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ARTICLE

Evolutionary modeling suggests that addictions
may be driven by competition-induced microbiome
dysbiosis
Ohad Lewin-Epstein 1,2,3✉, Yanabah Jaques4, Marcus W. Feldman5, Daniela Kaufer4,6 & Lilach Hadany 1,7✉

Recent studies revealed mechanisms by which the microbiome affects its host’s brain,

behavior and wellbeing, and that dysbiosis – persistent microbiome-imbalance – is associated

with the onset and progress of various chronic diseases, including addictive behaviors. Yet,

understanding of the ecological and evolutionary processes that shape the host-microbiome

ecosystem and affect the host state, is still limited. Here we propose that competition

dynamics within the microbiome, associated with host-microbiome mutual regulation, may

promote dysbiosis and aggravate addictive behaviors. We construct a mathematical frame-

work, modeling the dynamics of the host-microbiome ecosystem in response to alterations.

We find that when this ecosystem is exposed to substantial perturbations, the microbiome

may shift towards a composition that reinforces the new host state. Such a positive feedback

loop augments post-perturbation imbalances, hindering attempts to return to the initial

equilibrium, promoting relapse episodes and prolonging addictions. We show that the initial

microbiome composition is a key factor: a diverse microbiome enhances the ecosystem’s

resilience, whereas lower microbiome diversity is more prone to lead to dysbiosis, exacer-

bating addictions. This framework provides evolutionary and ecological perspectives on host-

microbiome interactions and their implications for host behavior and health, while offering

verifiable predictions with potential relevance to clinical treatments.
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Addiction is a brain disease where a victim experiences an
uncontrollable motivation to engage in a rewarding
behavior despite the behavior’s harmful consequences1.

Addiction encompasses a range of substance abuse disorders
including various drugs, alcohol and cigarettes, as well as exces-
sive food consumption. Such addictive behaviors are among the
primary causes of preventable mortality. They are responsible for
the deaths of millions of people worldwide each year, while the
cost to society is estimated at hundreds of billions dollars. Recent
years have witnessed a sharp rise in drug addictions, opioids in
particular, with hundreds of thousands of casualties annually
from drug overdose worldwide, and 100,000 in the US alone2–8.

Recent studies have found various associations between host
addictive behaviors, and the composition and functioning of the
microbiome, the collection of microorganisms residing in the
host9–13. These studies accord with a vast body of microbiome
research that has revealed pathways by which the microbiome can
affect its host’s health and behavior, and others through which the
host shapes the microbiome community. Despite these findings,
understanding of the ecological and evolutionary processes that
shape the host-microbiome ecosystem, and the extent of the
microbiome involvement in host chronic diseases and addictive
behaviors is still limited.

We hypothesize that microbial strains that are part of the host
microbiome may have evolved to affect the host in a way that
improves the status of these strains within the microbiome
community. This may lead to a community of microbes that
affect the host in different directions. Host addictive behavior
alters the environmental conditions of its resident microbes. Even
if the addiction is largely deleterious to the microbes (e.g., via
toxins), for some microbes it may be less deleterious than to
others. This generates a shift in the microbial selection regime,
and perturbs the microbiome composition14–18. Strains that
proliferate in the new conditions might benefit from the host
continuing its new behavior. Thus, the microbiome may play a
role in enhancing and maintaining addictive behaviors.

Addiction is characterized by both negative and positive
emotional states attributable, at different stages, to alterations in
activity of neurotransmitters: a binge/intoxication stage in which
the mesolimbic dopamine system, a key part in the reward cir-
cuitry, produces reinforcing actions; a withdrawal stage that is
associated with alterations in neurotransmission in the amygdala
that generate emotional stress; a preoccupation/anticipation stage
in which dysregulation of prefrontal cortex and insula projections
interrupts control over incentive salience and therefore goal-
directed behavior.

The microbiome has been shown to affect the host brain in
multiple ways, for example by modulation of neurotransmitters
and interaction with the central nervous system via the gut-brain
axis19–22. Through this modulation, the microbiome can influ-
ence neural activities that are involved in brain reward and
withdrawal circuitry by generating negative and positive feedback
loops, thus promoting addictive behaviors. For example, neuro-
transmitters crucial to the functioning of these circuits, such as
dopamine, GABA, and serotonin were found to be produced or
regulated by the gut microbiome23–27. Several studies have shown
that gut microbes can synthesize phenylalanine and metabolize L-
dopa, both dopamine precursors, and hence they can regulate
dopamine levels28,29. These processes facilitate microbial path-
ways that can affect reward circuitry in the brain, for example via
dopamine 1 receptors (D1R), which mediate reinforcement and
reward, and via dopamine 2 receptors (D2R), which are asso-
ciated with aversion and avoidance30,31. Numerous other
mechanisms underlying the microbiome’s impact on host brain
and behavior were found, including microbiome-derived short-
chain fatty acids32–34 and tryptophan metabolism, particularly its

role in serotonin synthesis35–38. Altogether, this evidence suggests
that the microbiome has the potential to affect host states
and behaviors through induction of positive and negative
reinforcement.

On the other hand, consumption of various addictive sub-
stances, including consumption of opioids39,40, alcohol14,15,
smoking16,41,42 as well as certain diets43,44, has been linked to
alterations in microbiome composition. Every such microbiome
alteration involves a decrease in the frequency of some microbes,
and an increase in the frequency of others. From the perspective
of the latter, the host behavior causing the alteration is a beneficial
one. We suggest that such host-microbiome interactions,
including the host regulating the microbiome composition, and
the microbiome modulating the host health and behavior, can
form feedback loops that result in major alterations to the host-
microbiome ecosystem, inducing and/or aggravating addictive
behaviors. Evidence for intricate host-microbiome interactions
during addictions, and for their potential role in addiction
aggravation, has been found in cases of alcohol consumption and
opioid use.

