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The systems encountered in biophysics typically straddle the line between solid

and fluid, and are thus subject to large deformations even at modest stress val-

ues. This, along with the presence of material properties such as visco-elasticity

and strain hardening, necessitate the use of non-linear elasticity when describ-

ing the physics of these systems. In this dissertation, we explore the use of

non-linear elasticity theory in describing soft matter physics, with a focus on

the specific example of cavitation in polymer gels and similar systems.

We first look at cavitation in the context of equilibrium mechanics. In sim-

ple materials that obey neo-Hookean elasticity, we show that compressibility

effects strongly enhance cavitation. On the other hand, cavitation phenom-

ena in gels of flexible polymers in a binary solvent that phase separates are

surprisingly similar to those of incompressible materials. We find that, as a

function of the interfacial energy between the two solvent components, there is

a sharp transition between cavitation and classical nucleation-and-growth. Fi-

nally, biopolymer gels are characterized by strain hardening, and even very low

levels of strain hardening are shown to suppress cavitation in polymer gel that

obey Flory-Huggins theory in the absence of strain hardening.
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Next, we explore the dynamics of cavitation in non-linear incompressible mate-

rials. We find that, while purely elastic systems can be described entirely within

either a Lagrangian or Eulerian frame of reference, and viscous fluids with no

elasticity can be described entirely within an Eulerian frame, visco-elastic ma-

terials such a Maxwell materials cannot be fully described without making use

both frames, translating between the two using a known deformation mapping.
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1 Introduction

1.1 Non-Linear Elasticity

The theory of linear elasticity is highly familiar to most physicists. It is typically

written in the form of a Landau theory, with the free energy of the system writ-

ten as a function of invariants of the strain tensor [10]. While linear elasticity is

applicable to many systems, the kind of systems found in biophysics often see

the linear theory become inadequate. This is because materials such as polymer

networks or biogels are soft, having strains on the order of unity even when un-

der modest stress. Such large deformations leads not only to the strain tensor

becoming inherently non-linear, but more importantly introduces a fundamen-

tal distinction between the initial and final states of the system. Specifically,

quantities evaluated in the initial state can no longer be directly compared to

those evaluated in the deformed state - each state now is a completely distinct

vector space. In addition to these geometric non-linearities, the systems found

in biophysics also typically have additional non-linearities resulting form their

material properties. They are inherently visco-elastic, and often feature strain-

hardening [9, 17, 22].

There are two potential approaches to handling the distinction between the ini-

tial and deformed vector spaces introduced by large deformations, known as the

Lagrangian and Eulerian formulations of non-linear elasticity. The Lagrangian

picture follows individual material elements, labelling them by their initial po-

sitions. All quantities are then written as functions of these initial, “reference

space” positions. This allows for a very natural way of defining the non-linear

version of the strain tensor, and acts as a direct generalization of the traditional

theory of linear elasticity as a result. It does, however, introduce some compli-

cations when it comes to defining physical quantities that are measured in the

current, deformed state of the system, such as the stress tensor. The Lagrangian
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picture is primarily used for the study of non-linear elasticity in solid materials,

and has an extensive history of use in the engineering literature.

The Eulerian picture, meanwhile, takes its approach from fluid mechanics.

Rather than following material elements, the Eulerian picture measures quan-

tities at fixed physical positions, keeping track of how they change over time.

In this picture, the strain tensor becomes a very unnatural object, as there is

no natural “reference space” to measure particle displacements from. Instead,

quantities such as stress and velocity become much simpler to define, written

now as simply functions of space and time. In particular, the Eulerian picture is

an inherently dynamic one, and allows for the introduction of dissipative forces

far more readily than the Lagrangian picture would.

Both formulations of non-linear elasticity have advantages and disadvantages.

The systems of interest in biophysics straddle the line between solid and fluid,

and we will see that, depending on the question being asked, one formulation

may become advantageous to use over the other. In particular, the Lagrangian

formulation becomes advantageous when discussing equilibrium mechanics, al-

lowing for a more direct generalization of the language of linear elasticity familiar

to most physicists. However, when discussing the dynamics of these systems,

particular those for which dissipative forces are important, the Eulerian picture

becomes far more natural.

1.2 Cavitation

Cavitation refers to the problem of the expansion of a pressurized cavity in ei-

ther a solid or liquid material. In the liquid case, such a cavity will grow in an

unlimited way when the pressure exceeds the Laplace capillary pressure. The

same is true for a cavity in a solid material, although the pressure must typically

2



exceed a larger value given by 5
2µ, where µ is the shear modulus of the material.

This instability is not predicted by linear continuum mechanics, and is in fact

the result of the inherently non-linear nature of large deformations.

The dynamics of cavitation in a viscous fluid was first derived by W. H. Besant in

1859, although a simpler derivation was found by Lord Rayleigh in 1917 [1, 18].

As for cavitation in an elastic solid, the problem has been well explored in the

engineering literature, specifically in the context of elastic rubbers [6]. In the

Physics literature, however, this problem has been explored very little. Not only

that, but rubber materials have a number of key differences when compared to

the biogels we are mostly interested in. Unlike biogels, rubbers are incompress-

ible, single-component materials, and can typically be treated as purely elastic,

with no energy dissipation, even for fairly large deformations. Biogels, mean-

while, are two-component systems, consisting of a visco-elastic polymer network

and a viscous solvent. The polymer network, being able to absorb and expel sol-

vent, is now compressible. Biogels also typically feature material non-linearities

in addition to the geometric ones inherent to large deformations, such as strain-

hardening.

Cavitation is a particularly attractive example problem in which to explore the

use of non-linear elasticity. It features spherical symmetry, which greatly simpli-

fies the mathematics involved. Not only this, but it is an inherently non-linear

effect, necessitating the use of non-linear theory. It is also directly relevant to

the problem of liquid-liquid phase separation in biogels. We will see that the

spherical symmetry of the problem allows one to know an exact form for the de-

formation mapping in the incompressible case, and to reasonably approximate

one in the compressible case. This in turn will allow us to translate between the

Lagrangian and Eulerian formalisms, enabling both direct comparison of the

two, as well as the derivation of new results.
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1.3 Liquid-Liquid Phase Separation and Cavitation in Bio-

gels

While liquid-liquid phase separation is well studied in the context of simple

binary liquids, similar phenomena in biogels are quite different and less un-

derstood. For example, liquid-liquid phase separation in cells produces a dis-

tribution of droplets with constant radii, with a complete absence of Oswald

ripening [25, 27]. This difference is attributed to the presence of actin biopoly-

mer networks in the cytoplasm of cells, as well as the interior of the cell nucleus.

Growth of minority-phase droplets can be stopped by the elastic deformation of

the surrounding polymer network [28].

The cytoplasm can be modelled by systems of permanently cross-linked syn-

thetic gels with a simple binary liquid acting as a solvent [23]. In such a system,

it has been found that at lower levels of supersaturation droplet growth is ar-

rested by the polymer network, but that droplets begin to grow in an unlimited

fashion when the osmotic pressure of the minority phase exceeds a critical value

on the order of the network’s elastic modulus. This is qualitatively similar to

cavitation, and thus understanding the physics of cavitation in a biogel setting

is of high interest.

1.4 Overview

The aim of this dissertation is to explore the use of non-linear elasticity theory

in describing soft matter physics, with a focus on the specific example of cavi-

tation. As discussed in the previous sections, cavitation was chosen as a focus

due to the simplicity introduced by spherical symmetry, as well as its relevance

4



to liquid-liquid phase separation in biogels. Chapters two and three are ded-

icated to developing the formalism we are to use, with chapter two acting as

an overview of linear elasticity and chapter three developing the formalism for

non-linear elasticity. Both a Lagrangian and Eulerian picture is developed, with

key differences and advantages discussed. Chapter four applies the formalism

developed in chapters two and three to address the equilibrium mechanics of

cavitation. A Lagrangian formalism is used, with which the case of an incom-

pressible system is solved exactly, and the case of a compressible system solved

approximately using a variational ansatz. The effects of adding a material non-

linearity in the form of shear hardening is also explored. Chapter five explores

the dynamics of cavitation. We first include a brief discussion of the formalism,

showing how the Eulerian picture becomes more natural in a dynamical setting.

We then apply this Eulerian formalism to solve the case of both a purely elastic

solid and a visco-elastic Maxwell material, assuming incompressibility for both.

Finally, chapter six summarized the results discussed in chapters four and five,

and provides concluding thoughts on the subject of non-linear elasticity in bio-

gels.

2 Linear Elasticity

This section contains a brief review of the theory of linear elasticity, primarily

following Landau and Lifshitz book on the subject [10].
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2.1 The Displacement Vector Field and the Linearized

Strain Tensor

The version of elasticity theory most familiar to the majority of physicists is

that of linear elasticity, which is concerned only with small deformations. We

describe the internal configuration of the body by the positions of material

elements that form a coarse-grained description of the underlying molecular

structure of the material. If a material element is located at position x⃗ prior

to the deformation, and at position X⃗ after the deformation, then we define

the displacement vector of this material element as the vector u⃗ (x⃗) = X⃗ − x⃗.

It is standard in linear elasticity theory to write the displacement vector field

as a function of the initial coordinates of the material elements, i.e. to use a

“Lagrangian” frame of reference. The deformation of the body is then entirely

determined by this displacement field. For the rest of this section, we will use a

curvilinear coordinate system with metric tensor gij . Covariant derivatives will

be denoted as D
Dxi , with associated Christoffel symbols Γijk.

As the body deforms, the distance between material elements changes. Consider

two infinitesimally close material elements, x⃗ and x⃗+dx⃗, with dx⃗ the differential

line element pointing from one to the other. After the deformation, these same

two elements will now be located at new positions X⃗ = x⃗+ u⃗ (x⃗) and X⃗+dX⃗ =

x⃗+ dx⃗+ u⃗ (x⃗+ dx⃗). Here, we may write the components of dX⃗ as

dXi = dxi + dxj
∂ui

∂xj
=

(
∂ui

∂xj
+ δij

)
dxi (1)

The norm squared of the line element thus transforms under deformation as

∣∣∣dX⃗∣∣∣2 =

(
δij +

∂ui

∂xj
+
∂uj
∂xi

+
∂uk
∂xi

∂uk

∂xj

)
dxidx

j (2)
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In linear elasticity we assume the displacement u⃗ (x⃗) is small compared to x⃗,

and as such we may drop the second order term for now. We thus write

∣∣∣dX⃗∣∣∣2 − |dx⃗|2 =

(
∂ui
∂xj

+
∂uj
∂xi

)
dxidxj = 2uijdx

idxj (3)

where uij =
1
2

(
∂ui

∂xj +
∂uj

∂xi

)
is known as the (linearized) strain tensor.

Now consider an infinitesimal volume element dv = dx1dx2dx3 which, under

deformation, transforms into a new volume element dV = dX1dX2dX3, given

by

dV =

(
1 +

∂u1

∂x1

)(
1 +

∂u2

∂x2

)(
1 +

∂u3

∂x3

)
dv =

(
1 + tr u+O

(
u2
))
dv (4)

where tr u = uii = ∂ui

∂xi is the trace of the strain tensor. Clearly, in linear

theory, local changes in volume are described entirely by the trace of the strain

tensor. This leads us to a natural way of splitting the strain into two parts, one

piece proportional to the trace that is associated with changes in volume, and

a traceless piece associated with volume-preserving shear, denoted ū:

uij =
1

3
δijtr u+ ūij (5)

2.2 The Elastic Free Energy and the Stress Tensor

The free-energy density of a material is, for an isotropic body, written as a

function of invariants of the strain tensor. In linear elasticity, we only include

invariants up to second order, of which there are two:

fLE =
1

2
λ (tr u)

2
+ µtr

(
u2
)

(6)
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where λ and µ are known as the Lame coefficients. It is also common to re-write

the free energy in terms of the trace and traceless pieces of the strain discussed

above:

fLE =
1

2
κ (tr u)

2
+ µtr

(
ū2
)

(7)

where κ = λ+ 2
3µ is the compressional modulus. In this context, µ is typically

referred to as the shear modulus. It should be noted that the condition that the

strain-free state must be a free-energy minimum implies that both κ and µ are

strictly positive.

Given a body B, the momentum of this body may be written as

∫
B
dV ρv⃗ (8)

where ρ is the local density of the material element dV , and v⃗ is its velocity

vector. Suppose this body is placed under an external force per unit volume

b⃗, and its surface is placed under an external contact force per unit area t⃗.

Newton’s second law then gives us that

∫
B
dV b⃗+

∮
∂B
dS t⃗ =

d

dt

∫
B
dV ρv⃗ (9)

In mechanical equilibrium, the body is at rest, and the right-hand side of the

above equation can be set to zero. To derive a local form for this equation

of mechanical equilibrium, we make the assumption that we may write the

local force (or traction) T⃗ acting on a surface element dS⃗ = dS N̂ of the

body, with unit normal vector N̂ , may be written as T i = σijN
j , where σ

is a rank-two tensor known as the Cauchy stress tensor. In the context of

linear elasticity, this is often abbreviated as simply the stress tensor. This will

always be possible assuming that the internal force T⃗ depends linearly on N̂ ,

an assumption known as Cauchy’s fundamental postulate. Substituting this

8



expression into the integral equation of mechanical equilibrium, we obtain

∫
B
dV bi +

∮
∂B
dS σijNj = 0 (10)

Using the divergence theorem, this may now be written as

Dσij

Dxj
+ bi = 0 (11)

We may similarly derive an equation for the conservation of angular momentum,

which in local form reduces to the condition that σ is symmetric, i.e. σij = σji.

