance of the proposed algorithm in Section “Application to a chemical process modeled in

Aspen Plus Dynamics”.

5.2 Preliminaries

5.2.1 Notation

Given a vector x, its transpose and weighted Euclidean norm are denoted by x⊤ and |x|Q,

respectively, where Q is a positive definite matrix. LfV (x) is used to denote the standard Lie

derivative LfV (x) := ∂V (x)
∂x

f(x). The “\” operator denotes set subtraction such that A\B := {x ∈

Rn | x ∈ A, x /∈ B}. A function f(·) belongs to class C1 if it is continuously differentiable in its

domain.
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5.2.2 Class of systems

We consider the general class of continuous-time nonlinear systems of the form,

ẋ = F (x, u) := f(x) + g(x)u, x(t0) = x0 (5.1a)

y = x+ w (5.1b)

where x ∈ Rn is the state vector, u ∈ Rm is the manipulated input vector, y ∈ Rn is the discretely

sampled vector of state measurements, w ∈ Rn represents sensor noise, and f(·) and g(·) are

sufficiently smooth vector and matrix functions of dimensions n × 1 and n × m, respectively.

Without loss of generality, throughout the article, the initial time t0 and the initial condition f(0)

are taken to be 0, the latter of which implies that the origin is a steady-state of the nominal system

of Eq. (5.1), i.e., (x∗
s, u

∗
s) = (0, 0), where x∗

s and u∗
s represent the steady-state state and input

vectors, respectively.

5.2.3 Stability assumption

For the nominal system of Eq. (5.1) under full state feedback consisting of noise-free state

measurements, it is assumed that a stabilizing control law u = Φ(x) ∈ U exists that can render the

origin of the closed-loop system of Eq. (5.1) exponentially stable. Converse Lyapunov theorems

[200–202] then imply that there exist a C1 control Lyapunov function, V (x), and four positive

constants, c1, c2, c3, c4 such that ∀x in an open neighborhood D around the origin:

c1|x|2 ≤ V (x) ≤ c2|x|2, (5.2a)

139



V̇ (x) =
∂V (x)

∂x
F (x,Φ(x)) ≤ −c3|x|2, (5.2b)∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ c4|x| (5.2c)

where V̇ represents the time-derivative of the Lyapunov function, and F (x,Φ(x)) represents the

nominal system of Eq. (5.1) under a candidate controller Φ(x) such as the universal Sontag control

law [140]. We first characterize a set of states ϕu = {x ∈ Rn | V̇ (x) = LfV + LgV u <

−kV (x), u = Φ(x) ∈ U , k > 0} ∪ {0} under the controller u = Φ(x) ∈ U that satisfies the

conditions of Eq. (5.2). Subsequently, we define the closed-loop stability region Ωρ [203] for the

nominal system of Eq. (5.1) to be a sublevel set of V inside ϕu i.e., Ωρ := {x ∈ ϕu | V (x) ≤ ρ},

where ρ > 0 and Ωρ ⊂ ϕu.

5.2.4 Sparse identification

Sparse identification is a recent breakthrough in nonlinear system identification that has been

shown to be effective in numerous examples from various engineering disciplines [71–76, 129].

The goal of SINDy is to use only discrete measurement data from a physical system to identify a

first-order ODE of the form,

˙̂x = f̂(x̂) + ĝ(x̂)u (5.3)

where x̂ ∈ Rn is the state vector of the sparse-identified model, while f̂(·) and ĝ(·) are the vector

fields that capture the physical laws governing the system.

The key assumption in SINDy is that, for most physical systems, the right-hand side of

Eq. (5.3) contains only a few nonlinear terms. Consequently, if a large bank of possible nonlinear
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basis functions are considered for f̂ and ĝ, only a few terms will be active and will have non-zero

premultiplying coefficients associated with them. Since the space of the candidate basis functions

is then sparse, efficient convex optimization algorithms can be used to calculate the coefficients,

which is the sparse identification problem. The application of SINDy starts with sampling real-

time data from the process to be identified. This may be collected via sensors from an open-loop

experimental/industrial process or generated from open-loop computer simulations using theoret-

ical models, either from first-principles or chemical process simulators. The sampled data set is

then arranged into the compact data matrix X and the input matrix U ,

X =



x1 (t1) x2 (t1) · · · xn (t1)

x1 (t2) x2 (t2) · · · xn (t2)

...
... . . . ...

x1 (tm) x2 (tm) · · · xn (tm)


(5.4a)

U =



u1 (t1) u2 (t1) · · · ur (t1)

u1 (t2) u2 (t2) · · · ur (t2)

...
... . . . ...

u1 (tm) u2 (tm) · · · ur (tm)


(5.4b)

where xi(tℓ) and uj(tℓ) represent the ith state measurement and j th input measurement at the ℓth

sampling time, respectively, with i = 1, . . . , n, j = 1, . . . , r, and ℓ = 1, . . . ,m. Ẋ represents the

first-order time-derivative of X , which may be possible to measure directly in some applications,

but is otherwise numerically estimated. Importantly, this step of obtaining Ẋ is the key challenge

when using noisy data for sparse identification since, based on the approximation method, numer-

ical estimations of the derivative may not be stable when using noisy data. From the data matrices
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X and U , a function library Θ(X,U) is created, which contains p columns corresponding to the p

nonlinear basis functions considered for the terms in f̂ and ĝ. Given the universality of polynomi-

als and trigonometric functions in the field of engineering, an example of a typical function library

matrix when identifying process systems is as follows:

Θ(X,U) =

 1 X XP2 sin(X) eX U UX2

 (5.5)

where XP2 concisely represents all possible quadratic nonlinearities,

XP2 =

[
x2
1 x1x2 · · · x2

2 x2x3 · · · x2
n

]
(5.6)

However, the preliminary basis set chosen can and should be updated if required based on the

performance and available process structure knowledge. Each candidate basis function in Eq. (5.5)

associated with each variable or row of Eq. (5.3) is assigned a coefficient, with all the coefficients

being stored in the matrix Ξ ∈ Rp×n, which is the output of the sparse identification algorithm

calculated by solving the following equation:

Ẋ = Θ(X,U)Ξ (5.7)

Popular methods for solving Eq. (5.7) include sequential thresholded least squares (STLSQ) and

sparse relaxed regularized regression, the latter of which is based on the least absolute shrinkage

and selection operator (LASSO) [184]. In STLSQ, a hard threshold called the sparsification knob
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λ is first specified, after which all coefficients in Ξ smaller than λ are set to zero. The resulting

equation is then solved to yield Ξ. This procedure is repeated until all non-zero coefficients con-

verge. The sparse nature of the matrix Ξ makes the iterations fast and efficient. The final values of

Ξ obtained are then used to construct the continuous-time ODE,

ẋ = Ξ⊤(Θ(x⊤, u⊤))⊤

where Θ(x⊤, u⊤) is not a matrix of data, but a column vector of symbolic functions of x and u

from the library of considered functions.

Remark 5.1. The sparse identification-based modeling approach is a technique to develop closed-

form nonlinear, first-order ODE models for process systems using time-series measurement data. It

should be viewed similarly to other system identification techniques for developing dynamical mod-

els from data. The sparse identification modeling technique’s central advantage is the construction

of a closed-loop form nonlinear model that can be efficiently numerically integrated when used in

the context of MPC—there is a significant computational efficiency advantage when a closed-form

model is used in MPC as opposed to recurrent neural network models that are more computation-

ally demanding in both training and implementation phases. This is the key reason for exploring

the use of sparse identification modeling in the context of MPC. In [204], for a similar process

system i.e., CSTRs modeled via Aspen Plus Dynamics, it was demonstrated that the average time

to solve the optimization problem in the MPC took 2.1161 minutes (127 seconds), while the pro-

posed dropout-SINDy-based MPC took an average of 42 seconds. While the system of [204] is not

identical to the one studied here, the number of control actions to be computed by the MPC and the
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computational power of the computer were very similar, thereby expecting similar computational

efficiency results.

5.2.5 Ensemble learning

To improve the performance of machine learning models, one simple and intuitive practice

is the use of multiple models to make predictions, which is known as ensemble learning. All the

models are identified from the same data set, but the model structure differs from one model in the

ensemble to the next, which introduces flexibility and allows for better generalization. Specifically,

ensemble learning potentially reduces variance of the algorithm without increasing the bias for in-

dividual models [205] and also enables the accounting of uncertainty during the model selection

process [206]. Ensemble learning algorithms are broadly classified into two categories: homoge-

neous and heterogeneous. In homogeneous ensembles, one base learning method/algorithm is used

multiple times on different, random subsets of the entire data set to generate several models that

are slightly different due to the different data subsets used. The concept is similar to subsampling.

In contrast, heterogeneous ensemble learning involves using a diverse array of machine learning

methods such as linear regression, artificial neural networks, support vector regressors, XG Boost,

etc. to improve generalization and diversity within the ensemble. Whether the ensemble is homo-

geneous or heterogeneous, the final output of the model is taken as either a central tendency of all

the models in the ensemble or selected by cross-validation. Common central tendencies include

the mean (bagging) or median (bragging) of all the model parameters/outputs.
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5.2.6 Model predictive control using sparse identification

To achieve closed-loop stability and performance, we propose a Lyapunov-based model pre-

dictive control (LMPC) scheme using the SINDy model, formulated as follows:

J = min
u∈S(∆)

∫ tk+N

tk

L(x̃(t), u(t)) dt (5.8a)

s.t. ˙̃x(t) = Fsi(x̃(t), u(t)) (5.8b)

u(t) ∈ U , ∀ t ∈ [tk, tk+N) (5.8c)

x̃(tk) = x(tk) (5.8d)

˙̂
V (x(tk), u) ≤ ˙̂

V (x(tk),Φsi(x(tk)), if x(tk) ∈ Ωρ̂\Ωρsi (5.8e)

V̂ (x̃(t)) ≤ ρsi, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρsi (5.8f)

where x̃, N , and S(∆) in Eq. (5.8a) denote the predicted state trajectory, the number of sampling

periods in the prediction horizon, and the set of all piecewise constant functions with a period of

∆, respectively. Fsi is the sparse identified process model, Φsi is a stabilizing control law that

guarantees exponentially stability of the origin of the closed-loop system of Eq. (5.3). Ωρ̂ and Ωρsi

denote the stability region for the closed-loop sparse identified system and the target region for

the final predicted state, respectively. V̇ is the time-derivative of V , the Lyapunov function, and is

given by ∂V (x)
∂x

Fsi(x, u). The LMPC calculates u∗(t), the optimal input sequence, over the entire

prediction horizon i.e., t ∈ [tk, tk+N), and transmits the first control action of the sequence u∗(tk)

to the actuator to be implemented during the next sampling period ∆. Subsequently, the horizon

of the LMPC is advanced by one sampling period and resolved again at the next sampling period.
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The goal of the the optimization problem of Eq. (5.8) is to minimize the objective function

of Eq. (5.8a), which is equal to the integral of L(x̃(t), u(t)), over the entire prediction horizon.

Equation (5.8b) denotes the sparse identified model that is utilized to predict the closed-loop states

over the prediction horizon while varying the input u within the constraints set by Eq. (5.8c). The

initial condition of the states required by the SINDy model of Eq. (5.8b) is given by Eq. (5.8d),

which is the state measurement at time tk. For stability considerations, we further add the last two

constraints known as Lyapunov constraints. The first constraint, given by Eq. (5.8e), guarantees

that the state x(tk), when outside the target region Ωρsi , will move toward the origin in every step.

The proof for this, which relies on bounded modeling errors or bounded disturbances and Lipschitz

properties, can be found in detail in [207]. The result of the proof is that, as long as the state starts

from within the stability region Ωρ, the state converges to Ωρsi in a finite number of sampling times

without leaving the stability region. The second constraint of Eq. (5.8f) ensures that, once the state

enters the invariant set Ωρsi , it remains within this region for the entire prediction horizon.

5.3 Ensemble-based sparse identification

Modeling systems using data from first-principles simulations corrupted with sensor noise

has been studied in [195]. However, the combined challenge of noise and industrial process dy-

namics is found to be too challenging for basic SINDy. Therefore, in this work, to overcome the

challenge of dealing with industrial noise, we employ a recent advancement in SINDy, which uses

homogeneous ensemble learning. As described in the “Ensemble learning” Subsection, ensemble

learning refers to the identification of multiple models to improve the prediction. However, in the
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context of sparse identification, the details must be elucidated.

In sparse identification, as either the data set or the function library may be used partially,

two types of ensembles exist. Ensemble learning can refer to the development of multiple models

using either random subsets of the data set with the complete function library (i.e., subsampling) or

random subsets of functions from the candidate library with the complete data set. It was demon-

strated in [195] that the former mode of ensemble learning does not improve the performance

under high noise levels. Moreover, it was observed in simulations that the models built using basic

SINDy or ensembles utilizing the full function library were often unstable. This may be explained

by the presence of too many active nonzero functions in an ODE causing the resulting ODE model

to have inherently unstable dynamics. Therefore, in this paper, we investigate the second mode

of ensemble learning, where the entire data set is used, but random functions in the library are

dropped out to further promote sparsity and stability. Specifically, as shown in Algorithm 1, nmodels

models are identified, each time dropping out ndropout functions from the candidate library, with

each model identification using the entire data set. For the ith iteration, the function library of

Eq. (5.5) may be of the form,

Θi(X,U) =

 1 X sinX cosX tanX

 (5.9)

where quadratic and cubic polynomials, as well as tanh terms have been removed from the basis

functions. The corresponding Ξi will assign values of zero for the ndropout functions that have

been dropped out, and the STLSQ optimizer will find the best ODE model that can be built using
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this reduced set of basis functions by tuning the sparsification knob λ to minimize the validation

error. After constructing all nmodels models from various subsets of library functions, the final

model can be designed by taking the median of all the values of the model coefficients for each

function in the library. While an ensemble may generally and commonly use the mean or median,

in this scenario, the median is recommended. If most models assigned a zero value to a certain

coefficient, it is highly likely that the corresponding term is insignificant and should be ignored in

the model. Therefore, when using the median, if more than half of the identified models have a

zero coefficient for a term, it is entirely ignored. In contrast, the mean will always return a nonzero

value even if only one of the models has a nonzero coefficient for the term. As a result, using the

mean to create an ensemble will very likely reduce sparsity and promote instability. Therefore, the

final model is constructed using the median in this work. Once the final model using the median

coefficient values is selected, the model is integrated from the test set initial conditions, which is

used to compute the test set MSE and also plotted against time to visually confirm stability as well

as accuracy. The flow of data and models throughout the algorithm is shown in Fig. 5.1.

Remark 5.2. A more accurate yet computationally expensive approach is to record the validation

MSE for every sub-model during training. Finally, the sub-model that yielded the minimum MSE

at its optimal value of λ can be selected as the best model. However, in this work, the median was

chosen because of its simplicity and functionality.

Remark 5.3. It is important to emphasize that SINDy searches over a “bank” of explicit non-

linearities (basis functions) by solving an optimization problem with suitable penalties on both

the error between the values of the actual state and the predicted model state and the number of

148



Algorithm 2: Sparse Identification with Dropout
Input: X,U,Θ, ndropout, nmodels

Output: Ξ
center X at the steady-state and scale by the maximum absolute value of each column;
compute estimate of Ẋ of noisy data using smoothed finite-differences;
for i← 1 to nmodels do

randomly remove ndropout columns from Θ(X,U) to form Θi(X,U);
solve Ẋ = Θi(X,U)Ξi using STLSQ with multiple λ to get Ξi with minimized MSE;
with calculated Ξi, integrate ODE and compute MSE;

end
Let Ξ = Median{Ξi};
Integrate test set initial conditions with Ξ;
Compute MSE and plot predicted test set trajectories using model;
Verify low MSE and stability.
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Figure 5.1: Data flow diagram for model construction.
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nonzero pre-multipying coefficients of the nonlinear basis functions used to construct the ODE

model. If there is any physical insight on the type of nonlinearities that the approach should con-

sider, this physical insight can be incorporated into the optimization search (biasing, for example,

the order with which the nonlinearities are considered in the optimization search in an approach

similar to the ALAMO modeling technique [6, 208]). But if such a physical insight does not exist,

then a model will be constructed with the search procedure described above, and then tested to

determine if it is a suitable model (i.e., tested for numerical stability, sensitivity to parameters,

and predictive ability with respect to validation data). It is important to note here that there is

no guarantee that the sparse identification modeling approach will yield a nonlinear model whose

nonlinearities provide information about the underlying physico-chemical phenomena occurring

in the process. If the model is deemed unsatisfactory by the selected accuracy criteria, then the

optimization cost parameters should be modified, and another model construction should be done.

From a control point-of-view, only a stable model that accurately predicts the state evolution with

time is needed, and there is no need for the model used in the controller to provide any physical

insight (this is the case with any system identification technique e.g., N4SID, MOESP, NARMAX).

Therefore, there is no requirement for prior knowledge of the nonlinear dynamics in SINDy; if

such information is available, it can be used, but it is not needed to apply SINDy, just as it is not

needed for any other system identification technique. This point will be further illustrated with an

example in Section 5.4.2.1, where accurate models can be shown to be derived even when not using

“physically-motivated” basis functions. The advantages of SINDy models in control, such as com-

putational efficiency and explicit modeling of nonlinearities, remain regardless of the availability

of prior knowledge of the system dynamics.
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Remark 5.4. The Hammerstein-Wiener modeling framework is another form of modeling that is

often used to deal with nonlinearities in process systems. In Hammerstein-Wiener models, a linear

dynamic element is followed by a static nonlinear element that can be used to represent nonlinear

process behavior. The nonlinear elements considered in these modeling approaches are usually

polynomial nonlinearities, and the resulting models are of discrete-time. When incorporated into

MPC, these nonlinear models may lead to improved closed-loop performance over MPC with

linear models [13, 14]. However, the polynomial basis functions used in Hammerstein-Wiener

models are already possible candidates in the function library of sparse identification. Hence, the

SINDy method will yield models that are at least as comprehensive as the Hammerstein-Wiener

models, and possibly better when the SINDy basis functions are chosen to be more expansive than

only polynomial terms.

5.4 Application to a chemical process modeled in Aspen Plus

Dynamics

We evaluate the proposed dropout-SINDy algorithm with a large-scale chemical process mod-

eled using Aspen Plus Dynamics V12. First, a dynamic model is constructed, which is then used to

generate a time series data set through extensive open-loop simulations for the purpose of training

and testing the SINDy model. The data generation is carried out with a large range of inputs and

initial conditions in order to cover a wide area of the operating region. Subsequently, open- and

closed-loop simulations are conducted and the results presented.

We consider the reaction of Ethylene (E) with Benzene (B) to form Ethylbenzene (EB) in
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FE , CE , Tin FB , CB , Tin

CE , CB , CEB , T

ṁcoolant

ṁcoolant

C2H4 +C6H6 −−→ C8H10

C2H4 +C8H10 −−→ C10H14

Figure 5.2: A continuous-stirred tank reactor with a cooling jacket.

a perfectly mixed, non-isothermal continuous stirred tank reactor (CSTR) as shown in Fig. 5.2.

However, a side reaction that consumes Ethylene (E) and Ethylbenzene (EB) to produce Diethyl-

benzene also occurs simultaneously. Both reactions are exothermic, irreversible, of second-order,

and are shown below:

C2H4 + C6H6
k1−−→ C8H10 (main) (5.10a)

C2H4 + C8H10
k2−−→ C10H14 (5.10b)

where the desired reaction of Eq. (5.10a) is annotated as “main”.

5.4.1 Dynamic model construction

In this paper, we model the CSTR in steady-state and transient modes of operation using As-

pen Plus and Aspen Plus Dynamics V12, respectively, both of which are high-fidelity chemical
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process simulators. The dynamic model’s construction begins with the design of the process under

steady-state conditions using Aspen Plus, where mass and energy balances are carried out. Once it

is ensured that the steady-state simulation converges, Aspen Plus Dynamics is used to investigate

the dynamic performance of the model and implement the desired controller during dynamic op-

eration. The end-to-end procedure to construct the steady-state and dynamic models is presented

below, with the resulting process flow diagram (PFD) depicted in Fig. 5.3.

1. Feed streams’ properties: The raw materials E and B are fed to the CSTR at fixed molar flow

rates of FE and FB, respectively, with a fixed inlet temperature of Tin = 350K. The feed

flow rate of B is chosen to be equal to twice the flow rate of E, despite the 1:1 stoichiometric

ratio of the reactants, in order to minimize the concentration of E in the reactor, thereby

suppressing the undesired side reaction. The molar concentrations of Ethylene, Benzene, and

Ethylbenzene are represented by CE , CB, and CEB, respectively, while the temperature of

the reactor is denoted by T . Once converted to scaled deviation variables from their steady-

state values, the states CE , CB, CEB, and T are denoted by x1, x2, x3, and x4, respectively.

Process parameter values are given in Table 5.1.

2. Pressure drop specifications: To create a functional dynamic model, the simulation must

allow for pressure drops in the fluid flow throughout the process. This is achieved by using

valves between every two pieces of equipment, to allow the pressure to vary as the process

fluid flows through the equipment. When the pressure drop is selected properly, the model

correctly deduces the direction of fluid flow, leading to zero errors during runtime of the

simulation. On the contrary, a pressure drop too low will trigger errors in the simulation.
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The pressure drops in our model are 5 bar and 2 bar for the feed valves (v1, v2) and product

valve (v3), respectively.

3. Reactor specifications: The CSTR is surrounded by a cooling jacket through which liquid

water at 298 K flows with a mass flow rate of ṁcoolant. The initial temperature and pressure

inside the reactor are chosen to be 15 bar and 400 K, respectively, but both values will be

altered by the built-in steady-state simulation during runtime. Finally, once reactions in the

reactor are specified, the steady-state simulation is run.

4. Thermodynamic package and reactor geometry: We used the predictive Soave-Redlich-

Kwong (PSRK) method to estimate the behavior of the phase equilibria. The reactor ge-

ometry must also be specified before the steady-state model can be exported to Aspen Plus

Dynamics. Therefore, the reactor is specified as a 10-meter long, vertical vessel with flat

heads.

5. Pressure checking: Before exporting the steady-state model to Aspen Plus Dynamics, the

final step is to run the model once more and perform pressure checking using the built-in

pressure checker in the Dynamic tab of Aspen Plus. Once completed without errors, the

model is exported to Aspen Plus Dynamics.

6. Controller specifications: The level in the reactor is maintained via a direct-acting level

controller developed after exporting the model to Aspen Plus Dynamics. The level-controller

is set to the auto mode to ensure the level is maintained at the desired setpoint throughout

the simulation.
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Figure 5.3: Aspen Plus model process flow diagram of ethylbenzene production process.

7. Heat transfer option: Since the reactor is surrounded by a jacket with liquid water at 298 K

flowing through it, the heating mode of the reactor is selected to be “dynamic”, which will

allow the user to specify the flow rate of the cooling water to control the reactor temperature.

The logarithmic mean temperature difference (LMTD) or temperature approach is calculated

and fixed at 77.33 K. The input action affects the temperature in an inverse direction i.e.,

increasing the coolant flow rate reduces the temperature and vice versa.

8. Initialization: After specifying the level-controller and cooling jacket settings, a steady-state

simulation is completed to obtain the steady-state coolant flow rate of the dynamical model,

which is found to be ṁcoolant,ss = 77.9869 kg/s. Following initialization, the model is run

in dynamic mode one more time to check that the model does not deviate from the steady-

state after making the above specifications. This step finalizes the dynamical process model

shown in Fig. 5.3.

The addition of noise to the model solutions to represent realistic process state data will be dis-

cussed in detail in the “Data generation and SINDy model development” Subsection.
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Table 5.1: Parameter values for chemical process example.

FE = 0.1 kmol/s FB = 0.2 kmol/s
k0,1 = 1.528× 106m3 kmol−1 h−1 k0,2 = 27 780m3 kmol−1 h−1

E1 = 71 160 kJ/kmol E2 = 83 680 kJ/kmol
R = 8.314 kJ kmol−1K−1 V = 60m3

Tin = 350K T0 = 400K
ṁcoolant,ss = 77.9869 kg/s

5.4.2 Data generation and SINDy model development

Extensive open-loop simulations are carried out with the constructed Aspen Plus Dynamics

model to generate numerous trajectories of the states in the reactor, using a wide range of initial

conditions and input values. Due to the nature of SINDy models, we generate three types of

trajectories to cover the various dynamics that need to be captured by the model. In the first type

of runs, a nonzero input u is first applied to the system to drive the states from the origin to a

new steady-state and subsequently removed (u = 0) to let the state return to the origin without

any input. Approximately half of these types of runs were conducted very close to the origin by

applying small values of the manipulated input to induce smaller deviations from the origin. This

was carried out because data-driven modeling is greatly affected by the quality and diversity of

the training data, and such models generally underperform near the origin because of the lack of

training data at exactly the origin, unless data near the origin are specifically generated. The second

category of runs involved applying a nonzero u to the system at the origin to drive it to a new steady

state and maintain the system at the new state. The third type of runs involved separately applying

two different nonzero values of u to drive the states from the origin to two different steady-states

successively. Such runs measure the ability of the model to drive the state from an arbitrary state to
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any desired state using the necessary input u and are therefore critical to improving and evaluating

the performance of the model.

The range of inputs considered was between u = −37.9869 kg/s and u = 4.0131 kg/s.

For each pair of initial conditions and input, the Aspen Dynamical model is integrated using an

adaptive integration time-step, with the measurements recorded every ∆ = 0.01 hr. A total of 25

trajectories of the three types are generated. The simulation duration for the runs are not fixed

since the data generation is carried out until a steady-state has been reached, which varies between

runs. The number of data points per trajectory varies between 500 and 1500 points, corresponding

to simulation run-times of 5 hr and 15 hr. The test run used for further demonstration is generated

at the lower limit of the range of u considered i.e., with u = −37.9869 kg/s. This is significantly

outside the range of u considered in training and will gauge the ability of the model to capture the

inherent dynamics of the system to predict the behavior under a wide range of operating conditions.

As noted in the introduction, the sampling rate of the data has a significant impact on the

accuracy of any system identification method, including sparse identification. This is because dis-

crete sampling of any continuous-time system necessitates loss of information. In general, smaller

sampling times lead to smaller loss of information and a more complete history of the state and

input trajectories, producing better models when these data are used in a model identification pro-

cedure. In the context of sparse identification, the smaller sampling times also directly impact one

of the most challenging steps, which is to compute the estimate of the time-derivative, because a

smaller sampling time generally favors the finite-difference method. Case studies and numerical

examples in the pioneering literature in the field of sparse identification such as [77] reflect the

superior performance under such circumstances by producing extremely accurate sparse-identified
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models using data generated with sampling times of 10−4 or even 10−6. However, as remarked in

the introduction, this is generally infeasible in chemical processes as there is no instrumentation

that can provide such high sampling rates in general. Temperature, despite being one of the sim-

plest and fastest variables to measure, is still limited to a sampling period of at least 0.01 seconds

when using a high-end thermocouple. For other variables such as concentrations, it is usually even

longer if using chromatography or other similar techniques. Therefore, in this work, we use a

sampling period of ∆ = 0.01 seconds for all our data generation. Given this practical sampling

time, our simulations demonstrate that the constructed models capture well the process dynamic

behavior and lead to very good model predictive controller performance.

Once the data set is generated, data pre-processing is conducted. Specifically, the 25 runs in

the data are first split into the training and testing sets as follows: 21 trajectories are used as the

training set, and 4 runs are used for model testing. The 21 runs in the training set include the 3

validation runs used for hyperparameter tuning. The data split, approximately 80% for training

and 20% for testing, is chosen due to the difficulty of training models when using noisy data.

Therefore, a larger training/validation set can improve model performance. After data partition-

ing, data normalization is performed on the data set. The training and testing sets are scaled and

normalized only with respect to themselves to prevent data leakage. Three scaling methods were

investigated—the z-score scaler, Min-Max scaler, and Max-Abs scaler. The z-score scaler scales

the data by subtracting the mean and dividing by the standard deviation. Mix-Max scalers scale all

data points to be between two user-defined limits, usually 0 and 1. Max-Abs scaling refers to di-

viding the data by the maximum absolute value of each variable in the data set. After investigating

the advantages, disadvantages, and open-loop results of the three scaling methods, the Max-Abs
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scaling was used because it outperformed the other two methods. One possible reason is that it

preserves the sign of the deviation of the states from the equilibrium point, which can affect the

performance when using explicit methods such as SINDy. For example, it is known that the ma-

nipulated input ṁcoolant has an inverse effect on the temperature T . Therefore, in the subspace of

scaled variables, the sign of the coefficient associated with u in ẋ4 should have a negative sign in

the ODE corresponding to the physical system. When the data is scaled using Max-Abs scaler, this

property is conserved. However, the z-score and Min-Max scalers do not conserve this property

due to the subtraction component of the scaling.