Alcohol consumption has been shown to be associated with
major alterations in the gut microbiome in many cases, in both
humans and rodents. These alterations include decreased levels of
anti-inflammatory bacteria such as Faecalibacterium prausnitzii
and Bifidobacterium, increase of pro-inflammatory bacteria like
Proteobacteria species, overall reduction in the microbial
diversity, increased intestinal permeability, and the release of
such inflammatory factors as bacterial peptidoglycans and
lipopolysaccharide14,24,45,46. Furthermore, it has been shown that
such alcohol-induced microbiome alterations significantly corre-
late with increased striatal D1R expression and reduced striatal
D2R expression24. It has also been shown that alcoholic patients
that did not undergo substantial microbiome disturbances,
showed less severe levels of depression, anxiety and craving, and
overall experienced milder withdrawal, compared to patients with
concurrent microbial changes47–49. It is important to note that
major alcohol-induced microbiome disturbances were exhibited
in many but not all patients without a clear explanation for these
occurrences. This may suggest that different microbiome com-
positions, or even different host-microbiome eco-systems may
lead to different addiction and relapse patterns and severity levels.

Opioid addiction is another scenario where the microbiome
has been demonstrated to be involved in aggravating addictions.
Studies have shown that the microbiome mediates morphine
tolerance in mice, promoting addiction. These studies showed
that morphine treatment induces microbiome dysbiosis, with
selective depletion in Bifidobacteria and Lactobacillaeae, expan-
sion of Gram-positive pathogenic and reduction in bile-
deconjugating bacterial strains11,50. Furthermore, it was shown
that such morphine-induced microbiome dysbiosis leads to
impaired gut epithelia, promoting systemic bacterial translocation
and inflammation. The inflammation triggers the induction of
proinflammatory cytokines which drive morphine tolerance.
These cytokines also aggravate the dysbiosis, hamper the gut
integrity, and boost bacterial translocation, thus exacerbating
inflammation and reinforcing morphine tolerance11. Another
study showed that depletion of the gut microbiota resulted in a
marked change in behavioral responses to cocaine, causing
enhanced sensitivity to its rewarding and sensitizing properties51.

Research on microbiome and addictive behaviors is on the rise,
yet ecological and evolutionary perspectives of the host-
microbiome ecosystem, and their role in addictions, are still
missing. Studies have shown that interactions within microbial
communities play a prominent role in their functioning and their
interactions with the environment, with implications for host
health52–56. While changes in the microbiome community have
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been observed in various addiction studies11,14,15,39,41, the impact
of within-microbiome interactions on host addiction is largely
unknown. Previous models studied interactions between micro-
bial strains within the microbiome53,57,58 and also host-microbe
interactions59–62.

Here we combine these two approaches into a framework that
models the eco-system of a host, whose wellbeing and behavior
shape the microbiome composition, while the microbiome
mediates alterations of the host state and behavior. Using this
model we analyze several aspects of addictive behavior, focusing
on the potential effects of the microbiome on addiction initiation
and withdrawal. We show that within-microbiome competition
may drive the evolution of microbial feedback on host behavior in
a way that improves the microbe’s competitive state but may also
exacerbate addictive behaviors. Our model also suggests that
microbiome richness and functional diversity are key factors
affecting the likelihood of reaching dysbiosis. We find that
reduced microbiome richness and diversity lead to a less resilient
host-microbiome ecosystem, which is more likely to destabilize
and reach dysbiosis, hence aggravating and prolonging the pro-
cess of behavioral withdrawal and increasing the frequency of
relapse episodes.

Results
We develop a three-component framework for modeling host-
microbiome interactions, and their impact on host behavior. First,
we model the host behavior as a continuous trait in space. Second,
the host contains N microbial strains, each characterized by
features that determine its fitness as a function of the host
behavior. As the host changes its behavior, the fitness of the
different microbial strains also change. Third, we consider the
microbiome’s impact on host behavior. We model microbial
ability to secrete compounds that affect functions of the host
reward and withdrawal circuitry, generating either positive or
negative feedbacks (e.g., reward or aversion) that mediate host
behavior (see Methods for model description).

Evolution of microbial feedback to host behavior. We first
examine the evolution of a microbial strain that can affect its
host’s behavior, by inducing positive or negative feedback,
according to the strain’s fitness. If the population of that strain is
growing, it secretes compounds that are translated as positive
feedback in the host, and if the population is declining, it secretes
compounds that are translated as negative feedback in the host.
For this purpose, we model the growth dynamics of two microbial
strains that reside in a host and compete over resources: one
strain affects its host’s behavior, and the second does not. We
then extend the model to account for resource-competition
dynamics among numerous microbial strains that can affect host
behavior and investigate host-microbiome interactions, focusing
the analysis on host addictive behavior (see Methods).

We find that a microbe that provides feedback to host behavior
may be selectively favored over a wide parameter range, including
when it suffers a cost for producing this feedback. Such microbial
effects would be favored when the additional resources the
microbe gains from the altered host behavior, either directly or
through the competition with other strains, compensate for the
costs required to produce the effects. Moreover, once the affecting
strain manages to draw its host towards a behavior that is more
beneficial to that strain, its proportion in the microbiome rises
and so does its ability to continue affecting the host, further
inducing the host to continue the new behavior (Fig. 1).