The stress tensor may be related to the strain tensor via the elastic free-energy.

Suppose the displacement vector of a material element u⃗ is changed by a small

amount δu⃗. The total work done by internal stresses on the body as a result of

this change may be written as

δF =

∫
B
dV

Dσij

Dxj
δui (12)

Integrating by parts and making the assumption that the stress goes to zero at

infinity, as well as taking advantage of the symmetry of the stress tensor, we

may write

δF = −
∫
B
dV σijδuij (13)

where δuij is the change in the strain tensor. This implies that the stress tensor

may be written as σij = ∂f
∂uij

, where f is the free-energy density. Substituting

in equation 7, we obtain

σij = κδijtr u+ 2µūij (14)
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If we insert this expression into the equation of mechanical equilibrium, we may

write it in terms of the displacement field, here written in vector notation:

µ∇2u⃗+

(
κ+

1

3
µ

)
∇⃗
(
∇⃗ · u⃗

)
+ b⃗ = 0 (15)

3 Finite-Strain Elasticity

3.1 Non-linearities in Elasticity

While linear elasticity is only valid for small deformations, finite-strain elas-

ticity allows for large deformations. This introduces several major differences,

primarily stemming from the fact that the configuration prior to deformation

and the configuration after the deformation can no longer be treated as the

same space. This introduces what I will refer to as “geometric” non-linearities,

which are inherent to finite-strain elasticity - they are always present regardless

of material properties. The most immediate example is the second-order term

in the strain tensor that we already encountered in linear elasticity.

In addition to these geometric non-linearities, additional non-linear effects may

be introduced as a result of specific material properties. A particularly impor-

tant example for biogels is that of strain hardening. This refers to an increase

of the differential shear modulus under increasing level of strain. Material non-

linearities such as this have an entirely different origin than geometric non-

linearities. Interestingly, some phenomena that result from the introduction of

geometric non-linearities may actually be suppressed by material non-linearities,

as we will see for the example of cavitation.
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3.2 The Lagrangian versus Eulerian Formalisms

Finite-strain elasticity is typically formulated in one of two different, but ulti-

mately equivalent, ways: the Lagrangian formalism and the Eulerian formalism.

The language and notation used to describe these formalisms differs from source

to source [7, 15, 16]

The Lagrangian formalism has its origins in traditional linear elasticity, and

is well suited to describing elastostatics. As before, the internal configuration

of the body is described by the positions of material elements that form a

coarse-grained description of the underlying molecular structure, and physical

quantities are expressed as functions of these “reference” positions. The Eu-

lerian formalism, meanwhile, has its origins in fluid mechanics. Rather than

follow material elements around, we instead keep track of how much material

is present, and how fast it is moving, at every location in physical space at any

given time. This makes the Eulerian formalism a naturally dynamic formalism.

3.3 The Reference and Deformed Spaces

Regardless of which formalism one uses, it is useful to keep track of the mate-

rial elements, where they started, and where they are currently. We define the

reference configuration of the material to be a state with neither internal nor

external stresses, which we treat as the initial configuration of the system. By

assumption, the material elements are uniformly distributed in this state. We

denote the set of positions of each material element in the reference state by B0.

When the material is exposed to external stress, it deforms into a new configu-

ration B. This deformation is described by a continuous, bijective mapping of

each position x⃗ ∈ B0 in the reference configuration to a new position X⃗ ∈ B in

the deformed configuration,

φ : x⃗ 7→ X⃗ (16)

11



referred to as the deformation mapping or deformation map form here on. While

Figure 1: Schematic deformation map of a spherical cavity that has a radius
r0 in a strain-free reference configuration. When pressurized, the radius of the
cavity increases to R0. The deformation map φ(r) relates points in the reference
configuration to points in the deformed configuration. The figure shows the
mapping for the case of a point on the cavity surface

I have used vector notation for x⃗ and X⃗ here, there is some controversy in the

finite-strain elasticity literature as to whether they should be treated as actual

vectors. This comes from a difference in what physicists usually mean when they

say vector, versus what a mathematician, particularly a differential geometer,

means.

In the language of differential geometry, we refer to B0 and B as Riemannian

manifolds. To give a concrete definition of this, we first need to give a few defi-

nitions of some simpler structures [12]. A topological space is a set S, together

with a collection of subsets of S, T , called a topology on S. The members of

T are called open subsets of S. Elements of a topological space are typically

referred to as “points.”

A topological manifold, or simply manifold, M is a special kind of topological
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space that has three additional properties:

(1)M is a Hausdorff space: for every pair of points x, y ∈M , there exist disjoint

open subsets U, V ⊆M such that p ∈ U and q ∈ V .

(2)M is second-countable: there exists a countable basis for the topology ofM .

(3)M is locally Euclidean: each point ofM has a neighborhood (an open subset

that contains it) that is homeomorphic to an open subset of Euclidean space

Rn, i.e. there exists a homeomorphism mapping the neighborhood to some open

subset of Rn.

The manifold being locally Euclidean allows us to describe points in the mani-

fold via coordinates in Rn using the homeomorphisms mentioned above, which

are known as coordinate charts, or simply charts. Charts generally only have

subsets of M as their domains - multiple charts are typically needed to cover

the entirety of the manifold. A collection of charts whose domains cover M is

known as an atlas of M . Given two charts φ and ψ with domains U and V that

are not disjoint, U ∩ V ̸= ∅, the composite map ψ ◦ φ−1 is called a transition

map from φ to ψ. If the transition map is a diffeomorphism, then the two charts

are said to be smoothly compatible. An atlas A is called a smooth atlas if any

two charts in A are smoothly compatible.

A differentiable, or smooth, structure on M is a smooth atlas that is not con-

tained within any larger smooth atlas. A differentiable, or smooth manifold, is

then a manifold paired with a differentiable structure. One can think of a dif-

ferentiable structure as a prescription for how to differentiate functions defined

on the manifold. A Riemannian manifold is a differentiable manifold with one

additional piece of information, namely a metric. A metric allows one to define

the concept of distance between any two points in the manifold, and is defined

either globally in terms of a distance function, or locally in terms of a metric

tensor.
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Given a finite-dimensional vector space V , any norm on V determines a topol-

ogy with a natural differentiable structure associated with it. This turns V into

a differentiable manifold. However, given a differentiable manifold M , there is

no similarly natural way to define vector space operations on it. Of course, in

most physical applications, manifolds like the reference or deformed spaces can

be thought of as subspaces of R3, and thus may be interpreted as vector spaces.

Even so, it is important to distinguish between the vectors that describe points

on the manifold, and vectors that live in tangent and cotangent spaces on the

manifold, as these are fundamentally different kinds of objects.

As mentioned at the start of this section, the reference space B0 and the de-

formed space B are two distinct differentiable manifolds. This has an immediate,

and very important, consequence: we can no longer properly define the displace-

ment vector of a material element. After all, x⃗ and X⃗ now live in two entirely

different vector spaces. Not only this, but tensors defined on the reference space

and those defined on the deformed space must now also be considered as living

in distinct spaces, and cannot be directly compared. In all that follows, vectors

and tensors defined in or on the reference space will carry Greek indices, while

vectors and tensors defined in or on the deformed space will carry Latin indices.

We will also be using a curvilinear coordinate sytem for both spaces, with gαβ

the metric tensor of the reference space and Gij that of the deformed space. Co-

variant derivatives in the reference space will be denoted as D
Dxα , while those in

the deformed space will be denoted as D
DXi . The associated Christoffel symbols

are Γαβγ and Γ̄ijk, respectively. When working with tensorial quantites, indices

will be raised or lowered using the two metric tensors.
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3.4 The Lagrangian Formalism

3.4.1 The Deformation Mapping and the Deformation Gradient Ma-

trix

In the Lagrangian formalism, we follow the motion of material elements, each

labelled by their position in the reference configuration x⃗ ∈ B0. The deforma-

tion is described by the deformation mapping, defined in the previous section.

Physical quantities will always be written as functions of x⃗, and will ultimately

be constructed from the deformation map and its derivatives.

Consider a line element in the reference space dxα. This is transformed into a

new line element dXi in the deformed space by the local deformation gradient

matrix:

dXi = Aiαdx
α (17)

with

Aiα ≡ ∂φi

∂xα
(18)

Note the mixed indices of the deformation gradient matrix - it has both a Greek,

reference space index, and a Latin, deformed space index. As such, it is not a

proper tensor in either space. The engineering literature refers to this kind of

object as a “two-point tensor.”

It is often useful to, using the polar decomposition theorem, write the defor-

mation gradient matrix as the product of a rotation matrix R and symmetric,

positive-definite matrices U and V , referred to as the left and right stretch

tensors respectively:

Aiα = RiβU
α
β = V ijR

j
α (19)

Note that U is defined on the reference space, while V is defined on the deformed

space. These two matrices have identical eigenvalues, denoted λi=1,2,3, which
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correspond to the principal stretch ratios in the sense that a spherical volume in

the reference space is transformed into an ellipsoid in the deformed space whose

principal axes are along the direction of the eigenvectors, while the stretching

ratios along the principal axes are λi. The scalar invariants that enter the free-

energy are often written in terms of the principal stretches in the engineering

literature.

3.4.2 The Green-Lagrange Strain Tensor

The norm-squared of the line element dx⃗ transforms as

∣∣∣dX⃗∣∣∣2 = AiαAiβdxαdx
β =

(
2Uαβ + δαβ

)
dxαdx

β (20)

Here

Uαβ ≡ 1

2

(
AiαAiβ − δαβ

)
(21)

is the Green-Lagrange strain tensor defined on the reference space. It is the

non-linear equivalent of the strain tensor of linear elasticity. In the limit of

small deformations, we no longer make a distinction between the reference and

deformed spaces, allowing us to use Latin indices for both. We may thus write

Aij =
∂φi

∂xj
=
∂ui

∂xj
+ δij (22)

where u⃗ is the displacement vector of linear elasticity. This allows us to re-write

the Green-Lagrange strain tensor in terms of u⃗, revealing it to be identical to

the original definition of the strain tensor

Uαβ =
1

2

(
∂ui

∂xj
+
∂uj
∂xi

+
∂uk

∂xj
∂uk
∂xi

)
= uij +O

(
u2
)

(23)

where uij is the linearized strain tensor of linear elasticity [10].
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3.4.3 Volume and Area Elements

Consider a volume element in the reference space dv. This will transform under

the deformation into a new volume element dV in the deformed space by dV =

Jdv, where J = detA is the Jacobian of the deformation map. Conservation of

mass allows us to write J in terms of the local densities of the material before

and after the deformation,

ρdV = ρ0dv ⇒ J =
ρ0
ρ

(24)

so J = 1 for incompressible systems. For convenience, the ratio ρr = ρ
ρ0

= 1
J

will be referred to as the relative density. The Jacobian can be expressed as

J = detA = detU = detV = λ1λ2λ3. In the limit of small deformations, we

may approximate this as

J = detA =
√
det (ATA) =

√
det (2U + I)

= 1 + tr u+O
(
u2
) (25)

recovering the result from linear elasticity that a volume-preserving deformation

would correspond to a traceless linearized strain tensor. Note, however, that

this will no longer be true outside of the small deformation limit - tr U will be

non-zero even for a volume-preserving shear.

Now consider a surface element in the reference space ds⃗ = ds n̂ with unit

normal vector n̂, as well as a line element dx⃗. Together, we can build a volume

element dxαdsα, which will transform under deformation as

dXidSi = Jdxαdsα (26)
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where dXi = Aiαdx
α. This gives for the transformed area element

dSi = J
(
A−1

) i
α
dsα (27)

where A−1 is the inverse deformation gradient matrix:

(
A−1

)α
i
≡
∂
(
φ−1

)α
∂Xi

(28)

3.4.4 The Nonlinear Shear Strain Tensor

For large deformations, the Jacobian will no longer be well approximated by one

plus the trace of the Green-Lagrange strain tensor. As such, the shear strain

tensor must be constructed differently. To do this, let’s first write a general

deformation mapping φ as the product of two successive mappings:

φ (x⃗) = φshr (φcmp (x⃗)) (29)

The first map φcmp is here a pure dilation given by

φcmp (x⃗) = J1/3x⃗ (30)

with J the Jacobian of the full deformation φ. The second map φshr is a volume-

preserving shear. Using the chain rule, the deformation gradient matrix of the

full map φ is

Aiα =
∂φishr
∂φjcmp

∂φjcmp

∂xα
= J1/3Āiα (31)

The new deformation gradient matrix Ā is volume-preserving since

det Ā = det
(
J−1/3A

)
=

1

J
detA = 1 (32)
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The associated Green-Lagrange shear strain tensor is then given by

Ūαβ =
1

2

(
ĀiαĀiβ − δαβ

)
=

1

2

(
J−2/3AiαAiβ − δαβ

)
= J−2/3Uαβ +

1

2

(
J−2/3 − 1

)
δαβ

(33)

While this non-linear shear strain tensor is volume-preserving, it is - unlike its

linearized counterpart - not traceless. For completeness, we confirm that this

non-linear shear strain tensor correctly simplifies to its traceless linear counter-

part in the limit of small deformations as follows:

Ūαβ = (1 + tr u)
−2/3

uαβ +
1

2

[
(1 + tr u)

−2/3 − 1
]
δαβ +O

(
u2
)

= uαβ − 1

3
δαβ tr u+O

(
u2
)
= ūαβ +O

(
u2
) (34)

3.4.5 Stress Tensors

An important part of finite-strain elasticity theory are the definitions of the

different stress tensors that can enter the equation for mechanical equilibrium.