After preprocessing the data, Gaussian noise with the distribution N ∼ (0, σ2) is added to

corrupt the data and simulate the effect of industrial sensor noise. In this work, a noise level of 8%

is used. The relationship between the noise percentage and the standard deviation σ of the added

noise is defined as follows:

σ = RMSE× Noise percentage
100

(5.11)

where RMSE is the root mean squared error of the signal given by

RMSE =

√∑n
i=1

∑m
j=1 xi(tj)2

m× n
(5.12)

Since noise is added to the scaled variables, it is not necessary to amplify the noise differently for

each variable. The training data set used for the dropout-SINDy procedure is shown in Fig. 5.4.

In this work, the noise was added to the data after preprocessing i.e., centering and scaling. In

an industrial setting, the noise would be in the original states as measured, before any centering or

scaling. In this study, however, to define the “noise level” as a fixed percentage as per Eqs. (5.11)
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Figure 5.4: Training data set. Each line is one open-loop trajectory.
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and (5.12), it was necessary to appropriately scale either the noise or the data when adding the two

due to the orders of magnitude of difference in the scales of the concentrations and temperature.

Due to the RMSE (Eq. (5.12)) being used to define the noise percentage, centering is required

regardless of scaling. This ensures xi in Eq. (5.12) is in terms of deviation from the steady-state

and centered around zero, which ensures that the RMSE is meaningful. With respect to scaling,

both methods were attempted: the first being centering and scaling the data and then adding 8%

noise, as defined in Eqs. (5.11) and (5.12), to the newly scaled data set. This eliminates the need

to scale the noise because all the xi in Eq. (5.12) are already of a similar order of magnitude,

specifically between ±1. In contrast, the second method is to add scaled noise of 8% to each

variable. However, since x4 in Eq. (5.12) is now much larger due to the data not being scaled by

the maximum absolute value of the deviation in temperature (14.961 K), the RMSE increases by

almost an order of magnitude as well, leading to an extremely large variance from using Eq. (5.11).

Therefore, the concentrations (x1, x2, x3) are completely masked by noise and become very similar

to pure white noise, rendering the data useless for modeling.

In order to counter this, the variance must be decreased by an order of magnitude (by multi-

plying by 0.1) to keep the noise amplitude at a realistic level, and each column of the noise data is

also multiplied by the maximum absolute value of the respective column, to maintain the scaling

between columns. Doing so, the training data using the second method to add the scaled noise into

the original data is almost identical to Fig. 5.4 once converted back to non-deviation form. This

data set, generated by the second method, after rescaling, when used in the proposed algorithm fol-

lowing the procedure described in the remainder of the manuscript, yielded results almost identical

to what will be presented with no visible differences in the plots. Therefore, for the purposes of
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this work, there is no practical difference whether the data is scaled and then corrupted with a fixed

percentage level of noise, or if noise of a fixed percentage level is first generated and then scaled

appropriately to be added to each variable. In an industrial setting, the noise would be present in

the measured data, but in a fashion similar to how it was added in the second method, such that the

noise is appropriately scaled for each variable. This is because the resolution of the sensor would

be designed according to the range of values that will be measured by the sensor. Hence, variables

with generally smaller values will likely use sensors that have smaller errors and variances.

Remark 5.5. The present work focuses on the effect of Gaussian noise in the training data. Typ-

ically, non-Gaussian noise is more difficult to mitigate in the modeling step as shown in [154],

where recurrent neural networks are shown to satisfactorily deal with Gaussian noise but struggle

with non-Gaussian noise. In contrast, [190] discusses how even an identical, independently dis-

tributed or i.i.d. Gaussian noise additive to the states can translate into correlated non-Gaussian

effective noise when being used in downstream modeling algorithms, although the specific system

studied was different. A detailed study of the effect of additive non-Gaussian noise to the training

data is beyond the scope of this work and will be addressed in a future work.

The noisy data is then used to obtain estimates of the derivatives, which is one of the biggest

challenges of using SINDy on noisy data. It was demonstrated in [195] that the best two methods

for estimating the time-derivative in the development of SINDy models are the smoothed finite

difference (SFD), where the Savitzky-Golay filter is used to presmooth the data before using finite

differences to compute the derivatives, and the total variation regularized derivative. In this work,

SFD was found to be the optimal derivative estimator and was used in all simulations.
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Next, the function library is created using the preprocessed, noisy training data. For this sys-

tem, the set of basis functions chosen were a linear input term, monomials up to second order for

the concentrations, the hyperbolic tangent of the temperature, an exponential term in temperature

of the form 1
1+ex4−1 , as well as interactions between the 6 concentration functions (3 of each order)

and the two temperature terms. Therefore, a total of 21 basis functions were considered. The tem-

perature terms were considered in the above forms because of their large effect on the ODEs, the

possibility of divergence when added as linear or quadratic terms, and the general understanding of

chemical reaction engineering. Explicitly, the terms considered in the function library were x1, x2,

x3, x2
1, x

2
2, x

2
3, 1

1+ex4−1 , tanhx4, u, x1

1+ex4−1 , x2

1+ex4−1 , x3

1+ex4−1 , x2
1

1+ex4−1 , x2
2

1+ex4−1 , x2
3

1+ex4−1 , x1 tanhx4,

x2 tanhx4, x3 tanhx4, x2
1 tanhx4, x2

2 tanhx4, x2
3 tanhx4. Using this set of basis functions, Al-

gorithm 1 is implemented in PySINDy [209, 210], a Python Application Programming Interface

(API), to build the SINDy model. While identifying each sub-model, some of the listed basis

functions are dropped out before carrying out the optimization.

Remark 5.6. It is noted that the form of the temperature terms is highly specific. This was nec-

essary because the choice of basis functions is critical to the performance of sparse identification.

A poor selection of basis functions will not yield a sparse representation as such a representation

may not exist. In this case, as mentioned, the large effects of linear and/or quadratic temperature

terms on the ODE lead to unstable models that could not be integrated without the solution diverg-

ing. Hence, the general reaction engineering concept of the absolute temperature appearing as a

negative exponential term was utilized to create the temperature basis function (x4). The remain-

ing six terms in x4 such as x1

1+ex4−1 were obtained when computing the interaction terms between
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concentrations and temperatures since such interactions are found in most material balance equa-

tions. This methodology would apply to any general system in consideration. For example, if the

system in consideration was a four-tank system involving square root nonlinearities, and we could

not obtain satisfactory performance using polynomial and/or trigonometric basis functions, the set

of candidate basis functions would be expanded to specifically include square root basis functions

in the tank heights since this relationship is well-known. Doing so would very likely improve the

performance of the sparse identification step by a significant margin.

In dropout-SINDy, three hyper-parameters require to be tuned: λ, the sparsification knob,

ndropout, the number of library functions to be zeroed for each sub-model, and nmodels, the total

number of sub-models to be identified. The value of λ was tuned via a coarse search using values

between 0.1 and 10 in steps of 0.1. Finer and/or wider ranges of λ did not improve the perfor-

mance any further. Therefore, a value of 1 was used throughout the simulations. When ndropout

is too small, too few functions are dropped from the library to lead to a significant change in the

model. However, increasing ndropout too much produces excessive sparsity, leading to poor and/or

unstable performance. Hence, a trade-off between model accuracy/complexity and stability exists.

The optimal value was found to be ndropout = 7 from extensive simulations in the entire range of

ndropout ∈ [1, 21]. Finally, when nmodels is small, only a few models are identified, which may not

include the optimal model. On the other hand, identifying too many models is computationally

expensive and also promotes instability. This is possibly because a larger number of sub-models

become unstable and/or inaccurate, which affects the median of the coefficients. Therefore, exten-

sive simulations are conducted to obtain a value of nmodels = 10, which is found to produce the best
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model with a short processing time. Due to the length of the ODE models produced, a visualization

of the coefficients associated with each library function for each ODE model’s right-hand side is

provided in Fig. 5.5.

Remark 5.7. If, instead of the median of the sub-models, the best of all the sub-models is selected

as the final model as mentioned in Remark 5.2, it can be theorized that the overall model accuracy

will only improve as nmodels is increased, although at a higher computational cost.

Figure 5.5: Visualization of dropout-SINDy identified model.
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5.4.2.1 Corroboration between the sparse-identified model and known CSTR dynamics

Although the model shown in Fig. 5.5 may appear to contradict prior knowledge on CSTR

dynamics, this is a well-known limitation of any system identification technique, not only limited

to sparse identification. There are many factors that affect exactly what terms are needed in a

system identification method to minimize the chosen error criterion. This is especially true for

sparse identification, where there are many basis functions. Based on the comprehensive literature

review, except for very simple cases, there will often be a competing basis function (or subset of

basis functions) that has (or have) similar dynamics.

As a simple illustrative example, the family of systems, ẋ = −xn, where n = 1, 2, 3 may be

considered. The dynamics of this family of systems are very similar in trend i.e., they are similar

to a decaying exponential, with the speed of decay being the primary difference. As n increases,

the dynamics get slower.

If we attempt to identify the system, ẋ = −x2, using data in the range of t ∈ [0, 1], sampled

with the same sampling time as used in the paper of ∆ = 0.01, we obtain ẋ = −0.999x2, which is

very accurate. However, if we shorten the data range to t ∈ [0, 0.2], where the different systems in

the family are quite close in terms of dynamics, the identified model degrades to ẋ = −0.111x −

0.783x2 − 0.107x3, which appears to be inaccurate. However, a plot of this “inferior” model

indicates it is not as poor as it seems, and the maximum absolute error and MSE of 0.006 and

9 × 10−6 both confirm this (in contrast, x varies between 0.5 and 1 over the entire data set). One

way to improve the model, however, was found to be to decrease the sampling time of the data to

∆ = 0.001. This lead to the x2 term beginning to dominate the right-hand side of the ODE once
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more, proving that the loss of information from the discrete sampling procedure also contributes to

the model attempting to capture the dynamics using other basis functions in the candidate library.

A more relevant example is the identification of the system, ẋ = −x3, in the same family of

systems above. In this case, even when using the entire range of t ∈ [0, 1], the identified model is

ẋ = −1.556 + 5.976x− 7.484x2 + 2.065x3

Firstly, once again, this model is very close to ẋ = −x3 as seen in the maximum absolute error

and MSE of 0.001 and 4 × 10−7 both confirm this. However, we notice the coefficient of x3 is

positive and, in fact, the coefficients associated with x and x2 are greater in magnitude. A possible

explanation can be that, due to the range of x considered, the effect of increasing powers of x

is less as n increases. Hence, the negative x2 term, although not present in the actual system or

data used, is sufficient to overpower the positive x and x3 terms and yield the correct dynamics

(because despite the positive x and x3 terms, the graph is monotonically decreasing). From both

of these case studies, it is clear that the exact model obtained is highly dependent on the region

of data that is used in the sparse identification procedure, the sampling time, as well as the value

of the variables in the basis functions. Even though the variable CA should be strongly associated

with the first ODE (ĊA), it is possible that the values of CA in the scaled space are larger than

other variables on average, leading to smaller coefficients being associated with it. Alternately, as

seen in the example of ẋ = −x3 above, it is possible that other terms, such as CC tanh(T ), have

a dominant effect on the dynamics because of the range of temperatures and CC in the data set,

which leads to it being a major term in every ODE.
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The goal of sparse identification is to simply minimize the objective function by optimizing

the coefficients associated with the basis functions, whereas the prior process knowledge is in-

corporated into the choice of the basis functions themselves rather than their coefficients. While

placing more constraints on the optimization to obtain a representation closer to the known CSTR

dynamics may be possible, that will be a different method rather than sparse identification and is,

hence, out of the scope of this article.

Remark 5.8. The minimization problem of sparse identification can be solved using a number

of different algorithms. Besides STLSQ, specifically for minimizing the L0 norm in sparse prob-

lems, greedy algorithms are also popular. Greedy algorithms make the best possible choice at

every step but may not yield an overall optimal solution. Two highly popular and established

greedy algorithms are the orthogonal matching pursuit (OMP) and its slightly improved yet more

computationally costly variation, the orthogonal least squares (OLS)[211]. In the PySINDy pack-

age, a further improved version of OLS known as Forward Regression Orthogonal Least Squares

(FROLS) has been implemented based on [12]. FROLS iteratively selects the most correlated

function in the function library, using as its selection criterion the normalized increase in the ex-

plained output variance due to the addition of a given function to the basis. Due to the greedy

nature of the algorithms, it is also simpler as there are no hyper-parameters to tune in the FROLS

algorithm. However, the models obtained for this system using FROLS were not stable and could

not be integrated without diverging to infinity. The documentation of the PySINDy package have

also demonstrated via extensive simulations with a number of minimizing algorithms that both

OMP and FROLS are outperformed by a large margin by STLSQ in the case of noisy data. While
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OMP and FROLS are standard algorithms for solving the L0 minimization problem, at least in

the implementation available in PySINDy, they perform poorly on noisy data in particular. A pos-

sible cause is that greedy algorithms must select new terms by calculating correlations with the

target data, which is noisy. One other algorithm available in PySINDy, which is frequently used,

is the sparse relaxed regularized regression or SR3 algorithm. While it may be generally superior

by formulation, in this case, both STLSQ and SR3 yielded nearly identical models with the same

mean-square error values. Therefore, due to both the accuracy and simplicity of STLSQ, it was the

only algorithm used in this work.

5.4.3 Open-loop simulation results

The SINDy model obtained using dropout-SINDy as described in the “Data generation and

SINDy model development” Subsection is tested on the runs in the test set, which corresponds to

open-loop tests under a fixed input u. One test run is shown in Fig. 5.6. The SINDy model is

observed to be able to correctly predict the evolution of the state from the origin to a new steady-

state under a nonzero input value of −8.9869 kg/s between t = 0hr and t = 7.21 hr. Once the

system reaches the first nonzero steady-state, from t = 7.21 hr, a new input of −2.9869 kg/s is

applied until t = 15.1 hr. In both halves of the trajectory, it can be seen that the dynamics of

the SINDy model are slightly slower and do not reach the correct peak values in deviation form.

This is likely due to the denoising/prefiltering step in the estimation of the time-derivatives since

the Savitzky-Golay filter has a complex mechanism to compute the smoothed derivative including

curve fitting and differentiating it. However, the overall dynamics are captured well and, most

importantly, the steady-states are accurately predicted by the SINDy model. For the other test runs
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described in the “Data generation and SINDy model development” Subsection, the plots showed

similar trends in terms of slower dynamics but correct identification of the final steady states. To

quantitatively measure the model accuracy, the MSE of the 4 states for this run are calculated and

shown in Table 5.2. It is observed that the MSE for the concentrations are on the order of 10−4,

while the MSE for the temperature prediction is 0.75. This is similar in magnitude to previous

results using more sophisticated neural network models in the presence of industrial noise [153].

As a final test, the SINDy model is initiated from zero initial conditions (x0 = 0) under zero input

(u = 0) to verify that the state remains at the origin for indefinite time under such conditions,

which was found to be the case. This final verification step is important to ensure that, in the

subsequent closed-loop implementation, the state can be driven to the origin and maintained there

without using any more input u. The choice of data scaler/normalization used also greatly affects

the results of this test at the origin.

Table 5.2: Open-loop prediction MSE results for the run shown in Fig. 5.6.

State MSE

CE 1.9× 10−4

CB 2.7× 10−4

CEB 1.6× 10−4

T 0.75

5.4.4 Closed-loop simulation results

After ensuring the quality of the dropout-SINDy model via open-loop testing, we incorporate

the model into the LMPC of Eq. (5.8) to conduct closed-loop simulations. The control objective

is to maintain the state of the reactor at the steady-state (CE , CB, CEB, T ) = (0.456 kmol/m3,
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Figure 5.6: Time-varying profiles of the states for the open-loop simulation using Aspen Plus
Dynamics (blue line) and the dropout-SINDy model (orange line) with two nonzero input values
of u1 = −8.9869 kg/s and u2 = −2.9869 kg/s applied over the intervals t1 ∈ (0, 7.21] and
t1 ∈ (7.21, 15.1], respectively.

4.09 kmol/m3, 3.18 kmol/m3, 400K) by manipulating the coolant flow rate ṁcoolant. The objective

function of the LMPC, Eq. (5.8a), is considered to be as follows to ensure a value of zero at the

steady-state itself under no-input conditions:

L(x, u) = |x|2Q1
+ |u|2Q2

(5.13)

where Q1 and Q2 are weighting matrices that control the contributions of the state and the input in

the LMPC objective function. Q1 is chosen to be the 4×4 identity matrix, while Q2 = 2 × 10−6.

As the optimization problem of Eq. (5.8) is nonlinear and non-convex, we solve it every ∆ =
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0.01 hr using the numerical solver Ipopt [145] with its Python module PyIpopt. The lower bound

for the LMPC is chosen to be a stabilizing proportional or P-controller based on the error in the

temperature and with a controller gain of 100.

Figure 5.7 depicts the closed-loop state and input profiles for the reactor operating without

control action as well as under two controllers—the stabilizing P-controller and the LMPC using

the dropout-SINDy model as the process model. From the state profiles, it can be observed that the

uncontrolled states oscillate and do not reach close to the steady-state within the simulation period

tp = 1.5 hr. If the simulation is continued, it is observed that the uncontrolled state returns to

the steady-state after approximately 5 hours, which was also observed in the “Data generation and

SINDy model development” Subsection. during data generation. In contrast, both controllers are

able to reduce the overshoot and, more importantly, rapidly bring the state of the system back to

the origin, with the LMPC being significantly faster than the P-controller, especially with respect

to the temperature. Specifically, the LMPC brings the states into the Ωρsi region at t = 0.5 hr in

half the time compared to the P-controller, which takes t = 1hr, and a tenth of the time taken in

the uncontrolled scenario.

The closed-loop performance of the two controllers are further compared in terms of the con-

vergence of the states to the origin as well as energy consumption over the simulation duration.

This is carried out using the LMPC objective function as the metric since it accounts for the devi-

ation in both states and input in its evaluation. Mathematically, it can be observed from Eq. (5.13)

that a lower value of the objective function indicates both faster convergence as well as lower en-

ergy consumption i.e., lower coolant usage. Therefore, we compute the integral of the objective

function of the LMPC over the entire closed-loop simulation period tp,
∫ tp
t=0

L(x(τ), u(τ)) dτ ,
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Figure 5.7: State and input profiles for the CSTR in closed-loop under no control (blue line), a
P-controller (red line), and the LMPC utilizing the dropout-SINDy model (black line) throughout
the simulation period tp = 1.5 hr.

for both controllers and also under open-loop for comparison purposes. The cost function time-

integral values are found to be 429.9506 under open-loop, 71.7027 under P-control, and 57.5497

under the LMPC. Therefore, it can be concluded from the lower value of L that both controllers

greatly improve the convergence of the states, while the LMPC outperforms the P-controller in

terms of overall convergence.

Figure 5.8 shows the various performance metrics of the LMPC throughout the simulation
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period. It is confirmed that the Lyapunov function V decreases at every sampling time and with a

negative value of V̇ . The constraint functions are observed to be satisfied throughout the simulation

duration, implying the LMPC is able to find a value of the input that is at least as effective as

that calculated by the P-controller due to the contractive constraint of Eq. (5.8e). The cost and

objective functions are also monotonously decreasing as expected. The nonlinear optimization

solver Ipopt returns a status of 0 corresponding to a successfully solved problem for most (∼70%)

of the simulation; however, in some instances (e.g., between t = 0.1 hr and t = 0.2 hr), a status

of 2, corresponding to an infeasible problem, is returned, in which case the LMPC uses the input

calculated by the stabilizing P-controller that is selected as the lower bound in Eq. (5.8e), as also

evidenced by the input profiles shown in Fig. 5.7.

Remark 5.9. Although the results of the non-model based control law Φsi (in this case, P-controller)

may be improved by considering integral and derivative control as well, this was found to be un-

necessary for this system. Due to the high gain of the P-controller, there was no visible offset in

the ultimate values of the states, as seen in the state profiles in Fig. 5.7. Hence, no integral control

was used. Since derivative control is typically necessary for excessive oscillations [212], which

were also not observed in this case, a P-controller was deemed sufficient. Most importantly, a

stabilizing PID controller, even if found, would be selected to be the lower bound of the control

action for the MPC i.e., Φsi as given in Eq. (5.8e). The goal of the MPC is to improve upon this

input by solving the optimization problem of Eq. (5.8). In the event that such an input is already

the optimal input and cannot be improved, the MPC uses this input. Therefore, even if a superior

PID controller can be designed for this system, the MPC would improve upon it or perform at least
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Figure 5.8: LMPC performance metrics throughout the simulation period tp = 1.5 hr.

as well as the non-model-based controller. There are other advantages, however, to using MPC,

such as accounting for all the states instead of only the temperature in case of a MIMO system as

the one studied, the MPC’s ability to handle constraints, and also its stability guarantees based on

converse Lyapunov theorems.
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Remark 5.10. While it is standard practice to compare the performance of an MPC based on the

proposed algorithm and a first-principle model-based MPC, in this case study, this was found to

be impossible due to the complexity of the nonlinear process model in Aspen Plus. The proposed

algorithm is aimed at solving such problems where no first-principle model is readily available

due to the extreme nonlinearities and complexities. If such a first-principle model were avail-

able, subsampling-based SINDy[195] is a viable and possibly superior algorithm. However, that

requires the aid of a first-principle model, which is not possible to be derived manually in this

scenario. Hence, such a comparison cannot be made in this case study.

5.5 Conclusion

In this paper, sparse identification was combined with ensemble learning to model and con-

trol a nonlinear chemical process system using only noisy data from sensor measurements. A

high-fidelity chemical process simulator, Aspen Plus Dynamics, was used to simulate a chemical

reactor with multiple reactions, which was used for data generation as well as open- and closed-

loop control demonstrations. In open-loop, it was found that the dropout-SINDy model could

accurately predict the steady-state of the system under an arbitrary input starting from any initial

condition within the stability region. After confirming this, a dropout-SINDy-based LMPC was

applied in closed-loop control to the reactor in Aspen Plus Dynamics. The LMPC depicted supe-

rior performance as compared to the open-loop performance and a P-controller in terms of faster

convergence.
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Chapter 6

Real-time adaptive

sparse-identification-based predictive

control of nonlinear processes

6.1 Introduction

Advanced process control techniques, such as model predictive control (MPC) play a crucial

role in industrial applications and can leverage the recent and ongoing revolution in data-driven

approaches in the science and engineering ecosystem. MPC is widely used due to its ability to

handle strongly nonlinear processes with constraints, which are challenging for traditional linear

control methods [213, 214]. MPC offers advantages such as straightforward tuning, control of

systems with time delays and instability, incorporation of known constraints and multiple operating

conditions, compensation for dead time, and flexibility in defining control objectives. However,

a major drawback is the requirement for a suitable model to predict the future states in the real-
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time calculations, which can be costly and time-consuming to develop for large-scale, complex

nonlinear processes using existing system identification or model reduction techniques [215]. The

quality of process models is influenced by various factors such as parameter estimation, model

uncertainty, assumptions made during model development, dimensionality, model structure, and

computational complexity for real-time implementation [1, 2].

To combat the difficulty of developing process models for large-scale or poorly understood

processes, over the last decade, there has been a paradigm shift from first-principles modeling to

data-driven modeling. Machine learning techniques are a subset of data-driven modeling tech-

niques that have seen increasing application in modeling chemical processes when traditional

first-principle models are not available. For instance, in previous works [3, 62], recurrent neu-

ral networks were utilized to construct data-driven models for nonlinear processes, which were

subsequently integrated into Lyapunov-based model predictive control (MPC) to ensure stability

and performance. Although machine learning algorithms have demonstrated continuous success

in modeling complex systems in the large-data limit due to their large number of hyperparame-

ters and degrees of freedom of the model, their black-box nature can hinder their advancement to

deployment in practical engineering systems, even more so in safety-sensitive fields such as chem-

ical plants [216]. Such models are also usually strongly restricted to the domain of training data,

and it is highly inadvisable to use such models for extrapolating the dynamics of the remainder of

the state space. To better capture the physics of systems, several works focused on symbolic re-

gression, which was a successful direction but computationally intractable for large-scale systems.

Hence, this idea was developed further with the concept of compressive sensing [72, 75] into a rel-

atively modern technique known as sparse identification for nonlinear dynamics (SINDy). Since
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its inception, SINDy has been applied to a broad range of systems [73, 129]. In the field of process

systems engineering, the goal of using SINDy for building process models is that SINDy enables

the direct identification of models of explicit and closed-form nonlinear first-order ordinary dif-

ferential equations (ODEs) from data. These identified equations can be readily incorporated into

optimization problems, including MPC. The computational cost of integrating these explicit ODE

models is typically low, particularly when the models are well-conditioned, thanks to the availabil-

ity of efficient differential equation solvers that use well-established integration algorithms such as

4th/5th order Runge-Kutta methods.

In the recent literature, SINDy has been implemented successfully to develop models in

chemical engineering, such as the identification of reaction networks [84] and the development

of reduced-order models for controlling hydraulic fracturing processes [82] and nonlinear reactors

[135, 155]. The practical challenge of handling noise in sensor measurements when using SINDy

was also addressed in [195, 217], where subsampling, co-teaching, and ensemble learning were

used to build accurate SINDy models that captured the original nonlinear system from noisy data

sets. Despite the successes in initial model building using SINDy, in practical applications, process

models undergo changes over time due to various factors, including external influences (such as

aging equipment, disturbances, and deployment of new operational technology) and internal fac-

tors (such as equipment fouling or catalyst deactivation). As a result, the SINDy model trained on

past normal operations may not accurately predict process states in the presence of disturbances.

To address this challenge, researchers have explored adaptive, robust, and event-triggered control

approaches within both classical (first-principles) modeling and data-driven modeling techniques

like SINDy to mitigate the impact of model uncertainty.
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[218] proposed the operable adaptive sparse identification of systems (OASIS) framework

where multiple SINDy models are constructed for the various regions of the state-space using sin-

gle, short trajectories. However, due to the low data usage per model, the SINDy models were

localized and could not extrapolate the entire state-space. Hence, a feedforward neural network

was used to switch between the SINDy models based on partial state measurements and estima-

tion of the remaining states via a Kalman filter. The authors demonstrated the effectiveness of the

OASIS approach by building 100 different SINDy models for various sections of the operating

region with relatively small data sets of single trajectories with 100 data points sampled every 0.01

hr. However, there was no update of the SINDy models themselves in real-time. [219] modified

the original formulation of SINDy to handle output measurements and actuation in addition to

state measurements and also proposed highly specific library terms that are relevant for power sys-

tems, demonstrating the superior performance of the proposed SINDy algorithm on synchronous

generator models. In [220], the authors further combined SINDy with the manifold boundary ap-

proximation method to build models specifically favoring the identification of power systems and

conducting their stability analyses. Specifically, the proposed algorithm had low data requirements

and was ideal for updating models in real-time subject to changing dynamics, and this aspect was

demonstrated via model reduction using limited data when applied to a number of synchronous

generator models. However, much of the work was highly tailored to power systems, especially

large power systems and their transient stability analysis. The structured online learning method

was proposed in [221] where a quadratic value function was used to yield equations that were

a more general form of the linear quadratic regulator with certain advantages and improvements

when operating at unstable steady states in a pendulum example. Due to the quadratic formulation,
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the parameters of the value function could be analytically computed with a low computational

cost, while SINDy was used for the model identification part. However, the focus of [221] was

on the real-time update of the value function rather than the SINDy models. Similarly to [219],

SINDy was generalized in [222] to handle multi-input multi-output (MIMO) systems to model

system outputs to sensor measurements, i.e., instead of obtaining ODEs in the states, the system

output is obtained as functions of the state dynamics. Subsequently, a Kalman filter was used not

to estimate the states but rather the model coefficients and update them in real-time using sensor

measurements at every sampling time. Through two standard nonlinear examples, it was shown

that this generalized SINDy with the Kalman filter approach could obtain better models than build-

ing a pure SINDy model using the sequential thresholded least-squares solver with similar or less

amount of data.

The concept of real-time updates of SINDy models was first proposed in [117], where a

method for re-identification was introduced, allowing for the updating of model coefficients or the

addition/removal of terms, or any combination thereof, as needed. The re-identification process

was triggered by a noticeable deviation between the local Lyapunov exponent and the prediction

horizon estimate, although the definition of “prediction horizon” in their study differs from its

usage in the current manuscript. Although the findings of [117] were mostly limited to the mod-

eling context with no closed-loop data usage in the model updates, the methodology was recently

adapted in [118] in the modeling of ducted fan aerial vehicles (DFAVs) for closed-loop control un-

der MPC. Specifically, an offline model was first built using deep physical knowledge of DFAVs,

and the model parameters were then updated based on the proposed paradigm of [117], using the

same Lyapunov exponent-based trigger for the model update. The proposed methodology was
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shown to be able to control DFAVs, which are highly challenging to model due to their complex

flow distribution, under the various cases and disturbances considered such as wind turbulence,

which is of practical concern in such a setting. Although real-time update of SINDy models was

also studied in [223], the goal was not to update the SINDy model to process changes but rather to

build the process model itself for an unchanging process step-by-step, improving the model with

newer data as it becomes available. Hence, the work of [223] can be considered an alternative to

model building when there is no large data set from numerous simulations to build a high-fidelity

SINDy model offline before deploying the controller. Finally, most recently, an MPC framework

using SINDy models with updates to handle changing process conditions was investigated in [119].