Host-microbiome interactions may exacerbate addictive beha-
viors. We employ this framework to study the potential effect of

the microbiome’s behavioral feedback on host addictions.
Expanding our initial model, we consider a microbiome com-
prising N microbial strains, with features modeled as 2D-
coordinates in a unit-sphere. We chose two dimensions for
convenience of presentation, and later investigate the impact of
varying this. We assume that the microbes compete with each
other for resources from the host, and that each microbial strain
has the potential to affect its host’s behavior (Fig. 2a). In each
simulation we randomly assign to each strain its coordinates
(uniformly across the unit-sphere) and its effect on the host
(denoted by di for strain i; sampled from a distribution with mean
E d½ �; see Methods).

We model a simple host behavioral pattern, consisting of three
stages. First, the host begins at a certain equilibrium. Second, the
host gradually changes its behavior until it reaches some peak
behavior level (0<R<1), where it stays for a period. Third, the host
gradually moves back towards its initial behavior. This behavioral
pattern serves as a baseline to which we compare the impact of
the microbiome. Its simplicity enables a focused analysis on how
host-microbiome interactions can alter host behavior, giving rise
to addictive- and withdrawal-like behaviors. We demonstrate
here how host-microbiome co-regulation can impact the host
reward circuitry, and can serve as another factor exacerbating
addictions, in addition to other well-studied factors63–65. We thus
term the period of the initial change in behavior Addiction, and
the period of the reverse behavior as Withdrawal. We examine a
behavioral pattern that follows a path from the center of the space
(the initial equilibrium) towards the boundary. Since the
microbial features are randomly chosen within the space, without
losing generality we set the domain of the host behavior to be the
[0,1] segment along the x-axis. This enables the host behavior-
coordinate to measure the severity of the behavioral-alteration,
namely the addiction, or the degree of consumption of an
addictive substance, and its effect on the microbiome.

We find that intra-microbiome competition, combined with
microbial effects on host behavior, can lead to either acceleration
or deceleration of the addiction process, while exacerbating the
withdrawal phase under a wide range of conditions. We assume
that before the addiction begins, the host maintains a rich and
diverse microbiome. Thus, when the host initiates a change in its
behavior, equal numbers of microbial strains are expected to
favor or disfavor the behavioral change. However, as the change
in the host behavior continues, microbial strains that are favored
by the altered conditions increase in proportion, and their
feedback effect becomes stronger, inducing the host to continue
in its trajectory. Accordingly, we find that the microbiome’s effect
on host behavior can lead both to acceleration and deceleration of
the addiction, depending on the distribution of microbial features
and the magnitudes of their effects. In contrast, we find that the
microbiome behavioral effect decelerates the withdrawal stage in
most cases. This is because during the addiction the microbiome
shifts towards a less diverse community, made up of the strains
that proliferate under the new host behavior. Thus, when the
withdrawal stage is initiated by the host, a considerable
proportion of the microbiome resists the behavioral change,
decelerating the withdrawal across a very wide range of
conditions (Fig. 2b, c). As in many models of complex systems,
this kind of host-microbiome interaction can generate a positive
feedback loop that drives the system out of balance, and in severe
cases it crosses a tipping point66,67.

The effect of the microbiome richness on addictive behaviors.
In order to study the effects of microbiome richness on the
addiction and withdrawal processes, we examine a wide range of
numbers of microbial strains in the system, from 10 to 1000.
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The characteristics of each microbial strain are represented by two
parameters, chosen at random: first, its ability to affect the host
behavior; second, the strain’s change in proliferation resulting from
the host behavior. Hence, each strain in our model can represent an

arbitrary taxonomic classification, from different phyla (~10 in the
human microbiome68) to different species (up to 1000 in the
human microbiome69,70), or more generally, classification into units
that share specific attributes, regardless of the phylogeny. To track

Fig. 1 A microbe’s effect on its host’s state may be beneficial when it provides an advantage over a competitor that outweighs the cost of producing
that effect. a Model Illustration. We model competition between two microbial strains for host resources, which are derived from the host behavior. Host
behavior is modeled as a random walk along the [0,1] interval, starting at 0.5. The microbial strains are represented by coordinates on that same segment,
while the distance between their coordinates and the behavior coordinate represents the fitness of each strain under that host behavior (see Methods).
One of the two microbial strains (blue) has the potential to affect its host’s behavior: it secretes positive feedback when proliferating, inducing the host to
continue its behavioral trend, and secretes negative feedback when declining, inducing the host to reverse its behavioral trend. These secretions are
proportional to the strain’s abundance (see Methods). b Heatmaps presenting the proportion of the strain that affects its host, after 100,000 time points,
as a function of the effect’s magnitude and the cost of producing the effect, for two different intra-strain competition regimes (upper panel: s ¼ 0:01;
bottom panel: s ¼ 0:1). The vertical dashed lines represent the maximal advantage that the affecting strain can gain from the host behavior, relative to its
competitor (0.1 in these simulations); thus it is not expected to succeed when the cost is greater (see Methods). Each pixel represents the average result of
500 simulations. c Time series examples showing the host behavior as function of time over 100,000 time points; s ¼ 0:1 and the cost of effect production
is 0.09. In panels (b) and (c) the coordinates of the affecting strain and its non-affecting competitor were set to 0 and 1 respectively. The line at 0.5 is the
starting position of the behavior. See Methods for a detailed description of the model.
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not only the overall duration of these processes but also the
quantitative changes in behavior, we denote the integral of the
behavior level over time for each phase by ϕ Addictionð Þ and
ϕ Withdrawalð Þ, (Fig. 3a), and monitor them. We find that micro-
bial richness has an effect on the withdrawal stage: withdrawal
decelerates with decreasing microbiome richness, and with
increasing magnitude of the microbiome effect. With respect to the
addiction process, the effect of microbiome richness Nð Þ depends
also on the mean magnitude of the microbiome effect (E d½ �; see
Fig. 3b–d). In cases of very high microbial richness and strong
microbial effects, the microbiome may actually hasten both addic-
tion and withdrawal (upper rows of Fig. 3c, d).