The variational method we use for the static case does not involve the stress

tensor, but it will be useful for potential extensions to dynamics. The basic

definition of the stress tensor is identical to that used in linear elasticity - if

a force T⃗ is acting on a surface element dS⃗ = dS N̂ , then the Cauchy stress

tensor at the location of the surface element is defined such that T i = σijdSj .

The Cauchy stress tensor is defined in the deformed space, the physical space

in which external and internal forces are being applied. When external stresses

or pressures are applied to the surface of the material then the Cauchy stress

tensor provides a direct approach to implement boundary conditions. However,

within the Lagrangian formalism, it is useful to also construct a stress tensor in

terms of the coordinates of the undeformed reference space.

We start from the integral equation of mechanical equilibrium, given in equation
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10. We would like to change variables in this equation to those of the undeformed

space. Recall that volume and area elements transform under the deformation

as dV = Jdv and dSi = J
(
A−1

)α
i
dsα. We thus may write, now integrating

over the reference space,

∫
B0

dv JBi +

∮
∂B0

ds J
(
A−1

)α
j
nασ

ij = 0 (35)

where Bi (x⃗) = bi
(
φ−1

(
X⃗
))

is the body force per unit volume written as

a function of the reference space coordinates. Define the first Piola-Kirchoff

stress tensor Siα ≡ J
(
A−1

)α
i
σij . Note that, due to its mixed indices, this is

not a standard tensor in either space, but rather a “two-point tensor,” similar

to the deformation gradient matrix. Using the divergence theorem, this can be

expressed as a local equation for mechanical equilibrium:

DSiα

Dxα
+ JBi = 0 (36)

The engineering literature typically refers to the first Piola-Kirchoff stress tensor

as the “Piola transform” of the Cauchy stress tensor, and the change of variables

we performed in the integral equation as a “Piola transformation.”

While the first Piola-Kirchoff stress tensor suffices for most circumstances, it

is also useful to define another stress tensor, one that lives entirely within the

reference space - i.e., one that is not a two-point tensor with mixed indices, but

rather a standard rank-two tensor on the reference space. Using the language

of differential geometry, we can “pull back” the first Piola-Kirchoff stress tensor

to the reference space:

sαβ ≡
(
A−1

)α
i
Siβ = J

(
A−1

)α
i
σij
(
A−1

)β
j

(37)
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The tensor s is known as the second Piola-Kirchoff stress tensor. This tensor

is particularly useful for relating the equation of mechanical equilibrium to the

free-energy. In linear elasticity, equation 13 showed that the stress and strain

tensors are thermodynamically conjugate, and as such the stress tensor could

be written as a derivative of the free-energy density. In finite-strain elasticity,

however, this is no longer the case. This is because the Cauchy stress and the

Green-Lagrange strain tensors no longer live in the same vector space - in fact,

one can show that the Cauchy stress does not, in fact, have a thermodynamically

conjugate tensor. We can, however, still construct a tensor that is thermody-

namically conjugate to the Green-Lagrange strain. This tensor, it turns out, is

the second Piola-Kirchoff stress tensor. Suppose we make a small change to the

deformation map, φ → φ + δφ. This will result in changes to the deformation

gradiant matrix and Green-Lagrange strain tensors:

δAiα =
∂δφi

∂xα
(38)

δUαβ =
∂Uαβ
∂Ajγ

δAjγ = AiαδAiβ (39)

The contribution to the free-energy from internal stresses will thus change as

δF =

∫
B0

dv
DSiα

Dxα
δφi (40)

Integrating by parts and assuming the first Piola-Kirchoff stress goes to zero at

infinity, we obtain

δF = −
∫
B0

dv SiαδAiα (41)

which shows that the first Piola-Kirchoff stress is thermodynamically conjugate

to the deformation gradient matrix. Using equation 39, we can also re-write
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this as

δF = −
∫
B0

dv sαβδUαβ (42)

thus showing that the second Piola-Kirchoff stress is thermodynamically conju-

gate to the Green-Lagrange strain.

3.4.6 Elastic Free-Energy Densities and the Neo-Hookean Model

In finite-strain elasticity theory, the free-energy density of a material is, in gen-

eral, expressed as a combination of scalar invariants obtained from the Green-

Lagrange strain tensor U . A major difference from linear elasticity, however, is

that many models make use of the lowest-order invariant, tr U . The equivalent

invariant in linear elasticity, tr u, is linear in the displacement gradient and, as

such, is excluded from the free-energy to ensure the stability of the strain-free

state. In finite-strain elasticity, however, it is important to remember that the

Green-Lagrange strain is an inherently non-linear object and, for specific kinds

of materials, tr U may be minimized in the strain-free state.

There are many different model for the free-energy density that are used in the

engineering literature, each specialized for different kinds of materials. The most

common model is the Neo-Hookean model, which was originally designed to de-

scribe rubber elasticity. In the traditional Neo-Hookean model, the free-energy

density is given by

fNH = µtr U =
1

2
µ

(
3∑
i=1

λ2i − 3

)
(43)

Here, the invariant
∑3
i=1 λ

2
i is usually referred to as I1 in the literature. While

this model is attractive for is mathematical simplicity, it is no longer appropriate

for highly compressible materials.

Another common model is the St. Venant-Kirchhoff model, which uses a direct
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extension of the free-energy of linear elasticity:

fVK =
1

2
λ (tr U)2 + µtr

(
U2
)

(44)

While more general than the traditional Neo-Hookean model, the St. Venant-

Kirchhoff model is unable to be cleanly split into independent shear and com-

pression terms - in finite-strain elasticity, the Jacobian J is no longer well ap-

proximated by 1 + tr U .

For our work, we first made use of a model that generalized the Neo-Hookean

model so as to be appropriate for highly compressible materials, which we call

the modified Neo-Hookean model. Our goal was to write a free-energy density

that was a sum of two terms - a term dependent only on the relative density ρr

associated purely with compression, and a term associated purely with shear.

Contributions to the free-energy that only depend on the relative density can

be expressed in terms of J = 1/ρr. Meanwhile, free-energy densities associated

purely with shear strain can be constructed from invariants of the shear strain

tensor Ū defined in equation 33. The lowest order invariant of Ū is again its

trace:

tr Ū =
1

2

(
J−2/3

3∑
i=1

λ2i − 3

)
(45)

Thus, we take as our free-energy density

fMNH = µ′tr Ū +
1

2
κ′

1

J
(1− J)

2
(46)

where µ′ and κ′ are constants. Our choice for the compression term comes from

the typical equation of state for compressible materials - it can be expressed

in the deformed space as κ′

2

(
ρ
ρ0

− 1
)2

. The factor 1
J is normally not included

in the engineering literature when a term of this type is used, but that is not

appropriate for highly compressible materials - it must be included to allow for
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the transformation of volume elements when going from the deformed to the

reference space.

The constants µ′ and κ′ may be identified by going to the limit of infinitesimal

deformation. To second order, first note that

J = 1 + tr u+
1

2

[
(tr u)

2 − tr
(
u2
)]

+O
(
u3
)

(47)

The compression term may then be expanded to second order, obtaining

1

2
κ′

1

J
(1− J)

2
=

1

2
κ′ (tr u)

2
+O

(
u3
)

(48)

Clearly, κ′ may be identified with the bulk modulus of linear elasticity, κ. As

for the shear term, first note that

J−2/3 = 1− 2

3
tr u+

1

3

[
2

3
(tr u)

2
+ tr

(
u2
)]

+O
(
u3
)

(49)

Plugging this into equation 33 and expanding, we find

µ′tr Ū = µ′tr
(
ū2
)
+O

(
u3
)

(50)

where ūαβ = uαβ − 1
3δ
α
β tr u is the traceless part of the linearized strain tensor. It

follows that one can equate µ′ with the shear modulus of linear elasticity, µ.

3.4.7 Strain Hardening

Thus far, we have only discussed those non-linearities that are inherent to elas-

ticity, introduced due to the distinction between the reference and deformed

spaces. These “geometric” non-linearities are not, however, the only non-

linearities we could introduce. Many materials have additional non-linearities

that result from their material properties. One such example of particular im-

24



portance in biogels is that of shear strain hardening. Following Shokef and

Safran [21], one can extend the expression for the shear strain free-energy to

include shear hardening by imposing a maximum shear strain 1/η through

fs = µtr Ū 1

1− ηtr Ū

≃ µtr Ū
(
1 + ηtr Ū + η2

(
tr Ū

)2
+ . . .

) (51)

It should be noted that, in a more general approach, the coefficients in the

geometric series above may be different for each term. For the work discussed

here, we will not be doing this, and instead simply use equation 37 unmodified.

3.4.8 The Flory-Huggins Model

While the modified neo-Hookean model is useful in providing insight into how

compressiblity affects the kind of systems that are well studied in the engi-

neering literature, such as rubber elasticity, the area of actual interest to us is

that of polymer gels. Of particular interest is the cytoskeleton, which consists

of a network of actin filaments. From the viewpoint of finite-strain elasticity,

there is an important new ingredient when it comes to polymer gels. A cross-

linked polymer gel placed in a one-component solvent can swell or shrink by

absorbing or releasing solvent. On the one hand, in good solvent the free en-

ergy associated with volume interactions between the monomers and the solvent

molecules decreases under swelling. On the other hand, swelling stretches the

polymer chains, which reduces the entropic configurational entropy. In the state

of swelling equilibrium, the swelling pressure is balanced by the elastic stress

of the stretched polymers [3, 20]. It should be noted that the state of swelling

equilibrium is not stress-free. As a result, it cannot be used as the reference

frame. In the theory of gel elasticity, the stress-free reference state is actually

the dry, solvent-free gel. With no solvent, there is no stretching of the polymer
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chains [4] and no surface energy.

To compute the elastic deformation free-energy F [φ] of a polymer gel, we will

use the Flory-Huggins mean-field theory of gels in which polymer chains are

treated as ideal Gaussian chains composed of Nx identical segments [4]. It has

been established that the physical properties of gels composed of flexible poly-

mers are well described by Flory-Huggins theory, which can also be extended to

include liquid-liquid phase separation [27].

In Flory-Huggins theory, the free-energy density is the sum of the entropic

elasticity free-energy of the Gaussian chains and the mixing free-energy of the

monomers [3, 20]:

fFH = C1 (ϕ) tr U +
kBT

w
[(1− ϕ) log (1− ϕ) + χϕ (1− ϕ)] (52)

where we have followed the notation of references [3, 4]. Here, ϕ is the volume

fraction of monomers, where ϕ = 1 in the state of the dry, solvent-free gel. If we

take the dry, solvent-free state as the reference state, then ϕ = 1
J - it is equivalent

to the relative density ρr. Next, C1 (ϕ) =
kBTϕ
wNx

, where w is the volume per Kuhn

segment of the polymer chains. U is, as before, the Green-Lagrange strain tensor

of finite-strain elasticity theory, which will be equal to zero in the dry state. It

will be useful to write tr U in terms of the principal stretch ratios λi, as in

equation 45. For a uniformly swollen gel, the stretch ratios are equal to each

other and to ϕ−1/3 because of mass conservation. Hence tr U = 3
2

(
ϕ−2/3 − 1

)
for a uniformly swollen gel. Finally, χ is the Flory χ parameter. For good

solvents, the Flory parameter is less than 1/2. Note that equation 52 gives the

free-energy in the deformed space, rather than the reference space. Note also

that, unlike the modified neo-Hookean elastic free-energy, the Flory-Huggins

free-energy density is not the sum of separate shear and compression term, since

the first term of fFH describes simultaneously the energy cost of stretching the
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polymers both under shear strain and under isotropic swelling.