The focus of the work was on model updates in the face of entirely unknown or first appearance

process conditions and the operation of processes with multiple operating conditions. The discrete-

time formulation of SINDy with actuation was used, and the greedy algorithm known as orthogonal

matching pursuit was used to efficiently calculate only the matrix of changes to the model coeffi-

cients. During the model transition/update period, an elastic feedback correction method was used

as a stopgap solution. The proposed error-triggered adaptive sparse identification for predictive

control (ETASI4PC) method showed significant improvement over the state-of-the-art methods

including SINDy without model updates as well as the aforementioned OASIS approach in the

presence of large disturbances in the feed flow rate of a chemical reactor system. We note that the

ETASI4PC method is a promising methodology for updating SINDy models in real-time in track-

ing MPC. At the moment, based on our survey of the literature, the operation of Lyapunov-based

model predictive controllers, both Lyapunov-based tracking MPC (LMPC) and Lyapunov-based

economic MPC (LEMPC) under SINDy models that are updated in real-time has not been inves-
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tigated, which is the subject of the current manuscript. While a tracking MPC drives the state of

a system to a desired set-point, economic MPC, a recent model-based control strategy, optimizes

time-varying operation by considering future process states, economic objectives, and feedback. It

incorporates economic factors and constraints to achieve improved process efficiency and desired

closed-loop response characteristics. The potential benefits of economic MPC make it an attractive

choice for industrial applications, as highlighted in studies such as [207, 224–226].

The rest of this manuscript is organized as follows: in Section 6.2, the notations, the class

of nonlinear systems considered, and stability assumptions are provided. Section 6.3 provides a

brief review of sparse identification and its implementation, followed by the design of Lyapunov-

based tracking and economic MPCs using SINDy models as the predictive model. In Section 6.4,

the error-triggering mechanism is introduced, the details of the SINDy model update procedure are

given, the implementation strategy for adaptive SINDy models in LMPC and LEMPC is delineated,

and rigorous closed-loop stability analyses are conducted for the two types of MPCs. Finally, a

chemical reactor example is used in Section 6.5 to demonstrate the performance of the proposed

adaptive SINDy-MPC methodology.

6.2 Preliminaries

6.2.1 Notation

If x is a vector, we denote its transpose as x⊤ and its weighted Euclidean norm as |x|Q, where

Q is a positive definite matrix. The standard Lie derivative LfV (x) is defined as ∂V (x)
∂x

f(x). The

operator “\” represents set subtraction, such that A\B is the set of elements x ∈ Rnx that belong to

183



A but not to B. A function f(·) is said to belong to the class C1 if it is continuously differentiable

within its domain. A class K function is defined as a continuous function α : [0, a)→ [0,∞) that

is strictly increasing and takes the value of zero only when it is evaluated at zero.

6.2.2 Class of systems

We examine a broad category of continuous-time nonlinear systems, characterized by the

equation,

ẋ = F (x, u, w) := f(x) + g(x)u+ h(x)w, x(t0) = x0 (6.1)

where x ∈ Rnx denotes the state vector, u ∈ Rnu represents the manipulated input vector, and

w ∈ W is the disturbance vector with W := {w ∈ Rnw | |w| ≤ wm, wm ≥ 0}. The functions

f(·), g(·), and h(·) are suitably smooth vector and matrix functions, respectively, with dimensions

nx × 1, nx × nu, and nx × nw. Without loss of generality, we assume that the initial time t0 and

initial condition f(0) are both equal to zero in this manuscript. Consequently, the steady-state of

the nominal system of Eq. (6.1) is at the origin, specifically denoted as (x∗
s, u

∗
s) = (0, 0). Here, x∗

s

and u∗
s represent the steady-state state and input vectors, respectively.

6.2.3 Stabilization via control Lyapunov function

Assuming noise-free state measurements and full state feedback for the nominal system de-

scribed in Eq. (6.1), it is postulated that a stabilizing control law u = Φ(x) ∈ U exists, capable of

exponentially stabilizing the origin of the closed-loop system mentioned in Eq. (6.1). According

to converse Lyapunov theorems [200–202], this implies the existence of a C1 control Lyapunov
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function V (x), along with four positive constants c1, c2, c3, c4, satisfying the conditions,

c1|x|2 ≤ V (x) ≤ c2|x|2, (6.2a)

V̇ (x) =
∂V (x)

∂x
F (x,Φ(x), 0) ≤ −c3|x|2, (6.2b)∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ c4|x| (6.2c)

for all x in an open neighborhood D around the origin. In Eq. (6.2), V̇ represents the time-

derivative of the Lyapunov function, and F (x,Φ(x), 0) represents the nominal system from Eq. (6.1)

under a candidate controller Φ(x), such as the universal Sontag control law [140]. Our first objec-

tive is to define a set of states ϕu, expressed as follows:

ϕu = {x ∈ Rnx | V̇ (x) = LfV + LgV u < −kV (x), u = Φ(x) ∈ U, k > 0} ∪ {0}

under the controller u = Φ(x) ∈ U , that satisfies the conditions described in Eq. (6.2). Subse-

quently, we define the closed-loop stability region Ωρ [203] for the nominal system presented in

Eq. (6.1) as a sublevel set of V within ϕu, denoted as Ωρ := {x ∈ ϕu|V (x) ≤ ρ}, where ρ > 0 and

Ωρ ⊂ ϕu. Furthermore, from the Lipschitz continuity property of F (x, u, w) and the given bounds

on u, it can be deduced that there exist positive constants Nw, Lx, L′
x, Lw, and L′

w such that the
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following inequalities are satisfied for all x, x′ ∈ D, u ∈ U , and w ∈ W :

|F (x, u, w)| ≤M (6.3a)

|F (x, u, w)− F (x′, u, 0)| ≤ Lx|x− x′|+ Lw|w| (6.3b)∣∣∣∣∂V (x)

∂x
F (x, u, w)− ∂V (x′)

∂x
F (x′, u, 0)

∣∣∣∣ ≤ L′
x|x− x′|+ L′

w|w| (6.3c)

6.3 Lyapunov-based MPC using sparse identification

In this section, the details of the sparse identification problem and its solution are provided,

followed by the formulation of LMPC and LEMPC that utilize the SINDy model to predict the

future states. Furthermore, closed-loop stability for the nonlinear system of Eq. (6.1) is discussed

under the proposed LMPC and LEMPC.

6.3.1 Sparse identification

Sparse identification, a recent advancement in nonlinear system identification, has demon-

strated its effectiveness in various engineering disciplines through numerous examples [71–76,

129]. The objective of the Sparse Identification of Nonlinear Dynamics (SINDy) approach is to

utilize discrete measurement data from a physical system to identify a first-order ordinary differ-

ential equation (ODE) of the following form:

˙̂x = f̂(x̂) + ĝ(x̂)u (6.4)
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where x̂ ∈ Rnx represents the state vector of the model obtained through sparse identification,

while f̂(·) and ĝ(·) are the vector fields that capture the underlying physical laws governing the

system. We emphasize that the goal of using SINDy in this work is as a system identification tool,

and the correct underlying physics need not necessarily be obtained exactly for the SINDy model

to be accurate.

The fundamental assumption underlying SINDy is that the right-hand side of Eq. (6.4) typi-

cally comprises only a small number of nonlinear terms. As a result, when considering a large pool

of potential nonlinear basis functions for f̂ and ĝ, only a few terms will be active, with non-zero

coefficients associated with them. This sparsity property of the candidate basis functions allows

for efficient computation of the coefficients using convex optimization algorithms.

The application of SINDy begins with acquiring real-time data from the system of interest.

This data can be collected through sensors in experimental or industrial setups, or generated from

computer simulations based on theoretical models, such as first-principles or chemical process

simulators. The collected data is then organized into two compact matrices: the data matrix X and
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the input matrix U ,

X =



x1 (t1) x2 (t1) · · · xnx (t1)

x1 (t2) x2 (t2) · · · xnx (t2)

...
... . . . ...

x1 (tm) x2 (tm) · · · xnx (tm)


(6.5a)

U =



u1 (t1) u2 (t1) · · · unu (t1)

u1 (t2) u2 (t2) · · · unu (t2)

...
... . . . ...

u1 (tm) u2 (tm) · · · unu (tm)


(6.5b)

where xi(tℓ) represents the ith state measurement at the ℓth sampling time, while uj(tℓ) denotes the

j th input measurement at the ℓth sampling time. The indices i, j, and ℓ take values i = 1, . . . , nx,

j = 1, . . . , nu, and ℓ = 1, . . . ,m, respectively. The derivative of X , denoted as Ẋ , is either directly

measured or numerically estimated when direct measurement is not possible.

From the data matrices X and U , a function library matrix Θ(X,U) is constructed, containing

p columns representing the nonlinear basis functions considered for the terms in f̂ and ĝ. While

polynomials and trigonometric functions are commonly used in engineering applications due to

their universality, the basis set can be adapted based on performance and available knowledge of

the system’s structure. An example of a function library matrix that may be used as a starting point
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for system identification is as follows:

Θ(X,U) =

 1 X lnX sin(X) eX U UX2

 (6.6)

Each candidate basis function associated with a variable or row in Eq. (6.4) is assigned a coeffi-

cient, and these coefficients are stored in the matrix Ξ ∈ Rp×nx . The sparse identification algorithm

solves the equation,

Ẋ = Θ(X,U)Ξ (6.7)

to calculate the coefficients, Ξ. A popular method for solving this equation is the sequential thresh-

olded least squares (STLSQ), where a threshold value known as the sparsification knob λ is speci-

fied, and coefficients in Ξ below λ are set to zero. Specifically, the least-squares problem associated

with Eq. (6.7) can be formulated in the following general form:

Ξ = argmin
Ξ′

∥∥∥Ẋ −Θ(X,U)Ξ′
∥∥∥
2
+ λ
∥∥Ξ′∥∥

1
(6.8)

where Ξ′ is a notational substitute for Ξ, and the second term is an L1 regularization term that

enforces sparsity of Ξ. To implement the above step, we start by defining the matrix Ξ′′ to be

the matrix Ξ′ with all coefficients with magnitudes below λ set to zero, which is the practical

implementation of the L1 regularization term in Eq. (6.8). Subsequently, the problem is reduced to

the form,

Ξ = argmin
Ξ′′

∥∥∥Ẋ −Θ(X,U)Ξ′′
∥∥∥
2

(6.9)
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which can be solved using, for example, MATLAB’s built-in linear solver called with A\b where

A = Ẋ and b = Θ(X,U). Equation (6.9) is solved repeatedly until the large/nonzero coefficients

(greater than λ in each iteration) converge. Due to the efficiency of linear solvers as well as the

sparse structure of Θ, the coefficients converge rapidly in this step. The STLSQ method is used in

the current manuscript due to not only its efficiency but also simplicity, as described above, which

facilitates the necessary modifications required for real-time model updates.

Finally, the calculated coefficient values in Ξ are then used to construct the continuous-time

ordinary differential equation

ẋ = Ξ⊤(Θ(x⊤, u⊤))⊤ (6.10)

where Θ(x⊤, u⊤) is not a matrix of data but a column vector of symbolic functions derived from

the library of considered functions.

6.3.1.1 Solving for individual variables

The least-squares problem of Eq. (6.9) can also be solved not for the entire system but for a

single variable of interest if only specific ODEs are required. From a programming perspective, it

is identical whether the original full problem of Eq. (6.9) is solved to obtain all nx ODEs in one

computation or whether nx problems are solved in a loop to identify the nx ODEs. If Eq. (6.9)

is solved individually for a variable we first define rows and columns of the relevant matrices as
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follows:

Ẋ = [ẋ1 ẋ2 · · · ẋn] (6.11a)

Θ = [θ1 θ2 · · · θp] (6.11b)

Ξ = [ξ1 ξ2 · · · ξn] (6.11c)

Ξ =



ξ⊤1

ξ⊤2
...

ξ⊤p


(6.11d)

where ẋi ∈ Rm and ξi ∈ Rp are the columns of ẋ and Ξ, respectively, for i = 1, . . . , nx. The

columns of Θ are denoted by θj ∈ Rm, while the rows of Ξ are represented by ξ⊤j ∈ Rnx , for

j = 1, . . . , p. Using these notations, for the ith variable, the sparse identification problem of

Eq. (6.7) is of the form,

ẋi = Θ(X,U)ξi (6.12)

and the corresponding least-squares problem of Eq. (6.9) is

ξi = argmin
ξ′′i

∥∥ẋi −Θ(X,U)ξ′′i
∥∥
2

(6.13)

where ξi represents the coefficients in front of each library function for the ith variable, and ξ′′i

is the notational substitute for the vector ξi with all coefficients with magnitudes below λ set to

zero. Solving the minimization of Eq. (6.13) for i = 1, . . . , nx is identical to solving the full-

state problem of Eq. (6.9) but more advantageous in terms of formulation when performing partial
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SINDy modeling, i.e., model updates in real-time, as will be discussed in Section 6.4.2.

6.3.1.2 Scaling of library functions

In the case where the values of the functions in the library Θ(X,U) vary by orders of magni-

tudes for a data set, it may very likely be necessary to scale the library columns appropriately to

yield a well-conditioned least-squares problem with a reasonable conditional number of Θ(X,U).

When scaling the function library by a vector Λ ∈ Rp, the sparse identification problem becomes

Ẋ = Θ(X,U)Ξ =
Θ(X,U)

Λ︸ ︷︷ ︸
Θscaled

ΞΛ︸︷︷︸
Ξscaled

(6.14)

where Θscaled is the scaled library matrix with its ith column divided by the ith entry of Λ for

i = 1, . . . , p. Similarly, Ξscaled is the scaled coefficient matrix where each of its rows has been

multiplied by the corresponding scalar entry of Λ. The STLSQ iteration step of Eq. (6.9) must now

use the scaled library and coefficient matrices, i.e.,

Ξscaled = argmin
Ξ′′

scaled

∥∥∥Ẋ −Θscaled(X,U)Ξ′′
scaled

∥∥∥
2

(6.15)

Since Ξscaled is used in the STLSQ step, the threshold λ does not need to be scaled as all the entries

of the scaled matrix Ξscaled are already of similar orders of magnitudes. At the end of the STLSQ

algorithm, once Ξscaled has been calculated, the original Ξ can be recovered by dividing every row

of Ξscaled by the corresponding value in the scaling vector Λ.

192



6.3.2 Lyapunov-based control using SINDy models

In this section, we outline the formulation of Lyapunov-based Model Predictive Control

(LMPC) and Lyapunov-based Economic Model Predictive Control (LEMPC) utilizing SINDy

models for future state prediction. Initially, a SINDy model is constructed to approximate the

nonlinear dynamics of the system described by Eq. (6.1) within the operating region Ωρ using data

obtained from extensive open-loop simulations. Subsequently, LMPC and LEMPC are developed

by leveraging SINDy models to ensure closed-loop stability for the nonlinear system represented

by Eq. (6.1).

In this study, we update the SINDy model given by Eq. (6.10) to capture the nonlinear dy-

namics of the system described by Eq. (6.1) in the presence of time-varying bounded disturbances

(i.e., |w(t)| ≤ wm). Each SINDy model, denoted as F i
si(x, u) with i = 1, 2, ..., NT , is updated

using real-time data of closed-loop state trajectories and control actions. Here, NT represents the

total number of obtained SINDy models. We assume the existence of a set of stabilizing feed-

back controllers u = Φi
si(x) ∈ U that can render the origin of the SINDy models F i

si(x, u), with

i = 1, 2, ..., NT , of Eq. (6.10) exponentially stable within an open neighborhood D̂ around the

origin. Consequently, a C1 control Lyapunov function V̂ (x) exists, satisfying the following in-

equalities for all x within D̂:

ĉi1|x|2 ≤ V̂ (x) ≤ ĉi2|x|2, (6.16a)

∂V̂ (x)

∂x
F i
si(x,Φ

i
si(x)) ≤ −ĉi3|x|2, (6.16b)∣∣∣∣∣∂V̂ (x)

∂x

∣∣∣∣∣ ≤ ĉi4|x| (6.16c)
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where ĉi1, ĉ
i
2, ĉi3, and ĉi4 are positive constants, with i = 1, 2, ..., NT . For simplicity, we will omit

the superscript i in the symbols used to represent the SINDy models and controllers that satisfy

Eq. (6.16) in the subsequent discussions. Similar to the approach used to characterize the closed-

loop stability region Ωρ for the nonlinear system described by Eq. (6.1), we begin by characterizing

a region denoted as ϕ̂u = {x ∈ Rn | ˙̂V (x) < −ĉ3|x|2, u = Φsi(x) ∈ U} ∪ {0}, from which the

the origin of the SINDy model given by Eq. (6.10) can be rendered exponentially stable under the

controller u = Φsi(x) ∈ U .

The closed-loop stability region for the SINDy model given by Eq. (6.10) is defined as a level

set of the Lyapunov function within ϕ̂u: Ωρ̂ := {x ∈ ϕ̂u | V̂ (x) ≤ ρ̂}, where ρ̂ > 0. It should be

noted that Ωρ̂ ⊆ Ωρ since the data set used to develop the SINDy model in Eq. (6.10) is generated

from open-loop simulations with x ∈ Ωρ and u ∈ U . Additionally, there exist positive constants

Msi and Lsi such that the following inequalities hold for all x, x′ ∈ Ωρ̂ and u ∈ U :

|Fsi(x, u)| ≤Msi (6.17a)∣∣∣∣∣∂V̂ (x)

∂x
Fsi(x, u)−

∂V̂ (x′)

∂x
Fsi(x

′, u)

∣∣∣∣∣ ≤ Lsi|x− x′| (6.17b)

Consider the existence of a bounded modeling error between the nominal system described

by Eq. (6.1) and the SINDy model given by Eq. (6.10) (i.e., |ν| = |F (x, u, 0) − Fsi(x, u)| ≤ νm,

νm > 0). The following proposition demonstrates that the feedback controller u = Φsi(x) ∈ U

can stabilize the nominal system of Eq. (6.1) if the modeling error is sufficiently small.

Proposition 6.1. Under the assumption that the origin of the closed-loop SINDy model described

by Eq. (6.10) is rendered exponentially stable under the controller u = Φsi(x) ∈ U for all x ∈
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Ωρ̂, if there exists a positive real number Γ < ĉ3/ĉ4 that constrains the modeling error |ν| =

|F (x, u, 0) − Fsi(x, u)| ≤ Γ|x| ≤ νm for all x ∈ Ωρ̂ and u ∈ U , then the origin of the nominal

closed-loop system described by Eq. (6.1) under u = Φsi(x) ∈ U is also exponentially stable for

all x ∈ Ωρ̂.

Proof. To establish the exponential stability of the nominal system described by Eq. (6.1) under

the controller based on the sparse-identified model from Eq. (6.10), we aim to demonstrate that the

derivative of V̂ , which corresponds to the state of the nominal system, can be rendered negative

for all x within the set Ωρ̂ under u = Φsi(x) ∈ U . By utilizing Eq. (6.16b) and Eq. (6.16c), we can

compute the time-derivative of V̂ as follows:

˙̂
V =

∂V̂ (x)

∂x
F (x,Φsi(x), 0)

=
∂V̂ (x)

∂x

(
Fsi(x,Φsi(x)) + F (x,Φsi(x), 0)− Fsi(x,Φsi(x))

)
≤ −ĉ3|x|2 + ĉ4|x|

(
F (x,Φsi(x), 0)− Fsi(x,Φsi(x))

)
≤ −ĉ3|x|2 + ĉ4|x|2νm

(6.18)

By appropriately selecting νm, such that νm < ĉ3/ĉ4, we can ensure that ˙̂
V ≤ −c̃3|x|2 ≤ 0, where

c̃3 = −ĉ3 + ĉ4νm > 0. This implies that the closed-loop state of the nominal system converges to

the origin under u = Φsi(x) ∈ U for all x0 ∈ Ωρ̂.

Upon integrating the SINDy model represented by Eq. (6.10) into the Lyapunov-based MPC

designs, the control actions of the LMPC and LEMPC will be implemented using a sample-and-

hold approach. Consequently, the subsequent propositions aim to establish the sample-and-hold

characteristics of the Lyapunov-based controller u = Φsi(x). Specifically, the next proposition
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derives an upper bound for the discrepancy between the states computed by the nominal system

defined in Eq. (6.1) and the states predicted by the SINDy model given by Eq. (6.10).

Proposition 6.2. (c.f. proposition 3 in [3]) For the nonlinear system described by ẋ = F (x, u, w)

in Eq. (6.1) and the SINDy model given by ˙̂x = Fsi(x̂, u) in Eq. (6.10), assuming the same initial

condition x0 = x̂0 ∈ Ωρ̂, there exists a class K function fw(·) and a positive constant κ such that

the following inequalities hold for all x and x̂ within Ωρ̂.

|x(t)− x̂(t)| ≤ fw(t) :=
Lwwm + νm

Lx

(
eLxt − 1

)
(6.19a)

V̂ (x) ≤ V̂ (x̂) +
ĉ4
√
ρ̂√

ĉ1
|x− x̂|+ κ|x− x̂|2 (6.19b)

Proof. Let us denote the error vector between the solutions of the system ẋ = F (x, u, w) and the

SINDy model ˙̂x = Fsi(x̂, u) as e(t) = x(t)− x̂(t). By taking the time derivative of e(t), we obtain:

|ė(t)| = |F (x, u, w)− Fsi(x̂, u)|

≤ |F (x, u, w)− F (x̂, u, 0)|+ |F (x̂, u, 0)− Fsi(x̂, u)|
(6.20)

Using the Lipschitz condition from Eq. (6.3b), we have:

|F (x, u, w)− F (x̂, u, 0)| ≤ Lx|x(t)− x̂(t)|+ Lw|w(t)|

≤ Lx|x(t)− x̂(t)|+ Lwwm

(6.21)

The second term |F (x̂, u, 0) − Fsi(x̂, u)| in Eq. (6.20) represents the modeling error, which is

bounded by |ν| ≤ νm for all x̂ ∈ Ωρ̂. Hence, combining Eq. (6.21) and the bound on the modeling
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error, we can bound ė(t) as follows:

|ė(t)| ≤ Lx|x(t)− x̂(t)|+ Lwwm + νm

≤ L|e(t)|+ Lwwm + νm

(6.22)

With the zero initial condition (e(0) = 0), we can bound the norm of the error vector for all

x(t), x̂(t) ∈ Ωρ̂ and w(t) ≤ wm:

|e(t)| = |x(t)− x̂(t)| ≤ Lwwm + νm
Lx

(eLxt − 1) (6.23)

Next, to derive Eq. (6.19b) for all x, x̂ ∈ Ωρ̂, we expand V̂ (x) using a Taylor series expansion

around x̂:

V̂ (x) ≤ V̂ (x̂) +
∂V̂ (x̂)

∂x
|x− x̂|+ κ|x− x̂|2 (6.24)

where κ is a positive real number. Using Eq. (6.16a) and Eq. (6.16c), we can simplify Eq. (6.24)

as follows:

V̂ (x) ≤ V̂ (x̂)
ĉ4
√
ρ̂√

ĉ1
|x− x̂|+ κ|x− x̂|2 (6.25)

This completes the proof of Proposition 6.2.
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6.3.2.1 LMPC using SINDy models

The formulation of a Lyapunov-based model predictive controller (LMPC) using a SINDy

model can be expressed as follows [155]:

J = min
u∈S(∆)

∫ tk+N

tk

L(x̃(t), u(t)) dt (6.26a)

s.t. ˙̃x(t) = Fsi(x̃(t), u(t)) (6.26b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (6.26c)

x̃(tk) = x(tk) (6.26d)

˙̂
V (x(tk), u) ≤ ˙̂

V
(
x(tk),Φsi(x(tk))

)
, if x(tk) ∈ Ωρ̂\Ωρsi (6.26e)

V̂ (x̃(t)) ≤ ρsi, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρsi (6.26f)

where x̃ represents the predicted state trajectory. The set S(∆) consists of piecewise constant

functions with period ∆. N denotes the number of sampling periods in the prediction horizon.

The term ˙̂
V (x, u) denotes ∂V̂ (x)

∂x
Fsi(x, u). The optimal input trajectory computed by the LMPC,

denoted as u∗(t), is calculated over the entire prediction horizon t ∈ [tk, , tk+N). The control

action computed for the first sampling period of the prediction horizon, u∗(tk), is applied during

that period, and the LMPC is resolved at the next sampling time.

In the optimization problem defined by Eq. (6.26), the objective function in Eq. (6.26a)

represents the integral of L(x̃(t), u(t)) over the prediction horizon. The constraint specified in

Eq. (6.26b) describes the sparse-identified model of Eq. (6.10) used for state prediction in the

closed-loop system. Equation (6.26c) defines the input constraints applied throughout the predic-
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tion horizon, and Eq. (6.26d) defines the initial condition x̃(tk) based on the state measurement at

t = tk. The constraint expressed in Eq. (6.26e) ensures that, if x(tk) ∈ Ωρ̂\Ωρsi , the closed-loop

state will move towards the origin. However, once x(tk) enters Ωρsi , the states predicted by the

SINDy model from Eq. (6.26b) will remain within Ωρsi for the entire prediction horizon.

The proposition below demonstrates that the closed-loop state of the nominal system de-

scribed in Eq. (6.1) remains bounded within the region Ωρ̂ for all times and can ultimately be

bounded in a smaller subset Ωρmin
that includes the origin. This result is obtained under the sample-

and-hold implementation of the Lyapunov-based controller u = Φsi(x) ∈ U .

Proposition 6.3. Consider the system described by Eq. (6.1) under the controller u = Φsi(x̂) ∈ U .

The controller is designed to stabilize the SINDy system represented by Eq. (6.10) and satisfies

the conditions stated in Eq. (6.16). The controller operates in a sample-and-hold fashion, where

u(t) = Φsi(x̂(tk)) ∀ t within the interval [tk, tk+1), with tk+1 := tk + ∆. Let ϵs, ϵw, ∆, and ρ̂ be

positive values, and assume ρmin, ρsi, and ρs satisfy the following conditions:

− ĉ3
ĉ2
ρs + LsiMsi∆ ≤ −ϵs (6.27a)

− c̃3
ĉ2
ρs + L′

xM∆+ L′
wwm ≤ −ϵw (6.27b)

and

ρsi := max{V̂ (x̂(t+∆)) | x̂(t) ∈ Ωρs , u ∈ U} (6.28a)

ρmin ≥ ρsi +
ĉ4
√
ρ̂√

ĉ1
fw(∆) + κ(fw(∆))2 (6.28b)

Then, the following inequality holds for any x(tk) ∈ Ωρ̂\Ωρs:

199



V̂ (x(t)) ≤ V̂ (x(tk)), ∀t ∈ [tk, tk+1) (6.29)

and the state x(t) of the nonlinear system of Eq. (6.1) is bounded in Ωρ̂ ∀ t for all times and

ultimately bounded in Ωρmin
.

Proof. Part 1: Let’s assume that x(tk) = x̂(tk) ∈ Ωρ̂\Ωρs . We will now demonstrate that, under

the controller u(t) = Φsi(x(tk)) ∈ U , the value of V̂ (x̂) decreases for t ∈ [tk, tk+1), where x(t)

and x̂(t) represent the solutions of the nonlinear system described by Eq. (6.1) in the presence

of bounded disturbances and the SINDy system described by Eq. (6.10), respectively. We obtain

the time-derivative of V̂ (x̂) along the trajectory x̂(t) of the SINDy model within the interval t ∈

[tk, tk+1) as follows:

˙̂
V (x̂(t)) =

∂V̂ (x̂(t))

∂x̂
Fsi(x̂(t),Φsi(x̂(tk)))

=
∂V̂ (x̂(tk))

∂x̂
Fsi(x̂(tk),Φsi(x̂(tk))) +

∂V̂ (x̂(t))

∂x̂
Fsi(x̂(t),Φsi(x̂(tk)))

− ∂V̂ (x̂(tk))

∂x̂
Fsi(x̂(tk),Φsi(x̂(tk)))

(6.30)

Using the inequalities of Eq. (6.16a) and Eq. (6.16b),

˙̂
V (x̂(t)) ≤ − ĉ3

ĉ2
ρs +

∂V̂ (x̂(t))

∂x̂
Fsi(x̂(t),Φsi(x̂(tk)))

− ∂V̂ (x̂(tk))

∂x̂
Fsi(x̂(tk),Φsi(x̂(tk)))

(6.31)

Utilizing the Lipschitz condition stated in Eq. (6.17) and considering the fact that x̂ ∈ Ωρ̂ and
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u ∈ U , we can determine the upper bound of ˙̂
V (x̂(t)) for all t ∈ [tk, tk+1) as follows:

˙̂
V (x̂(t)) ≤ − ĉ3

ĉ2
ρs + Lsi|x̂(t)− x̂(tk)|

≤ − ĉ3
ĉ2
ρs + LsiMsi∆

(6.32)

Hence, when Eq. (6.27a) is fulfilled, the subsequent inequality is valid for any x̂(tk) ∈ Ωρ̂\Ωρs and

t ∈ [tk, tk+1):

˙̂
V (x̂(t)) ≤ −ϵs (6.33)

By integrating the aforementioned equation over t ∈ [tk, tk+1), we can conclude that V (x̂(tk+1)) ≤

V (x̂(tk)) − ϵs∆. Hence, we have established that, for all x̂(tk) ∈ Ωρ̂\Ωρs , the state of the closed-

loop SINDy system described by Eq. (6.10) remains bounded within the closed-loop stability re-

gion Ωρ̂ at all times and converges towards the origin when the controller u = Φsi(x̂) ∈ U is

implemented in a sample-and-hold manner.