An essential contributor to the addiction-aggravation dynamics
is the competition between the microbial strains over host
resources. Without competition, the strains will grow at rates that
depend on the host state, but will eventually reach the same

carrying capacity abundance, regardless of the host state. Hence,
host-microbiome feedback would not form. The competition is
represented in our model by keeping the microbial population at
carrying capacity, assuming limited host-resources (see Methods).
Thus, even if a certain strain encounters somewhat stressful
conditions, it may still propagate in the population, if these
conditions are more stressful for the rest of the community. On
top of these resource-competition dynamics, community diversity
plays a critical role in shaping the host-microbiome interactions.
Diversity is represented by the multiple niches that the bacteria
can occupy, in the context of their favored conditions in terms of
host status. A less diverse microbiome is more prone to be tilted
towards a new equilibrium, from which it is harder to return to
the initial state. When the microbiome is more diverse, changes
are easier; for any change in host behavior a substantial number
of strains benefit, thus reinforcing the host’s behavioral trajectory.

Fig. 2 Microbiome effect on host behavior may considerably decelerate the withdrawal stage. a Model illustration. The host behavior is represented by
coordinates in the 2D unit sphere (star). Microbial strains (colored dots) are characterized by features, represented as coordinates in that sphere. The host
contribution to the growth of each strain is a function of the distance between the host behavior and the strain’s features (see Methods). Thus, the
microbial coordinates represent the access to host-derived resources, as a function of the host behavior. The illustration demonstrates how a perturbation
in the host behavior (movement of the star) produces a change in the contribution of the host to each microbial strain, which affects the microbiome
composition. The color and size of each dot represents the strain’s feature-distance from the perturbed host behavior (bluer is closer) and the strain’s
proportion within the microbiome, respectively. b, c Simulation examples. Upper panels show a collection of simulation results: the change in behavior over
time without (dashed black) and with microbiome effects (red; 50 runs in each panel), for different mean microbiome effect magnitudes E d½ � ¼ 1; 10ð Þ. The
bold red curve represents a randomly selected simulation run, for which the microbiome composition over time is plotted in the bottom panels. Each stripe
(yellow-blue scale) represents a microbial strain, while the width of the stripe represents the temporal proportion of the strain within the microbiome. As in
panel (a), the color of each stripe represents the strain’s feature-distance from the perturbed host’s behavior, which is the basis for the fitness evaluation.
The number of strains Nð Þ is set to 50.
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Fig. 3 Low richness of the host microbiome may affect the addiction process and lead to substantial aggravation of the withdrawal stage. a Illustration
of a host-behavior time series. The colored markings present the integral of the behavior over time, for the addiction process (ϕ(Addiction); light red) and
withdrawal process (ϕ(Withdrawal); light green). For the addiction process we consider the time from the addiction initiation until the withdrawal initiation,
while for the withdrawal we consider the time from the withdrawal initiation, until the end of the simulation, 100,000 time points after withdrawal stage
initiation. b Average host behavior over time is plotted for the baseline case of no microbiome effect (dashed black) and for cases that include the
microbiome effect (red-blue curves), considering two mean microbial effect magnitudes E d½ �ð Þ and two numbers of available strains Nð Þ. Each curve
presents the average of 50 simulation runs. c, d The color of each pixel in the heatmaps represent the fold increase or decrease in ϕ(Addiction) (c) and
ϕ(Withdrawal) (d) relative to the baseline case of no microbiome effect, as functions of N and E d½ �. Each pixel in the heatmap presents the average of
1000 simulations (see also Methods and Supplementary Fig. 6). e, f The color of each pixel in the heatmaps represent the fold increase or decrease in
ϕ(Addiction) (e) and ϕ(Withdrawal) (f) relative to the baseline case of no microbiome effect, as a function of N and of the percentage of strains that can
affect the host behavior. Each pixel in the heatmaps presents the average of 1000 simulations. To keep the mean of the overall manipulation strength of the
microbiome constant and vary only the proportion of strains that affect the host behavior, we set the mean magnitude of the microbes’ effects
E d½ � ¼ 5

proportion of affecting strains. Below the solid lines in (c) and (e), in more than 1% of the simulations the behavior does not reach the maximal addiction
severity Rð Þ, and below the dashed line, in more than 20% it does not. Below the solid line in (d) and (f) the behavior does not return to the initial state at
the end of the simulation in more than 1% of the runs; and below the dashed line, the behavior does not return in more than 20% of the runs. g The
ϕ(Withdrawal) relative to the baseline case of no microbiome effect is plotted as function of the number of new strains that are introduced to the system
during the withdrawal stage, for several mean microbial effect magnitudes E d½ �ð Þ. For the analysis of this panel the initial microbiome community, before the
introduction of new strains during the withdrawal, was set to contain 30 different strains. Each dot represents the average of 1000 simulations. Error bars
represent the standard error of the mean. R ¼ 0:7 is used throughout the analysis for this figure.
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Although the space of host states and microbial features could
be high dimensional, we find that the results do not change
qualitatively when varying the number of dimensions. As expected,
increasing the number of dimensions leads to increased sparsity of
the microbial strains in the behavior-fitness space; thus the impact
on the addiction and withdrawal is similar to decreasing the number
of microbial strains Nð Þ in the model (Supplementary Fig. 1).