The state of swelling equilibrium is found by minimizing the free-energy density

in the reference space, fFH/ϕ, with respect to ϕ. The appearance of the factor

1/ϕ is understood here by noting that the volume element dV in the physical

space of the swollen gel transforms to the volume element dv = ϕdV in the dry

gel. Minimizing fFH/ϕ with respect to ϕ gives, for Nx ≫ 1, the result that

ϕeq ≃
[(

1

2
− χ

)
Nx

]−3/5

(53)

This same result is obtained if one sets the osmotic pressure Π (ϕ) of the gel to

zero, where

Π (ϕ) = ϕ2
d (fFH/ϕ)

dϕ
= −kBT

w

[
(χϕ+ 1)ϕ+ log (1− ϕ) +

ϕ1/3

Nx

]
(54)

It the deformation away from the state of swelling equilibrium is infinitesimal,

then the free-energy density associated with the deformation has the same form

as the elastic free-energy density of uniform materials that obey linear elasticity

(Eq. 7). The shear modulus is given by

µ =
kBT

wNx
ϕ1/3 (55)

and the osmotic modulus κ = ϕdΠdϕ by

κ =
kBT

w

((
1

1− ϕ
− 2χ

)
ϕ2 − ϕ1/3

3Nx

)
(56)

[4]. For a Flory-Huggins gel, shear and bulk moduli are thus replaced as control

parameters by the number of polymer segments Nx per link and the Flory χ

parameter, the latter being a measure of the solubility of the polymers in terms

of the majority component liquid.
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We will also want to make use of a version of the Flory-Huggins model that

includes shear strain hardening. Because in the Flory-Huggins free-energy den-

sity, shear strain, and expansion or compresion strain both contribute to the

first term, we cannot include strain hardening only in the shear strain. We will

include strain hardening by replacing the first term of fFH by

C1 (ϕ) tr U
[
1 + ηtr U + η2 (tr U)2 + . . .

]
(57)

3.5 The Eulerian Formalism

While the Lagrangian formalism is very well suited to systems in mechanical

equilibrium, we will eventually want to apply finite-strain elasticity to solve

problems for dynamical systems, particular visco-elastic ones. We will find that

the Eulerian formalism is very well suited to these sorts of applications when we

eventually discuss them in section 5. As such, this subsection contains a basic

overview of the Eulerian formalism, as well as the machinery for translating

between the Lagrangian and Eulerian formalisms [7, 11, 15, 16].

3.5.1 Fluid Mechanics

While the Lagrangian formalism is built off of the formalism of linear elasticity,

the Eulerian formalism has its origins in fluid mechanics. As such, it is help-

ful to first review the basic formalism of fluid mechanics, before adapting it to

finite-strain elasticity [11].

As in elasticity, a fluid is typically treated as a collection of material elements,

forming a coarse-grained description of the underlying molecular structure.

However, rather than labelling these fluid elements by their positions in a ref-

erence frame, we instead use the coordinates of the ambient physical space in

which the fluid exists. The motion of the fluid itself is described in terms of
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multiple fields. The first is the velocity field V⃗
(
X⃗, t

)
, which tells us the veloc-

ity of the fluid element located at spatial position X⃗ at time t. In addition to

this, the density ρ
(
X⃗, t

)
is typically given. Again, these fields are all written

as functions of spatial position, rather than in terms of a reference space. It

should also be noted that we have included explicit time dependence - the use of

the velocity field necessitates this. The Eulerian formalism is thus a naturally

dynamic formalsim.

From here, equations of state relating the V⃗ , ρ, and various thermodynamic

quantities may be derived. First, consider a given region of space B occupied by

a portion of the fluid. The total mass contained in this region is
∫
B dV ρ. There

are two ways to express the rate of change of this quantity - we may directly

take its time derivative, or we may calculate the amount of mass flowing into

or out of this region per unit time using the velocity field:

∂

∂t

∫
B
dV ρ = −

∮
∂B
dSi ρV

i (58)

where dS⃗ = dSn̂ is a surface area element, with n̂ the unit normal to the surface.

Using the divergence theorem, we obtain a local form of this equation, known

as the equation of continuity:

∂ρ

∂t
+

D

Dxi
(
ρV i

)
=
∂ρ

∂t
+ ρ

DV i

Dxi
+ V i

∂ρ

∂xi
= 0 (59)

Now, before continuing, it will be important to briefly discuss a subtlety regard-

ing time differentiation in the Eulerian formalism. This topic will be discussed in

more detail in section 5, but for now, consider the rate of change of a particular

fluid element’s velocity. This quantity is known in the Eulerian formalism as a

material derivative, and is naturally defined in a Lagrangian frame of reference

as simply ∂
∂t v⃗ (x⃗, t), where x⃗ is now the position of the material element in the
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reference frame. Here v⃗ (x⃗, t) is referred to as the material velocity. Changing

variables to the spatial frame, we find that this becomes

DV i

Dt
=
∂V i

∂t
+ V j

DV i

DXj
(60)

When working in the Eulerian formalism, we will denote material time deriva-

tives by D
Dt . Notice that the equation of continuity may also be written in terms

of a material derivative:

Dρ

Dt
+ ρ

DV i

DXi
= 0 (61)

Here Dρ
Dt represents the rate of change of the density of a particular fluid volume

element.

Next, consider a specific collection of fluid elements, which occupy a space Bt ⊂

R3 at time t. Note that this is not a fixed region of space - Bt will change over

time as the fluid flows. For a compressible fluid, its volume may not even stay

fixed. Assume the fluid experiences a body force per unit volume b⃗ (x⃗, t) and

a contact force per unit area t⃗ (x⃗, t). As in elasticity, we make the assumption

that we can write t⃗ in terms of a stress tensor, ti = σijN̂
j , analogous to the

Cauchy stress. Momentum conservation gives us that

d

dt

∫
Bt

dV ρV i =

∫
Bt

dV bi +

∮
∂Bt

dS σijN̂j (62)

Unlike in section 3.4.5, we are not in mechanical equilibrium, and thus cannot

set the right-hand side of equation 62 to zero. If we wish to derive a local form

of this equation, we will need to evaluate this time derivative. To do so, it is

actually convenient to temporarily go back to a Lagrangian frame of reference.

Let B0 be the configuration of the system at time t = 0, which we will treat as

the Lagrangian reference state, and let φ (x⃗, t) : B0×R → R3 be the deformation

map that takes positions in B0 to their new positions at time t. We will assume
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that, at a fixed time t, the map φt (x⃗) = φ (x⃗, t) is smooth and bijective, and

thus has a smooth inverse map φ−1
t

(
X⃗
)
. Consider an integral of the form

∫
Bt

dV f
(
X⃗, t

)
(63)

Changing variables, we obtain

∫
B0

dv J (x⃗, t) f (φ (x⃗, t) , t) (64)

where J is the Jacobian as defined in section 3.4.3. We thus have

d

dt

∫
Bt

dV f
(
X⃗, t

)
=

∫
B0

dv

[
∂J

∂t
f (φ (x⃗, t)) + J

∂f

∂t

∣∣∣∣
X⃗=φ(x⃗,t)

+J
∂f

∂Xi

∣∣∣∣
X⃗=φ(x⃗,t)

∂φi

∂t

] (65)

Here ∂φi

∂t is simply the velocity of the material element, vi (x⃗, t) = V i
(
φ−1
t

(
X⃗
)
, t
)
.

As for the time derivative of the Jacobian, we have

∂

∂t
J (x⃗, t) = J

(
A−1
t

)α
i

∂

∂t
Aiα (x⃗, t) = J

(
A−1
t

)α
i

∂2φi

∂t∂xα

= J
∂
(
φ−1
t

)α
∂Xi

∂vi

∂xα
= J

DV i

DXi

∣∣∣∣
X⃗=φ(x⃗,t)

(66)

Therefore,

d

dt

∫
Bt

dV f =

∫
B0

dv J

[
∂f

∂t
+ V i

∂f

∂Xi
+ f

DV i

DXi

]
X⃗=φ(x⃗,t)

=

∫
Bt

dV

[
∂f

∂t
+ V i

∂f

∂Xi
+ f

DV i

DXi

] (67)

This is known as the transport theorem. We will derive a more general form of

this equation in section 3.5.7. Applying equation 67 to the momentum density
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ρV i, we obtain

d

dt

∫
Bt

dV ρV i =

∫
Bt

dV

[
∂

∂t

(
ρV i

)
+ V j

∂

∂Xj

(
ρV i

)
+ ρV i

DV j

DXj

]
(68)

Hence

D

Dt

(
ρV i

)
+ ρV i

DV j

DXj
= bi +

Dσij

DXj
(69)

Note that, using the equation of continuity,

D

Dt

(
ρV i

)
=
Dρ

Dt
V i + ρ

DV i

Dt
= ρ

(
DV i

Dt
− V i

DV j

DXj

)
(70)

This allows us to simplify equation 69, obtaining

ρ
DV i

Dt
= bi +

Dσij

DXj
(71)

This equation is known as the Navier-Stokes equation, and is the equation of

motion for a fluid.

For an isotropic fluid, the stress tensor σij is typically split into two pieces:

the hydrostatic pressure −pδij , and the “viscous” stress σ′i
j , which results from

internal friction between fluid elements. To lowest order in the velocity field,

this viscous piece may be written as

σ′i
j = η

(
DV i

DXj
+
DVj
DXi

− 2

3
δij
DV k

DXk

)
+ ζδij

DV k

DXk
(72)

where η and ζ are scalar coefficients independent of the velocity, referred to as

the first and second viscosity coefficients, or just viscosities. For future conve-

nience, we will define the spatial velocity gradient Ki
j = DV i

DXj , so that σ′i
j =

η
(
Ki

j +K i
j − 2

3δ
i
jtr K

)
+ζδijtr K. The symmetric part ofK, Σ = 1

2

(
K +KT

)
,

is often referred to as the Eulerian strain rate in the engineering literature,
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though it should be noted that it cannot be written as the time derivative of a

strain tensor and, as such, is not really a strain rate itself. We will see, however,

that it is the push-forward of the rate of change of the Green-Lagrange strain

tensor onto the deformed space.

Assume that the viscosity coefficients are uniform throughout the fluid. Plug-

ging equation 72 into the Navier-Stokes equation, we obtain the more familiar

form of the equation for an isotropic, viscous fluid:

ρ
DV i

Dt
= bi − ∂p

∂Xi
+ η∇2V i +

(
ζ − 1

3
η

)
D

DXi

DV j

DXj
(73)

where ∇2 = D
DXi

D
DXi

is the Laplacian operator.

3.5.2 Lagrangian versus Eulerian Frame of Reference

As we dicussed in the previous ection, the Eulerian formalism has its origins in

fluid dynamics, though many concepts from the Lagrangian formalism do still

carry over. In particular, we still describe the configuration of a material at

time t by Riemannian manifold Bt, though now this manifold is interpreted as a

subset of real space R3. Just as in the Lagrangian formalism, it is conventional

to choose t = 0 to correspond to a stress and strain-free configuration, i.e. the

reference configuration B0. However, it should be noted that, aside from the

strain-free assumption, there is nothing special about B0, and it is to be treated

on equal footing as any other configuration Bt. In statics, this difference between

the Lagrangian and Eulerian formalisms ultimately amounts to a difference in

coordinates. In the case of dynamics, though, the difference becomes much more

fundamental. We are no longer concerned with individual material elements, but

rather with locations in real space.
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3.5.3 The Time-Dependent Deformation Map

The deformation mapping of the Lagrangian formalism, φ (x⃗), maps the posi-

tions of material elements at t = 0 to their final positions. We can easily general-

ize this concept by introducing a time-dependent mapping φ (x⃗, t) : B0×R → R3.

There are some subtleties introduced by making such a generalization, however.

In the Lagrangian formalism, we made the assumption that the deformation

map φ (x⃗) : B0 → B ⊂ R3 was smooth and bijective, allowing us to define a

smooth inverse map φ−1
(
X⃗
)
: B → B0. For a body that does not occupy all

of real space, however, the range of the deformation map, i.e. the configuration

Bt, will now be time-dependent. this is why the time-dependent map is written

as having a co-domain of R3 rather than Bt - at time t, the body may occupy

positions it does not occupy at time t′. Mathematically, this means that the

time-dependent deformation mapping will no longer be surjective in general. To

facilitate the definition of the inverse map, we define the deformation map at

fixed time t, φt (x⃗) : B0 → Bt ⊂ R3, which we may safely treat as bijective. Note

this means that we cannot, in general, write a time-dependent inverse mapping

φ−1
(
X⃗, t

)
, only inverse mappings at fixed times, φ−1

t

(
X⃗
)
.

The issue of the inverse mapping leads directly to a question regarding whether

we may take its time derivative. While not important in the case of statics,

this will be a very important question in the case of dynamics. We argue that,

assuming the deformation map is smooth in both space and time, this derivative

can still be well defined, though some care has to be taken. We define the time

derivative of the inverse mapping φ−1
t at the real space position X⃗ as:

∂

∂t
φ−1
t

(
X⃗
)
= lim
δt→0+

φ−1
t+δt

(
X⃗
)
− φ−1

t

(
X⃗
)

δt
(74)
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Note that the material element present at this location is different at the times

t and t+ δt - it is the physical location that is being held fixed.

3.5.4 Elasticity in the Eulerian Formalism

Adapting the formalism of fluid mechanics to elasticity is fairly straightforward

- we simply interpret the stress tensor as the Cauchy stress defined in section

3.4.5. It should be noted that, for a purely elastic system, viscous stress does

not typically play a role - the Cauchy stress is assumed to be independent of

velocity. Including viscous stress along with the original elastic Cauchy stress

will be necessary for visco-elastic systems, but we will save that discussion until

section 5.