However, it should be noted that Eq. (6.33) may not hold when x(tk) = x̂(tk) ∈ Ωρs . This

implies that the state may exit the region Ωρs within a single sampling period. To address this,

we design Ωρsi based on Eq. (6.28a) to ensure that the closed-loop state x̂(t) of the SINDy model

remains within Ωρsi for all t ∈ [tk, tk+1), u ∈ U , and x̂(tk) ∈ Ωρs during a sampling period.

If the state x̂(tk+1) exits Ωρs , the controller u = Φsi(x(tk+1)) will guide the state back towards

Ωρs in the subsequent sampling period, as Eq. (6.33) is satisfied again at t = tk+1. Consequently,

we have demonstrated the convergence of the state to Ωρsi for the closed-loop SINDy system

described by Eq. (6.10) for all initial states x̂0 ∈ Ωρ̂. The next step is to establish that the closed-

loop state of the actual nonlinear system governed by Eq. (6.1) can be bounded within Ωρ̂ for all

201



times and ultimately bounded within a small neighborhood around the origin when the controller

u = Φsi(x) ∈ U is implemented using the sample-and-hold technique.

Part 2: Building upon the previous analysis of the SINDy system represented by Eq. (6.10),

we now consider the nonlinear system described by Eq. (6.1) with x(tk) = x̂(tk) ∈ Ωρ̂\Ωρs . We

derive the time-derivative of V̂ (x) for this nonlinear system, taking into account the presence of

bounded disturbances w (with |w| ≤ wm), as shown below:

˙̂
V (x(t)) =

∂V̂ (x(t))

∂x
F (x(t),Φsi(x(tk)), w)

=
∂V̂ (x(tk))

∂x
F (x(tk),Φsi(x(tk)), 0) +

∂V̂ (x(t))

∂x
F (x(t),Φsi(x(tk)), w)

− ∂V̂ (x(tk))

∂x
F (x(tk),Φsi(x(tk)), 0)

(6.34)

By referring to Eq. (6.19), we have ∂V̂ (x(tk))
∂x

F (x(tk),Φsi(x(tk)), 0) ≤ −c̃3|x(tk)|2 for all x ∈

Ωρ̂\Ωρs . Utilizing Eq. (6.16a) and the Lipschitz condition stated in Eq. (6.17), we can derive the

following inequality for ˙̂
V (x(t)) within the time interval t ∈ [tk, tk+1), given that x(tk) ∈ Ωρ̂\Ωρs:

˙̂
V (x(t)) ≤− c̃3

ĉ2
ρs +

∂V̂ (x(t))

∂x
F (x(t),Φsi(x(tk)), w)−

∂V̂ (x(tk))

∂x
F (x(tk),Φsi(x(tk)), 0)

≤− c̃3
ĉ2
ρs + L′

x|x(t)− x(tk)|+ L′
w|w|

≤ − c̃3
ĉ2
ρs + L′

xM∆+ L′
wwm

(6.35)

If the condition stated in Eq. (6.27b) is fulfilled, we can establish the following inequality for all

x(tk) ∈ Ωρ̂\Ωρs and t ∈ [tk, tk+1):

˙̂
V (x(t)) ≤ −ϵw (6.36)
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From the inequality in Eq. (6.36), we can conclude that Eq. (6.29) holds, ensuring that the state

of the closed-loop system described by Eq. (6.1) remains within the region Ωρ̂ for all times. Fur-

thermore, this implies that the controller u = Φsi(x) is capable of driving the state of the actual

nonlinear system given by Eq. (6.1) towards the origin within each sampling period.

In addition to the above, if the initial state x(tk) belongs to the set Ωρs , we have already

demonstrated in Part 1 that the state of the SINDy model described by Eq. (6.10) remains within

the region Ωρsi within one sampling period. Taking into account the bounded error between the

SINDy model state and the actual nonlinear system state, as indicated by Eq. (6.19a), we can

define a compact set Ωρmin
such that Ωρsi ⊂ Ωρmin

, satisfying the condition stated in Eq. (6.28b).

This guarantees that the state of the actual nonlinear system does not exit Ωρmin
during a sampling

period if the state of the SINDy model remains bounded within Ωρsi . If the state x(t) enters the

set Ωρmin
\Ωρs , we have shown that Eq. (6.36) holds, and thus, the state will be driven towards the

origin again during the next sampling period under the controller u = Φsi(x).

By establishing the above arguments, we have completed the proof of Proposition 6.3, demon-

strating that for any initial state x0 = x̂0 ∈ Ωρ̂, the closed-loop state trajectories of the nonlinear

system described by Eq. (6.1) remain within the region Ωρ̂ and ultimately become bounded within

Ωρmin
, provided that the assumptions of Proposition 6.3 are satisfied.

The aforementioned stability region, the various Lyapunov level sets and an example of a

closed-loop state trajectory under the LMPC are depicted in Fig. 6.1.
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Figure 6.1: A diagram illustrating the sets ϕ̂u, Ωρ̂, Ωρmin
, Ωρsi , and Ωρs in concentric ellipses, from

outermost to innermost. The LMPC control strategy of Eq. (6.26) guides the closed-loop state
towards the origin and ensures that it eventually remains bounded within Ωρmin

for any initial state
x0 ∈ Ωρ̂.

6.3.2.2 LEMPC using SINDy models

The Lyapunov-based economic model predictive control (LEMPC) approach utilizing a SINDy

model is designed to dynamically optimize the economic benefits of a process while ensuring that

the closed-loop state remains within a specified stability region at all times [55]. The LEMPC can

be formulated as the following optimization problem:

J = max
u∈S(∆)

∫ tk+N

tk

le(x̃(t), u(t)) dt (6.37a)

s.t. ˙̃x(t) = Fsi(x̃(t), u(t)) (6.37b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (6.37c)

x̃(tk) = x(tk) (6.37d)

V̂ (x̃(t)) ≤ ρ̂e, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρ̂e (6.37e)

˙̂
V (x(tk), u) ≤ ˙̂

V
(
x(tk),Φsi(x(tk))

)
, if x(tk) ∈ Ωρ̂\Ωρ̂e (6.37f)
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The notation used in Eq. (6.37) follows that of Eq. (6.26). The optimization problem presented in

Eq. (6.37) aims to maximize the time integral of the stage cost function, denoted as le(x̃(t), u(t)),

over the prediction horizon. The prediction model described in Eq. (6.37b) and the initial condition

given in Eq. (6.37d) are the same as those used in the LMPC formulation of Eq. (6.26). The

constraint stated in Eq. (6.37e) ensures that the predicted closed-loop states remain within the

region Ωρ̂e over the prediction horizon when the initial state x(tk) is inside this region. However, if

x(tk) enters the region Ωρ̂\Ωρ̂e , the contractive constraint expressed in Eq. (6.37f) drives the state

towards the origin during the next sampling period, ultimately causing the state to enter Ωρ̂e within

a finite number of sampling periods.

Proposition 6.4. Consider the system described by Eq. (6.1) subject to the controller u = Φsi(x̂) ∈

U . This controller satisfies the conditions specified in Eq. (6.16) and is implemented using a

sample-and-hold approach, meaning that u(t) = Φsi(x̂(tk)) ∀t ∈ [tk, tk+1), where tk+1 := tk +∆.

Further, let ϵw and ϵs be positive values, and let ∆ be a positive time interval. Consider also that

ρ̂ > ρ̂e > ρs > 0, satisfying the conditions given by the following equations:

− ĉ3
ĉ2
ρs + LsiMsi∆ ≤ −ϵs (6.38a)

− c̃3
ĉ2
ρs + L′

xM∆+ L′
wwm ≤ −ϵw (6.38b)

ρ̂e > max{V̂ (x̂(tk +∆)) | x̂(tk) ∈ Ωρs , u ∈ U,w ∈ W} (6.38c)
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In that case, for any x(tk) ∈ Ωρ̂\Ωρs , the following inequalities hold:

V̂ (x̂(t)) ≤ V̂ (x̂(tk)), ∀t ∈ [tk, tk+1) (6.39a)

V̂ (x(t)) ≤ V̂ (x(tk)), ∀t ∈ [tk, tk+1) (6.39b)

Proof. In order to demonstrate the decreasing value of V̂ along the trajectory x̂(t) of the SINDy

model described by Eq. (6.10) over the interval t ∈ [tk, tk+1), we evaluate the time derivative of

V̂ (x̂) with respect to x̂(t) as follows:

˙̂
V (x̂(t)) =

∂V̂ (x̂(t))

∂x̂
Fsi(x̂(t),Φsi(x̂(tk)))

=
∂V̂ (x̂(tk))

∂x̂
Fsi(x̂(tk),Φsi(x̂(tk)))

+
∂V̂ (x̂(t))

∂x̂
Fsi(x̂(t),Φsi(x̂(tk)))

− ∂V̂ (x̂(tk))

∂x̂
Fsi(x̂(tk),Φsi(x̂(tk)))

(6.40)

By exploiting the Lyapunov constraints of Eqs. (6.16a) and (6.16b) and the Lipschitz condition of

Eq. (6.17), we obtain the following inequalities:

˙̂
V (x̂(t)) ≤ − ĉ3

ĉ2
ρs +

∂V̂ (x̂(t))

∂x̂
Fsi(x̂(t),Φsi(x̂(tk)))

− ∂V̂ (x̂(tk))

∂x̂
Fsi(x̂(tk),Φsi(x̂(tk)))

≤ − ĉ3
ĉ2
ρs + LsiMsi∆

(6.41)

Hence, if the condition of Eq. (6.38a) is satisfied, we have ˙̂
V (x̂(t)) ≤ −ϵs for all x̂(tk) ∈ Ωρ̂\Ωρs

and t ∈ [tk, tk+1). Integrating the above inequality leads to V̂ (x̂(t)) ≤ V̂ (x̂(tk)) − ∆ϵs, for all

x̂(tk) ∈ Ωρ̂\Ωρs and t ∈ [tk, tk+1) (referred to as Eq. (6.39a)).
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To establish the inequality V̂ (x(t)) ≤ V̂ (x(tk)) for all t ∈ [tk, tk+1), we derive the time-

derivative of V̂ (x) for the nonlinear system described by Eq. (6.1) (where ẋ = F (x, u, w)) in the

presence of bounded disturbances (i.e., |w(t)| ≤ wm) as follows:

˙̂
V (x(t)) =

∂V̂ (x(t))

∂x
F (x(t),Φsi(x(tk)), w)

=
∂V̂ (x(tk))

∂x
F (x(tk),Φsi(x(tk)), 0)

+
∂V̂ (x(t))

∂x
F (x(t),Φsi(x(tk)), w)

− ∂V̂ (x(tk))

∂x
F (x(tk),Φsi(x(tk)), 0)

(6.42)

By utilizing Eq. (6.19), which states that ∂V̂ (x(tk))
∂x

F (x(tk),Φsi(x(tk)), 0) ≤ −c̃3|x(tk)|2 holds for

all x ∈ Ωρ̂, we can derive the following inequality for all x(tk) ∈ Ωρ̂\Ωρs and t ∈ [tk, tk+1) using

Eq. (6.16a) and the Lipschitz condition given by Eq. (6.17):

˙̂
V (x(t)) ≤− c̃3

ĉ2
ρs + L′

x|x(t)− x(tk)|+ L′
w|w|

≤ − c̃3
ĉ2
ρs + L′

xM∆+ L′
wwm

(6.43)

Therefore, if the condition of Eq. (6.38b) is satisfied, we can derive the following inequality

∀ x(tk) ∈ Ωρ̂\Ωρs and ∀ t ∈ [tk, tk+1) :

˙̂
V (x(t)) ≤ −ϵw (6.44)

Likewise, this implies that V̂ (x(t)) ≤ V̂ (x(tk)) − ∆ϵw holds for all x(tk) ∈ Ωρ̂\Ωρs and t ∈

[tk, tk+1). Hence, if x(tk) ∈ Ωρ̂\Ωρs , the state of the nonlinear system described by Eq. (6.1) will

enter Ωρs within a finite number of sampling periods. Moreover, if x(tk) ∈ Ωρs , where Eq. (6.43)
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and Eq. (6.44) do not hold, Eq. (6.38c) ensures that the state will not exit Ωρ̂e within one sampling

period for any u ∈ U and w ∈ W . If the state x(tk+1) exits Ωρs but remains within Ωρ̂e , then

at the subsequent sampling period t ∈ [tk+1, tk+2), Eq. (6.44) is satisfied again, causing the state

to be driven toward the origin. Consequently, the state of the nonlinear system given by Eq. (6.1)

remains bounded within Ωρ̂ at all times.

6.4 Error-triggered online update of SINDy models

In this section, we apply the LMPC the LEMPC methods described by Eq. (6.26) and Eq. (6.37),

respectively, to the nonlinear system of Eq. (6.1) in the presence of bounded disturbances (i.e.,

|w(t)| ≤ wm) that grows due to changes in the dynamics of the nonlinear system of Eq. (6.1),

potentially leading to instability in the closed-loop system. To mitigate the impact of disturbances,

we update SINDy models through online learning to capture the nonlinear dynamics of the system

described by Eq. (6.1) while accounting for the influence of disturbances w(t). The subsequent

subsections introduce the error-triggering mechanism employed for updating the SINDy models to

ensure |w(t)| ≤ wm for all time.

6.4.1 Error-triggering mechanism

In this subsection, we develop an event-triggering mechanism based on the errors between

predicted states and measured states to update the SINDy model for all x ∈ Ωρ̂. This mechanism

is referred to as the error-triggered on-line SINDy update throughout the manuscript. Specifically,

following the error-triggering mechanism proposed in [227], we introduce a moving horizon error
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metric denoted as ed(tk), which indicates the prediction accuracy of the SINDy model at time

t = tk.

ed(tk) =
Nw∑
r=0

nx∑
j=1

|xp,j(tk−r)− xj(tk−r)|
|xj(tk−r)|

(6.45)

where the quantity Nw represents the number of sampling periods prior to tk that contribute to

the estimation of the prediction error. At each sampling period between tk−Nw and tk, xj(tk−r)

captures the historical measurements of the process states, where r ranges from 0 to Nw. Similarly,

xp,j(tk−r) represents the predictions of the past states of the system obtained from the SINDy

model. The moving horizon error detector triggers a model update if/when the error metric ed

surpasses a predefined threshold ed,T , i.e., the following condition:

ed(tk) > ed,T (6.46)

Determining the parameters for this error-triggered approach involves defining the number of input

and output data points Nd that should be retained for model update when it is triggered, the length

Nw of the moving horizon used to calculate the error metric ed, and the threshold ed,T that dictates

when a model update should be initiated.

The following strategy is proposed for the selection of the parameter,

• Nd: The SINDy algorithm is highly dependent on the amount of dynamic information

present in a data set rather than simply its size. While the initial SINDy model must be

developed with a large data set consisting of many open-loop experiments/simulations, the

model update procedure must use a much smaller number of data points to update the co-

efficients because, firstly, the updates must occur relatively soon after the disturbance takes
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effect and, secondly, the model is only being updated rather than being identified. Hence,

the amount of data required for the initial offline model building procedure has no impact on

the amount of data required to efficiently update the model in real-time. The actual amount

of data will depend also on the sampling period since a smaller sampling period can yield a

large volume of data within a short period of data acquisition. In summary, the value of Nd

is highly process-specific, and some insights will be provided in the application section. We

note, however, that even if Nd is relatively large for a certain process (or region of a process),

one approach to mitigate process deterioration during the time between the error-triggering

and the SINDy model update is to use a linear data-driven model as a stopgap solution [166].

• Nw: The selection of the appropriate value for Nw in the calculation of ed requires finding a

balance. On one hand, Nw should be sufficiently long to ensure that common disturbances

during normal operation do not significantly impact ed, which could lead to unnecessary

triggering of errors. On the other hand, Nw should not be longer than necessary to avoid

unnecessary data storage and processing. One approach to determine Nw is by evaluating

the value of ed(tk) at each sampling period for a set of input/output data collected during typ-

ical process operation. This evaluation is performed in closed-loop under the SINDy-based

MPC, focusing on the region of operation where the initial SINDy model was developed and

validated. By repeating this calculation for different values of Nw, it becomes possible to

observe the range of minimum and maximum values of ed. If Nw is small, the minimum and

maximum values of ed may differ significantly since any disturbance or measurement noise

within the moving horizon has a considerable impact on ed. However, as Nw increases, the
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influence of disturbances and measurement noise becomes less significant. At some point,

the minimum and maximum values of ed are expected to stabilize, indicating that further

increases in Nw have minimal effect. In such a case, the smallest value of Nw for which

the minimum and maximum values of ed reach their approximate final value can be selected

for use in Eq. (6.45). It is important to note that the value of Nw for a given process de-

pends on the statistical properties of w(t) and its influence on the system. Therefore, careful

consideration of these factors is necessary when determining the appropriate value of Nw.

• ed,T : The determination of the threshold value ed,T is performed offline, taking into account

the chosen value of Nw. The goal is to set a threshold that avoids triggering model updates

in the presence of measurement noise, small constant disturbances, and time-varying dis-

turbances that still result in reasonably accurate predictions using the current model. One

approach to achieve this is by analyzing the statistical properties of ed using a set of closed-

loop input/output data corresponding to normal process operation within the region where

the initial SINDy model was developed and validated. For example, the maximum value of

ed can be calculated using the selected value of Nw. The threshold can then be set to be a

reasonable percentage higher than this maximum value of ed observed in the normal operat-

ing data. This approach ensures that the threshold includes disturbances and measurement

noise that regularly affect the system. Alternatively, other statistical measures could be used,

such as setting ed,T to be several standard deviations above the mean value of ed calculated

from the normal operating data. The choice of the appropriate measure depends on the spe-

cific system being analyzed. It is important to note that, even in the absence of disturbances
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or measurement noise, ed may have a non-zero value if the SINDy model captured the dy-

namics of the system using a different set of basis functions than the actual nonlinearities

of the process in consideration. If the exact basis functions and coefficients were correctly

identified by the SINDy model, however, ed can be expected to be very close to zero.

From a practical perspective, due to the continuous, online monitoring of the process performance,

even if some parameters are not chosen optimally from the beginning, they can be adjusted based

on the incoming data, and the lack of explicit formulae to determine the aforementioned parameters

is not a limitation of the adaptive SINDy framework.

Remark 6.1. While Eq. (6.45) assumes full-state feedback, if only output measurements are avail-

able, the SINDy modeling framework itself can be modified to obtain not the state derivative but

the output measurements as functions of the states, i.e., y = f(x, u), where y are the output mea-

surements. Such an approach has been proposed in [222] under the name of generalized SINDy.

Hence, using output measurements as the target variables and nonlinear functions of the states

and manipulated inputs as the library functions, once relationships are obtained for the output

measurements, the predicted output measurements can be used to compute the error metric in

Eq. (6.45) instead.

6.4.2 SINDy model update procedure

Once the SINDy model update is triggered by the mechanisms of Section 6.4, the model

update is carried out using the last Nd data points. The details of the update procedure are discussed

in this subsection.
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It is assumed that the structure of the original SINDy model obtained offline does not change

due to the presence of disturbances or changes in the process. This is a practical assumption

since many changes such as catalyst deactivation or fluctuations in feed flow rates would not add

or remove terms from the process model but simply alter the terms, specifically the coefficients

associated with the respective terms. Hence, the problem of updating SINDy models in real-time

can be reduced to re-identifying a subset of the coefficients in the matrix Ξ. In doing so, however,

the remaining coefficients must remain at their original values.

For real-time model updates of q out of p coefficients for each variable, the matrices Θ(X,U)

and Ξ must be split into the part that will remain unchanged and the part that will be re-identified

as follows:

Θ = [Θfixed Θupdate], Ξ = [Ξfixed Ξupdate]
⊤ (6.47)

where Θfixed ∈ Rm×(p−q) and Θupdate ∈ Rm×q contain the m × 1 columns of Θ that are fixed

and that are updated, respectively. Similarly, Ξfixed ∈ R(p−q)×nx and Ξupdate ∈ Rq×nx contain the

corresponding 1× nx rows of Ξ. The sparse identification problem then becomes

Ẋ = ΘΞ = ΘfixedΞfixed +ΘupdateΞupdate (6.48)

which can be reformulated into the form,

Ẋ −ΘfixedΞfixed = ΘupdateΞupdate (6.49)

In Eq. (6.49), the left-hand side is a matrix that can be evaluated using the fixed part of the current
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SINDy model, and Θupdate in the right-hand side of Eq. (6.49) is also known. Therefore, STLSQ

can be used to solve for the only unknown in Eq. (6.49), which is Ξupdate, using the same procedure

as described in Section 6.3.1. Specifically, the least-squares formulation now solves for Ξupdate as

follows:

Ξupdate = argmin
Ξ′′

update

∥∥∥Ẋ −ΘfixedΞfixed −ΘupdateΞ
′′
update

∥∥∥
2

(6.50)

In the above formulation, the notations use the full matrices for the parts of Ξ, which is done

for simplicity. However, the same library terms do not need to be fixed between the different

variables/ODEs. Since the STLSQ algorithm solves for the coefficients of each state variable

sequentially in a loop, the different terms to be updated can be easily incorporated into the solution.

Specifically, instead of altering the same q library function coefficients for every variables, let the

ith variable update qi coefficients in its ODE right-hand side (i = 1, . . . , nx). In this case, the

least-squares problem associated with the partial SINDy update for the ith variable is expressed as

follows:

ẋi −Θi,fixedΞi,fixed = Θi,updateΞi,update (6.51)

For example, consider a system where the first and third library functions are to be updated for the

first variable (q1 = 2) but only the second library function for the second variable (q2 = 1). In this

case, the least-squares problems to be solved for identifying the updated SINDy coefficients for
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the ODEs modeling the dynamics of the first two variables would be

ẋ1 − [θ2 θ4 θ5 · · · θp]



ξ2,1

ξ4,1

ξ5,1
...

ξp,1


= [θ1 θ3]

ξ1,1
ξ3,1

 (6.52)

and

ẋ2 − [θ1 θ3 θ4 θ5 · · · θp]



ξ1,2

ξ3,2

ξ4,2

ξ5,2
...

ξp,2


= [θ2]

[
ξ2,2

]
(6.53)

respectively, where ξi,j denotes the ith row of the j th column of Ξ. Solving Eq. (6.52) will yield

the updated values of ξ1,1 and ξ3,1, while solving Eq. (6.53) outputs the updated scalar, ξ2,2. In this

manner, any number and choice of library functions’ coefficients can be updated using the partial

re-identification algorithm described in this subsection.

6.4.3 Implementation strategy for error-triggered on-line model identifica-

tion

After determining the values of Nd, Nw, and ed,T using the methodology described in the

previous section, the implementation strategy for the proposed error-triggered on-line model iden-

tification is as follows:
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Step 1: An initial SINDy model that captures the nonlinear process behavior in the operating re-

gion is developed using data from extensive open-loop simulations. This model is used to

design the model predictive controller.

Step 2: The system is operated under the MPC that is designed based on the current SINDy model.

During operation, Nd values of input/output data are collected and stored for potential fu-

ture model identification. At tNw , the moving horizon error detector is activated to compute

ed(tk).

Step 3: When the current SINDy model becomes inadequate in capturing the dynamics of the

process (due to factors such as plant variations or changes in the operating region), the

value of ed(tk) will rise. Once ed(tk) surpasses the threshold ed,T , the latest set of Nd input

and output data values (collected up until time tk) are employed for on-line model update.

This newly updated SINDy model then replaces the current SINDy model and is utilized

as the process model in the MPC.

Step 4: Steps 2 and 3 are repeated as process operation continues.

6.4.4 Stability analysis of error-triggered feedback systems

In this section, we use the propositions developed in Sections 6.3.2.1 and 6.3.2.2 to develop

closed-loop stability results for the nonlinear system of Eq. (6.1) under the Lyapunov-based con-

trollers.
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6.4.4.1 Stability analysis for Lyapunov-based tracking MPC

Based on the LMPC formulation given by Eq. (6.26), the following theorem establishes

that the LMPC optimization problem can be solved with recursive feasibility, ensuring closed-

loop stability of the nonlinear system described by Eq. (6.1) when implementing the optimal

control actions computed by LMPC using a sample-and-hold strategy (i.e., u(t) = Φsi(x̂(tk)),

∀t ∈ [tk, tk+1), where tk+1 := tk +∆ and ∆ is the sampling period).

Theorem 6.1. Consider the closed-loop system of Eq. (6.1) under the LMPC of Eq. (6.26) with

on-line updates of the SINDy model. Let ∆ > 0, ϵw > 0 and ρ̂ > ρmin > ρs satisfy Eq. (6.27)

and Eq. (6.28). Then, given any initial state x0 ∈ Ωρ̂, if the conditions of Proposition 6.2 and

Proposition 6.3 are satisfied, and if the SINDy model is updated following the implementation

strategy in this section with the triggering event of Eq. (6.46), then it is guaranteed that the LMPC

of Eq. (6.26) has a feasible solution and that under the LMPC of Eq. (6.26), x(t) ∈ Ωρ̂, ∀t ≥ 0,

and limt→∞ V̂ (x(t)) ≤ ρmin for the closed-loop system of Eq. (6.1).

Proof. We will demonstrate that the optimization problem described by Eq. (6.26) is recursively

feasible for all x ∈ Ωρ̂. Specifically, if at time t = tk the state x(tk) satisfies x(tk) ∈ Ωρ̂\Ωρsi , the

control action u(t) = Φsi(x(tk)) ∈ U , for t ∈ [tk, tk+1), obtained based on the state measurement

x(tk), satisfies both the input constraint defined in Eq. (6.26c) and the Lyapunov-based constraint

given by Eq. (6.26e). Moreover, if x(tk) ∈ Ωρsi , the control actions computed using Φsi(x(tk+i))

for i = 0, 1, . . . , N − 1 satisfy the input constraint in Eq. (6.26c) as well as the Lyapunov-based

constraint specified in Eq. (6.26f). This result is derived from Proposition 6.3, which shows that the

predicted states by the SINDy model defined in Eq. (6.26b) remain within Ωρsi when subjected to
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the controller Φsi(x). Consequently, for any initial state x0 ∈ Ωρ̂, the LMPC optimization problem

of Eq. (6.26) can be solved with recursive feasibility if the condition x(t) ∈ Ωρ̂ holds for all time

instances.

We will now demonstrate that for any initial state x0 ∈ Ωρ̂, the state of the closed-loop system

described by Eq. (6.1) remains bounded within Ωρ̂ for all time and ultimately converges to a small

neighborhood around the origin, denoted as Ωρmin
and defined by Eq. (6.28b), under the LMPC

controller specified by Eq. (6.26).

Let’s consider the case where at time t = tk, the state x(tk) satisfies x(tk) ∈ Ωρ̂\Ωρsi . In this

situation, the constraint defined by Eq. (6.26e) is activated, ensuring that the control action u is

selected to decrease the value of V̂ (x̂) based on the predicted states provided by the SINDy model

described by Eq. (6.26b) over the next sampling period. Additionally, according to Eq. (6.36),

if the constraint of Eq. (6.26e) is satisfied, it follows that ˙̂
V (x) ≤ −ϵw for t ∈ [tk, tk+1) after

applying the control action u∗(tk) to the nonlinear system defined by Eq. (6.1). Therefore, the

value of V̂ (x) based on the state of the actual nonlinear system given by Eq. (6.1) decreases within

the next sampling period, implying that the closed-loop state can be driven into Ωρsi within a finite

number of sampling steps.

Once the state enters Ωρsi , the constraint specified by Eq. (6.26f) is activated to ensure that the

predicted states of the SINDy model in Eq. (6.26b) remain within Ωρsi throughout the prediction

horizon. Due to the existence of a mismatch between the SINDy model described by Eq. (6.26b)

and the nonlinear system represented by Eq. (6.1), the state of the nonlinear system may exit Ωρsi

when subject to the constraint defined by Eq. (6.26f). However, by characterizing a region Ωρmin

that satisfies Eq. (6.28b), Proposition 6.3 guarantees that if the predicted state by the SINDy model
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remains within Ωρsi , then the state x(t) of the nonlinear system, for all t ∈ [tk, tk+1), will remain

bounded within Ωρmin
. Consequently, at the next sampling step t = tk+1, if the state x(tk+1) is

still bounded within Ωρsi , the constraint defined by Eq. (6.26f) ensures that the predicted state x̂

of the SINDy model in Eq. (6.26b) remains within Ωρsi , guaranteeing that the actual state x of the

nonlinear system described by Eq. (6.1) stays within Ωρmin
.

