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Abstract 

We derive an analytical expression for the coupling 
impedance and loss factor of a long narrow slot in a 
coaxial beam pipe. The method used differs from the 
classical Bethe's theory of diffraction since we define 
differential polarizabilities to take into account the effect 
of the interference between the fields scattered all along the 
slot. The expressions obtained are thus valid even for slots 
longer than the wavelength. 

1 INTRODUCTION 
Different analytical or semianalytical methods can be used 
to study the effects, on the beam dynamics, of pumping 
holes and slots coupling the vacuum chamber to an 
external antichamber. 

When the wavelength is much longer than the aperture 
dimensions, the problem is treated in terms of static 
polarizabilities and coupling impedance and loss factor can 
be calculated by different methods [1,2]. For longer 
wavelengths this procedure can no longer be followed and 
frequency dependant polarizabilities have been introduced 
in [3]. 

The method we present here is based on the slot 
subdivision in infmitesimal slices, as suggested in [4], so 
that it is still possible to use the modified Bethe's theory 
of diffraction [5]. 

2 GENERAL THEORY 
We consider a long and narrow slot on the inner tube of a 
coaxial beam pipe (Fig. 1). Subdividing the slot in 
infinitesimally long elements, which dimensions are 
much shorter than the wavelength, we can still calculate 
the equivalent dipole moments for each element according 
to the modified Bethe's diffraction theory: 

polarizabilities dam. and dae are approximated by 
averaging the static polarizabilities along the slot length 
L: 

Limiting our analysis to frequencies below the inner and 
outer pipes TEll cutoff, we can rewrite Eqs. (1) as 

__ ",=am Ho _j_f"'_''O_'" f __ "'e-jkolz-gld~+ dM [ Wllh
2 

L12 dM 

dz L '" 2 -L12 d~ 

+ j '" 0, f sign(~ - z)-' e -jko z-g d~ who e L12 dP I I ] 
2 -L12 d~ 

, - Eae E . w~o, f ' -jkolz-gl d): dP 
[ 

2 L12 dP ·(3) 
---- o,-j-- -e ~+ 

dz L 2 -L12 d~ 

. w/lho",eo, Lf/2 . (1' ) dM", -jkoIZ-gld1'] + j sIgn ~ - Z --e ~ 

2 -L12 d~ 

where ho", and eo, are the TEM modal functions [6] and 

ko = 2n/A. 

dM",(z) = [Ho", (z) - Hs",(z) ]dam 

dP, (z) = E[ Eo, (z) - Es, (z) ]dae 

(1) Figure 1: Coaxial beam pipe with slot. 

where Ho",(z) and Eo,(z) are the fields radiated by a 
point charge q, travelling with velocity c along the axis of 
a perfectly conducting pipe. Hs", (z) and Es", (z) are the 
scattered fields; their amplitl,lde, which is a function of the 
equivalent dipole moments, can be expressed through the 
Lorentz reciprocity theorem [2]. The differential 
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From a physical point of view, Eqs. (3) reveal that the 
scattered fields depend on the electric and magnetic dipoles 
allover the aperture, since each infinitesimal slice radiates 
a forward and a backward wave in the coaxial region [6]. 

Once Eqs. (3) have been solved, it is straightforward to 
derive the longitudinal impedance [7] 

1 += 
Z(w) = -- f Ez(r = O)ejkozdz (4) 

q -= 



Since only the TMOm modes have a non zero 
longitudinal electric field along the pipe axis, each 
element contribution to the impedance is 

dZ _ . illZo (1 dMtp dPr ) jkoz 
--j-- ---+- e 
dz 2nqb c dz dz 

(5) 

where Zo is the free-space characteristic impedance. Eq. (5) 
can be regarded as the differential version of the analogous 
formula derived in [1]. 

The total impedance is simply obtained integrating Eq. 
(5) along the slot. 

3 ANALYTICAL EXPRESSIONS FOR 
IMPEDANCE AND LOSS FACTOR 

To obtain final expressions in an analytical form, we 
choose to solve the integral equation system in Eqs.' (3) 
using an iterative procedure. It will be shown that it is 
sufficient to stop at the first order solution. 

The zero-th order solution corresponds to the original 
Bethe's theory [8], appropriately transformed to fit in the 
integral equations: 

(
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Replacing Eqs. (6) in the right hand side of Eqs. (3) we 
get the first order solution 
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The second order approximation is obtained replacing 
the expressions found for the differential dipole moments 
in Eqs. (7) on the right hand side of Eqs. (3). Thus 
obtaining 

2 

The integrals Inm are given by 

III = JJ e-jkolz-';le-jko';-e-jkol';-';-ldS'd~ 
slot 
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The complete expression of impedance and loss factor 
using the second order approximation for the differential 
dipole moments is quite complex and of no easy 
readability. From Fig. 2 we can see, though, that the 
difference from the loss factor for a Gaussian bunch of 
length O'z calculated using the first order approximation is 
minimal. 
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Figure 2: Loss factor vs. length for a rectangular slot. The 
dashed line is the small aperture approximation [9]; the 
solid line is the first order solution; the black diamonds 
are obtained using the second order solution. 



In the following analysis, therefore, we will make use 
of the following analytical expressions for the 
longitudinal impedance, obtained using the first order 
solution of Eqs. (3): 

ze z (w) - 0 0 [(a + a )2 + 
RE - 32n3b41n(d / b) e m 
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2koL 
(11) 

and consequently the loss factor for a Gaussian bunch is 

4 COMPARISONS WITH 
NUMERICAL RESULTS 

We have performed simulations with the numerical code 
MAFIA in the case of both rectangular and rounded end 
slots of different length and width. 

To account for the finite wall thickness T that must be 
used in the simulations, Eqs. (11) and (12) must be 
slightly modified as shown in [9]. The electric and, 
magnetic polarizabilities change as well and can be 
represented as a function of the zero-thickness expressions, 
using the approximation developed by McDonald [10], as: 
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Figure 3: Loss factor for a rectangular slot. The black 
diamonds are MAFIA points. 

Though the CE and CM values are known only for a 
circular aperture, in our case, a comparison of the 
analytical (Fig. 3, dashed line) and numerical results 
suggest the following values: CE = CM = 0.63. 

In order to check this result, the loss factor has been 
computed numerically for a given slot length and different 
wall thicknesses (Fig. 4), obtaining CE = CM = 0.62 as 
best fit. 
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Figure 4: Loss factor for a rectangular slot vs. Tlw ratio. 
The black diamonds are MAFIA points. 

5 CONCLUSIONS 
We have obtained an approximated analytical expression 
for longitudinal impedance and loss factor of a long 
narrow slot in a coaxial beam pipe. When the slot is 
longer than the wavelength, the real part of the impedance 
shows a typical resonant behaviour related to the slot 
length. Our results are in good agreement with those 
obtained in literature with different methods and with 
MAFIA simulations. 
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