We also investigate the case where only some of the strains
affect host behavior by examining the impact of the distribution
of microbial effects on host behavior. We first vary the proportion
of strains that affect host behavior, while keeping the average of
the total microbiome effect constant. Distributing the effects
among fewer microbial strains results in deceleration of both
addiction and withdrawal (Fig. 3e, f). Fixing the mean magnitude
of microbial effects, then decreasing the proportion of affecting
strains, results in a decrease in the overall microbiome effect and
an accelerated withdrawal process. Nevertheless, even when only
a minority of the strains affect host behavior, the impact on
addiction and withdrawal can be substantial (Supplementary
Fig. 2). We also examine the effect of applying various levels of
costs imposed by the microbial effects, and setting a constant host
effect on the growth of some of the microbial strains (rather than
allowing behavioral dependence); our model was robust to these
changes (Supplementary Figs. 3–5).

Moreover, an intervention that includes increasing the
microbiome richness and diversity during the withdrawal stage
can mitigate the withdrawal and shorten its duration. We
examine this by initiating the simulations with a low-richness
microbiome composition N ¼ 30ð Þ, and when the withdrawal
stage begins, new microbial strains with randomly assigned
features, are introduced to the system (Fig. 3g). This type of
intervention gradually increases the inter-strain competition
within the microbiome and decreases the impact of the
addiction-adapted strains, thus facilitating the shift of the host-
microbiome ecosystem towards its original equilibrium.

The impact of addiction severity. Finally, we examine the effect
of the microbiome’s interaction with the maximal severity of
addiction (R), which represents the maximal impact of host
behavior on the microbiome: higher values mean that the host
can reach a state in which microbiome compositions are more
distant from the initial equilibrium. We find that as the addiction
becomes more severe (higher R), the host behavior generates an
ecological regime that leads the microbiome towards a narrower
niche with lower diversity. After establishment, the new micro-
biome composition may strongly reject any attempt to make a
change, thus slowing down the withdrawal process. This dynamic
increases with the magnitude of the effect of the microbiome on
host behavior, and decreases with microbiome richness. When
the microbiome is richer and/or its effect on the host is relatively
weak, only a substantial alteration in the microbiome composi-
tion results in an aggravation of the addiction (Fig. 4a). We also
see an effect of the maximal addiction severity Rð Þ on occurrences
of microbiome-induced relapses. We define a relapse as an
aggravation in the addictive behavior (increase in the behavior
coordinate) that occurs during the withdrawal phase (Fig. 4b).
We see that stronger microbial effects, lower microbiome rich-
ness, and higher addiction severity all result in stronger and more
frequent relapses (Fig. 4c).

Discussion
We hypothesize that within-microbiome competition may lead to
evolution of microbial effects on host behavior, and that these
effects could play a role in host addictive behavior. Our results
demonstrate that microbiome feedbacks to host behavior can
aggravate addictive behaviors, making withdrawal attempts more
difficult and leading to higher risk of relapses. Microbiome
richness is a key parameter in the process, with low richness
resulting in prolonged addictions.

Our framework includes both within-microbiome competition
over resources and host-microbiome interactions, and can be

Fig. 4 Exacerbating effect of microbiome on host withdrawal increases with addiction severity. a The integral of the behavior over time during the
withdrawal stage (ϕ(Withdrawal)) is plotted as a function of the maximal addiction severity Rð Þ, for several numbers of available strains Nð Þ and the mean
magnitudes of the effects E d½ �ð Þ. Each dot represents the average of 1000 simulations. b Relapse schematic example: we define a relapse as an increase in
the addictive behavior that occurs after the withdrawal phase has begun. In each simulation we define the maximal-relapse magnitude as the maximum
among the differences between all coordinates of the behavior in the withdrawal phase, and the coordinates of behavior that follow. c The color of each
pixel in the heatmaps represent the mean maximal-relapse magnitude as a function of N and E d½ �, for different maximal addiction intensities. Each pixel in
the heatmaps presents the average of 1000 simulations.
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extended in several ways. Other microbial interactions can be
incorporated including direct competition (e.g., toxins), coop-
eration (e.g., cross-feeding) and exploitation. In addition, the
interactions between host and microbiome can be modeled by
more complex functions, e.g., threshold functions or non-
monotonic functions, including rugged landscapes71,72. Differ-
ent manifestations of host-exerted selection can be modeled.
While in our model the host state affects each of the strains’
growth rate, it could also affect each of the strains’ carrying
capacity, leading to a similar form of host-microbiome feedback
loop. Furthermore, several different forms of microbial effects on
the host behavior can be investigated, including specific reactions
to certain host behaviors11 (e.g., microbial reaction to exposure to
opiates leading to secretion of compounds that generate host
tolerance and hence induce addiction). Our model assumes a
more general interaction, grounded in empirical evidence, where
the microbes can affect the host by providing feedback—either
positive or negative—on host behavior, through modulation of
the reward circuitry. In addition, we consider a simple model of
host addictive behavior, and focus on the effect of the microbiome
on the process. Potential extensions may also include integrating
host-brain mechanisms of addiction (reward sensitization, asso-
ciative learning, conditioned reinforcers, impulse control, etc.),
where the microbiome is able to affect these processes, as well as
short-term and long-term effects of the addiction from both host
and microbiome perspectives.