However, if x(tk+1) belongs to Ωρmin
\Ωρsi , similar to the proof provided for the case when

x(tk) ∈ Ωρ̂\Ωρsi , the constraint specified by Eq. (6.26e) is activated to drive the state towards the

origin. This completes the proof that the states of the closed-loop system described by Eq. (6.1)

remain bounded within Ωρ̂ and converge to Ωρmin
for any initial state x0 ∈ Ωρ̂.

We note that the theorem establishes that the closed-loop stability of the nonlinear system

described by Eq. (6.1) is achieved through the implementation of the LMPC controller given by

Eq. (6.26). This controller is designed based on the SINDy model represented by Eq. (6.10) and

incorporates SINDy-based constraints.

It is important to note that the closed-loop state of the nonlinear system, as described by

Eq. (6.1), can be driven to a small neighborhood around the origin. This is possible because the

constraints defined by the LMPC controller in Eq. (6.26) ensure the decrease of V̂ during each

sampling period, accounting for various factors such as model mismatch (including the modeling

error ν between the system in Eq. (6.1) and the SINDy model in Eq. (6.10)), the implementation

of control actions using a sample-and-hold approach, and the presence of bounded disturbances

w(t) in Eq. (6.1). In other words, closed-loop stability can be maintained under the LMPC con-

troller described by Eq. (6.26) if the modeling error ν, the sampling period ∆, and the disturbance

bound wm are sufficiently small. This requirement ensures the satisfaction of Proposition 6.2 and
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Proposition 6.3.

However, the values of νm and wm are generally not known as there is no formula to calculate

them. Hence, if νm and wm are not chosen to be sufficiently large and the process is subject

to changes such that the modeling error |ν| exceeds νm and large enough disturbances such that

the disturbance |w| exceeds wm, the condition of Eq. (6.28b) to quantify ρmin may not hold, and

the closed-loop state may exit ρmin. However, the goal of the error-triggering update of SINDy

models is to mitigate the model mismatch such that, even if the process changes and |ν| increases,

by choosing the value of ed,T conservatively, the error-triggering and model update procedure is

rapidly carried out to reduce |ν| once again such that it never exceeds νm. In this way, the conditions

of Proposition 6.3 are met and the proof provided in this theorem hold. Hence, under the sample-

and-hold implementation of the LMPC with real-time SINDy model updates, the closed-loop state

of the nonlinear system of Eq. (6.1) remains bounded in Ωρ̂ and ultimately converges to Ωρmin
.

6.4.4.2 Stability analysis for Lyapunov-based economic MPC

Theorem 6.2. We examine the closed-loop system described by Eq. (6.1) when using the sample-

and-hold implementation of the LEMPC of Eq. (6.37) with the stabilizing controller Φsi(x) that

fulfills Eq. (6.16). We consider parameters ∆ > 0, ϵw > 0, and ρ̂ > ρ̂e > 0 that satisfy Eq. (6.38)

along with the inequality,

ρ̂e ≤ ρ̂− ĉ4
√
ρ̂√

ĉ1
fw(∆)− κ(fw(∆))2 (6.54)

Assuming x0 belongs to Ωρ̂ and the conditions stated in Proposition 6.2 and Proposition 6.4 are

fulfilled, it is guaranteed that a feasible solution exists for the optimization problem presented
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in Eq. (6.37). Furthermore, the closed-loop state x(t) remains bounded within the closed-loop

stability region Ωρ̂ for all time t ≥ 0.

Proof. We will first establish the recursive feasibility of the optimization problem presented in

Eq. (6.37) ∀x ∈ Ωρ̂. Specifically, if x(tk) is within Ωρ̂e , the control actions Φsi(x(tk+i)), where

i = 0, 1, . . . , N − 1, satisfy both the input constraint of Eq. (6.37c) and the Lyapunov-based

constraint of Eq. (6.37e). This is due to the fact that Eq. (6.39a) dictates that the states predicted

by the SINDy model described in Eq. (6.37b) remain inside Ωρ̂e under the controller Φsi(x).

Furthermore, if x(tk) falls within Ωρ̂\Ωρ̂e , the control action u(t) = Φsi(x(tk)) ∈ U , for

t ∈ [tk, tk+1), satisfies both the input constraint defined in Eq. (6.37c) and the Lyapunov-based

constraint outlined in Eq. (6.37f). This ensures that the state can be driven towards the origin

during the subsequent sampling period. As a result, the stabilizing controller u = Φsi(x) ∈ U

provides a feasible solution that adheres to all the constraints of the LEMPC optimization problem

stated in Eq. (6.37) if x(t) remains within Ωρ̂ for all time instances.

We will now establish that for x0 ∈ Ωρ̂, the state of the closed-loop system described in

Eq. (6.1) remains bounded within Ωρ̂ for all time instances. Specifically, if x(tk) falls within Ωρ̂e ,

the predicted states x̂(t) obtained from the SINDy model presented in Eq. (6.37b) are guaranteed

to stay within Ωρ̂e by adhering to the constraint specified in Eq. (6.37e). Based on Proposition 6.2,

we can conclude that the actual state x(t), where t ∈ [tk, tk+1), of the nonlinear system outlined in

Eq. (6.1) is bounded by the following inequality:

V̂ (x) ≤ V̂ (x̂) +
ĉ4
√
ρ̂√

ĉ1
|x− x̂|+ κ|x− x̂|2

≤ V̂ (x̂) +
ĉ4
√
ρ̂√

ĉ1
fw(∆) + κ(fw(∆))2

(6.55)

221



Hence, if we choose Ωρ̂e as a level set of V̂ that satisfies the condition in Eq. (6.54), it guarantees

that V (x) based on the actual state x(t) remains bounded within Ωρ̂ for all t ∈ [tk, tk+1). However,

in the case where x(tk) lies within Ωρ̂\Ωρ̂e , the constraint stated in Eq. (6.37f) becomes active.

Consequently, the control action u acts to decrease the value of V̂ (x̂) based on the states predicted

by the RNN model described in Eq. (6.37b) within the next sampling period.

From Eq. (6.39b) in Proposition 6.4, it follows that the value of V̂ also decreases along the

state trajectory of the actual nonlinear system described in Eq. (6.1) over t ∈ [tk, tk+1). Thus,

we can conclude that for any initial condition within Ωρ̂, the closed-loop state of the system repre-

sented by Eq. (6.1) remains bounded within Ωρ̂∀t when subjected to the LEMPC of Eq. (6.37).

Remark 6.2. We note that the condition of Eq. (6.54), which dictates the size of the level set ρ̂e,

includes the class K function fw(·), which factors in the uncertainties from the modeling error and

the disturbances, ν and w, respectively. Since the bounds on the modeling error and disturbance,

νm and wm are not estimable for a general system, if the process disturbance or plant-model mis-

match is large and exceed the aforementioned bounds, the size of the level set ρ̂e may be reduced,

which can lead to lower economic benefits of the LEMPC. However, ed,T is chosen conservatively

such that the SINDy model of Eq. (6.37b) is updated as soon as the error-triggering condition of

Eq. (6.46) is violated, such that the modeling error |ν| is kept low throughout the operation under

the LEMPC based on Theorem 6.2.
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6.5 Application of error-triggered on-line model update to plant

variations: Application to a chemical process example

In this section, we present the application of the proposed error-triggered on-line model iden-

tification procedure to control a benchmark chemical reactor. The reactor experiences plant model

changes, specifically catalyst deactivation. The system under consideration is a non-isothermal

continuous stirred tank reactor (CSTR) involved in the catalytic conversion of reactant species A

to product B (A→ B). The reactor operates with an inlet concentration of A denoted by CA0, an

inlet temperature of T0, and a feed volumetric flow rate of F . A heating jacket is employed in the

CSTR to supply or remove heat at a rate of Q.

The dynamics of the CSTR are governed by material and energy balance equations given as

follows:

dCA

dt
=

F

V
(CA0 − CA)− k0e

−E
RT C2

A (6.56a)

dT

dt
=

F

V
(T0 − T ) +

−∆H

ρLCp

k0e
−E
RT C2

A +
Q

ρLCpV
(6.56b)

where CA represents the concentration of reactant A in the reactor, V is the volume of the reacting

liquid, T is the temperature of the reactor, and Q is the heat input rate. The concentration of

reactant A in the feed is denoted as CA0. The feed temperature and volumetric flow rate are T0

and F , respectively. The reacting liquid has a constant density of ρL and a heat capacity of Cp.

Parameters ∆H , k0, E, and R correspond to the enthalpy of reaction, pre-exponential constant,

activation energy, and ideal gas constant, respectively. The values of the process parameters are
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provided in Table 6.1. When the values of Table 6.1 are substituted into Eq. (6.56), the CSTR

Table 6.1: Parameter values for chemical process example

F = 5.0m3/h V = 1.0m3

k0 = 8.46× 106m3 kmol−1 h−1 E = 5.0× 104 kJ/kmol
R = 8.314 kJ kmol−1K−1 ρL = 1000.0 kg/m3

∆Hr = −1.15× 104 kJ/kmol T0 = 300.0K
Q = 0kJ/h CA0 = 4kmol/m3

CAs = 1.95 kmol/m3 Ts = 402K
Cp = 0.231 kJ kg−1K−1

system can be written as

dCA

dt
= 5CA0 − 5CA − 8.46 · 106e−6013.95

T C2
A (6.57a)

dT

dt
= 1500− 5T + 4.21 · 108e−6013.95

T C2
A + 0.00433Q (6.57b)

We investigate the operation of the CSTR under LEMPC at an unstable steady-state char-

acterized by (CAs, Ts) = (1.95 kmol/m3, 402K) and (CA0s Qs) = (4 kmol/m3, 0 kJ/h). The

manipulated inputs in this system are the inlet concentration of species A and the heat input rate,

denoted as deviation variables ∆CA0 = CA0 − CA0s and ∆Q = Q − Qs, respectively. These

manipulated inputs have the following bounds: |∆CA0| ≤ 3.5 kmol/m3 and |∆Q| ≤ 5×105 kJ/h.

Hence, the states and inputs of the closed-loop system are represented as x⊤ = [CA−CAs T −Ts]

and u⊤ = [∆CA0 ∆Q], respectively. The equilibrium point of the system is located at the origin

of the state-space, denoted as (x∗
s, u

∗
s) = (0, 0). In this study, we consider the model variations

caused by catalyst deactivation during the operation of the CSTR described by Eq. (6.56). This de-

activation leads to a reduction in the reaction pre-exponential factor k0 within the constraint range

of 0 < k0 < 8.46× 106m3 kmol−1 h−1.
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The control Lyapunov function V (x) = x⊤Px is designed, where the positive definite matrix

P is given as:

P =

1060 22

22 0.52

 (6.58)

Using this Lyapunov function, the closed-loop stability region Ωρ for the CSTR can be defined

as a level set of the Lyapunov function, where ρ̂ = 368 within the region ϕu. By employing the

controller u = Φ(x) ∈ U , the origin can be rendered exponentially stable inside this stability

region.

To numerically simulate the dynamical model described by Eq. (6.56), we utilize the explicit

Euler method with a time step of hc = 10−4 h. The nonlinear optimization problem of the LEMPC

formulation in Eq. (6.37) is solved using the Python module of the IPOPT software package [145],

specifically the PyIpopt module. The sampling period for the optimization problem is set to ∆ =

10−2 h.

The main goal of the LEMPC is to maximize the profitability of the CSTR process described

by Eq. (6.56) by manipulating the inlet concentration ∆CA0 and the heat input rate ∆Q. It aims

to ensure that the closed-loop state trajectories remain within the stability region Ωρ̂ at all times

under LEMPC. The objective function of the LEMPC is designed to optimize the production rate

of product B, given by:

le(x̃, u) = k0e
−E/RTC2

A (6.59)

In addition, the LEMPC employs a material constraint, specified in Eq. (6.60), to maintain the

average reactant material within an operating period tp at its steady-state value CA0s. This means
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that the averaged reactant material deviation, denoted as u1, should equal zero:

1

tp

∫ tp

0

u1(τ) dτ = 0 kmol/m3 (6.60)

By incorporating this material constraint, the LEMPC ensures that the average reactant material

supplied during the operating period aligns with the steady-state value, facilitating stable and con-

trolled production while maximizing the overall profitability of the CSTR process.

6.5.1 Data generation and SINDy model development

We follow the first type of data generation and model building process described in [228].

Specifically, we numerically integrate the system of Eq. (6.56) with an integration time step of

hc = 10−4 h and a sampling period of ∆ = 10−2 h. 1000 different initial conditions are selected

randomly with CA ∈ [0.2, 3.7] kmol/m3 and T ∈ [327, 477] K, while the inputs are taken to

be step functions with amplitudes CA0 ∈ [0.5, 7.5] kmol/m3 and Q ∈ [−500, 500] MJ/h. We

note that, although the trajectories settled at the stable steady-states, since the dynamics of the

reactor are independent of the specific steady-states, the model development did not suffer. Due

to the large variation of the states when settling at other steady-states, however, finite-difference

estimates of the time-derivative Ẋ can be poor when the temperature, for example, goes as low as

1 K or as high as 1000 K, despite the initial conditions and desired steady-state being extremely

far from these states. Hence, only trajectories where the temperature never dropped below 300 K

nor rose above 500 K were retained, which yielded 53 trajectories.
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The function library for SINDy is chosen to be

Θ(CA, T, CA0, Q) = [1 CA C2
A T CA0 Q e−

6020
T CAe

− 6020
T C2

Ae
− 6020

T ] (6.61)

The choice for the basis functions is a central problem in SINDy modeling. Due to the presence

of nonlinear reaction terms, especially Arrhenius dependence of the temperature and unknown

reaction order with respect to reactant A, we consider monomial terms in CA up to second order and

a negative exponential term of the reciprocal of the temperature as well as all possible interactions

of these two types of terms. For the input variables, since they often impact the dynamics of the

system linearly, we use linear CA0 and Q terms in the basis functions to start with. The choice

of −6020 as the numerator of the fraction in the exponential term (dependent on the activation

energy), denoted by γ, is motivated by first conducting a coarse search of values between −7000

and 0 in steps of 1000. For each value of γ, the maximum absolute error (MAE) of the validation

set is calculated for both CA and T . The results are shown in Fig. 6.2. As can be seen, the error is

very high for larger values of γ and decreases sharply at around−6000, rising again below−6000.

For even lower values of γ < −7000, the models were found to be unstable and, hence, could not

be integrated and did not yield an MAE against the validation set. Subsequently, a finer search is

conducted in the vicinity of γ = −6000. Specifically, values of γ between −6500 and −5500 are

chosen in steps of 20, yielding 100 values to assess. Similarly, the MAE for both states are recorded

for each value of γ and plotted in Fig. 6.3, which clearly indicates γ = −6020 is the optimal value

for this system. For comparison, the exact value of γ is −6013.95, as seen in Eq. (6.57). When

using steps of 20, the closest value of γ in the trial set is −6020, which is currently identified via
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Figure 6.2: Validation error as a function of γ for a coarse search of γ ∈ [−7000, 0].

the above procedure. An even finer search could be conducted to find γ = −6014 if using steps of

1 in the vicinity of −6020. However, due to the risk of overfitting and for practical considerations,

especially for larger systems as detailed in [228], the value of −6020 is considered adequate for

this work and is selected as the basis function.

For this system, it is imperative to scale the columns of Θ(X,U) to account for the multiple

orders of magnitude of difference between the values of different columns. For instance, the Q

column is on the order of magnitude of 105 while the final three columns of Θ(X,U), correspond-

ing to the exponential terms, are on the order of magnitude of 10−6–10−7. We scale every column

of Θ by its L2 norm.

Using the above choice of candidate basis functions and library column normalization, we

conduct a similar coarse-to-fine search to tune the sparsification knob λ. The first step is to conduct

a coarse search, which is done for λ ∈ [0, 500] in steps of 5. For each value of λ, the maximum

MAE for both states are plotted in Fig. 6.4. As can be seen, for λ > 450, all terms of the CA
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Figure 6.3: Validation error as a function of γ for a fine search of γ ∈ [−6500,−5500].

ODE are zeroed, leading to an exponential increase in error, which remains constant thereafter.

The lowest error is found to be at the lower values of λ, specifically below values of approximately

100. Conducting a finer search for λ ∈ [0, 100] in steps of 1 and recording not only the MAE in

both states but also the number of terms in the model, we obtain Fig. 6.5. It can be seen that the

MAE for both states is consistently low throughout the entire range. However, the lowest number

of terms in the model is at λ = 72. While a lower value of λ corresponding to a less parsimonious

model with lower MAE can be used, in sparse identification, the balance between parsimony and

accuracy is important to consider. Hence, since the error does not significantly decrease when λ is

reduced further, the model corresponding to λ = 72 is taken as the optimal SINDy model for the

CSTR system of Eq. (6.56) that balances the model sparsity with accuracy.

The final SINDy model obtained using the 53 open-loop trajectories using the above proce-
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dure is as follows:

dCA

dt
= 5.045CA0 − 5.049CA − 8.647 · 106e−6020

T C2
A (6.62a)

dT

dt
= 1511.647− 5.038T + 4.300 · 108e−6020

T C2
A + 0.00436Q (6.62b)

where, compared to the first-principles model of Eq. (6.57), every term has been correctly identi-

fied, and all coefficients except the pre-exponential constants have been identified accurately with

an error below 1%. As for the pre-exponential constants, since the exponential term in the ba-

sis function is e−
6020
T rather than e−

6013.95
T , the pre-exponential constants are slightly larger for the

SINDy model, possibly to “compensate for” the more negative exponential term reducing the val-

ues of the exponential terms themselves. Therefore, as a result, the final model is extremely accu-

rate as can be seen in the maximum absolute errors in CA and T , which are 0.006 326 12 kmol/m3

and 0.320559 K, respectively.

Remark 6.3. The accuracy of the SINDy model obtained is most strongly dependent on the data

generation and the choice of candidate library functions. Both of these were investigated in-depth

in [228], Specifically, with respect to data generation, based on three different types of data gen-

eration methods studied in [228], open-loop step tests in the vicinity of the steady-state of interest

were found to be the most appropriate type of data generation for SINDy modeling, which is why

the 53 trajectories near the steady-state, (CAs, Ts) = (1.95 kmol/m3, 402K), were used for model

building in this work. Regarding the choice of library functions, two more general frameworks for

more complex or larger-scale systems were proposed in [228]. One effective method was found to

be non-dimensionalization, which is a standard practice in engineering modeling. When all vari-
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ables were scaled to similar orders of magnitudes, it was easier to identify the exact (dimension-

less) model since the sensitivity of the library functions was reduced. In contrast, the most general

framework proposed was to use polynomial terms in deviation variables since any nonlinearity

can be expanded using Taylor expansion to the desired level of generalization using polynomials

of a certain order. While the exact ODE model will not be recovered using this approach, from a

modeling and control perspective, since only an accurate process model for the operating region

is required, this approach is sufficient in terms of both accuracy and computation, possibly faster

in terms of computation than the previous approach.

6.5.2 Closed-loop simulation results

6.5.2.1 Model assessment before plant disturbances

Using the chemical process example, we aim to illustrate the error-triggered on-line model

update procedure in the presence of plant variations. However, before addressing the effect of

catalyst deactivation, we first demonstrate that the initial SINDy model performs just as well as

the first-principles model when there is no catalyst deactivation or disturbances. To compare their

performance, we designed two LEMPC schemes, both following the structure of Eq. (6.37). One

scheme utilized the exact first-principles model from Eq. (6.57) as the process model, while the

other scheme employed the SINDy model from Eq. (6.62). Both LEMPC schemes employed the

cost function defined in Eq. (6.59), the additional material constraint of Eq. (6.60), the upper and

lower bounds on u1 and u2 described earlier, and the same Lyapunov-based controller and stability

region.

For all simulations in this example, the LEMPC designs had a prediction horizon of N = 5,
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Figure 6.6: State-space trajectories of the CSTR without catalyst deactivation under an LEMPC
based on the first-principles model and an LEMPC based on the initial SINDy model.

a sampling period of ∆ = 0.01 h, and an operating period of 20 sampling periods (tp = 0.2 h).

The first-principles LEMPC and the SINDy-based LEMPC were both applied to the CSTR model

described by Eq. (6.56). The reactor was initialized at the unstable steady-state (CAs, Ts) =

(1.95 kmol/m3, 402K), and closed-loop simulations were conducted for 20 operating periods for

each case. The resulting closed-loop trajectories for the CSTR under both LEMPC schemes are

depicted in Figs. 6.6 and 6.7. The average yield of the first-principles LEMPC over twenty operat-

ing periods was 62.29, compared to 62.06 for the SINDy-based LEMPC. The agreement between

the trajectories for most of the simulation duration and nearly identical yields obtained from the

first-principles and SINDy-based LEMPCs further illustrates that the initial SINDy model ade-

quately captures the process behavior in the absence of plant variations. It is worth noting that the

periodic nature of the trajectories aligns with prior literature, which has reported that time-varying

operation can be economically advantageous for certain processes [e.g., 229, 230].
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6.5.2.2 LEMPC performance in the presence of plant disturbances

Next, we investigate the effect of catalyst deactivation on the LEMPC performance using

either process model. Specifically, the value of the pre-exponential constant k0 in Eq. (6.56) is

reduced by 20% of its original value from 8.46× 106m3 kmol−1 h−1 to 6.77× 106m3 kmol−1 h−1

after five operating periods (at t = 1 h). As a result, the CSTR system of Eq. (6.57) is altered to

dCA

dt
= 5CA0 − 5CA − 6.77 · 106e−6013.95

T C2
A (6.63a)

dT

dt
= 1500− 5T + 3.37 · 108e−6013.95

T C2
A + 0.00433Q (6.63b)

where the affected coefficients are boldfaced. In the remainder of the simulations, the material

constraint of Eq. (6.60) is relaxed for the second half of the total simulation duration, from t = 2

h to t = 4 h, to allow a usage of u1 that is 10 kmol/m3 greater than its steady-state value per

operating period. This is to allow the LEMPC to find control actions that optimize the average

yield further and provide a larger space of control actions for the LEMPC to highlight any possible

differences between the LEMPCs with and without SINDy model updates. Hence, the material

constraint now takes the form,

1

tp

∫ tp

0

u1(τ) dτ =


0 kmol/m3, t < 2

10 kmol/m3, t ≥ 2

(6.64)

To effectively monitor the prediction error for the SINDy model in the presence of catalyst

deactivation, a moving horizon error detector, as described in Section 6.4.1, was implemented

early in the process operation. The detector was activated after collecting a sufficient amount of
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input/output data points, specifically Nw prior data points. At each sampling time, the detector

calculated the value of ed to assess whether it is necessary to trigger an update of the SINDy

model.

The moving horizon error detector calculates the relative prediction error in the concentration

of A and the reactor temperature. These errors are evaluated over the past 15 sampling periods

(i.e., Nw = 15) and the current sampling time using the equation,

ed(tk) =
15∑
r=0

|xp,1(tk−r)− x1(tk−r)|
|x1(tk−r)|

+
|xp,2(tk−r)− x2(tk−r)|

|x2(tk−r)|
(6.65)

where the states from 15 sampling periods prior are used to initialize the integration of the current

SINDy model over a duration of 15 sampling periods to calculate xp,1 and xp,2 over the entire win-

dow of Nw = 15 (single initialization). For Nw = 15, it was observed that significant discrepancies

between the plant and the original SINDy model were marked by the value of ed exceeding 2 (i.e.,

ed,T = 2). Therefore, this threshold value was chosen to initiate model updates. The determination

of Nw = 15 and ed,T = 2 were as per the guidelines presented in Section 6.4.1. Specifically, if

Nw = 10 (too low), the gap between the error values during normal operation and post-deactivation

was not consistently large enough, and the error of the post-deactivated ed trajectory without the

model update periodically dipped very low, as shown in Fig. 6.8. Hence, if, for example, ed,T was

still maintained at a value of 2 while Nw = 10, the post-deactivated ed trajectory would often dip

below 2. While this would still be possible to resolve by slightly reducing ed,T to, for example,

1.25, this would be too finely tuned and not easily generalized. In contrast, at Nw = 15, there is a

large and consistent gap between the error trajectories with and without model updates throughout
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the simulation duration, with ed = 2 = ed,T being a clear indicator of model performance. The

gap can be further increased and the detection made even more robust by further increasing Nw.

For example, Nw = 20 with ed,T = 3 is also a valid and possibly even more robust choice of error

detection. However, as Nw is increased, the amount of data required to be kept in storage as well

as the length of time the SINDy models need to be integrated also increases. Due to the longer

data collection, the time elapsed before the error is triggered and the new dynamics are detected,

may also increase as the error will accumulate at a slower pace. Therefore, for computational con-

siderations, we chose Nw = 15 with ed,T = 2 as a reasonable trade-off that ensures error detection

as well as reduces computational burden. Higher values of the window length Nw have been used

with higher ed,T , however, with success. For example, for the same CSTR system, in [67], a rela-

tively high error threshold of ed,T = 15 was used, which indicates the window length Nw must also

have been quite large, such that normal process operation with an accurate process model could

accumulate an error of up to 15 within Nw sampling periods, while, in our work, with Nw = 15,

even under the altered process conditions with the old SINDy model used to carry out predictions,

the error reached a maximum value of only 9 over the three hours of deactivated process run time.
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Figure 6.8: Value of error metric ed using the detector of Eq. (6.65) over the simulation duration
for various values of Nw with and without SINDy model updates. The dashed red line corresponds
to ed,T = 2.
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When an on-line model update is triggered, a few pre-selected terms in the SINDy model

are updated using the most recent input/output data. The coefficients to be updated are selected

based on knowledge of the process operation or different subsets of the coefficients can be up-

dated on a trial-and-error basis until the error is reduced to a value below ed,T . In this case, since

catalyst deactivation is a ubiquitous phenomenon in catalytic reactors, both ODE coefficients cor-

responding to the nonlinear reaction terms are chosen as candidates to be updated. There may be

feed disturbances or other types of process changes as well. Hence, we also consider the coefficient

corresponding to the reactor temperature T for both ODEs as coefficients subject to change. Hence,

out of 18 coefficients (9 per ODE), 4 coefficients are updated using the model update procedure

described in Section 6.4.2.

As for the input/output data used for the model update, although an immediate update is ideal

if possible, this cannot be conducted since sufficient data from the new operating conditions must

be present for the model update to succeed. On the other hand, letting the process run for an

extended duration with the old model while the error remains high is undesirable as the LEMPC

performance will likely deteriorate with time. Hence, the amount of data used to update the model

should be the minimum amount required to accurately update the model using post-deactivation

data, which will vary from one process to the other (e.g., 5000 data samples were used to update

the same CSTR process in [223], while 200 data samples were required to re-identify new linear

empirical models in [227]). For the reaction studied in this work, the input/output data to update the

SINDy model is the state and input data of the the current operating period in which the moving

horizon error detector was triggered, which would correspond to Nd = 20. However, using the

entire operating period of input/output data yielded poor results. Upon further investigation, the
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Figure 6.9: Details of the error detection and model update procedure occurring in the sixth oper-
ating period from t = 1.0 h to t = 1.2 h.

cause was found to be the minimum/maximum values of u1 used at the beginning and end of

each operating period, leading to very large changes in the states, which produce accordingly large

errors in the estimates of the time-derivative, Ẋ . Hence, the first and last two data points (two

due to the use of second-order finite-differences) of the operating period are omitted from the

model update algorithm. For this process, it is found that the use of a single operating period

without the endpoints is sufficient to update the four coefficients of the SINDy model chosen to be

updated. Since the catalyst deactivation, error-triggering, and model update all occur during the

sixth operating period, a detailed illustration of the model update procedure is shown in Fig. 6.9.

The LEMPC updates the SINDy process model at the end of the sixth operating period to

reflect the catalyst deactivation and continues to operate for the remainder of the 4 h of simulation

duration. The moving horizon error detector is used to monitor the modeling error throughout the

process, and the value of ed over the simulation duration is shown in Fig. 6.10. It can be observed

that the error ed exceeds the pre-determined threshold of ed,T = 2 at t = 1.08 h, during the

sixth operating period, and then rapidly decreases below the threshold at t = 1.2 h following the

SINDy model update. On the other hand, the value of ed calculated with the initial SINDy model

(without update) continues to remain above ed,t for the remainder of the simulation, indicating

that the initial SINDy model cannot very accurately predict the process states once the catalyst
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design with error-triggered on-line model updates at each sampling time (the time axis starts from
when there is sufficient data to begin calculating ed, i.e., after Nw = 15 data points are collected).

is deactivated. Since Fig. 6.10 spans the entire simulation duration, and the exact details may be

difficult to observe, a closer look at the sixth operating period, where all the changes occur, was

provided in Fig. 6.9.