As before, there are many potential forms the Cauchy stress may take. For a

purely elastic system (no energy dissipation), we will typically assume that the

Cauchy stress has no explicit time dependence, and may be written as a function

of the deformation gradient matrix alone: σ = G (A). A material that has a

constitutive law of this form is known as a Cauchy elastic material, and the

function G (A) is called the response function. Note that, because A is defined

relative to a reference configuration, the exact form of the response function

G (A) will depend on our choice of reference state. Ultimately, the Cauchy

stress should be independent of this choice - if we change our choice of reference

state from B0 to a new state B′
0, resulting in a new deformation gradient matrix

A′ and new response function G′, we must have that G (A) = G′ (A′).

For many materials, there is a well defined free-energy density function, related

to the Cauchy stress by

σij =
1

J
Aiα

∂f

∂Uαβ
Ajβ (75)

Materials for which this holds true are known as either Green elastic or hyper-

elastic materials.
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3.5.5 Vector, Covector, and Tensor Fields

As we will see when generalizing to dynamics in section 5, it is important to be

able to translate between the Lagrangian and Eulerian formalisms. To facilitate

this, the next three subsections will review some additional concepts and tools

from differential geometry [12]. For the basic definition of a differential manifold,

see section 3.3.

We have been working with vectors, such as the velocity V⃗ , throughout this

section, but we have not provided a rigorous mathematical definition of them.

The most common definition of a tangent vector in differential geometry is as

a kind of linear map called a derivation. Let M be a differential manifold,

and x ∈ M be a point on that manifold. A derivation at x is a linear map

v : C∞ (M) → R from the space of smooth functions on M to the real numbers

that satisfies the product (also sometimes called the Leibniz) rule: for all f, g ∈

C∞ (M),

v (fg) = f (x) v (g) + v (f) g (x) (76)

The set of all derivations at x is called the tangent space at x, denoted TxM, and

an element of TxM is referred to as a tangent vector based at x. The disjoint

union of all of M’s tangent spaces,
∐
x∈M TxM, is known as the tangent bundle

of M, and is denoted as TM.

Suppose we have two differential manifolds M and N , and a smooth mapping

φ : M → N between them. We define the differential (also sometimes called the

tangent map or push-forward) of φ at x ∈ M to be the mapping dxφ : TxM →

Tφ(x)N such that, for all v⃗ ∈ TxM and f ∈ C∞ (N ),

dxφ (v⃗) (f) = v⃗ (f ◦ φ) (77)
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This definition is also easily generalized to a global differential dφ : TM → TN

that restricts to the local differential dxφ when the domain is restricted to TxM.

To relate these concepts to the more intuitive concept of vectors from physics,

let’s consider taking R3 as our manifold. In this case, our definition tells us that

a tangent vector v⃗ ∈ TxR3 (where x⃗ ∈ R3) is really just a directional derivative:

v⃗ (f) =
d

ds
f (x⃗+ sv⃗)

∣∣∣∣
s=0

= vi
∂f

∂xi
(78)

Here the (scalar) quantities vi=1,2,3 are referred to as the components of v⃗ in

the coordinates
{
xi
}
. When interpreting v⃗ as a directional derivative in this

manner, the set of operators
{

∂
∂xi

∣∣
x

}
is a basis for TxR3. Note this is not the

only basis we could choose, though it is the most common choice.

Using the concepts of a coordinate chart (see section 3.3) and the differential

map defined in equation 77, we may similarly interpret tangent vectors on a

general manifold as directional derivatives. Let M be an n-dimensional smooth

manifold and χ : M ⊇ U → Rn be a coordinate chart on some open subset of

M. The differential dxχ will then take a tangent vector v⃗ ∈ TxM based at a

point x ∈ U ⊂ M to a directional derivative vi ∂
∂xi ∈ Tχ(x)Rn:

dxχ (v⃗) = vi
∂

∂xi

∣∣∣∣
χ(x)

(79)

Clearly, we can take
{

∂
∂xi

∣∣
χ(x)

}
as a basis for TxM, and

{
vi
}
as the compo-

nents of v⃗ in this basis.

When dealing with smooth maps between manifolds M and N , to connect back

to our notation developed for the Lagrangian formalism, we will denote vec-

tor (or tensor) components in the domain manifold M using Greek indices, and

vector (or tensor) components in the co-domain manifold N using Latin indices.

The differential of a smooth map φ : M → N , when expressed in coordinates,
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can be shown to be analogous to the deformation gradient matrix: using coor-

dinate charts xα = xα (x⃗) and Xi = Xi
(
X⃗
)
for M and N respectively,

(dxφ)
i
α =

∂φi

∂xα
(80)

where φi = Xi ◦ φ.

A vector field on a manifold M is defined as a smooth map v⃗ : M → TM

such that, for any point x ∈ M, v⃗ (x) ∈ TxM, i.e. points are mapped to

tangent vectors within their own tangent space. In the language of differential

geometry, vector fields are often referred to as “sections” of the projection map

π : TM → M, which maps tangent vectors to their base points. Suppose v⃗ is a

vector field on a differential manifold M, and that φ : M → N is a smooth map

between differential manifolds. Then φ will induce a vector field on N , called

the push-forward of v⃗ by φ, denoted φ∗v⃗, defined such that, for all X ∈ N ,

(φ∗v⃗) (X) =
(
dφ−1(X)φ

) (
v⃗
(
φ−1 (X)

))
(81)

We may also define a mapping in the opposite direction by making use of the

inverse mapping φ−1 : N → M. Define the pull-back of a vector field V⃗ on N

by φ to be its push-forward by φ−1: for all x ∈ M,

(
φ∗V⃗

)
(x) =

(
dφ(x)φ

−1
) (
V⃗ (φ (x))

)
(82)

The push-forward and pull-back provide us with a means of “translating” vector

fields on one manifold into vector fields on the other.

The tangent space TxM is a vector space and, as such, has a dual space T ∗
xM,

referred to as the cotangent space. Rigorously, it is defined as the space of

linear operators ω : TxM → R. Elements of the cotangent space are referred
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to as cotangent vectors (or sometimes co-vectors), and the disjoint union of all

of M’s cotangent spaces is referred to as the cotangent bundle, T ∗M. The

basis cotangent vectors dual to
{

∂
∂xi

∣∣
x

}
are typically denoted as

{
dxi
}
- the

reasoning for this notation will be apparent soon.

Covector fields are defined analogously to vector fields: they are smooth maps

ω : M → T ∗M such that points x ∈ M are mapped to cotangent vectors

within their own cotangent space T ∗
xM. An important example of a cotangent

field is the differential of a smooth function f ∈ C∞ (M), defined as the map

df : M → T ∗M such that, for all x ∈ M and v⃗ ∈ TxM,

(df (x)) (v⃗) = v⃗ (f) = vi
∂f

∂xi
(83)

It is the fact that the differential of a function is a cotangent field that leads

to the notational choice of writing the natural basis vectors of T ∗
xM as dxi -

they can be interpreted as the differentials of the coordinate chart. In these

coordinates, df = ∂f
∂xi dx

i.

Given a smooth map φ : M → N , the differential dxφ : TxM → Tφ(x)N has

associated with it a dual map d∗xφ : T ∗
φ(x)N → T ∗

xM, called either the cotangent

or pull-back map of φ. It is defined such that, for all v⃗ ∈ TxM and Ω ∈ T ∗
φ(x)N ,

(d∗xφ (Ω)) (v⃗) = Ω (dxφ (v⃗)) (84)

Just as, given a vector field v⃗ on M, φ induced a vector field on N , the dual

to the differential map allows φ to, given a covector field Ω on N , induce a

covector field on M:

(φ∗Ω) (x) = (d∗xφ) (Ω (φ (x))) (85)
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This covector field is referred to as the pull-back of Ω by φ. Similarly to before,

we also define the push-forward of a covector field ω on M by φ to be its

pull-back by φ−1:

(φ∗ω) (X) =
(
d∗Xφ

−1
) (
ω
(
φ−1 (X)

))
(86)

In coordinates, the push-forward and pull-back of vector and covector fields are

given as follows. Let v⃗ be a vector field on M, V⃗ a vector field on N , ω a

covector field on M, and Ω a covector field on N . Then, given and smooth

mapping φ : M → N with smooth inverse φ−1, we have

(φ∗v⃗)
i
(X) =

∂φi

∂xα

∣∣∣∣
x=φ−1(X)

vα
(
φ−1 (X)

)
(87)

(
φ∗V⃗

)α
(x) =

∂
(
φ−1

)α
∂Xi

∣∣∣∣∣
X=φ(x)

V i (φ (x)) (88)

(φ∗ω)i (X) =
∂
(
φ−1

)α
∂Xi

∣∣∣∣∣
X

ωα
(
φ−1 (X)

)
(89)

(φ∗Ω)α (x) =
∂φi

∂xα

∣∣∣∣
x

Ωi (φ (x)) (90)

All of the definitions and results discussed in this subsection may be readily

generalized to the case of tensors and tensor fields. When performing a push-

forward or pull-back on a tensor field, each index is pushed or pulled back

individually. In the case of tensors on a Riemannian manifold, where raising

and lowering indices is well defined, it should be noted that the act of rais-

ing/lowering an index does not commute taking a push-forward or pull-back. In

coordinates, the push-forward of a type (m,n) reference space tensor t and the
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pull-back of a type (m,n) deformed space tensor T are given by

(φ∗t)
i1...im

j1...jn
= Ai1α1

. . . Aimαm
tα1...αm

β1...βn

(
A−1

)β1

j1
. . .
(
A−1

)βn

jn
(91)

(φ∗T)
α1...αm

β1...βn
=
(
A−1

)α1

i1
. . .
(
A−1

)αm

im
T i1...imj1...jnA

j1
β1
. . . Ajnβn

(92)

3.5.6 Flows and the Convective Derivative

In fluid mechanics, an important concept is that of the flow-line (or streamline),

which refers to the path a fluid elements takes as it flows through space. In

differential geometry, this concept is formalized through integral curves and

flow operators, which we define as follows. First, suppose M is a differential

manifold and v⃗ is a potentially time-dependent vector field on M. An integral

curve of v⃗ is a curve γ : R ⊇ I → M (here I is an open interval in the reals) to

which v⃗ is tangent at every point: for all t ∈ I,

dγ

dt
= v⃗ (γ (t) , t) (93)

An integral curve is called maximal if it domain I cannot be extended to any

larger open interval. We will typically only consider maximal integral curves.

Given a vector field, we can define the flow-lines generated by it as the totatility

of all of its integral curves. Rigorously, we say that the (time-dependent) flow

of v⃗ is a smooth map ψ : I × I ×M ⊇ E → M with the following properties:

(1) For all t0 ∈ I and x ∈ M, the set E(t0,x) = {t ∈ I | (t, t0, x) ∈ E} is an open

interval of the reals with t0 ∈ E(t0,x), and ψ(t0,x) : t 7→ ψ (t, t0, x) is the unique

maximal integral curve of v⃗ with ψ(t0,x) = x

(2) If t ∈ E(t0,x) and y = ψ(t0,x) (t), then E(t,y) = E(t0,x) and ψ(t,y) = ψ(t0,x)

(3) For all t, t0 ∈ I, the set Ut,t0 = {x ∈ M | (t, t0, x) ∈ E} is an open subset

of M, and the map ψt,t0 : x 7→ ψ (t, t0, x) is a diffeomorphism from Ut,t0 onto
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Ut0,t (i.e. it is smooth and bijective, with smooth inverse), with inverse map

ψ−1
t,t0 = ψt0,t

and finally, (4) if x ∈ Ut,t0 and ψt,t0 (x) ∈ Ut′,t, then x ∈ Ut′,t0 and ψt′,t (ψt,t0 (x)) =

ψt′,t0 (x).

All vector fields will generate a flow. For specifically the velocity field V⃗ (X, t) of

a moving body, the map ψ (t, t0, X) tells us where a material element that was

located at position X at time t0 will be at time t. The curves ψ(t0,X) are the

flow-lines of the material elements, and the maps ψt,t0 (X) may be expressed in

terms of the time-dependent deformation map and its inverse as

ψt,t0 (x) = φt
(
φ−1
t0 (X)

)
(94)

As physicists, we are familiar with the concept of covariant differentiation. It is a

way of defining the directional derivative of a vector (or more generally, a tensor)

field on a manifold. To properly define covariant differentiation, an additional

piece of information called the connection (or equivalently, the Christoffel sym-

bols) needs to be provided. For a Riemannian manifold, a unique torsion-free

connection is automatically provided by the metric, but for a general manifold

a connection needs to be introduced separately. However, the concept of a flow

now provides us with another, alternative method of generalizing directional

derivatives to act on vectors, one that does not rely on any additional informa-

tion.