Much work has been devoted to studying the stability of
communities and how stability is affected by community
richness and internal interactions such as cooperation and
competition57,73–75. Although our work addresses these ecologi-
cal factors, it is quite different from the traditional literature on
these topics. First, we focused on host-microbiome interactions,
and in particular on the microbe-induced changes in the envir-
onment. Second, we do not study the stability of the microbiome
community according to the classical response of the community
to a perturbation. Rather, we examine the dynamics during and
after a gradual and prolonged host-induced alteration. Third, we
do not consider direct interactions, negative or positive, between
the interacting strains, but only resource competition.

In our model, the microbial effect on host behavior can be
considered a form of public goods—microbial secreted products
that benefit the strains that proliferate in the new host-mediated
conditions. Numerous studies have investigated public goods
secretions in microbial communities, demonstrating that such
behaviors can be maintained in a population despite their direct
cost to the secreting microbe, while also analyzing the conditions
for the evolution of such behaviors76–78.

Our results accord with empirical evidence. First, it has been
demonstrated that the microbiome can alter neuronal activity,
modulating factors that regulate the reward circuitry in the brain
through reinforcement and aversion28,29,35–38. Moreover, these
microbiome mechanisms are involved in addictions to alcohol
and opioids24,45,47–49,51. Second, empirical studies have found
that in response to opioid uptake, host-microbiome interactions
generate a positive feedback loop that alters the ecosystem and
exacerbates the addiction11. Finally, studies have also showed that
a less rich and diverse microbiome is associated with aggravated
addiction14,51. Despite this large literature, our model is, as far as
we know, the first attempt to suggest evolutionary and ecological
perspectives for microbiome-induced addictive behaviors.

Targeting the microbiome may reveal additional avenues for
addiction treatments. Our model predicts that increased micro-
biome richness and functional diversity could contribute to
addiction mitigation and prevention, and suggests that hosts with
very low microbiome richness may be at greater risk for addiction
and for relapse during the withdrawal period. In this context,

stress and anxiety are factors that are associated with both low
microbiome diversity and host addictive behaviors79–82, sug-
gesting that the interplay between host physical and mental state,
microbiome composition, and addictions would be interesting to
investigate. Future experiments will be required to decipher the
mechanisms underlying microbiome involvement in host addic-
tive behavior and brain function. Investigating the microbes that
may benefit from an addiction may reveal potential candidates for
interventions.

The framework presented here can be generalized and used to
investigate other host-microbiome interactions with various
implications on host behavior and wellbeing. For example, our
framework could be relevant for studying host-microbiome
interactions with respect to the host immune system, where the
immune system of the host shapes the microbiome composition,
and the microbiome affects the development and maintenance of
the immune system83,84. Moreover, this framework can be used
for modeling complex ecological systems, incorporating numer-
ous species that compete with each other, as well as environ-
mental factors that affect the competition dynamics between
these organisms, but are also altered by them85. In this context,
our model can be considered as a form of niche construction86,
where a community of species acts to construct a favorable niche
in a certain environment; in our case, the environment is itself an
organism.

Better understanding of host-microbiome interactions with
respect to addictive behaviors may uncover additional mechan-
isms behind addictions and generate strategies for treatment.
Our results call for empirical studies—characterizing within-
microbiome interaction networks, uncovering mechanisms of
microbial effects, and testing the association between microbiome
richness and functional diversity on the one hand and addictive
behavior on the other.

Methods
We model a host interacting with its microbiome, where the host behavior affects
the microbiome composition and the microbiome affects the host behavior. We
consider two models using the same framework. The first depicts the potential
advantage of microbes’ ability to affect their host’s behavior, by modeling the
growth dynamics of two microbial strains residing in a host: one strain affects its
host behavior, and a second strain does not. The second addresses the potential role
of microbial effects on addiction, accounting for a microbiome community that
comprises N microbial strains, where some or all of the strains can affect the host’s
behavior.

Host baseline behavior. The host baseline behavior is represented as coordinates
(denoted by ~b) in a two-dimensional unit-sphere, termed the microbiome-
behavior-space. The host’s baseline behavior changes over time according to a pre-
defined pattern. This baseline serves as a null model that represents the host
behavior free of the microbiome’s effect. Later, the microbiome effect is added to
this baseline.

For the two-strain competition, the host baseline behavior is modeled as a
random walk along the segment 0; 1½ � on the X-axis of the microbiome-behavior-
space; this can represent, for example, the consumption of a chemical resource.
Each simulation starts in the middle of that range, at 0.5. The step at each time
point t, denoted by σRW tð Þ is randomly drawn from a double-exponential
(Laplace)87,88 distribution with mean 0 and scale σ:

In the simulations that yielded the results for Fig. 1, σ was set at 10�3.
For the addiction model, the analysis focused on host baseline behavior that

follows a simple addiction scenario, including three behavioral phases (Fig. 2b):
Initial equilibrium. ~b ¼~0. This phase ends when the host’s microbiome

composition stabilizes.
Addiction. Alteration in the baseline behavior. The change in the host baseline

behavior is simulated as a series of positive movements along the X-axis. At each
time point t, a step size, denoted by σA tð Þ, is randomly drawn from an exponential
distribution with mean σ. The change in the host behavior is bounded by distance
R from the origin, representing the maximal addiction severity. Thus, the host-
behavior coordinates shift gradually from 0; 0ð Þ up to R; 0ð Þ, and stay at ðR; 0Þ until
the end of this phase, τ time steps after its initiation.

Withdrawal. The host reverses its behavioral pattern, by moves of �σA tð Þ� �
on

the X-axis, with σA tð Þ randomly drawn from exponential distribution with mean σ.
The change in behavior is bounded below by 0. This phase ends when the
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microbiome composition and host behavior stabilize, or after 100,000 time steps
from the initiation of the phase.