The closed-loop state and input trajectories for the LEMPCs with and without SINDy model

updates are shown in Fig. 6.11 and Fig. 6.12, which depict the state-space and time-varying tra-

jectories, respectively. From Fig. 6.11, it is observed that the closed-loop state quickly approaches

the boundary of the stability region Ωρ̂ by using maximal input actions early on in the trajectory

and continues to remain as close as possible to the boundary representing the highest possible tem-

perature and lowest possible concentration of A, as this combination maximizes the production

of B in the process. The closed-loop state is always maintained within the stability region Ωρ̂ for

99% of the simulation duration under both LEMPC. The manipulated input profiles indicate, as

expected, the cyclic use of u1, i.e., at the beginning of each operating period, the LEMPC uses the

maximum value of ∆CA0 allowed to maximize production of B, while reducing the consumption
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of the reactant at the end of each period to meet the material constraint. For the second half of the

simulation, however, due to the relaxation of the material constraint as per Eq. (6.64), the sum of

u1 per operating period is equal to 10, which is why the initial period of maximum u1 consumption

is observed to be greater than the minimal consumption at the end of the last 10 operating periods.

Finally, the total economic benefits achieved over the 20 operating periods are calculated

for three scenarios: the SINDy-based LEMPC without on-line updates, SINDy-based LEMPC

with the on-line update, and steady-state operation where the system of Eq. (6.56) is operated at

(CAs, Ts) for the entire duration. The economic benefits are evaluated using the equation,

LE =

∫ 4

0

le(x, u) dt (6.66)

The closed-loop system under LEMPC with and without SINDy model updates achieves LE =

63.45 and LE = 63.72, respectively, within the four-hour period, while the steady-state operation
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yields LE = 34.79. This comparison demonstrates that time-varying operation of the system of

Eq. (6.56) under the LEMPC of Eq. (6.37) with or without on-line updating of SINDy models re-

sults in much higher economic benefits of 82% compared to steady-state operation. The economic

benefits of the LEMPC with model updates are also 0.42% higher than the benefits of the LEMPC

without model updates. Although the difference is small in this specific scenario, this is highly

dependent on both the system as well as the model fidelity. For the same CSTR system modeled

using RNN models, it was demonstrated in [67] that a large improvement is possible if the per-

formance of the initial process model deteriorates severely after disturbances are introduced to the

system. In our work, however, possibly since the model structure and coefficients were closely

identified in the initial SINDy model, the performance deterioration of the LEMPC even without

model updates was not sufficiently high to allow the LEMPC with model updates to improve upon.

To investigate this, the CSTR was also simulated under an LEMPC using the first-principles model

of Eq. (6.56) but with the relaxed material constraint of Eq. (6.64) and the process model updated

immediately upon deactivation (i.e., at t = 1 h, not t = 1.2 h). Practically, the first-principles

model, the exact moment of catalyst deactivation, and the exact percentage of catalyst deactiva-

tion are unknown. However, this is a hypothetical best-case scenario that should yield the highest

possible economic benefits possible for this CSTR specification since the LEMPC process model

“sees” the exact change immediately upon its occurrence. The economic benefits of this case was

found to be LE = 63.53. Since the value is actually lower than LE for the LEMPC with SINDy,

it can be inferred that all three LEMPC perform nearly identically and the minor improvements

are more likely due to numerical issues or due to a very small number of sampling periods being

significantly different from each other. Hence, the reason for the small, possible improvement of
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the LEMPC with SINDy model updates can be contributed to the LEMPC performance in general

being upper-bounded by other factors due to the specific process, parameters, model structure, and

initial SINDy model fidelity of this study.

Remark 6.4. In this work, a Lyapunov-based tracking MPC using a SINDy model to drive the

process to a steady-state was not presented because the development of the SINDy model and its

real-time adaptation is similar to the case of economic MPC and would not add any new method-

ological and/or implementation insights.

6.6 Conclusions

This study introduces a novel approach for on-line updates of nonlinear ODE models obtained

using sparse identification to embed into a model predictive controller (MPC) for nonlinear pro-

cess systems. The proposed methodology incorporates an error-triggering mechanism through a

moving horizon error detector, which evaluates the relative prediction error within a specified hori-

zon. When the prediction error surpasses a predefined threshold, the error-triggering mechanism is

activated and the most recent yet sufficient input/output data is used to update specific coefficients

of the SINDy model using an efficient algorithm. The results showcase the capability of the pro-

posed approach to improve state predictions crucial for MPC in the presence of plant variations.

A chemical process example under the framework of Lyapunov-based empirical model predictive

control is employed to illustrate the effectiveness and implementation of real-time updates for the

SINDy models. It was demonstrated that a small amount of real-time data could accurately update

the SINDy model to adjust to the disturbances, greatly reducing thereby the model prediction error
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when monitoring the process via the moving horizon error detector. A slight improvement of the

economic benefits was also observed when the SINDy model in the LEMPC was updated in real-

time, compared to the SINDy-based LEMPC without model updates, although the improvement

was limited by the catalyst deactivation and other compounding factors.
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Chapter 7

Data-based modeling and control of

nonlinear process systems using sparse

identification: An overview of recent results

7.1 Introduction

A central objective of scientific and engineering research is the derivation of the laws gov-

erning physical systems in the form of equations. With the explosion in data and computational

power over the last two decades, the construction of these equations empirically from data has

become more tractable than deriving physics-based first-principles models, especially for highly

complex systems, and is gaining momentum in the literature. For many physical systems, the laws

governing their dynamics take the form of ordinary differential equations (ODE) or partial differen-

tial equations (PDE) with time and/or space as independent variables. Common examples include

the Boltzmann equation in thermodynamics and the Navier–Stokes equations in fluid dynamics [7].
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The development of such time-varying predictive models is often a prerequisite for other objectives

in a plant/system engineering context, such as predictive maintenance in operations engineering

and advanced control system design in any closed-loop system with strict product requirements.

In chemical process systems, model predictive control (MPC) is an advanced control system that

has been implemented and accepted widely in the industry [68]. As the name suggests, MPC uses

a dynamical model such as an ODE to predict the process states (outputs) over a user-defined pre-

diction horizon to be able to take the optimal control action based on anticipated possible future

trajectories. A large body of literature on data-driven modeling in MPC can be found in [146]. Two

of the most common, classical system identification algorithms include the singular value decom-

position [156] and Numerical algorithms for Subspace State Space System Identification (N4SID)

[30]. However, machine learning (ML) methods, a type of data-driven modeling with numerous

parameters and tunable hyper-parameters, have demonstrated highly accurate results when applied

to complex systems with multiple interacting nonlinearities due to their high degree of freedom.

Some examples of ML methods include support vector regressors, extreme gradient boosting, and,

particularly of interest in recent years, artificial neural networks. For example, in [3, 62], recurrent

neural networks were used to model nonlinear processes, and subsequent closed-loop stability re-

sults under recurrent neural network-based model predictive control were derived. Autoencoders,

which are feedforward neural networks (FNN) that replicate the input at its output, have been the

subject of several studies. While linear autoencoders correspond exactly to PCA, [120] proposed

the use of nonlinear autoencoders as a form of nonlinear PCA. Autoencoders, particularly un-

dercomplete autoencoders, are a powerful tool for dimensionality reduction due to the enforced

reduction of the dimension in the intermediate layers of the network. [231] used undercomplete
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autoencoders to carry out nonlinear dimensionality reduction and build reduced-order models for

integrated scheduling and control of chemical process operations. When the system identification

and optimal scheduling computations were conducted in the latent variables with reduced dimen-

sionality, it was found that the computational efficiency as well as the level of dynamic information

provided were improved. In [232], Koopman theory was used to derive a Wiener-type formulation

for handling multiple-input multiple-output (MIMO) input-affine dynamical systems. Specifically,

reduced-order surrogate models were developed by combining autoencoders with linear dynamic

blocks. The models were hypothesized to be particularly useful in control applications due to the

high accuracy and dimensionality reduction capabilities of the proposed Wiener-type Koopman

models. The integration of a Gaussian process model with MPC was proposed in [233] and ap-

plied to a gas–liquid separation process. The simple model structure of the Gaussian process model

and, more importantly, the statistical information such as the prediction uncertainty provided by

such a model were found to be desirable qualities for control-centric applications.

A potential drawback of traditional ML models has been their black-box nature, which lim-

its their applicability and adoption in process systems engineering. Therefore, the field of hybrid

modeling, sometimes referred to as “gray-box” modeling, which aims to combine a priori first-

principles knowledge or domain expertise with black-box approaches such as ML models to im-

prove both the accuracy and interpretability of the overall model, has recently attracted significant

attention. [234] outlines a number of approaches to incorporating physics into data-driven model-

ing including but not limited to: 1) feature engineering, which refers to domain experts selecting

and/or creating physically meaningful features from the data set obtained from sensors rather than

using the raw measurements directly, 2) residual modeling, which refers to building an ML model
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to model the residual between the known first-principles model and sensor measurements in order

to build a model that captures the plant-model mismatch, and 3) linear meta-model of models,

where the solutions from multiple sub-models, which correspond to various parts of the overall

system and are obtained using feature engineering, are combined into a linear meta-model by tak-

ing a weighted linear combination of all the models to represent the overall system accurately once

the weights are tuned. [235] investigated the use of FNNs to build state estimators in the absence

of full-state feedback. Specifically, an FNN was used to model the nonlinear terms in the dynamics

such as those corresponding to chemical reactions. In [192, 204], the links between layers of a re-

current neural network (RNN) were disconnected (i.e., corresponding weights zeroed) based on the

process structure, leading to the elimination of erroneous model predictions and improved overall

model accuracy. [236] provides a detailed overview of hybrid modeling and its evolution over the

last three decades since it became a subject of interest in the scientific community. [236] reports

that the a priori knowledge to be incorporated into hybrid modeling has typically been in the form

of equations, and other forms of data/information such as plant floor experience and process flow

sheets have not been investigated exhaustively. It was also found that data-driven modeling has

typically been used to enhance previously known or derived mechanistic models, but the reverse,

i.e., using mechanistic models to improve or constrain data-driven models, is largely unexplored.

In the field of process monitoring and fault diagnostics, in particular, [236] highlighted the benefit

of knowledge of causality that can be inferred via hybrid modeling.

The area of surrogate modeling in process systems engineering has, in parallel with the above

directions, increased in research intensity. [237] provides a comprehensive overview of advances

in surrogate modeling in chemical engineering over the past three decades. A primary reason for
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the surge of interest in surrogate models is the increasing complexity of modern, highly accurate

models used to simulate or model the nonlinear processes, scheduling problems, and complex ther-

modynamics that are ubiquitous in chemical engineering. Despite their increasing accuracy, such

models encounter a number of challenges in downstream optimization and control applications.

Due to the model complexity, the computational expense in terms of both processing power and

time required to evaluate such models is exorbitantly large in many cases. While single function

evaluations may be feasible in a practical setting, if the models are to be embedded into an opti-

mization problem, such as set-point optimization or closed-loop control under an MPC, the com-

putational demand becomes prohibitive due to the large number of function evaluations (typically

hundreds or thousands) required to find such solutions. This is further complicated by black-box

models since no simplification, such as omission of a term or otherwise, may be performed to find

a compromise between model complexity and accuracy. If the type of model used is noisy or has

discontinuities, this further complicated the problem, especially since finite-differences cannot be

used to estimmate derivatives, which are crucial in optimization. To overcome these challenges,

mathematically simpler models known as surrogate models have been proposed to approximate

the input/output relationship of the complex models using much fewer model parameters and with

much lower computational costs.

Although surrogate models can be used to approximate more complex models, another ap-

proach is to start with simpler model structures to model the desired system of interest and only

add complexity as required. While methods such as N4SID and MOESP have been widely used

over the past decades with varying degrees of success depending on the application and severity

of the nonlinearities present, sparse identification for nonlinear dynamical systems (SINDy) is a
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recent method that aims to identify nonlinear ODEs directly from data, which are explicit and in

closed-form, allowing them to be directly incorporated into MPC or any other optimization prob-

lem. Due to the availability of efficient differential equation solvers, the computational cost of

integrating such models is generally low, especially if the models are well-conditioned. In the

field of chemical engineering, SINDy has been used to identify reaction networks [84] and to build

reduced-order models for modeling and controlling a hydraulic fracturing process [82]. Despite

the application of SINDy to several chemical process examples in the literature, a number of spe-

cific issues encountered in the modeling and control of chemical processes and plants remain to

be addressed adequately, based on our review of the literature. Therefore, this paper provides a

unified summary of recent advancements and novel extensions to SINDy to overcome numerous

challenges that are encountered when applying SINDy to the domain of chemical engineering.

Besides providing general guidance with respect to basis functions and numerical concerns, more

specifically, the difficulties of modeling multiscale systems, noisy sensor data, and industrial pro-

cesses are discussed.

In this manuscript, we apply SINDy to model and control three types of process systems:

1) processes with time-scale multiplicities, 2) simulated processes with high levels of sensor noise,

and 3) large-scale processes corrupted with high levels of industrial noise. Each category of sys-

tems has associated challenges and are addressed using different improvements upon the origi-

nal SINDy algorithm, the details of which will be discussed in the respective section. We note

that, although SINDy was introduced with the intent of identifying the governing physical laws

as closed-form differential equations consistent with known physics of the system of interest, the

application of SINDy is not limited to such cases. As the product of SINDy is a closed-form
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ODE model with explicit nonlinearities, the resulting model can be directly incorporated into an

MPC for efficient computations. Therefore, in this work, we use SINDy as a system identifica-

tion algorithm with the ultimate goal of building dynamical models for controllers. The rest of

this manuscript is outlined as follows: in Section 7.2, the general class of nonlinear process sys-

tems under consideration is described. Section 7.3 details the SINDy algorithm along with general

guidelines and tuning considerations for building SINDy models, and its formulation in a model

predictive controller. In Section 7.4, the challenges of two-time-scale systems are discussed, while

Sections 7.5 and 7.6 address the challenges of noisy data for simulated processes and large-scale

industrial processes, respectively. Finally, Section 7.8 provides a number of research directions for

furthering the application of SINDy for process modeling and control.

7.2 Class of nonlinear process systems

We consider the class of nonlinear process systems described by the following first-order

ODE:

ẋ(t) = f(x) + g(x)u+ w, x(t0) = x0 (7.1)

where x ∈ Rn is the state vector, u ∈ Rr is the manipulated input vector, and w ∈ Rn is the

noise vector. The unknown vector and matrix functions f ∈ Rn and g ∈ Rn×r, respectively, con-

stitute the process model representing the inherent physical laws constraining the system and are

assumed to be locally Lipschitz vector and matrix functions of their arguments with f(0) = 0. The

manipulated input is constricted to be in r nonempty convex sets defined as Ui ⊆ R, i = 1, . . . , r.

The sensor noise w is assumed to be bounded within the set W := w ∈ Rn :∥w∥2 ≤ θ, θ > 0. The
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class of systems of the form of Eq. (7.1) is further restricted to the family of stabilizable nonlin-

ear systems, i.e., there exist a sufficiently smooth control Lyapunov function V (x) and a control

law Φ(x) = [Φ1(x) · · ·Φr(x)]
⊤ that renders the nominal (w ≡ 0) closed-loop system of Eq. (7.1)

asymptotically stable under u = Φ(x). The stability region Ωρ is defined as the largest level set of

V where V̇ is negative. Without loss of generality, the initial time t0 is taken to be 0 throughout

the article.

7.3 Methodology: Sparse identification of nonlinear dynamics

7.3.1 Overview of the sparse identification method

Based on sparse regression and compressive sensing, sparse identification of nonlinear dy-

namics (SINDy) is a novel method in the field of system identification [73, 77] and has been

applied to a diverse array of engineering problems [218]. The aim of SINDy is to use only in-

put/output data from a system to represent the dynamics in the form of the nominal system of

Eq. (7.1),
˙̂x(t) = f̂(x̂) + ĝ(x̂)u (7.2)

where x̂ ∈ Rn is the state vector of the sparse-identified model, and f̂ and ĝ are the model param-

eters that capture the physical laws governing the system.

Since most physical systems contain only a few terms in the right-hand side of Eq. (7.2),

if a large number of nonlinear basis functions are considered as possible terms in f̂ and ĝ, the

space of all candidate functions considered is rendered sparse. Hence, SINDy aims to identify

the small number of active functions in f̂ and ĝ using algorithms that leverage sparsity. We first
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obtain a discrete set of full-state measurements from open-loop simulations or experiments and

concatenate them into a data matrix X and an input matrix U ,

X =



x1 (t1) x2 (t1) · · · xn (t1)

x1 (t2) x2 (t2) · · · xn (t2)

...
... . . . ...

x1 (tm) x2 (tm) · · · xn (tm)


(7.3a)

U =



u1 (t1) u2 (t1) · · · ur (t1)

u1 (t2) u2 (t2) · · · ur (t2)

...
... . . . ...

u1 (tm) u2 (tm) · · · ur (tm)


(7.3b)

where xi(tℓ) and uj(tℓ) represent the measurement of the ith state and j th input at the ℓth sampling

time, respectively, where i = 1, . . . , n, j = 1, . . . , r, and ℓ = 1, . . . ,m. Ẋ , the time-derivative of

X , is a required matrix in the sparse identification algorithm and is either measured if possible (e.g.,

velocity) or otherwise estimated from X . Subsequently, a function library Θ(X,U) is constructed

with s nonlinear functions of X and U . These s functions are the candidate nonlinear functions

that may be zero or nonzero in the right-hand side of Eq. (7.2). The sparse identification algorithm

exploits sparsity to calculate the coefficients associated with the terms in the library, Θ. Given

the universality of mononomials, polynomials, and trigonometric functions in engineering systems
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[77], they are often selected as the initial library in Θ. An example of an augmented library is

Θ(X,U) =

 1 X sin(X) eX U UX2

 (7.4)

The goal of sparse identification is to find each of the s coefficients associated with the s

nonlinear functions considered in Θ for each row of Eq. (7.2). Each state xi corresponds to a

sparse vector of coefficients, ξi ∈ Rs, that represent the nonzero terms in f̂i and ĝi in the respective

ODE, ˙̂xi = f̂i(x̂i) + ĝi(x̂i)u. Consequently, there are n such coefficient vectors that must be

calculated. In matrix notation, the unknown quantity is

Ξ =

[
ξ1 ξ2 · · · ξn

]
(7.5)

which is found by solving the following equation:

Ẋ = Θ(X,U)Ξ (7.6)

Equation (7.6) may be solved using standard least-squares after reformulating the problem as such

by setting all coefficients in Ξ below a certain threshold λ to zero. Specifically, the least-squares

problem takes the form,

Ξ = argmin
Ξ′

∥∥∥Ẋ −Θ(X,U)Ξ′
∥∥∥
2
+ λ
∥∥Ξ′∥∥

1
(7.7)

where the first term maximizes the fidelity of the model to the data, while the second term ensures
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sparsity of Ξ. In Eq. (7.7), Ξ′ is a notational substitute for Ξ. To solve Eq. (7.7), the least-squares

problem is written in the following form, which may be solved using a standard solver for a linear

system of equations:

Ξ = argmin
Ξ′′

∥∥∥Ẋ −Θ(X,U)Ξ′′
∥∥∥
2

(7.8)

where the matrix Ξ′′ is Ξ′ with all coefficients having an absolute value below λ set to zero. Equa-

tion (7.8) is repeatedly solved until convergence of the non-zero coefficients. The iterations typi-

cally converge rapidly due to the sparse structure of Ξ. An alternate algorithm to solve Eq. (7.6)

is known as Sparse Relaxed Regularized Regression, which is based on the well-known LASSO

operator [184]. After finding Ξ using either method, the identified model can be formulated as the

continuous-time differential equation,

ẋ = Ξ⊤(Θ(x⊤, u⊤))⊤

where Θ(x⊤, u⊤) is a column vector containing symbolic functions of x and u from the chosen

function library, and x⊤ represents the transpose of x.

7.3.2 Data generation and SINDy modeling considerations

When applying SINDy to an engineering problem, a number of factors affect the results and

must be carefully considered before and during the construction of a SINDy model.
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7.3.2.1 Data generation

Data for system identification methods is typically obtained from either open-loop simulations

or open-loop experiments. The sampling period used to record the data, the variation of system

inputs and outputs considered for data generation, and the distribution of the data set are some of

the properties that affect the amount of dynamic information contained in the data set and, as a

result, the model quality.

Firstly, as information is lost when continuous data is sampled into discrete data, a higher sam-

pling rate (lower sampling period) generally leads to better system identification for any method

including SINDy, especially since SINDy requires estimates of the time-derivative of the states

using finite differences or some variant thereof. However, it is important to consider practical

limitations in terms of sampling. While an extremely small sampling period of 10−5 units may

produce a data set with high information density, from which derivative estimations can be made

very accurately, leading to the identification of better models, such a high sampling rate is typically

not possible to achieve in a chemical process application or even in many other engineering disci-

plines. Instead, the sampling period should be chosen to be as small as reasonably possible, which

would also be desirable in practice. Manufacturer specifications of the relevant type of sensors

for process variables may be used as a lower bound on the sampling period for simulations-based

studies.

Secondly, the dynamic information captured in a data set is dependent on the initial conditions

chosen, the input signal variation, and the total simulation duration. The chosen combinations of

initial conditions and input variables must cover as much of the operating region of interest as
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possible, and the simulation should be run until it reaches the desired steady-state of operation,

in order to maximize the dynamic information captured in the data set. In contrast, if the data

collection is carried out using a narrow range of initial conditions and/or inputs, or if a large part

of the trajectories are zero values at the steady-state due to excessive run time, the data set may be

large but contain little dynamic information to build an adequate model from. Furthermore, based

on our studies, SINDy modeling works best with longer trajectories, even if from fewer initial

conditions, rather than an exponential number of extremely small trajectories from many random

initial conditions. The open-loop runs, whether experimental or simulations-based, should also

reflect the various types of actions that are relevant in a control setting. For example, a number

of trajectories should use a nonzero input to drive the system to various regions of the state space,

which will assist the model in identifying the input dynamics. However, a few runs should also

initiate the system away from the steady-state and let the states approach the steady-state under no

control action, provided that the steady-state of interest is a stable one. If the data set is generated

following the above best practices, it should yield an independent and identically distributed (i.i.d.)

data set with maximum dynamic information and the least redundancy/repetition.

Lastly, when dealing with a specific type of a system, any unique characteristics of the system

that may hinder or facilitate data generation and quality should be considered. For example, since

the goal is to capture as much dynamic information as possible and not collect redundant data

over a large period of the simulation with constant values for all variables (i.e., after the system

reaches a steady state), when dealing with multiscale systems, techniques such as “burst sampling”

have been proposed in [98]. Burst sampling refers to the use of a short sampling time in regions

with higher gradients and faster dynamics, such as the fast transient of the fast subsystem(s) of
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a multiscale system, while reducing the sampling rate once the fast states converge to the slow

manifold. Such advanced sampling strategies greatly reduce data storage requirements, and allow

the user to retain only the most informative bits of data to to be used for modeling and control.

Such advanced data acquisition strategies should be used instead of mere iterative procedures. On

the other hand, if the system operates at or near an unstable steady-state, integrating the system for

extended periods of time may lead to the states diverging, which will cause errors during run time

and hinder the data generation. Hence, for unstable operating points, it is desirable to use multiple

shorter trajectories. Such facilitation and difficulties of data generation must be considered on a

case-to-case basis for the system being studied.

7.3.2.2 Data preprocessing

In any machine learning (ML) application, it is essential to preprocess the data before training

a model. The two preprocessing steps required to apply SINDy are the train/test split and the

normalization of the data set.

With respect to the split, the data set must first be split into the training and test sets. Most of

the training data set is used to regress the model coefficients, while a small fraction of the training

set is reserved as the validation set, which is used to tune the hyper-parameters. Once the optimal

set of hyper-parameters is found, the model is finalized on the entire training data with the selected

hyper-parameters. The final model is then bench-marked against the unseen data, which is the test

set. The train-validation-test split ratio is arbitrary to an extent, although general rules and best

practices exist. The training set should generally be the largest because the model performance is

mostly related to the training data set, which is used to find the model parameters, while the test
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set is only used to gauge the model accuracy post-training. In fact, as long as the data set is i.i.d.,

increasing the size of the training set will always lead to an improvement of the model accuracy.

The train-validation-test proportions are also determined by the application. For example, for

methods with a large number of hyper-parameters to tune, such as neural networks, where usually

large volumes of data are usually available, it may be more valuable to have a larger validation

set, e.g., a 50-25-25 train-validation-test split. On the other hand, for SINDy, since there is only

one key hyper-parameter to tune, a larger training set may be warranted, such as a 60-20-20 or

70-15-15 split. When the data set poses additional challenges such as noise, it may warrant an

80-10-10 split, since training noisy data is often a difficult task and requires significant amounts of

data, especially if any smoothing or other, extraneous preprocessing steps are required.

A number of methods exist to normalize, i.e., center and scale the data set. Three common

methods for normalization are the z-score scaler, Min-Max scaler, and Max-Abs scaler, of which

the first two methods both center and scale the data, while the Max-Abs scaler only scales it.

Specifically, the z-score scaler first centers the data set to the origin by subtracting the mean, and

then scales the data set to have unit variance by dividing by the standard deviation. The Min-

Max scaler divides each number by the range of the data after subtracting the minimum value of

the data set and then adds the minimum value back to the scaled number in order to transform

all data points to values between a lower and upper limit, usually 0 and 1, respectively. The

Max-Abs scaler only scales the data to be between ±1 by dividing the data set by its maximum

absolute value, without any subtraction or centering. While the methods are described for a single

variable, for the multivariate case, the above operations are independently carried out on each

variable or column of the data set. For chemical processes, as the process inputs and outputs are
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typically written in deviation form from their steady-state values, further centering may not be

as crucial; all variables will attain a value of zero at the steady-state. However, due to the large

differences in the orders of magnitudes between the variables, such as between concentrations and

temperatures, scaling the data set is necessary in most cases. When using SINDy, where the sign

of the coefficients associated with certain terms can contain information on the process dynamics

(e.g., an increase in the input heating rate should lead to an increase in the temperature), methods

that scale without centering such as the Max-Abs scaler can be a reasonable starting point when

deciding on a normalization method, as was also observed in some of our results.

7.3.2.3 Hyper-parameter tuning

In the basic SINDy algorithm, the model structure and accuracy are simultaneously controlled

and balanced by a single hyper-parameter, λ. Therefore, tuning it is essential and usually carried

out via a fine search or coarse-to-fine search. The latter is computationally efficient and used in

this work. A coarse-to-fine search can be justified by the fact that, for appropriately scaled data,

for most systems, no nonzero terms will remain in the SINDy model for large values of λ, such as

λ that is an order of magnitude greater than the scaled data set. In contrast, extremely small values

of λ will yield dense models that are prone to instability as well as redundant in the basis functions.

Hence, a coarse search can be used to bound the region where a finer search can be carried out to

identify the optimal model that yields the lowest loss or error metric. Figure 7.1 demonstrates how

this process can be used to select the optimal model (corresponding to the orange point) through a

very fine search or even models very close to the optimal in terms of accuracy by a much coarser

search (corresponding to the green region). As expected, it can be observed that values of λ > 1.0
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zero all terms in the SINDy model, leading to a constant error for all such λ. At the lower extreme

of values of λ, the model is no longer sparse, and some terms that may even lead to an unstable

model can start to have nonzero coefficients, in which case the MSE rapidly increases even beyond

the case of all the terms being zero. This is especially the case since Fig. 7.1 is based on the work

in [217], where the case of noisy data is considered.

The basis functions chosen for the candidate library are another central element of the SINDy

method, which may be treated similarly as a hyper-parameter, in the sense that it is not entirely

arbitrary and may require addition/removal of basis functions as necessary. Expanding it with-

out computational considerations is not recommended as the overall optimization problem will

then suffer from the curse of dimensionality, while also rendering the model more prone to insta-

bilities due to dense model structures. Therefore, if there is any physical insight on the type of

nonlinearities that are potentially relevant to the system of interest, this physical insight should be

incorporated into the optimization search (e.g., biasing the order with which the nonlinearities are

considered in the optimization search in an approach similar to the ALAMO modeling technique

[6]). For chemical processes with nonlinear reaction terms, a common consideration may be to

include exponential terms involving the temperature as the Arrhenius rate law is widely used in

deriving mass and energy balances for reactors.

For estimating the time-derivative Ẋ in the right-hand side of Eq. (7.6), which is typically

unavailable from sensor measurements, the ideal method to be used depends on the nature of the

data set. For clean data, any finite difference-based approach such as forward, backward, or cen-

tered finite difference is usually adequate and will eventually yield similar results for the model

coefficients at the end of the SINDy algorithm. However, if the data is noisy, finite differences
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Figure 7.1: Values of two error metrics, the Akaike Information Criterion (AIC) and the mean-
squared error, as functions of λ for model selection.

are unstable even at low noise levels. Hence, methods robust to noise such as the total variation

regularized derivative (TVRD) and the smoothed finite-difference (SFD) have been proposed [77].
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TVRD is based on the total-variation regularization, which has been widely used in image pro-

cessing applications. In TVRD, the derivative is computed as the minimizer of a functional using

gradient descent. In contrast, in SFD, the data set is first presmoothed using a filter, which may

be a low-pass filter or the Savitzky-Golay filter, and finite-differences are then computed from the

resulting, smoothed data set. As no gradient descent is involved, computationally, it is generally

faster than TVRD. However, when both methods were used in [195], each method yielded some

of the final, optimal models for the various cases studied, making them both reasonable choices to

test.