Suppose M is a differentiable manifold, v⃗ a smooth vector field on M, and T

a smooth tensor field on M. Let ψ be the flow generated by v⃗. The map ψt,t0

is a smooth map from M to itself, and as such will induce push-forwards and

pull-backs of tensor fields. In particular, we can imagine pulling back the tensor

T (X, t) to the position x = ψt0,t (X). This pull-back action thus provides us

with an alternative means of comparing tensors at two positions besides parallel
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transport. With this in mind, we define the convective derivative of a tensor

field T⃗ with respect to a vector field v⃗ (both of which may be time-dependent)

as

Dv⃗T
Dt

(X, t) = lim
δt→0+

(
ψ∗
t+δt,tT

)
(X, t+ δt)−T (X, t)

δt
=

d

dt′
(
ψ∗
t′,tT (t′)

)∣∣∣∣
t′=t

(95)

where ψ is the flow generated by v⃗. The above derivative is often split into

two pieces using the chain rule - one piece that differentiates the explicit time

dependence of T, and one that does not:

Dv⃗T
Dt

(X, t) =
∂T

∂t
+

d

dt′
(
ψ∗
t′,tT (t)

)∣∣∣∣
t′=t

=
∂T

∂t
+ Lv⃗T (96)

where the second term is known as the Lie derivative (the convective derivative

is referred to as the Lie derivative in some texts, in which case the fixed-time

part is referred to as the autonomous Lie derivative). When the field we are

differentiating with respect to is clear from context, we will usually drop the

subscript v⃗ in the notation, denoting the convective derivative as D
Dt and the

Lie derivative as L.

Let Ai
j (t

′, t) =
∂ψi

t′,t
∂Xj = Aiα (t

′)
(
A−1

)α
j
(t). We may then write the convective

derivative in coordinate form as

(
DT

Dt

)i1...im
j1...jn

=
d

dt′

[
T
i′1...i

′
m

j′1...j
′
n
(ψt′,t (x) , t

′) (t)

m∏
p=1

Aip
i′p
(t, t′)

·
n∏
q=1

Ajq
j′q
(t′, t)

]∣∣∣∣∣
t′=t

=
∂T i1...imj1...jn

∂t
+ V k

∂T i1...imj1...jn
∂Xk

−
m∑
p=1

T
i1...ip−1kip+1...im

j1...jn

∂V ip

∂Xk

+

n∑
q=1

T i1...imj1...jq−1kjq+1...jn

∂V k

∂Xjq

(97)
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For a torsion-free connection, such as that provided by a metric, we may replace

the spatial partial derivatives in the above equation with covariant derivatives

if we so choose. If we do, then the first two terms above become the material

time derivative DT
Dt . Notice that, unlike the material derivative, the convective

derivative depends on not just the velocity field, but also its gradient. The two

derivatives will be equivalent only when we are differentiating a scalar field, or

when the velocity field is uniform.

3.5.7 Differential Forms and Integration on Manifolds

In physics, we describe integration over volumes and surfaces is described in

terms of infinitesimal volume or area elements. In differential geometry, integrals

over manifolds are defined using different, but ultimately equivalent language.

First, let’s consider the simple case of a line integral. As we discussed in section

3.5.5, the differential of a function is in fact a covector field. As such, it makes

sense that covector fields are the natural kind of object that we can perform

line integrals on. To actually evaluate such an integral, we need to pull-back

the covector field onto the real line. If γ : [a, b] → M is a smooth curve on a

manifold M, and ω is a covector field on M, we define the line integral of ω

along γ as ∫
γ

ω =

∫ b

a

γ∗ω =

∫ b

a

dt
dγi

dt
ωi (γ (t)) (98)

where γ∗ω is the pull-back of ω onto R by γ.

It can be shown that the appropriate object to represent k-dimensional volume

elements by is an anti-symmetric, fully covariant rank k tensor, typically referred

to as a differential k-form, or simply k-forms. Before discussing integration of

k-forms, let’s first briefly cover some basic properties of k-forms.

Let T ∗kM be the bundle of rank k covariant tensors on M (i.e. tensors of the

form T = Ti1...ikdx
i1 . . . dxik). The vector space consisting of those tensor fields
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that are anti-symmetric in all of their indices, i.e. k-forms, is denoted ΩkM.

Given a k-form α ∈ ΩkM and an l-form β ∈ ΩlM, we define their wedge

product to be the (k + l)-form given by

(
α ∧ β

)
i1...ik+l

=
1

k!l!

∑
σ∈Sk+l

(sgn σ)ασ(i1)...σ(ik)βσ(ik+1)...σ(ik+l) (99)

where Sk+l is the set of all permutations of k+l elements. The wedge product is,

like a typical tensor product, bilinear and associative. However, unlike a typical

tensor product, the wedge product is anti-commutative: α ∧ β = (−1)
kl
β ∧ α.

Note this implies that the wedge product of a k-form with itself is zero. A

very useful formula involving the wedge product is as follows. Let ω1, . . . , ωk be

covectors, and v⃗1, . . . , v⃗k be vectors. Then

(ω1 ∧ · · · ∧ ωk)i1...ik v
i1
1 · · · vikk = det

(
ωj (v⃗i)

)
(100)

Given a coordiate chart
{
xi
}
, any k-form ω may be written in the form

ω =
∑

i1<···<ik

ωi1...ikdx
i1 ∧ · · · ∧ dxik (101)

Another important operation involving k-forms is that of interior multiplication.

Let ω be a k-form and v⃗ be a vector. Then interior product of ω by v⃗ is defined

as the (k − 1)-form obtained by contracting v⃗ with the first index of ω:

(iv⃗ω)i1...ik−1
= vjωji1...ik−1

(102)

Interior multiplication is nilpotent, so iv⃗ ◦ iv⃗ = 0. The interior product of a

wedge product is given, for k-form α and l-form β, by a graded product rule:

iv⃗
(
α ∧ β

)
= (iv⃗α) ∧ β + (−1)

k
α ∧

(
iv⃗β
)

(103)
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An operator that satisfies a graded product rule is known as an antideriva-

tion. Another important antiderivation is exterior differentiation. Given an

n-dimensional manifold M, k = 0, 1, . . . , there exists a unique linear opera-

tor d : ΩkM → Ωk+1M that is an antiderivation, nilpotent, and for k = 0 is

equivalent to the differential. In coordinates
{
xi
}
, we have

dω =
∑

i1<···<ik

n∑
j=1

∂ωi1...ik
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxik (104)

An additional important property of the exterior derivative is that it commutes

with pull-backs and push-forwards. Also, an very useful relationship between the

exterior derivative, interior multiplication, and the Lie derivative exists called

Cartan’s magic formula. If ω ∈ ΩkM and v⃗ be a vector field on M, then

Lv⃗ ω = d (iv⃗ ω) + iv⃗ (dω) (105)

As mentioned earlier, k-forms are the natural object to represent k-dimensional

volume forms by. Let M be a differentiable manifold, ω be a compactly sup-

ported k-form on M. In a coordinate chart
{
xi
}
, we can write ω in the form

ω = ωdx1 ∧ · · · ∧ dxk, where ω
(
x1, . . . , xk

)
is a scalar field. We then define the

integral of ω over M analogously to how we defined line integrals in equation

98: ∫
M
ω =

∫
χ(M)

dx1 · · · dxn ω
(
x1, . . . , xn

)
(106)

Suppose we have two differentiable manifolds M and N , and a smooth, orien-

tation preserving map φ : M → N between them. We may express an integral

over M as an integral over N or vice versa as:

∫
M
ω =

∫
N
φ∗ω,

∫
N
Ω =

∫
M
φ∗Ω (107)
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Using the formalism of differential forms, we can derive the general forms of

both Stoke’s law, as well as the transport theorem. For Stoke’s theorem, we

have ∫
M
ω =

∮
∂M

dω (108)

As for the transport theorem, we have

d

dt

∫
Bt

Ω (X, t) =

∫
Bt

D
Dt

Ω(X, t) (109)

3.5.8 Translating Between the Lagrangian and Eulerian Formalisms

The primary tool for translating between the Lagrangian and Eulerian for-

malisms is push-forwards and pull-backs. Every reference space tensor can be

pushed forward to the deformed space, and vice versa. We have already seen

this with the stress tensors, albeit with a small caveat: stress tensors represent

forces per unit area, and as such how area elements transform under deforma-

tion must be included. Consider a deformed space tensor quantity T. The Piola

transform of T is defined as the reference space tensor

t = Jφ∗T (110)

where J is the Jacobian of the deformation, J = detA. In the special case

of a vector field V⃗ , this is equivalent to defining the Piola transform v⃗ as the

reference space vector field satisfying

iv⃗ dv = φ∗ (iV⃗ dV
)

(111)

With this definition, it can be shown that

div (t) = J (Div T)|X=φ(x) (112)
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where div represents taking a divergence in the reference space, and Div repre-

sents taking a divergence in the deformed space. The Piola transformation is

the appropriate way of “pulling back” tensor densities such as the stress onto

the reference state. In this language, the second Piola-Kirchhoff stress is the

Piola transformation of the Cauchy stress. The first Piola-Kirchhoff stress can

also be thought of as a Piola transformation, albeit only acting on one index.

There are additional important examples of quantities normally defined on one

space that can be pushed forward or pulled back onto the other. One is the

Green-Lagrange strain tenor Uαβ . Its push-forward onto the deformed space is

referred to in the engineering literature as the Euler-Almansi, or the Eulerian,

stain tensor,

Eij =
(
A−1

)α
i
Uαβ

(
A−1

)β
j
=

1

2

(
Gij −

(
A−1

)α
i

(
A−1

)
αj

)
(113)

In the case of dynamics, the various transformations of the spatial velocity

V⃗ (X, t) will be incredibly important. First, we define the material velocity

v⃗ : B0 × R → TBt as

v⃗ (x, t) = V⃗ (φ (x, t) , t) (114)

The material velocity gives the velocity (in real space) of the material element

x at time t. It should be noted that the material velocity maps reference space

positions to deformed space tangent vectors and, as such, is not a proper tensor

field. It is, however, related to the deformation map in a simple way - it is just

its partial time derivative:

vi (x, t) =
∂φi

∂t
(115)
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To obtain a proper vector field on the reference space, we need to pull-back the

spatial velocity. Define the convective velocity as

u⃗ (x, t) = φ∗V⃗ , uα (x, t) =
(
A−1

)α
i
vi (116)

These different velocities are useful when discussing the rate of change of the

deformation map, as well as the strain tensors.

4 Cavitation

4.1 Introduction

Now that we have developed the formalism of finite-strain elasticity theory, we

may begin to apply it to actual problems. Here, we will focus on the problem

of cavitation in compressible systems, with the eventual goal of exploring the

specific example of biogels.

It is well known in the context of rubber elasticity that a cavity, when pres-

surized beyond a finite critical pressure Pc =
5
2µ, will begin to expand without

limit. Realistically, of course, the expansion continues only until the elastic na-

ture of the material breaks down, causing it to fracture, but in a hypothetical

material that never breaks down the expansion would continue uninterrupted.

This phenomenon is an inherently non-linear effect, and does not exist in linear

elasticity.

Cavitation is not often discussed in the physics literature, though there is a

significant amount of discussion about it in the engineering literature. This

discussion, however, is almost exclusively done in the context of rubbers, which

are treated as incompressible or nearly incompressible [6]. As such, it is not

well known what effects compressibility would have on cavitation. The effects

of additional, material dependent non-linearities on cavitation is also largely
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unexplored.

Both compressibility and material non-linearities are present in biogels, with the

latter being caused by strain-hardening. Of particular interest is the cytoskele-

ton if the cell, where it is known that liquid-liquid phase separation produces

droplets that do not undergo Oswald ripening, or coarsening, which refers to the

growth of larger droplets of the minority phase and a corresponding shrinkage

of smaller droplets. In contrast, liquid-liquid phase separation in cell produces

a distribution of droplets with constant radii. This is attributed to the fact that

the cell is permeated by networks of biopolymers - growth of minority-phase

droplets can be stopped by elastic deformation of the surrounding polymer net-

work. However, when the osmotic pressure of the minority phase exceeds a

critical value on the order of the polymer network’s elastic modulus, droplets

begin to grow in an unlimited fashion. This appears very similar to cavitation,

and motivates exploring how cavitation is altered in a biogel setting.

4.2 The Cavitation Problem in Linear Elasticity

Let us first discuss cavitation in the setting of linear elasticity, where we will

see that it actually does not exist. In the cavitation problem, a spherical cavity

of initial radius r0 is pressurized, causing it to expand to a new radius R0. Due

to the spherical symmetry of the system, the displacement field will be entirely

radial, and will only depend on the distance from the center of the cavity:

u⃗ (x⃗) = u (r) r̂ (117)

For such a function, it can be easily shown that ∇2u⃗ = ∇⃗
(
∇⃗ · u⃗

)
. This leads

to a simplified equation of mechanical equilibrium,

∇2u⃗ = 0 (118)

50



Considering that the displacement field must go to zero at infinity, this has

solution

u (r) = (R0 − r0)
(r0
r

)2
(119)

This leads to a (linearized) strain tensor given (in spherical coordinates) by

u (r) =


u′ (r) 0 0

0 u(r)
r 0

0 0 u(r)
r

 =
u (r)

r


−2 0 0

0 1 0

0 0 1

 (120)

Note that the strain tensor is traceless:

tr u = ∇⃗ · u⃗ = 0 (121)

and thus this deformation is volume-preserving. This will no longer be true in

finite-strain elasticity.

There are two methods by which we could calculate the relationship between the

cavity pressure and its final radius R0 - free-energy minimization, or making use

of the boundary condition at the cavity surface. We will first show the latter.