Unless stated otherwise, σ was set 10−4 and τ was 20; 000.

Microbiome composition. A population of N microbial strains inhabits a host.
Each strain has its unique features, modeled as coordinates in the microbiome-
behavior-space. We denote the vector of these coordinates for each strain i by ~mi ,
and the growth dynamics of the different microbial strains are based on the
common system of ordinary differential equations that describes the change in the
frequency of strain i over time57,73:

dxi
dt

¼ xi tð Þ � ri � si � xi tð Þ
� � ð1Þ

The forward Euler method was used to simulate the dynamics of this system of
equations, with arbitrary time steps of size 1, which defines the system in discrete
time:

xi t þ 1ð Þ ¼ xi tð Þ þ xi tð Þ � ri tð Þ � si � xi tð Þ � ci
� � ð2Þ

where xi tð Þ denotes the proportion of strain i in the microbiome at time t; ri tð Þ
denotes the growth rate of strain i at time t, which is a function of the host behavior
(see below); si denotes intra-strain competition; and ci denotes the constant cost of
feedback production experienced by strain i.

In order to incorporate resource competition among the different microbial
strains in the microbiome, we normalized the xi t þ 1ð Þ values by their sum at each
iteration. Thus the microbial strains’ relative abundance is tracked, while assuming
a constant total microbiome abundance, similar to having a carrying capacity for
the entire microbiome community. We also include a constant low inflow of all N
microbial strains at rate μ

N for each strain; thus our results do not rely on extinction
and permanent disappearance of strains from the system (μ was set at 10�8

throughout). At each time step, the strain proportions are calculated using Eq. (2),
followed by inflow and a second normalization. In the simulations that yielded the
results for Figs. 2–4 and the supplementary figures, s was set at 1. For Fig. 1 we used
s ¼ 0:1; 0:01. The effect of ci≠0 is shown in Fig. 1 and in Supplementary Figs. 3–4;
ci was set at 0 in the simulations that yielded the rest of the results. We conducted
two additional analyses, one where the per-strain inflow rate is the same regardless
of the number of strains, and a second where there is no inflow; the results were
quite similar (Supplementary Figs. 7–8).

For the two-strain competition model N ¼ 2ð Þ the features of each strain are
manually defined and specified in the results. One strain affects the host behavior,
and this strain pays the cost of feedback production, while the other strain does not
affect the host behavior and does not pay the cost.

For the addiction model the features of each strain are drawn randomly within
the microbiome-behavior-space (from a uniform distribution in the 2D unit
sphere), at the beginning of each simulation. We consider a microbiome
community that comprises N microbial strains, where some or all of the strains can
affect the host behavior.

A generalized Lotka-Volterra model that did not include normalization was also
analyzed (also using the forward Euler method with arbitrary time steps of size 1):

dxi
dt

¼ xi tð Þ � ri tð Þ þ Ai � x tð Þ� �þ μ

N
ð3Þ

This system of equations is similar to the procedure mentioned above, with two
main modifications. First it does not include normalization steps. Second, it

includes matrix A, (Ai is row i in the matrix), in which each element aij
� �

represents the impact of strain i on the growth of strain j. The diagonal of A, is set
to -1, modeling intra-strain competition, similar to the main model. We set all
other elements of A i≠j

� �
to be �δ, representing a scenario similar to the main

model, where the growth of each strain negatively affects the growth of all other
strains. This model yields qualitatively similar results to those obtained using Eq. 2
(Supplementary Fig. 6).

Host-behavior effect on the microbiome composition. We focus on aspects of
host behavior that regulate the ecology of the microbiome and thus affect the
microbiome composition. The host-derived resources obtained by each strain are
determined by a monotonically decreasing function of the Euclidean distance
between the host and the microbial strain, in the microbiome-behavior-space. In
this context the microbial features relevant for the host-microbe interaction are the
focus. We define ri at time t as

riðtÞ ¼ 0:1þmax 0; 1� β � jj~b tð Þ � ~mijj2
� �α� �

ð4Þ
Unless stated otherwise, we used α ¼ 3; β ¼ 0:1: Supplementary Fig. 9

demonstrates the robustness of our results to these parameters. The effect of setting
a constant host effect on the growth of some microbial strains was also examined
(rather than having the effect be behavior-dependent), and our model was robust to
this change (Supplementary Fig. 5).

Microbiome effect on host behavior. We assume that all or some of the microbial
strains can affect their host’s behavior and that the microbes can sense beneficial
and deleterious changes in their population, portrayed as temporal increase or

decline in their population size. When a strain’s population is increasing, the
microbes produce and secrete compounds that are perceived by the host as positive
feedback (e.g., reward), and when the population is declining the microbes produce
and secrete compounds that are perceived by the host as negative feedback (e.g.,
aversion). These feedbacks are then integrated by the host, affecting the future
behavioral trajectory. We denote by Bωm

i tð Þ the slope of the linear regression on the
proportions of strain i in the past ωm time points:

Bωm
i tð Þ ¼

∑t
j¼t�ωm

j��jωm
� �

xi j
� �� �xωm

i

� �
∑t

j¼t�ωm
j��jωm
� �2 ð5Þ

where �jωm is the average of the time-point indicators t � ωm; t � ωm þ 1; ¼ ; t
� �

,
xi j
� �

is the proportion of strain i at time point j, and �xωm
i is the average of strain’s

i’s proportions during the time period t � ωm through t. We then denote by Imi
tð Þ

the condition of microbial strain i at time t, defined as follows:

Imi
tð Þ ¼

1 Bωm
i tð Þ> 10�6

�1 Bωm
i tð Þ<�10�6

0 else

8><
>: ð6Þ

Here, the condition of strain i is positive, negative, or neutral (therefore it
secretes positive feedback, negative feedback, or no feedback at all) depending on
the slope of the linear trajectory of its proportion in the past ωm time points. Slopes
that are very close to zero (between �10�6 and 10�6) are considered neutral in
their effect, representing accuracy limitations in evaluation. These feedbacks affect
the host behavioral change later on.