7.3.3 Incorporation of SINDy within MPC

Model predictive control is an advanced control methodology that utilizes a model of the

process to predict the states/output over a prediction horizon to compute the optimal control actions

by solving an online optimization problem. The formulation of a Lyapunov-based model predictive

controller (LMPC) that uses a sparse-identified ODE, Fsi(·), as the process model is presented
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below:

J = min
u∈S(∆)

∫ tk+N

tk

C(x̃(t), u(t)) dt (7.9a)

s.t. ˙̃x(t) = Fsi(x̃(t), u(t)) (7.9b)

x̃(tk) = x(tk) (7.9c)

u(t) ∈ U , ∀ t ∈ [tk, tk+N) (7.9d)

˙̂
V (x(tk), u) ≤ ˙̂

V
(
x(tk),Φsi(x(tk))

)
,

if x(tk) ∈ Ωρ̂\Ωρsi (7.9e)

V̂ (x̃(t)) ≤ ρsi, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρsi (7.9f)

where x̃ is the predicted state trajectory, S(∆) represents the set of piece-wise constant functions

with a period of ∆, and N is the number of sampling periods within each prediction horizon.

˙̂
V (x, u) is the time-derivative of the Lyapunov function and is equal to ∂V̂ (x)

∂x
Fsi(x, u). u = u∗(t),

t ∈ [tk, tk+N) denotes the optimal input sequence over the prediction horizon, which is provided

by the optimizer. The LMPC applies only the first value in u∗(tk) over the next sampling period

t ∈ [tk, tk+1), and solves the optimization again at the next sampling time tk+1.

In the MPC formulation, Eq. (7.9a) is the objective function to be minimized and is chosen

to be equal to the integral of C(x̃(t), u(t)) over the prediction horizon. A typical cost function

that achieves a value of zero at the steady-state in the absence of manipulated input action, while

simultaneously weighing the deviation in both state and input from the origin is the quadratic stage

265



cost, which is often used in LMPC and is formulated as follows:

C(x̃(t), u(t)) = x⊤Q1x+ u⊤Q2u (7.10)

Equation (7.9b) describes the sparse-identified model that is used to predict the closed-loop states

over the prediction horizon starting from the initial condition of Eq. (7.9c) while u is varied within

the constraints defined by Eq. (7.9d). The last two constraints of Eq. (7.9e) based on the Lyapunov

function, V = x⊤Px, guarantee that the closed-loop state either moves towards the origin at the

next sampling time if the state is outside Ωρsi or is contained within Ωρsi for the entire prediction

horizon once the state enters Ωρsi .

The generally nonlinear, non-convex optimization problem of Eq. (7.9) is solved at every

sampling period, and the first entry of the optimal u∗ calculated is sent to the actuator, following

which the optimization is re-solved at the next sampling period using the new state measurement.

The optimization is solved using the numerical solver Ipopt [145] with its Python front-end named

PyIpopt. For the contractive constraint of Eq. (7.9e), the universal Sontag control law [140] or a

well-tuned, stabilizing proportional-only controller may be used. It is important to note that the

matrices P , Q1, and Q2 must be tuned for the LMPC to achieve the best results, and poorly tuned

weight matrices may lead to the solver not converging to a solution within the sampling period or

the maximum allowed number of iterations.
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7.4 Reduced-order modeling for two-time-scale systems

Time-scale separation is a common phenomenon found in chemical processes such as dis-

tillation columns and catalytic continuous stirred-tank reactors (CSTRs) [91]. If the time-scale

separation is not accounted for in a standard nonlinear feedback controller, the controller may be

ill-conditioned or even unstable in closed-loop [99]. Due to the distinct slow and fast dynam-

ics in such systems, the process will be represented by stiff ODEs in time when using SINDy

without any modification. Such stiff ODEs, when integrated with an explicit integration method

such as forward Euler, require a very small integration step size to prevent divergence and yield

sufficiently accurate solutions. Hence, [135] used the mathematical framework of singular pertur-

bations to propose the decomposition of the original two-time-scale system into two lower-order

subsystems, each separately modeling the slow and fast dynamics of the original multiscale sys-

tem. Specifically, following a short transient period, the fast states converge to a slow manifold and

can be algebraically related to the slow states using nonlinear functional representations. In [135],

we applied nonlinear principal component analysis (NLPCA) developed by [121] to capture the

nonlinear relationship between the slow and fast states, while using sparse identification to derive

well-conditioned, reduced-order ODE models for only the slow states that could then be integrated

with much larger integration time steps due to their numerical stability. Once the slow states are

predicted with the ODE model, it is possible to use NLPCA to algebraically predict the fast states

without any integration.

Nonlinear principal component analysis is a nonlinear extension of principal component anal-

ysis (PCA). PCA is a commonly used dimensionality reduction technique that finds a linear map-
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ping between a higher-dimensional space (of the data) and a lower-dimensional space with minimal

loss of information by minimizing the squared sum of orthogonal distances between the data points

and a straight line. NLPCA attempts to generalize this to the nonlinear case in two steps: first, a

1-D curve that passes through the “middle” of the data points known as the “principal curve” is

found; second, the principal curve is parametrized in terms of distance of each point along the

curve by using a feedforward neural network with nonlinear activation functions. Overall, to make

a prediction of the state of the two-time-scale system, the measurement of the slow states at the

current sampling time is passed to an explicit integrator (such as a Runge-Kutta scheme) that inte-

grates the sparse-identified model to predict the slow states over the prediction horizon, which are

then sent to the FNN to yield a prediction of the fast states.

Two-time-scale systems can be written in the form,

ẋs = fs(xs, xf , u, ϵ) (7.11a)

ϵẋf = ff (xs, xf , u, ϵ) (7.11b)

where xs ∈ Rns and xf ∈ Rnf denote the slow and fast states, respectively, with ns + nf = n. ϵ is

a small positive parameter that represents the ratio of slow to fast dynamics of the original system.

By making standard assumptions from the singular perturbation framework, the slow subsystem of

Eq. (7.11a) can be rewritten in the form required for sparse identification,

˙̂xs = Fsi(x̂s, u) := f̂(x̂s) + ĝ(x̂s)u, x̂s(t0) = xs0 (7.12)

where Fsi is the sparse-identified slow subsystem.
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In the first step of NLPCA, we capture the unidimensional principle curve in the n-dimensional

state space to find the nonlinear algebraic relationship between the slow and fast states as shown in

Fig. 7.2. The curve, denoted by P(µ) is parametrized in terms of the ordered arc-length along the

curve, µ. If x̄ ∈ Rn is the full-state vector, we can define the projection index µP : Rn → R as:

µP(x̄) = sup
µ∈R
{µ :

∥∥x̄− P(µ)∥∥ = inf
µ′∈R

∥∥x̄− P(µ′)
∥∥} (7.13)

with µ′ being a notational substitute for µ. Based on the above definition and denoting the expec-

tation of a random variable by E, the curve can be defined as:

E
(
x̄|µP(x̄) = µ

)
= P(µ) (7.14)

where the expectation operator is approximated using a combination of scatter-plot smoothing and

locally weighted regression when only discrete time-series data is available. Since the output of

the first step of NLPCA, the principal curve, is a non-queryable model, an FNN is used to capture

the identified principal curve.

With respect to the structure of the FNN, it is necessary to use at least one hidden layer with a

sigmoid activation function, σ(x) = 1/(1+e−x), to exploit the universal approximation property of

neural networks [60, 61]. To improve the network capability, a two-hidden-layer FNN was used in

this work, as depicted in Fig. 7.3. The learning rate, which is the most influential hyper-parameter,

requires careful tuning to obtain the optimal FNN model in the second step of NLPCA.

An LMPC that uses Eq. (7.12) as the process model of Eq. (7.9b) may be constructed. Such

an LMPC will predict the slow states of the two-time-scale system and optimize the cost function
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Figure 7.2: Demonstration of the evolution of NLPCA based on PCA and its relation to nonlinear
regression.

based on the predicted slow states. Due to the coupled nature of the states, it is sufficient to stabilize

the slow states to guarantee asymptotic stability for the entire system. However, if computational

resources are available, the FNN may be used to predict the fast states, and the LMPC can then

account for the full-state of the system. In [155], only the slow subsystem was used to ensure the

LMPC optimization can be solved within every sampling period.

The primary advantage of the reduced-order model in LMPC is that the lower computational

cost of the SINDy model inference, with nearly zero loss in model accuracy, directly impacts the

difficulty of the optimization required to be solved by the LMPC. Hence, the LMPC based on

the reduced-order SINDy model can use a higher prediction horizon, which has the potential to

improve closed-loop performance in terms of faster convergence to the origin and a lower total
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Figure 7.3: Structure of the neural network used for NLPCA-SI

cost function over the simulation duration, the former of which is demonstrated most clearly in the

concentration profile in Fig. 7.4.
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first-principles (FP) model with N = 16 (blue line) and the SINDy slow model with N = 24
(orange line).

7.5 Subsampling and co-teaching in the presence of high sensor

noise

A key step in the sparse identification procedure is the estimation of the time-derivatives of

the states when it cannot be measured directly, as is the case in most process systems. From a

survey of the literature, since the conceptualization of SINDy in [77], several advancements in the

algorithm have been proposed to handle noisy data. However, most articles that investigate the

effect of noise on SINDy add noise to the pre-computed derivatives (from clean data) and/or use

very low levels of noise that can be easily smoothened. One example is the SINDy-PI algorithm

proposed by [113] and improved by [114]. Through case studies, [114] demonstrated that even the

improved algorithm could only handle noise with a maximum variance of 10−4, which is very small
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in the context of process systems. Although a number of works can be found that focus on alternate

approaches to build dynamical models in the presence of noise, such as Runge-Kutta time-steppers

with embedded neural networks to handle the nonlinear elements [185–188], these are alternatives

to SINDy rather than improvements upon the original SINDy method. As a result, the methods

to assist the modeling of noisy data as well as the subsequent results are largely different from

SINDy and its extensions. For example, the unexpected results of [187] when using Runge-Kutta

time-steppers were later explained using well-known characteristics of neural networks. More

advanced time-steppers such as the work of [188] also emphasize their limitations when integrating

the models from new initial conditions or attempting to capture dynamics away from a steady

state, both of which are relevant in control-centric applications. While a detailed discussion of the

comprehensive literature can be found in [195], in summary, one paper proposed an improvement

upon the SINDy algorithm in the presence of moderate noise that demonstrated promise and could

be developed further. This method, proposed by [116], termed subsampling-based threshold sparse

Bayesian regression (SubTSBR), involved randomly subsampling a fraction of the entire data set

multiple times and selecting the best model by using a model-selection criterion. The issue of noisy

data has also been studied in the field of computer science, where fitting a neural network to noisy

data often leads to the neural network overfitting the data and capturing the noisy pattern instead.

A recent technique proposed to overcome this challenge is co-teaching, where a simplified first-

principles process model is used to generate noise-free training data to assist the model training

step by reducing overfitting. In this section, we propose a novel extension to SINDy by combining

it with subsampling and co-teaching to handle highly noisy sensor data.

Subsampling is a classical statistical technique where a fraction of the total number of samples
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in a data set are randomly extracted and analyzed to estimate statistical parameters [181] or speed

up algorithms [182]. However, subsampling can also be used to instead improve the modeling

accuracy of SINDy when the data set is highly noisy. This is because common regression methods

such as least squares utilize the complete data set by assuming that only a small fraction of the

data samples are highly noisy or outliers. As a result, if the entire data set is used, the higher

percentage of “good” data samples should smooth the large noise present in the data set. However,

this assumption breaks down if the noise is either very high or uniformly present throughout the

data set. In such a case, there are insufficient “good” data samples to smooth out the noise from

the very highly corrupted data samples. In the context of SINDy, subsampling refers to selecting

random fractions of the data set multiple times in order to sample only the less noisy data points

for carrying out the sparse regression. The key requirement for subsampling is that the number

of unknown weights to be estimated in the SINDy procedure have to be fewer than the number

of total data samples available (i.e., the problem has to be overdetermined), which is the case for

most practical data sets. Although as a standalone improvement, subsampling greatly improves the

performance of SINDy under moderate noise levels, it is insufficient at higher noise levels, where

co-teaching becomes incumbent.

Co-teaching is a method that has been used in the field of computer science, primarily in

image recognition, where neural networks are trained to categorize images into pre-defined classes.

However, often, a small proportion of the images in the training data set may be mislabeled, greatly

deteriorating the performance of the neural network. As manually relabeling vast amounts of

images is not feasible, the method of co-teaching was proposed wherein newly generated noise-

free data is fed during model training to reduce the impact of the noisy data. The concept has
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recently been extended to regression problems, specifically the modeling of dynamical systems

using long short-term memory (LSTM) networks [153, 154]. The central idea of co-teaching,

which was highlighted and proven in [154], is that neural networks fit simpler patterns in the early

iterations of model training, which implies that noise-free data will yield low values of the loss

function, while noisy data will tend to produce high loss function values. Therefore, the training

can be made more robust to noise and overfitting if the noisy data is augmented with a nonzero

proportion of noise-free data from simulations of simplified, approximate first-principle models

that can be derived for the complex, original nonlinear system.

Improving the sparse identification algorithm with both subsampling and co-teaching enables

it to tackle consistently noisy data sets where subsampling alone is insufficient. This is because

subsampling only subsamples, in the best case scenario, the least noisy data points, which are still

too noisy to yield an adequate model. In the proposed method, first, a random subset of the entire

data set Xnoisy and its corresponding Ẋnoisy are sampled, which are then mixed with noise-free data

generated from approximate first-principles models of the process, XFP and ẊFP. The resulting

mixed data set is used to solve for the unknown weights of the s terms in the SINDy function

library. Once a model is identified, a model-selection criterion is used to evaluate the model per-

formance. Three parameters must be specified in the algorithm: p ∈ (0, 1) or the subsampling

fraction, q ∈ (0, 1) or the noise-free subsampling fraction, and L ≥ 1, which is the number of

times to independently subsample and identify a SINDy model. The algorithm randomly subsam-

ples and mixes p×m data points from the noisy data set with q×m data points from the noise-free

data set to produce the data and derivative submatrices, Xi and Ẋi, respctively, for subsample i

with i = 1, 2, . . . , L. Ui are the corresponding (p + q) ×m points from the input matrix U . The
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sparse regression equation to be solved is then

Ẋi = Θ(Xi, Ui)Ξi (7.15)

where Ξi are the coefficients associated with each library function that is identified using the data

subset {Xi, Ẋi, Ui}. Once Ξi is determined and, therefore, the ith ODE model is found, the model

selection criterion is used to extract the optimal model. An example of a model selection crite-

rion that balances the error with the model sparsity, which is crucial for SINDy, is the Akaike

Information Criterion given by the expression,

MSE =
1

m

m∑
j=1

(
x(tj)− x̂(tj)

)2 (7.16)

AIC = m logMSE+2L0 (7.17)

where MSE is the mean-squared error, and L0 denotes the 0th norm, which is equal to the number

of nonzero terms in the sparse-identified model.

The hyper-parameters unique to the subsampling with co-teaching algorithm, besides the ones

described in Section 7.3.2.3, are the values of p, q, and L. It should be noted that the goal is to

capture the original noisy data rather than the noise-free data from first-principles simulations.

Hence, the fraction q should generally be small, while p can be any real number between 0 and 1

as long as both metrics satisfy p + q ≤ 1. While increasing L will generally improve the model

performance because a larger number of sub-models are identified for the optimal model to be

chosen from, the computational costs of increasing L must be considered. Figure 7.5 shows the

flow of the data throughout the algorithm.
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Open-loop modeling results for a CSTR system are shown in Fig. 7.6, where the base SINDy

model is observed to deteriorate in performance at the level of noise considered (Gaussian noise

with a standard deviation of σT = 4K in the temperature). Subsampling, even by itself, greatly

improves the SINDy model performance, while subsampling with co-teaching further improves

the performance. The improvement using co-teaching is most significant at the highest levels of

noise considered (Gaussian noise with a standard deviation of σT = 6K for the temperature) since

models constructed using only subsampling even diverged in some cases [195]. Visually, the mod-

els can be assessed in terms of how close the model predictions are to the data as well as whether

the states evolve in the correct direction. Although this is difficult to do for the entire simulation

domain at the higher levels of noise, analyzing specific time domains in Fig. 7.6 can reveal differ-

ences between the models. In Fig. 7.6, in the ranges t ∈ [2, 4] ∪ [14, 16], the base SINDy model

clearly deteriorates and deviates from the other models and the data, which is mostly concentrated

much higher, near the steady-state, indicating the poor performance of the base SINDy model in

these regions. The models using subsampling with and without co-teaching can be further differ-

entiated in the regions t ∈ [6, 10] ∪ [12, 14], where the subsampling-only model predicts smaller

deviations from the steady-state, but the data deviates further from the steady-state than predicted

by either subsampling-based model. Therefore, the co-teaching-based subsampling model is closer

to the data than the subsampling-only model in these ranges where the states deviate further from

the steady-state. However, especially when dealing with noisy data, the modeling performance is

best characterized quantitatively in terms of the MSE, which are shown in Table 7.1. The MSE for

subsampling with co-teaching is consistently the lowest across all noise levels except the lowest

noise level, where all methods show very similar MSE and the differences are insignificant because
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of the superior performance of the models from all three methods. At higher noise levels, the dif-

ferences become more significant, with the subsampling-only based model even diverging when

σT = 6K. At low to moderate noise levels, however, the MSE of the models using subsampling,

whether with co-teaching or not are very similar. Therefore, co-teaching should be used once the

model performance from using only subsampling deteriorates.
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Table 7.1: Test set MSE for the CSTR system for four noise levels

σT (K) Base Only Subsampling Subsampling + Co-teaching

0.4 0.01113 0.01059 0.01102
2 0.10510 0.09922 0.10370
4 0.49837 0.40037 0.36283
6 0.98210 1.89607 0.77613

7.6 Ensembled-based dropout-SINDy to model highly noisy in-

dustrial data sets

While subsampling with co-teaching is a viable option to tackle the issue of high sensor

noise in the data measurements, the primary drawback of co-teaching is its requirement for a first-

principles process model that is at least similar to the original system with respect to the dynamics

and the steady-state values. However, in the case of industrial data, the dynamics may be far too

complex for any theoretically derived ODE to adequately capture the system. Therefore, for the

case of dealing with high levels of industrial noise, a new direction and improvement on SINDy is

proposed, which is a form of ensemble learning that we term “dropout-SINDy”.

Ensemble learning refers to the use of multiple models in place of one model. Homogeneous

ensemble learning involves the use of the multiple models of the same type, while heterogeneous

ensemble learning strategies use a combination of different types of models to improve the pre-

dictive performance. In this work, only homogeneous ensemble learning is considered. However,

in the context of SINDy, even the terminology, “homogeneous ensemble learning”, can refer to

two distinct methods: either the data set can be subsampled to produce multiple models with the

same underlying model structure, or multiple models with varying function libraries may be built
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using the same data set. The subsampling method described in Section 7.5 is an example of the

former, but it was shown in [195] that subsampling, by itself, cannot improve the SINDy algorithm

under high noise levels. In contrast, for the case of industrial noise, the proposed dropout-SINDy

method uses only a fraction of the function library Θ to identify each submodel. Hence, multi-

ple models can be identified, each with a random subset of the library. Similarly to co-teaching,

this can reduce the impact of noisy data and, additionally, improve the stability properties of the

SINDy models because a large number of nonzero terms (a dense coefficient matrix Ξ) can often

lead to instabilities. The sparse regression equation to be solved for dropout-SINDy is similar to

Eq. (7.15), but the state, input, and derivative data sets remain as X , U and Ẋ , respectively, while

only the library Θi and coefficients Ξi are varied between the nmodels models in the ensemble, where

i = 1, 2, ..., nmodels:

Ẋ = Θi(X,U)Ξi (7.18)

Equation (7.18) is solved using a different subset of the computed library Θi each time to find the

corresponding set of model coefficients for the nonzeroed terms, Ξi. In each Θi, ndropout library

functions are randomly dropped out, with the corresponding entries in Ξi also being zeroed before

solving Eq. (7.18). Once all the sub-models are found, the final model must be selected from the

Ξi, . . . ,Ξnmodels . In this case, although the mean, median, and mode are all possible methods to

find the central tendency of all the Ξi, the mean is likely to yield dense models because even one

nonzero value for a certain coefficient in any one of the sub-models will cause the coefficient to be

nonzero. In contrast, the median and mode do not suffer from this. However, the mode may not

be useful since even two sub-models with a zero coefficient for a library term will lead to the term
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being zeroed if none of the other nonzero values are repeated exactly equally, leading to excessive

sparsity. Hence, the median is determined to be the most reasonable measure of central tendency

for dropout-SINDy.

The number of functions of the candidate library to be omitted in each model, ndropout, as

well as the number of models, nmodels, must be tuned when building a dropout-SINDy model.

A very small value of ndropout implies that the sub-models in the ensemble are very similar to

the base SINDy model without any dropout, negating most if not all performance gains of the

proposed method. But if ndropout is too large, excessive sparsity will lead to models that lack the

complexity required to capture the dynamics. Similarly, a small value of nmodels may lead to the

optimal model not being identified as the search is conducted over a smaller set, but increasing

nmodels also increases computational costs and might even promote instability if the median of the

model coefficients is shifted by a larger proportion of poor models. Hence, this balance between

computational cost, model improvement, model complexity, and stability must be considered when

tuning nmodels and ndropout when using dropout-SINDy. The data flow throughout the algorithm is

outlined in Fig. 7.7.

In this section, “industrial” data refers not to an experimental data set but data generated from

a chemical process simulated in the high-fidelity chemical process simulator, Aspen Plus Dynam-

ics, which is a widely used simulator in the chemical sector that has been used to build steady-state

and dynamic simulations of chemical processes to aid chemical engineers in process design and

optimization. Chemical process simulators have several advantages over first-principles models as

they contain numerous built-in packages to handle most common unit operations, thermodynamic

properties, molecular interactions, etc., which result in significantly more accurate models that

282



0 10 20 30 40 50 0 10 20 30 40 50

-1

-0.5

0

0.5

1

0 10 20 30 40 50

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 10 20 30 40 50

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

End

Start

15

10

5

Center X at steady-state
and scale

Compute , e.g.,

to obtain

Remove columns of

Solve

times

Collect noisy data, X Apply Savitzky-Golay Filter

Use centered finite-difference
to obtain

Integrate test set initial 

conditions with Ξ and 

compute MSE

Figure 7.7: Data flow diagram of Dropout-SINDy for noisy, industrial data.
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Figure 7.8: Aspen Plus model process flow diagram of an ethylbenzene production process.

more closely represent the plant process dynamics. In [217], Aspen Plus Dynamics was used to

build the process flow diagram shown in Fig. 7.8, which was then used for both data generation as

well as closed-loop simulations in order to imitate the industrial process.

When using the basic SINDy algorithm to model the highly noisy industrial data from Aspen

Plus Dynamics, it is found that basic SINDy is unable to model the dynamics or even correctly

predict the final steady-state of the open-loop system, the latter of which greatly affects the perfor-

mance of a controller. However, when dropout-SINDy is used on the industrial data set, it is able to

capture most of the dynamics and correctly predict the final steady-state values of the states. When

an MPC is designed with the dropout-SINDy model, it can be demonstrated to achieve closed-

loop stability and converge to the steady-state faster and with less energy and overshoot than a

corresponding proportional-controller as shown in Fig. 7.9.
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Figure 7.9: State and input profiles for a CSTR in closed-loop under no control (blue line), a P-
controller (red line), and the LMPC utilizing the dropout-SINDy model (black line) throughout the
simulation period tp = 1.5 h.

7.7 Demonstration of the use of SINDy to model a nonlinear

chemical process

In this section, the modeling of a highly nonlinear CSTR operating at an unstable steady-

state using SINDy is considered. Specifically, a perfectly mixed, nonisothermal CSTR where an

irreversible, exothermic reaction with second-order kinetics, A k−→ B, takes place is studied. The

rate constant of the reaction, k, is not assumed to be constant and, instead, an Arrhenius relation of

the following form is used to determine the rate constant as a function of the Kelvin temperature,

T :

k = k0e
− E

RT (7.19)

where k0, E, and R represent the pre-exponential constant, activation energy of the reaction, and

the ideal gas constant, respectively. Using material and energy balances, the differential equation
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model describing the CSTR dynamics is derived as follows:

dCA

dt
=

F

V
(CA0 − CA)− k0e

− E
RT C2

A (7.20a)

dT

dt
=

F

V
(T0 − T ) +

−∆H

ρLCp

k0e
− E

RT C2
A +

103Q

ρLCpV
(7.20b)

where CA, V , and T denote the concentration of reactant A in the reactor, the volume of the reacting

liquid inside the reactor, and the time-varying absolute temperature of the reactor. The concentra-

tion of species A in the inlet stream, the inlet temperature, and the volumetric flow rate fed to the

reactor are represented by CA0, T0, and F , respectively. A heating jacket supplies/removes heat

to/from the CSTR at a rate of Q. The density and heat capacity of the reacting liquid are assumed

to have constant values of ρL and Cp, respectively, while ∆H denotes the enthalpy of the reaction.

The values of the process parameters are provided in Table 7.2. With the values from Table 7.2

Table 7.2: Parameter values for nonisothermal CSTR example

F = 5.0m3/h V = 1.0m3

k0 = 8.46× 106m3 kmol−1 h−1 E = 5.0× 104 kJ/kmol
R = 8.314 kJ kmol−1K−1 ρL = 1000.0 kg/m3

∆Hr = −1.15× 104 kJ/kmol T0 = 300K
CA0s = 4kmol/m3 Qs = 0MJ/h
CAs = 1.95 kmol/m3 Ts = 402K
Cp = 0.231 kJ kg−1K−1

substituted into Eq. (7.20), the exact ODE model to be identified using SINDy can be found to be

dCA

dt
= 5CA0 − 5CA − 8.46× 106e−

6013.95236949723
T C2

A (7.21a)

dT

dt
= 1500− 5T + 4.211688× 108e−

6013.95236949723
T C2

A + 4.3Q (7.21b)
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The objective is to build a SINDy model for the CSTR system of Eq. (7.20), ideally for the entire

state-space or at least a large region of the state-space around the desired operating point, which is

the unstable steady-state, (CAs , Ts) = (1.95 kmol/m3, 402K). The factors that most significantly

impact the quality of the SINDy model for this system were found to be the data generation and

the candidate library of basis functions considered for Θ(X,U), both of which are discussed in

detail over the next two subsections. To compare models quantitatively, for the sake of brevity,

rather than reporting every model obtained from each data generation method or candidate library

considered, in the rest of this section, the maximum absolute error in the Kelvin temperature will

often be reported because the errors in the temperature are larger in terms of absolute value and

intuitively understood.

Remark 7.1. Due to the explicit nature of SINDy models, once the ODE models are obtained

from SINDy, incorporating them into an MPC is generally straightforward. The challenge of

SINDy-based MPC, however, lies in the modeling rather than MPC implementation, as opposed

to entirely black-box approaches such as recurrent neural networks and other deep learning mod-

els, which can approximate practically any input/output data if provided with sufficient data and

tuned thoroughly, but can encounter computational and technical challenges when implemented in

closed-loop MPC. Hence, this section focuses solely on the modeling of the nonlinear CSTR, since

past works [155, 195] have already demonstrated the application of SINDy models in MPC with

open- and closed-loop simulation results for a diverse array of systems. The goal of this section is

to familiarize the reader with the intricacies of building SINDy models in a chemical engineering

paradigm.
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7.7.1 Data generation

For system identification, the data set used to identify the system is a crucial element. Hence,

the data generation must be carried out in a practical method while also providing sufficient dy-

namic information for an algorithm to capture. Therefore, all simulations of Eq. (7.20) were carried

out using an integration step size of hc = 10−4 h and sampled every ∆ = 0.01 h (36 seconds),

which is a reasonable sampling period for such a chemical process. The simulations were carried

out for a duration of tf = 1 h since most trajectories reached a steady-state within 1 h of simulation

duration.

Due to the various ways that one may generate or obtain data for this system, three types

of data generation were carried out, and each data set was then used to attempt to build SINDy

models. Representative trajectories for each data set are shown in Fig. 7.10. The types of data

generation and their advantages/disadvantages are summarized as follows:

1. Method: Open-loop step tests are carried out using numerous, random initial conditions and

input signals until a steady-state is reached.

• 1000 such trajectories were generated in this data set.

• Initial conditions were randomly selected with the following restrictions on the initial

states: CA ∈ [0.2, 3.7] kmol/m3 and T ∈ [327, 477] K

• Input signals were randomly generated with the following restrictions on the inputs:

CA0 ∈ [0.5, 7.5] kmol/m3 and Q ∈ [−500, 500] MJ/h

• This is a standard method of data generation within chemical engineering in simulations-

based applications as well as experimental practices. As an established method, data

288



generation via this method is easily conducted, a wide area of the state space can be

covered by exciting the input signals as desired, and a large amount of dynamic infor-

mation is present in the data set.