At the cavity surface, we must have

σrr (r0) =
2γ

R0
− P (122)

where P is the pressure inside the cavity, and γ represents a surface tension

of the cavity, which is treated as an external force per unit area. It should be

noted that, in linear elasticity, we assume that δr0 ≡ R0 − r0 ≪ r0, and can

thus make the approximation

σrr (r0) =
2γ

r0

(
1− R0 − r0

r0

)
− P +O

(
δr20
)

(123)
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Recall that the stress is related to the (linearized) strain by equation 14. We

thus have

σrr (r0) = κtr u+ 2µūrr = 2µurr = −4µ
R0 − r0
r0

(124)

where we have made use of the fact that, to first-order, the strain tensor is

traceless. Inserting this into equation 123 and solving for the pressure, we

obtain that

P =
2γ

R0
+ 4µ

R0 − r0
r0

=
2γ

r0
+

(
4µ− 2γ

r0

)
R0 − r0
r0

+O
(
δr20
)

(125)

Alternatively, we could minimize the free-energy, which is given by

FLE = γ
(
4πR2

0

)
− P

(
4π

3
R3

0

)
+ 4π

∫ ∞

r0

dr r2fLE (r) (126)

where fLE is the free-energy density given in equation 6:

fLE =
1

2
κ (tr u)

2
+ µtr

(
u2
)
= 6 (R0 − r0)

2 r
4
0

r6
(127)

Integrating, we obtain

FLE = γ
(
4πR2

0

)
− P

(
4π

3
R3

0

)
+ 8πµ (R0 − r0)

2
r0 (128)

We now minimize with respect to R0:

2γR0 − PR2
0 + 4µ (R0 − r0) r0 = 0 (129)
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Solving for P and taking the limit R0 − r0 ≪ r0, we find

P =
2γ

R0
+ 4µr0

R0 − r0
R2

0

=
2γ

R0
+ 4µ

R0 − r0
r0 + 2 (R0 − r0) +O (δr20)

=
2γ

r0
+

(
4µ− 2γ

r0

)
R0 − r0
r0

+O
(
δr20
) (130)

When it comes to cavitation, taking the limit of R0 → ∞ is not well defined,

since the theory of linear elasticity should only be valid for R0 − r0 ≪ r0. It

is insightful, however, to see what occurs when P is at the cavitation critical

pressure, Pc =
5
2µ:

5

2
µ =

2γ

R0
+ 4µ

R0 − r0
r0

⇒ 5

2
µR0 = 2γ + 4µ (R0 − r0) +O

(
δr20
)

⇒ R0 =
1

8

(
13r0 −

4γ

µ

) (131)

Hence R0 is finite at the cavitation critical pressure, and it would appear cav-

itation does not occur. It should, of course, be noted that, for this solution to

be stable, we must have R0 > r0. This will be the case as long as γ < 5
4µr0 -

above this threshold value, the surface tension will overcome the pressure and

cause the cavity to shrink.

4.3 Spherical Symmetry

For the cavitation problem, one assumes spherical symmetry. The reference con-

figuration B0 will be defined to be a strain-free state that has a spherical cavity

of radius r0 at the origin. The cavity is then pressurized with a pressure P , caus-

ing it to expand. The new, deformed configuration B is described by a mapping

from a material point at (r, θ, ϕ) ∈ B0 to a new location (φ (r) , θ, ϕ) ∈ B. The

radius of the swollen cavity in B is then R0 = φ (r0) (See figure 1). The in-

troduction of spherical symmetry simplifies our expressions for the deformation
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gradient matrix, strain tensor, and Jacobian:

Aiα =
∂φi

∂xα
=


φ′ 0 0

0 1 0

0 0 1

 (132)

J =

√
detG

det g
detA =

φ2

r2
φ′ (133)

Uαβ =
1

2


φ′2 − 1 0 0

0 φ2

r2 − 1 0

0 0 φ2

r2 − 1

 (134)

tr U =
1

2
φ′2 +

φ2

r2
− 3

2
(135)

tr Ū = J−2/3

(
1

2
φ′2 +

φ2

r2

)
− 3

2
(136)

4.4 Cavitation in the Incompressible Case

4.4.1 The Deformation Map

Recall that the density ρ (R) of the deformed material is related to that of the

undeformed material by the Jacobian J (R) = ρ0
ρ(R) = 1/ρr. It follows from the

conservation of mass that ρ (R)R2dR = ρ0r
2dr, which gives ρr =

1
J = r2

φ(r)2φ′(r)
,

where φ′ (r) is the derivative of the deformation map. For an incompressible

system with fixed Jacobian J = 1, this reduces to the differential equation

φ′ (r) = r2

φ(r)2
, with exact solution

φ (r) =
(
R3

0 + r3 − r30
)1/3

(137)
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4.4.2 Minimization of the Free Energy

There are two approaches to deriving cavitation for an incompressible material.

The first is to minimize the free energy. Because the material is incompressible,

the Jacobian will not enter its free-energy density, which can be written simply

as

finc = µtr U = µ

(
φ2

r2
+

1

2
φ′2 − 3

2

)
(138)

The stretch ratio along the radial direction is

λ (r) ≡ φ (r)

r
=

1

r

(
r3 +R3

0 − r30
)1/3

(139)

The stretch ratio at the surface of the cavity is then λ (r0) = R0/r0, which we

will denote by λ0. Since φ
′ = 1/λ2, one can write the elastic free-energy density

as

finc (r) = µ

(
λ (r)

2
+

1

2λ (r)
4 − 3

2

)
(140)

The total free-energy F is written as

F = γ
(
4πR2

0

)
− P

(
4π

3
R3

0

)
+ 4π

∫ ∞

r0

dr r2finc (141)

Here, P is the pressure inside the cavity and γ represents a surface tension of the

cavity, which is treated as an external force per unit area. The last term is the

contribution to the free-energy from elastic forces, which for our incompressible

system is given by

Fel = 4πµ

∫ ∞

r0

dr r2
(
λ2 +

1

2λ4
− 3

2

)
(142)
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Change the integration variable from r to λ using

λ (r) =
1

r

(
r3 +R3

0 − r30
)1/3 ⇒ r (λ)

3
=
R3

0 − r30
λ3 − 1

(143)

and

dλ =
1

r

(
φ′ − φ

r

)
dr = −λ− λ−2

r
dr ⇒ dr

r
= − λ2

λ3 − 1
dλ (144)

This gives

Fel = 4πµ
(
R3

0 − r30
) ∫ λ0

1

dλ

(
λ

λ3 − 1

)2(
λ2 +

1

2λ4
− 3

2

)
= 2πµ

(
R3

0 − r30
) ∫ λ0

1

dλ
2λ6 − 3λ4 + 1

λ2 (λ3 − 1)
2

(145)

This integral can be evaluated using partial fraction decomposition as follows.

Our goal is to rewrite the integrand as a sum of partial fractions:

2λ6 − 3λ4 + 1

λ2 (λ3 − 1)
2 =

A1

λ
+
A2

λ2
+

B1

λ− 1
+

B2

(λ− 1)
2

+
C1λ+D1

λ2 + λ+ 1
+

C2λ+D2

(λ2 + λ+ 1)
2

(146)

Re-writing this, we have

2λ6 − 3λ4 + 1 = A1λ
(
λ3 − 1

)2
= A1λ

(
λ3 − 1

)2
+A2

(
λ3 − 1

)2
+B1λ

2
(
λ3 − 1

) (
λ2 + λ+ 1

)
+B2λ

2
(
λ2 + λ+ 1

)2
+(C1λ+D1)λ

2
(
λ3 − 1

)
(λ− 1) + (C2λ+D2)λ

2 (λ− 1)
2

(147)

= (A1 +B1 + C1)λ
7 + (A2 +B1 − C1 +D1)λ

6 + (B1 + C2 −D1)λ
5

+(−2A1 −B1 +B2 − C1 − 2C2 +D2)λ
4

+(−2A2 −B1 +B2 + C1 + C2 −D1 − 2D2)λ
3

+(−B1 +B2 +D1 +D2)λ
2 +A1λ+A2

(148)
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Solving term-by-term, we find:

Zeroth-order:

A2 = 1 (149)

First-order:

A1 = 0 (150)

Second-order:

−B1 +B2 +D1 +D2 = 0 ⇒ B1 = B2 +D1 +D2 (151)

Third-order:

−2A2 −B1 +B2 + C1 + C2 −D1 − 2D2 = 0

⇒ C1 = 2− C2 + 2D1 + 3D2

(152)

Fourth-order:

−2A1 −B1 +B2 − C1 − 2C2 +D2 = −3

⇒ C2 = 1− 3D1 − 3D2 ⇒ C1 = 1 + 5D1 + 6D2

(153)

Fifth-order:

B1 +D2 −D1 = 0 ⇒ D1 =
1

3
(1 +B2 − 2D2)

⇒ B1 =
1

3
(1 + 4B2 +D2) , C1 =

1

3
(8 + 5B2 − 2D2) , C2 = −B2 −D2

(154)

Sixth-order:

A2 +B1 − C1 +D1 = 2 ⇒ D2 = −1

⇒ B1 =
4

3
B2, C1 =

5

3
B2, C2 = 1−B2, D1 = 1 +

1

3
B2

(155)
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Seventh-order:

A1 +B1 + C1 = 0 ⇒ B1 = B2 = C1 = 0, C2 = D1 = 1, D2 = −1 (156)

Therefore we may write the integrand as

2λ6 − 3λ4 + 1

λ2 (λ3 − 1)
2 =

1

λ2
+

1

λ2 + λ+ 1
+

λ− 1

(λ2 + λ+ 1)
(157)

We may now directly perform the integral as follows:

Fel = 2πµ
(
R3

0 − r30
) ∫ λ0

1

dλ

[
1

λ2
+

1

λ2 + λ+ 1

+
λ− 1

(λ2 + λ+ 1)
2

] (158)

The first term gives ∫ λ0

1

dλ

λ2
= 1− 1

λ0
(159)

The second term gives

∫ λ0

1

dλ

λ2 + λ+ 1
=

2√
3

[
arctan

(
2λ0 + 1√

3

)
− π

3

]
(160)

Finally, the third term gives

∫ λ0

1

dλ
λ− 1

(λ2 + λ+ 1)
2 =

2

3
− λ0 + 1

λ20 + λ0 + 1

− 2√
3

[
arctan

(
2λ0 + 1√

3

)
− π

3

] (161)

Hence

Fel = 2πµr30
(
λ30 − 1

)(5

3
− 1

λ0
− λ0 + 1

λ20 + λ0 + 1

)
= 4πµr30

(
5

6
λ30 − λ20 +

1

2λ0
− 1

3

) (162)
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Minimization of the full free-energy F with respect to λ0 gives

(
5

2
− P

µ

)
λ20 + 2

(
γ

µr0
− 1

)
λ0 −

1

2λ20
= 0 (163)

so

P/µ =

(
2γ

µr0

)
1

λ
+

(
5

2
− 2

λ
− 1

2λ4

)
(164)

where we have dropped the subscript of λ0. The first term above is the Laplace

capillary pressure. In the following, surface tension will be expressed in di-

mensionless form as γ̄ = γ
µr0

. The second term reproduces the known relation

between pressure and radial extension for cavitation in incompressible materi-

als [6].

4.4.3 Solving the Equation of Motion

An alternative derivation for the result in equation 164 involves solving the

equation of motion, which in the Lagrangian formalism is given by equation 36.

Here, the first Piola-Kirchoff stress tensor is given by

Siα =
∂

∂Aiα
(finc − π (J − 1)) = µAiα − Jπ

(
A−1

)αi
(165)

where π (r, t) is a Lagrange multiplier that enforces the incompressibility con-

dition. To ensure that the stress properly goes to zero infinitely far from the

cavity, we must have limr→∞ π = µ. In spherical coordinates, the divergence of

the first Piola-Kirchhoff stress tensor is given by

∂SRr
∂r

+
2

r

(
SRr − λSΘ

θ

)
=

∂

∂r

(
µλ−2 − Jπλ2

)
+
2

r

(
µλ−2 − Jπλ2 − λ

(
µ− Jπλ−2

))
= −Jλ2 dπ

dr
+ 2µ

λ3 − 1

λ3
dλ

dr

(166)
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Setting this divergence to zero, setting J = 1, and integrating over r, we obtain

∫ µ

π(r0)

dπ = 2µ

∫ 1

λ0=R0/r0

dλ
λ3 − 1

λ5

⇒ π (r0) = µ

(
5

2
− 2

λ0
+

1

2λ40

) (167)

Let P be the pressure inside the cavity, and γ be the surface tension of the

cavity surface. Because the stress tensor must be continuous, we have

π (r0) = P − 2γ

R0
− µλ−4

0 = P − 2γ

r0λ0
− µλ−4

0 (168)

Here we have used the fact that σRR =
(
1
J λ

−2SRr
)
◦ φ−1 = µ

(
λ ◦ φ−1

)−4 − p,

where p = π ◦ φ−1 is the hydrostatic pressure. Plugging this into equation 167,

we recover the result from the previous section:

P/µ =
2γ̄

λ0
+

(
5

2
− 2

λ0
− 1

2λ40

)
(169)

It should be noted that it was only possible to directly solve the equation of

motion because of the fact that the system is incompressible, and thus the

deformation map must have a known, simple form. For a compressible system,

this is no longer possible, as the full differential equation for φ (r) is significantly

more complicated.