We assume that the host associates its recent behavioral trend with integrated
microbial feedbacks. If the recent trajectory is associated with positive feedback, the
host will continue with the same trajectory. If the recent trajectory is associated
with negative feedback, the host will reverse its behavioral trajectory.

We denote by Bωh
host tð Þ the slope of the linear regression on the host behavior in

the past ωh time points (considering its moves along the X-axis; similarly to the
calculation in the previous paragraph, except that the regression is of the host-
behavior coordinate along the X-axis). We then denote by Ib tð Þ the behavioral
trajectory of the host at time t, as follows:

Ib tð Þ ¼
1 Bωh

host tð Þ> 10�6

�1 Bωh
host tð Þ< �10�6

0 else

8><
>: ð7Þ

Hence, the host trajectory—away from the center, towards the center or neutral
—depends on the slope of its linear trajectory over the past ωh time points.

Unless otherwise stated we set ωh ¼ ωm ¼ 10: Supplementary Fig. 10
demonstrates the robustness of our results to these parameters.

Combining the microbial secretions and the behavior trajectory, the direction of
microbe i’s effect on the host behavior at time t can be described by the sign of the
product Imi

tð Þ � Ib tð Þ. This term is positive when strain i influences the host to
advance on the addiction path (e.g., to increase doses of the consumed substance),
in one of two scenarios: strain i provides positive feedback ðImi

tð Þ ¼ 1Þ to host

advancement on the addiction path Ib tð Þ ¼ 1
� �

, or strain i provides negative
feedback ðImi

tð Þ ¼ �1Þ to host withdrawal Ib tð Þ ¼ �1
� �

. The term Imi
tð Þ � Ib tð Þ is

negative when strain i influences the host to take a step backwards on the addiction
path (e.g., to reduce consumption of the substance); and when it is zero, strain i
does not affect host behavior.

The total effect-strength of each strain, at time t; is that strain’s proportion
within the microbiome, multiplied by σA tð Þ

�� �� � di� �
, where di denotes the

magnitude of the effect of strain i on the host, and σA tð Þ
�� �� is the baseline behavioral

step size at time t. The microbial effect magnitudes di; i 2 1; ¼ ;Nf g� �
are chosen

at random from an exponential distribution with mean E d½ � at the beginning of
each simulation, and σA tð Þ are drawn at each time step, as explained above.

The effect of the entire microbiome at time t, denoted by M tð Þ, is the sum of all
strains’ effects:

MðtÞ ¼ ∑
N

i¼1
ð xiðtÞ
z}|{proportion

� jσAðtÞ � dij
zfflfflfflfflfflffl}|fflfflfflfflfflffl{effect size

� ðImi
ðtÞ � IbðtÞÞ

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{effect direction

Þ ¼ jσAðtÞj � IbðtÞ � ∑
N

i¼1
ðxiðtÞ � di � Imi

ðtÞÞ ð8Þ

The change in host behavior from time t to time t þ 1 is defined as the sum of
the host baseline behavior step and the microbiome-induced step. We denote by b1
the first coordinate of the host behavior (corresponding to the X-axis along which
the host moves) and define the host behavior at time t þ 1 as follows:

b1 t þ 1ð Þ ¼ b1 tð Þ þ σA tð Þ þM tð Þ� � ð9Þ

A second model for microbiome impact on host behavior. In this model the
microbiome impact on host behavior is direct, and not through the reward cir-
cuitry of the host. The intuition for this model is that during the addiction and
withdrawal, each microbial strain pulls the host towards its own coordinates
(representing the optimal host behavior for that strain) in the microbiome-
behavior space, and the host behavior is affected by the summation of host baseline
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trend and the microbiome impact projected on the examined behavioral domain
([0,1] along the X-axis).

First, we derive the direction of each microbial strain relative to the host
behavior, by subtracting the host behavior coordinates from the strain’s feature-
coordinates, and normalizing the resulting vector. Then all of the resulting vectors
are averaged to obtain the overall microbiome impact direction. This average is
weighted by the proportion of each microbial strain (xi), while each component is
also multiplied by the strain’s impact strength (di). In order to comply with our
primary model, and investigate changes in behavioral pattern along a straight line,
we derive the projection of the microbiome impact vector, on the X-axis. The shift
in the host behavior is now determined by the sum of the host base-line step and
the microbiome impact. In this sense, the parallel to Eq. 8 in this model is:

M Tð Þ ¼ ∑
N

i¼1

~mi �~b Tð Þ
jj~mi �~b Tð Þjj

� di � xi Tð Þ
 !" #

�

1

0

¼
0

0
BBB@

1
CCCA � σA Tð Þ ð10Þ

Similarly to the results of our primary model, here host-microbiome
interactions lead to aggravated withdrawal as the microbiome impact strength
increases and as the microbial diversity decreases (Supplementary Fig. 11).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The simulation results that are presented in the figures are available at Zenodo (https://
doi.org/10.5281/zenodo.8041056).

Code availability
The simulation code is available at Zenodo (https://doi.org/10.5281/zenodo.8028697)89.
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