• Due to the operating region being the unstable steady-state, the trajectories, being in

open-loop, will settle at the stable steady-states. However, this was not found to deteri-

orate the performance, likely because the dynamics of the reactor itself are independent

of the region.

• As the states may achieve extreme values when the input signals are varied too widely

(such as temperatures as high as 1000 K or as low as 1 K for certain excessively

large/small values of Q), the best practice is to limit the range of input signals when

using this method of data generation. This is particularly important when using finite-

differences to estimate Ẋ , which is the only estimation method available in a practical

setting. It was found that when data generated indiscriminately including trajectories

that settle at 1000 K/1 K were included in the training data set, i.e., all 1000 trajecto-

ries were used in training, SINDy had difficulties identifying the correct model if the

derivatives were estimated with finite-differences. If the exact derivatives were pro-

vided (which would not be available in most chemical engineering applications), then

SINDy was able to identify the model correctly. Upon further analysis of the deriva-

tives at the regions of the fastest dynamics, it was found that the states changed very

abruptly within the sampling period of ∆ = 0.01 h, causing numerical instabilities in

the derivative estimation. Hence, providing the exact derivatives resolved the issue. As
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expected, the issue was also resolved if the data was sampled ten times as frequently,

i.e., with ∆ = 0.001 h. However, using all the 1000 trajectories is not necessary to

capture the dynamics of this system, as described next.

• When the data set was truncated to only retain trajectories that never exceeded a tem-

perature or 500 K or dropped below 300 K, i.e. T ∈ [300, 500] K ∀ t, in order to

only select trajectories close to the desired steady-state, 53 out of the initial 1000 tra-

jectories were retained. However, SINDy was able to identify the best model with

these 53 trajectories, producing a model with a maximum absolute error in the temper-

ature of only 0.5 K. A few representative open-loop simulations for the first-principles

model and this sparse-identified model are shown in Fig. 7.11, demonstrating close

agreement throughout the region of state-space. Hence, it can be concluded that 53

trajectories contain sufficient dynamic information to build a highly accurate SINDy

model, and there is no necessity to use all 1000 trajectories, which introduce faster and

more complex dynamics in certain regions, which eventually require a finer sampling

to be practically useful.

2. Method: Open-loop step tests are carried out with the system initiated from the desired

steady-state and excited using various input signals only until the desired level set, Ωρ̂, or

operating region is exited.

• 1000 such trajectories were generated in this data set.

• The initial condition was fixed to be the unstable steady-state, (CA, T ) = (CAs , Ts) =

(1.95 kmol/m3, 402K)
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• Input signals were randomly generated with the following restrictions on the inputs:

CA0 ∈ [0.5, 7.5] kmol/m3 and Q ∈ [−500, 500] MJ/h

• As data is generated only within the operating region of interest, an advantage is that

almost the entire region of the state-space that is of interest can be captured via a large

number of simulations.

• Due to the unstable nature of the steady-state, one disadvantage is that a very large

number of the 1000 trajectories in the data set are incomplete and too short to provide

sufficient dynamic information, especially for SINDy, which generally performs better

with longer trajectories rather than short bursts of trajectories. Out of the 1000 trajec-

tories, only 14 trajectories are able to be simulated until tf = 1 h. Since second-order

finite-differences are used for the gradient approximation in our work as well as due

to the internal mechanisms of the integrator used, at least 4 data points are required to

be able to use a trajectory for model identification. Only 381 of the 1000 trajectories

had at least 4 data points and could be used to build a SINDy model. However, the

data set of 381 trajectories did not contain enough dynamic information, producing a

SINDy model with a maximum temperature prediction error of 10.4 K. However, if

the size of the data set was increased to 2000 trajectories, 807 trajectories with at least

4 data points remained, which then produced a highly accurate SINDy model with a

maximum temperature prediction error of 0.6 K.

• State-space profiles for some open-loop simulations are shown in Fig. 7.12 for the first-

principles model and the identified SINDy model, showing close agreement through-
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out.

3. Method: Closed-loop simulations are carried out under a proportional-only controller with

the state initialized from various initial conditions.

• Two data sets were used to attempt to build a SINDy model using this method of data

generation, one data set with 121 trajectories, spanning an 11 × 11 grid for x0 in the

state-space, while the second data set consisted of 961 trajectories, covering a 31× 31

grid for x0 in the state-space.

• Initial conditions were selected within the grid, CA × T = [0.2, 3.7] kmol/m3 ×

[327, 477] K with each range uniformly spaced into 10 or 30 intervals with 11 or 31

points, respectively.

• Input signals were calculated using the equation for a proportional controller, Q =

−1000(T − Ts), where 1000 represents the controller gain, and CA0 was fixed at its

steady-state value of CA0s = 4kmol/m3.

• A purported advantage of this method of data generation is that, due to the presence

of the controller, the state can be driven to the desired unstable steady-state from any

initial condition, providing dynamic information for trajectories from any point in the

state-space up to the unstable steady-state.

• The models obtained using this data set could very accurately predict the derivatives

within the test set, i.e., the right-hand side of the model evaluates to the correct value

of the derivative of the test set trajectories. However, all the simulations diverged from

the steady-state after a short period at the initial stages of the simulation duration.
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This phenomenon was also observed in [77] with the glycolytic oscillator model and

attributed to the identification of wrong basis terms for some of the variables. In the

models obtained for Eq. (7.20) using SINDy with the data set generated using closed-

loop simulations, the heat input rate, Q, erroneously appeared with a relatively large

coefficient in the first ODE representing ĊA, which may be the cause of the divergence.

While further analyses may allow such data to be used for SINDy model identification,

based on our current results, this method of data generation was not found to produce

accurate SINDy models.

Based on the above analysis, the first method of data generation was found to be the optimal

method of data generation when using SINDy. Since the optimal results were obtained with limited

trajectories that were able to be integrated to tf and also stayed relatively close to the steady-state

of interest, the best method of data generation for this system, based on the above analysis, seems

to be conduct a modest number of step tests near the desired region. However, the second method

can also be used if a much larger data set is used and caution is taken to only use trajectories

with at least 4 data points when using a second-order finite-difference method for estimating the

time-derivative of the states. The use of closed-loop data to identify SINDy models was not found

to yield satisfactory results, and further analyses should be carried out in the future to assess the

viability of such data for SINDy modeling of chemical processes.
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Figure 7.10: Three types of data generation for the nonisothermal CSTR operating at an unstable
steady-state.
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Eq. (7.20) and the SINDy model obtained using type 1 data generation, respectively, for vari-
ous sets of inputs and initial conditions (marked as solid dots) x0 in the vicinity of the desired
operating point.
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7.7.2 Candidate library of basis functions

Since its inception, multiple studies have reported the central role of the candidate library, Θ,

in the SINDy algorithm [77, 114]. In [77], for example, a standard benchmark problem for system

identification, the glycolytic oscillator model, could only be partially identified, i.e., the dynamics

of only four out of the seven states could be correctly identified. The reason was attributed to the

presence of rational functions in the right-hand sides of the ODEs corresponding to the remaining

three states, which were not considered in the polynomial basis set used. Hence, choosing the

correct basis functions is critical to the success of SINDy. For the remainder of the section, the

data set used to study the effect of the candidate library is the data set generated using the first type

of data generation described in Section 7.7.1 (53 trajectories from open-loop step tests).

In the absence of any a priori knowledge, the nonisothermal CSTR of Eq. (7.20) is a par-

ticularly challenging system to obtain the correct basis for and, hence, model. This is primarily

due to the fact that, by design, SINDy can only regress the pre-multiplying coefficients for each

basis function, which appear linearly in the right-hand side of the ODE. The basis functions them-

selves must be selected and the Θ calculated before carrying out the regression step for identi-

fying the pre-multiplying coefficients by solving Eq. (7.8). Since the activation energy is gener-

ally unknown, the exponential term must be carefully selected. For the set of parameters chosen,

from Eq. (7.21), it can be observed that the numerator of the argument of the exponential term is

−6013.95236949723. Due to the extreme dissimilarity between e−
1
T and e−

6013.95236949723
T , using the

former exponential term as a basis function will not yield an accurate SINDy model. The dynamics

of the e−
6013.95236949723

T term cannot be captured by any linear multiple of e−
1
T . However, choosing
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large numbers over a wide range is also inadvisable since only a narrow range of the exponent can

yield an accurate model with a maximum absolute error in the temperature below 1 K as shown

in Fig. 7.13. While it may be possible to tune the exponent in this particular case by conducting a

fine search for the exponent over a wide range with shortly spaced intervals of approximately 10

units, this is generally intractable when the exponent is even larger in magnitude (increasing the

required search region) or if there are multiple reactions, in which case tuning each exponent term

using a multidimensional grid search at such a high resolution becomes prohibitively expensive.

Therefore, two approaches are proposed to overcome this challenge, both of which are shown to

yield accurate SINDy models.

Remark 7.2. This challenge has been overcome in some past studies by assuming that the acti-

vation energy is known a priori, and the exact term, e−
6013.95236949723

T , is included in the candidate

library, largely simplifying the modeling problem [e.g., 218, 223]. In other studies using SINDy

to model reaction networks, the objective was to identify the reactions rather than investigate any

temperature dependence [84]. Hence, the specific challenge of obtaining an appropriate basis for

SINDy to model nonisothermal reactors is considered here.

7.7.2.1 Non-dimensionalization of the temperature

The first approach we consider is non-dimensionalizing the temperature by scaling it by a

reference temperature, Tref. We consider, for simplicity and without loss of generality, Tref = Ts,

and define the new dimensionless temperature as T̄ = T/Ts. Hence, the ODE system of Eq. (7.20),
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after the appropriate substitutions, takes the form,

dCA

dt
=

F

V
(CA0 − CA)− k0e

γ
T̄ C2

A (7.22a)

dT̄

dt
=

F

V

(
T0

Ts

− T̄

)
+
−∆H

ρLCpTs

k0e
γ
T̄ C2

A +
103Q

ρLCpV Ts

(7.22b)

where γ = −E/RTs. For the set of process parameters and reference temperature chosen, γ =

−14.96. Due to the much smaller value of γ and the lower sensitivity of γ, it is possible to conduct

a fine search for a value of γ that produces an accurate SINDy model. The maximum absolute

errors in the variables for the validation set for γ ∈ [−20, 0] are shown in Fig. 7.14. A value of

γ = −15 yields the highly accurate model,

dCA

dt
= 5.051CA0 − 5.058CA − 8.8× 106e−

15
T̄ C2

A (7.23a)

dT̄

dt
= 3.768− 5.046T̄ + 1.09× 106e−

15
T̄ C2

A + 0.011Q (7.23b)

where every coefficient is within 5% of the true values. There are two further advantages of non-

dimensionalization in this case. Firstly, when multiple reactions are present, in many practical

cases, since the reference temperature is similar to the specific process temperatures, all the γ will

often be approximately of the same order of magnitude or within an order of magnitude difference

[e.g., 227]. Therefore, a “mean” or representative value of the γ values of all the reactions will

produce an accurate SINDy model, owing to the greatly reduced sensitivity of the basis functions to

γ. Secondly, even if the (nearly) exact value of γ = −15 is not found using the search methodology

described, simply using every integer value of γ ∈ [−20,−10] to create 11 basis functions also

yields an accurate (but dense) SINDy model with a maximum absolute error in the temperature of

299



0.4 K. In contrast, in the original variables, if multiple basis functions, for example, the set γ ∈

{−7000,−6000,−5000,−4000,−3000,−2000,−1000} is chosen to be in the candidate library,

the results are poor due to the large dissimilarities between successive basis functions as noted

previously. We reiterate that the goal of using SINDy in this work is not to capture the underlying

ODE but to use SINDy as a system identification method. Although the original system was nearly

reproduced when γ = −15 was correctly identified, this need not be the case to apply SINDy,

especially when the models will subsequently be used for model-based feedback control. Hence,

the “bruteforce” approach of using all 11 basis functions with γ ∈ [−20,−10] is considered a

satisfactory model as well. This latter approach may also handle multiple reactions more easily

since it is likely that the correct value of γ for each reaction is captured in the candidate library.

Remark 7.3. To apply non-dimensionalization to the system when applying SINDy, the only change

that must be made is that the temperature data must be scaled by Ts before providing the data set

to the SINDy algorithm. Since finite-differences are used to estimate the time-derivative, Ẋ , the

derivative estimates will scale accordingly once the data set itself is scaled.

7.7.2.2 Higher-order Taylor series approximation

A possibly more general approach that can handle any value of the activation energy or any

number of reactions is to express the exponential term using its Taylor series expansion such that

the activation energy appears as a pre-multiplier, which can then be regressed using SINDy. As

SINDy is a nonlinear method, any order of the Taylor series can be retained. If multiple reactions

are present, the pre-multiplier should account for all the reactions since the temperature variable is

independent of the activation energy, and all the approximated terms can be summed to yield one
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final pre-multiplying coefficient value for each term of the Taylor expansion.

Due to the length of the models involving Taylor expansion, only error metrics and discussions

are provided for this method. When the candidate library includes up to 5th-order terms of the

Taylor expansion, i.e., (T − 402)5, an accurate SINDy model with a maximum absolute error

in the temperature of 0.4 K is obtained, with open-loop test results nearly identical to Fig. 7.11.

When the sparse-identified model is compared to the original ODE of Eq. (7.21) with parameters

substituted in and the exponential term replaced by 5th-order Taylor series, it is found that the

SINDy model neglects terms above third-order, which are of the order of 10−8 and 10−6 for CA

and T , respectively. As for terms up to third-order, the SINDy model correctly identifies all terms

for CA and identifies the terms in T correctly as well, but also identifies a few erroneous terms such

as linear CA and CA0 terms. However, the contribution of the extra terms are extremely minor and

do not affect the accuracy, as seen in the extremely low maximum absolute error.

Remark 7.4. While this method may be reminiscent of linearization of a nonlinear ODE, there

are two key differences. Firstly, a nonlinear higher-order Taylor expansion is used to approximate

the exponential function rather than a linear approximation. This greatly affects the region of

accurate model predictions compared to a linearized model. When the open-loop tests shown in

Fig. 7.12 were repeated with the linear state-space model obtained for this system in [62] using

N4SID, all trajectories were found to diverge, while Fig. 7.12 demonstrates the high accuracy of

the nonlinear SINDy model. Secondly, only the exponential term in the Arrhenius relationship is

approximated using the Taylor expansion, but the remaining terms in the ODE model and candi-

date library remain in their original, nonlinear forms. Hence, all other nonlinear terms can still be
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identified exactly without any approximation, while model linearization includes linearizing even

such polynomial and trigonometric terms.

7.7.3 Summary of data generation and candidate library guidelines and fi-

nal steps to build the SINDy model

Based on extensive results from using the various types of data generation and basis functions

considered, the following points can be summarized:

1. Open-loop step tests were found to be the optimal method of data generation for obtaining a

SINDy model for the system studied, although short bursts within the desired stability region

can yield a good model if a sufficient number of trajectories with at least 4 data points are

obtained.

2. Data from closed-loop simulations did not yield an accurate model for the system studied.

3. A sampling period of ∆ = 0.01 h or 36 s is sufficient for obtaining an accurate SINDy model

as long as enough dynamic information is captured via open-loop tests with a large number

of input signals.

4. Due to the sensitivity of the argument of the exponential term, γ, the exponential basis term

should be selected carefully.

• Specifically, if a priori knowledge of the reaction (such as an estimate of the activation

energy) is available, the system may be modeled directly without any modifications

as long as the correct values of the activation energy are used to build the candidate
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library.

• In the event that the no a priori knowledge is available, the system should be either

non-dimensionalized with respect to temperature or a higher-order Taylor series used

to approximate the exponential terms.

5. Non-dimensionalization of the temperature has potential to reproduce the exact system.

6. Using Taylor series approximations of the exponential term can yield highly accurate SINDy

models, but their performance is expected to deteriorate when sufficiently far from the point

of expansion. However, since a nonlinear, higher-order approximation is used, the region

where the model performs accurately will be significantly larger than any model obtained

from a linearization of the original system, and likely large enough for any practical appli-

cation.

Once the data set and method of handling the exponential term are finalized based on the

aforementioned guidelines, the SINDy model is obtained by using the PySINDy package in Python

[209, 210]. Specifically, the data set is loaded into Python and split into an 80%/10%/10% train-

ing/validation/test set. The time-derivative of the states, Ẋ , is estimated using second-order central

finite differences (except the first and last points, which use second-order forward and backward

finite differences, respectively). The optimizer is chosen to be the sequential thresholded least

squares described in [77], with λ tuned via a coarse search to a value of 5.0, although similar

results were obtained for the SR3 optimizer as well. The candidate library, for both the non-

dimensionalization and Taylor series approaches, was chosen to include up to second-order poly-

nomial terms for the concentration CA, the bias term, and linear input terms. The remaining terms
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for the non-dimensionalization method included a linear temperature term, the exponential term

with γ = −15, and interaction terms between the polynomial CA terms and the exponential term.

Specifically, the candidate library for the non-dimensionalization approach takes the following

form:

Θ(CA, T̄ , CA0, Q) = [1 CA C2
A T̄ CA0 Q e−

15
T̄ CAe

− 15
T̄ C2

Ae
− 15

T̄ ] (7.24)

For the Taylor series approach, the only change is that the exponential term is replaced with (T −

402), (T − 402)2, . . . , (T − 402)5. Hence, the last three functions and the T̄ function in Eq. (7.24)

are replaced by 15 terms (five exponential approximation terms and ten interaction terms with CA),

producing a library of 20 functions. Once all of the above selections are made, the SINDy model

can be obtained by calling the model fitting method in PySINDy. The SINDy model of Eq. (7.23),

for example, is obtained by using the first type of data generation (53 open-loop step tests) and the

candidate library of Eq. (7.24).

7.8 Future directions

7.8.1 Neural network basis functions

For highly complex systems, it may be possible that the initially chosen nonlinear basis func-

tions do not produce adequate results, but no prior knowledge is available to intelligently expand

the function library. Moreover, adding random, additional nonlinear candidate functions may fail

to improve the SINDy model performance if the functions added are completely dissimilar to the

relevant functions that are required to model the system. An example is the challenge of the expo-
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nential basis term encountered and discussed in Section 7.7.2 of the nonisothermal CSTR example.

In such cases, one option is to add more powerful and general function approximators such as feed-

forward neural networks, which are well-known for their universal approximation property, which

dictates that they can approximate any static nonlinear function if they are designed with enough

neurons and at least one sigmoidal hidden layer [60, 61]. Such hybrid models consisting of partly

first-principles/ODE models and partly data-based black-box models are increasingly being used

[238–243]. Specifically, hybrid models involving ODE models and FNNs have been successfully

applied to state estimation problems in the recent work of [235]. Therefore, a similar approach

may be proposed for SINDy, where the right-hand side of the SINDy model of Eq. (7.2) may be

modified to

˙̂x(t) = f̂(x̂) + ĝ(x̂)u+ FNN(x, u) (7.25)

where FNN denotes a feedforward neural network model that can capture any nonlinearities not

modeled by the function library. One advantage of such a model, as opposed to a purely FNN

model for the right-hand side of Eq. (7.25), may include reduced computational time due to the

requirement of simpler models with fewer parameters, since only a fraction of the model must be

captured by an FNN. Moreover, neural network training generally requires large volumes of data

with wide variation and coverage of the operating region, which may be difficult to obtain in an

experimental or plant setting. In contrast, when only a fraction of the overall model requires an

FNN to be modeled, the data acquisition may be eased as well.

Once a model of the form of Eq. (7.25) is identified, if possible, converting the FNN part of

the SINDy model back to symbolic functions will greatly improve the model inference time as
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explicit nonlinearities are computationally desirable. Such advances have already been initiated in

recent papers on modeling biological systems [244].

7.8.2 Real-time model updates

In the presence of disturbances or changes in process behavior due to, for example, catalyst

deactivation or feed stream disruptions, the process model in a model-based controller such as

MPC must be updated in real-time to reflect the changes. Much of the research in model re-

identification is concentrated on the mathematical details of the algorithms used for the model

update, such as recursive least-squares or recursive singular value decomposition [245–247] rather

than developing a rigorous framework for the triggering of the model re-identification procedure.

Research on the triggering procedure include error-triggered as well as event-triggered model re-

identification [67, 227, 248], but mostly use first-principles process models. In the context of

SINDy, [117] proposed a model re-identification procedure, where the SINDy model coefficients

could be updated or terms could be added or deleted as required. The trigger for re-identification

was a significant divergence between the local Lyapunov exponent and the prediction horizon

estimate (although the definition of “prediction horizon” in [117] differs from its usage in this

manuscript). However, the results of [117] were only in the context of modeling. Hence, a future

direction for research in sparse identification would be to consider real-time updates to a data-based

SINDy model based on the error- or event-triggering mechanism of [67].
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7.9 Conclusions

In this paper, we have provided an overview of several recent advancements in the sparse

identification for nonlinear dynamics (SINDy) method to overcome the challenges of modeling

and controlling two-time-scale systems and noisy data. The methods considered included combin-

ing SINDy with nonlinear principal component analysis, feedforward neural networks, subsam-

pling, co-teaching, and ensemble learning. The novel methods were described in detail, and best

practices, tuning guidelines, as well as common pitfalls to avoid, for their successful application

in process systems engineering were provided for control practitioners. To demonstrate their ef-

fectiveness, results from applying the proposed algorithms to chemical processes were provided.

Finally, a number of future research directions were outlined.
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Chapter 8

Conclusion

This dissertation focused on the application of sparse identification for nonlinear dynamics

(SINDy) for modeling nonlinear chemical processes and subsequently embedding the dynamic

models developed into model-based control techniques such as model predictive control (MPC).

Challenges specifically encountered in chemical engineering such as time-scale multiplicities,

noisy sensor data, lack of first-principle models, and process disturbances when using SINDy

were addressed. First, a reduced-order modeling framework to build well-conditioned ordinary

differential equation (ODE) models for two-time-scale systems using SINDy was proposed and in-

corporated into Lyapunov-based MPC (LMPC), followed by a closed-loop stability analysis of the

system under the proposed SINDy-based LMPC. Next, to handle sensor noise that corrupts most

measurement data in process systems and can cause numerical instabilities when differentiated

naively without accounting for the noise, several methods from the recent literature are discussed,

investigated, and proposed along with a novel ensemble-based SINDy algorithm. Thirdly. to ac-

count for real-time process shifts due to disturbances such as catalyst deactivation or equipment
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fouling, which may be reflected via changes in the model terms or structure, an error detector was

designed and used in conjunction with economic MPC to update the initially identified SINDy

models online, based on limited new data following the introduction of the process disturbance.

Finally, the various advancements to the SINDy algorithm developed over the course of the dis-

sertation are summarized along with a chemical process example providing detailed insights and

guidance for process modeling practitioners, based on the challenges, successes, and limitations

encountered throughout the dissertation.

In Chapter 2, reduced-order models were developed for nonlinear two-time-scale systems

using measurement data. Nonlinear principal component analysis, a technique to extract nonlinear

relationships between variables, was combined with sparse identification, an algorithm to recon-

struct the underlying ODEs governing the system, to build a nonlinear model that can be used to

predict the full state of the original system. The effectiveness of this method was demonstrated

using two reactor-based examples and comparing the results with the original system and a purely

sparse identified system. In both examples, the results were in close agreement with the original

system and also the purely sparse identified system. It was observed, however, that the accuracy

of the sparse identification method for the full state was strongly linked to the sampling period

at which the original data was sampled and also, in some cases, required a very specific degree

of sparsity in the algorithm. Furthermore, the sparse identified stiff ODEs required a very short

integration time step of 10−6, while the NN model in NLPCA-SI could predict the fast state (after

a short transient) to at least a similar degree of accuracy without any integration. In the future,

we will focus on the designs of controllers for nonlinear two-time-scale systems using data-based

reduced-order models. The predicted states using NLPCA-SI can be used as the process model in
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model-based control methods such as MPC.

Chapter 3 focused on the design of a Lyapunov-based MPC for a class of nonlinear sin-

gularly perturbed systems using only measurement data from processes. In singularly perturbed

systems, due to the presence of time-scale multiplicities, a direct application of MPC without

accounting for the evolution of the states in different time scales can lead to closed-loop perfor-

mance deterioration or even closed-loop instability due to controller ill-conditioning. Hence, we

proposed a method to first separate the slow and fast variables in the system and then design the

MPC based on the reduced-order slow subsystem. Furthermore, due to the lack of a first-principles

model in most practical applications, our method used only sampled experimental/industrial sim-

ulation data to reconstruct the reduced slow subsystem via a machine-learning method known as

sparse identification. Subsequently, the theory was developed by deriving sufficient conditions for

closed-loop stability under sample-and-hold implementation. Finally, the proposed LMPC design

was applied to a non-isothermal reactor that exhibited time-scale separation. It was observed that

the controllers yielded nearly identical performance for the same controller parameters. However,

the LMPC based on the sparse-identified slow subsystem could implement superior controller pa-

rameters, such as a longer prediction horizon, due to its reduced complexity and, hence, lower

computational time. As a result, the SI based LMPC outperformed the LMPC utilizing the first-

principles model when the superior parameters were used for the former controller, demonstrating

the practicality and benefits of designing MPC by reconstructing the reduced slow subsystem from

measurement data.

In Chapter 4, a novel algorithm was devised to build dynamical models that capture nonlinear

process dynamics given only highly noisy sensor data. The noise was assumed to follow a white
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Gaussian distribution with different variances. A predator-prey model and a chemical process were

used to demonstrate the performance and applicability of the new algorithm. It was shown that the

basic sparse identification algorithm was inadequate in identifying the model in the presence of

high noise in the data, particularly above a variance of 0.01 for normalized data. However, when

the subsampling technique was introduced, without co-teaching, by randomly subsampling to leave

out the more noisy data in some iterations, it could identify the dynamics satisfactorily up to a noise

variance of 0.04. Finally, the proposed algorithm combining subsampling with co-teaching, where

the original data is subsampled but also mixed with some noise-free data from first-principles

model simulations was used. Using the third algorithm, the performance improved slightly in the

presence of noise with variance up to 0.04. However, at the highest noise level studied, which was

characterized by a variance of 0.09, both the base case and the subsampling without co-teaching

failed and could not identify the models using the extremely noisy data. The subsampling with co-

teaching could accurately identify the models in this case, even when only 20% of the subsamples

consisted of noise-free data generated from first-principles model simulations. The performance

was evaluated based on plots of the outputs as well as the mean squared error (MSE) on the testing

data sets. The results were qualitatively similar in both systems investigated, with more accurate

models predicting the testing data set more accurately and yielding lower MSE values.

In Chapter 5, sparse identification was combined with ensemble learning to model and con-

trol a nonlinear chemical process system using only noisy data from sensor measurements. A

high-fidelity chemical process simulator, Aspen Plus Dynamics, was used to simulate a chemical

reactor with multiple reactions, which was used for data generation as well as open- and closed-

loop control demonstrations. In open-loop, it was found that the dropout-SINDy model could
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accurately predict the steady-state of the system under an arbitrary input starting from any initial

condition within the stability region. After confirming this, a dropout-SINDy-based LMPC was

applied in closed-loop control to the reactor in Aspen Plus Dynamics. The LMPC depicted supe-

rior performance as compared to the open-loop performance and a P-controller in terms of faster

convergence.

Chapter 6 introduces a novel approach for on-line updates of nonlinear ODE models obtained

using sparse identification to embed into a model predictive controller (MPC) for nonlinear pro-

cess systems. The proposed methodology incorporates an error-triggering mechanism through a

moving horizon error detector, which evaluates the relative prediction error within a specified hori-

zon. When the prediction error surpasses a predefined threshold, the error-triggering mechanism is

activated and the most recent yet sufficient input/output data is used to update specific coefficients

of the SINDy model using an efficient algorithm. The results showcase the capability of the pro-

posed approach to improve state predictions crucial for MPC in the presence of plant variations.

A chemical process example under the framework of Lyapunov-based empirical model predictive

control is employed to illustrate the effectiveness and implementation of real-time updates for the

SINDy models. It was demonstrated that a small amount of real-time data could accurately update

the SINDy model to adjust to the disturbances, greatly reducing thereby the model prediction error

when monitoring the process via the moving horizon error detector. A slight improvement of the

economic benefits was also observed when the SINDy model in the LEMPC was updated in real-

time, compared to the SINDy-based LEMPC without model updates, although the improvement

was limited by the catalyst deactivation and other compounding factors.

In Chapter 7, we have provided an overview of several recent advancements in the sparse
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identification for nonlinear dynamics (SINDy) method to overcome the challenges of modeling

and controlling two-time-scale systems and noisy data. The methods considered included combin-

ing SINDy with nonlinear principal component analysis, feedforward neural networks, subsam-

pling, co-teaching, and ensemble learning. The novel methods were described in detail, and best

practices, tuning guidelines, as well as common pitfalls to avoid, for their successful application

in process systems engineering were provided for control practitioners. To demonstrate their ef-

fectiveness, results from applying the proposed algorithms to chemical processes were provided.

Finally, a number of future research directions were outlined.
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