4.4.4 The Critical Pressure and the Cavitation-Nucleation Transi-

tion

The physical meaning of equation 164 can be illustrated by expanding it to

second order in the dimensionless radial extension ϵ = λ− 1 = R0/r0 − 1. This

gives

P/µ = 2γ̄ + (4− 2γ̄) ϵ+ (−7 + 2γ̄) ϵ2 +O
(
ϵ3
)

(170)
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The zeroth-order term 2γ̄ is the Laplace capillary pressure of the original cavity.

The first-order term (4− 2γ̄) ϵ is the result that would have been obtained if one

had used linear elasticity and expanded the Laplace Law pressure to first order in

ϵ. If one keeps only the zeroth-order and first-order terms for a cavity that is not

under pressure (so, for P = 0), then the radial strain is ϵ = −2γ̄/ (4− 2γ̄). This

is a negative quantity, which is reasonable since the capillary pressure exerted

by surface tension should cause the radius of an unpressurized cavity to shrink.

The second-order term (2γ̄ − 7) ϵ2 is the lowest-order nonlinear correction term.

It states that, for γ̄ less than 7/2, the actual cavity radius will be larger than

the radius obtained from linear elasticity. The effect of finite-strain elasticity is

thus to soften the material.

(The paper has a brief discussion of the expanding balloon toy model, potentially

add it here).

Equation 164 has a finite pressure solution when we set λ to infinity, namely,

P∞ = 5
2µ, independent of surface tension. This is the known critical cavitation

pressure of the rubber elasticity literature.

Figure 2 shows that the radial extension (R0 − r0) /r0 diverges continuously as

the pressure approaches P∞, provided γ̄ is less than one. There are no other

solution for γ̄ less than one. These plots are, in fact, fully stable solutions.

If γ̄ is larger than one, then the cavity radius does not diverge at P = P∞.

For P > P∞, there are two solution branches. One of these - the bottom

one in Figure 2 - is stable since the radius increases with pressure, while the

top branch is unstable as the radius decreases with increasing pressure. This

absence of a divergence at P∞ seems mathematically puzzling, since λ = ∞ is a

solution of equation 164 at P∞. However, if γ̄ > 1, then equation 164 acquires

additional solutions at P = P∞. One of these, λ = 1
4(γ̄−1)1/3

, is real and it is this

solution that corresponds to the lower branch for P > P∞. The lower branch
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Figure 2: Dimensionless cavity pressure P/µ versus radial extension ratio for an
incompressible system for different values of the dimensionless surface tension
γ̄ = γ/µr0. The surface tension values are γ̄ = 0 (solid, blue), γ̄ = 0.5 (dashed,
yellow), γ̄ = 1 (dashed, green), γ̄ = 1.5 (dotted,red), and γ̄ = 2 (dash-dotted,
purple). The dashed black line shows the critical pressure P∞ = 5

2µ.

is metastable, with the upper branch corresponding to a transition-state energy

maximum that separates the metastable state from the actual minimum energy

state with infinite radius. The metastable solution survives under increasing

pressure up to a maximum radius r0/ (γ̄ − 1)
1/3

, when the two branches fuse.

Droplet growth for γ̄ > 1 is consistent with the nucleation-and-growth scenario

of conventional phase separation. There is thus a well-defined transition between

cavitation for γ̄ < 1 and nucleation for γ̄ > 1.

4.4.5 Effects of Shear Hardening

Shear strain hardening is included by extending the free-energy density through

the use of equation 51. There are two limiting cases. If η1/2λ0 is small compared
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to one, then one can use the perturbation series in powers of the inverse maxi-

mum shear strain η. To first order in η, the correction to the elastic free-energy

is

Fel = 4πµη

∫ ∞

r0

dr r2
(
λ2 +

1

2λ4
− 3

2

)2

= 4πµη
(
R3

0 − r30
) ∫ λ0

1

dλ

(
λ

λ3 − 1

)2(
λ2 +

1

2λ4
− 3

2

)2

+O
(
η2
) (171)

Using a similar method as before, we can evaluate this integral and minimize

the total free-energy, obtaining

P (λ) /µ ≃ 2γ̄

λ
+

(
5

2
− 2

λ
− 1

2λ4

)
+η

(
4λ− 177

20
+

6

λ
− 2

λ2
+

3

2λ4
− 2

5λ5
− 1

4λ8

)
+O

(
η2λ3

) (172)

The zeroth-order term in η reproduces equation 164 for η = 0. The first-

order term (second line) has a term that diverges linearly in the limit of large

λ. The second-order term (not shown explicitly) diverges even faster, as λ3.

Higher powers in λ appear as one includes higher order terms in the perturbation

expansion in η.

Next, in the limit that η1/2λ approaches one, the integral in the elastic energy

is determined by the singularity at η1/2λ = 1, with the result that the pressure

diverges in this limit as

P (λ) /µ ≃ η1/2

2
(
1− η1/2λ

) (173)

Figure 3 shows the relation between cavity radius and pressure for a strain

hardening parameter η = 0.01 up to and including the second-order term in

the expansion in η. The figure is restricted to λ values for which the third-

order term in η can be neglected. The divergence of the radius at P = 5
2µ has
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Figure 3: Dimensionless cavity pressure P/µ versus radial extension ratio for
an incompressible system for various values of the dimensionless surface tension
γ̄ = γ/µr0 and strain hardening parameter η = 0.01. The dimensionless surface
tensions are γ̄ = 0 (solid, blue), γ̄ = 0.5 (dashed, yellow), γ̄ = 1 (dashed, green),
γ̄ = 1.5 (dotted, red), and γ̄ = 2 (dash-dotted, purple). The dashed black line
shows the critical pressure P∞ = 5

2µ.

disappeared. For increasing γ, the elastic energy again develops a maximum.

Beyond a threshold pressure, the radius again increases discontinuously, but the

radius now does not diverge. Instead, it saturates at a finite value. There is thus

still a transition to nucleation-type behavior for larger γ̄ and for dimensionless

pressures larger than 5
2 , but droplets no longer expand without limit. For large

values of the pressure, λ = R0/r0 increases less rapidly and eventually levels off

as it approaches the maximum strain 1/η, according to equation 172.

64



4.5 Cavitation in the Compressible Case

4.5.1 Variational Ansatz for the Deformation Map

For compressible systems, the deformation map φ (r) is not known ahead of

time. We used the following variational form:

φ (r) = r + (R0 − r0)
1 + b+ c(

r
r0

)2
+ b rr0 + c

(174)

with b and c variational parameters.

To see why this form is reasonable, note first that it obeys the required condition

that φ (r0) = R0. Next, the elastic strain must go to zero in the limit of large r,

so the theory of linearized elasticity must become valid in this limit. As shown

in equation 119, the displacement field u (r) surrounding a pressurized spherical

cavity embedded in an infinite volume has the form u (r) = (R0 − r0)
(
r0
r

)2
[10].

For the present nonlinear case, the asymptotic amplitude R0 − r0 is expected

to have a different, renormalized value. For r ≫ r0, the displacement field

u (r) = φ (r) − r of the variational deformation map goes to zero as 1/r2,

with amplitude A = (R0 − r0) (1 + b+ c). If b + c is positive, then the am-

plitude of the asymptotic strain field exceeds that of linear elasticity theory,

while for negative b + c it is reduced. Note that, because the cavity must ex-

pand under increasing pressure, we must have A > 0, which forces us to have

1 + b+ c > 0 ⇒ b+ c > −1.

Next, mass conservation requires that, as the cavity expands, material is pushed

radially outward, which could potentially produce an excess density at the cav-

ity surface (the snowplow effect). On the other hand, lateral stretching could

produce a density deficit (the balloon effect). The relative density at r = r0 is
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given by

ρr (r0) =
(r0/R0)

2

φ′ (r0)
=

(r0/R0)
2

1− R0−r0
r0

2+b
1+b+c

(175)

If 2+b is positive, then the surface density is increased with respect to ρ0, while

it is decreased if 2+b is negative. The variational ansatz thus allows the density

at the cavity surface and the asymptotic amplitude far from the surface to act

as separate parameters in the variation. Also, it should be noted that, because

the density can never become negative, we must have that R0−r0
r0

2+b
1+b+c < 1,

which places further restrictions on the physically allowed values of b and c.

4.5.2 Variational Results for The Modified Neo-Hookean Model

Before examining cavitation in gels, it is useful to first examine the case of

cavitation in materials that obey modified neo-Hookean elasticity. The elastic

free-energy density of the modified neo-Hookean model directly generalizes that

which is used for incompressible materials such a rubber, as discussed in section

3.4.6.

The variational parameters b and c were obtained by numerical minimization of

the functional

F [φ] = γ
(
4πR2

0

)
− P

(
4π

3
R3

0

)
+ 4π

∫ ∞

r0

dr r2fNH (176)

Figure 4 shows the results. The dimensionless displacement u (r) /r0 = (φ (r)− r) /r0

is shown as a function of r/r0 on a linear-linear scale (top, black line) and on

a log-log scale (bottom, black line) for the case of λ = 6. These variational

results are compared with the outcomes of a numerical solution of the equation

for mechanical equilibrium using the finite-element method (FEM). This was

done for cavity radial extensions of 5.52 (blue) and 6.16 (gold) that straddled

λ = 6. The linear-linear plot shows that the agreement is reasonable for r/r0
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Figure 4: Top: (black line) u(r)/r0 = (φ(r)− r)/r0 for a cavity radial extension
of 6 as obtained by the variational method. The result is compared with u(r)/r0
obtained by the Finite Element Method (FEM) for cavity radial extensions of
5.52 (blue), respectively, 6.16 (gold), as carried out on a spherical sample with
outer radius of 100r0. Bottom: same data but plotted on a log-log scale. The
red dashed line has the slope of a 1/r2 power law.

less than about five. The log-log plot shows that for 5 ≲ r/r0 ≲ 50 the FEM

radial extension is also consistent with a 1/r2 power law. However, the FEM re-

sults have a negative offset with respect to the variational results, which means

the values of the asymptotic amplitudes A = (R0 − r0) (1 + b+ c) do not agree.

Finally, the FEM result has an upturn for the largest values of r.

Starting with the last issue, the FEM analysis necessarily has to be done for

a finite system. Stress-free boundary conditions were imposed at an outer ra-
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dius R2, which was set to 100r0. To obey this outer boundary condition, the

large r displacement field must - according to linear elasticity - have the form

u (r) = ar + b/r2, where a = b/R3
2 [10]. The linear term ar becomes compa-

rable with the b/r2 term when r is on the order of the outer radius R2, which

explains the upturn in the deformation map for r ≃ R2. The reason for the

negative offset of the FEM has to be different, because introducing a stress-free

boundary condition should produce a larger, not a smaller, radial extension. It

is discussed in section 4.5.5 that the FEM software package appears to be less

reliable for large values of κ/µ.

Using the variational deformation map, one can construct other physical quanti-

ties. The density profile, obtained through the relation ρr =
r2

φ(r)2φ′(r)
, is shown

in figure 5. In all cases, there is a density deficit, indicating taht the balloon

Figure 5: Relative density ρ/ρ0 versus distance from cavity surface for the neo-
Hookean model for various values of the ratio κ/µ: κ/µ = 0.1 (blue, solid),
κ/µ = 0.5 (yellow, dashed), κ/µ = 1 (green, dashed), κ/µ = 5 (red, dotted),
and κ/µ = 10 (purple, dash-dotted). The final cavity radius was twice that of
the initial radius.

effect overcomes the snowplow effect. For increasing values of κ/µ, the density
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deficit decreases, and the density profiles approach the limit ρr = 1 of incom-

pressible materials (the FEM method produces a denity excess at the cavity

surface, see section 4.5.5).

Next, the relation between pressure P and radial extension is obtained by in-

serting the variational deformation map into the elastic free-energy density of

equation 46. After integration over the volume to obtain Fel [φ], the total free-

Figure 6: Radial extension ratio versus dimensionless cavity pressure P/µ for
the neo-Hookean model for various values of the ratio of bulk and shear moduli:
κ/µ = 0.1 (blue, solid), κ/µ = 0.5 (yellow, dashed), κ/µ = 1 (green, dashed),
κ/µ = 5 (red, dotted), and κ/µ = 10 (purple, inverted triangles). The solid
black curve is the incompressible solution, while the dashed black line shows
the critical pressure P∞ = 5

2µ.

energy F [φ] is minimized with respect to R0. The result is shown in figure 6.

Cavitation is encountered for all values of κ/µ, though the cavitation critical

pressure is significantly reduced for lower values of κ/µ. Compressibility effects

thus enhance cavitation. In contrast, for low pressures, the radial extension of

the cavity is practically independent of the κ/µ ratio.

Figure 7 shows the effect of varing the surface tension for κ/µ = 1. The plots

are quite similar to the case of incompressible materials, apart from the fact

that the critical pressure is reduced. Just as for incompressible materials, sur-

face tension can transform cavitation into nucleation above a threshold value of
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Figure 7: Radial extension ratio versus dimensionless cavity pressure P/µ for the
neo-Hookean model for κ/µ = 1 and various values of the dimensionless surface
tension γ̄ = γ/µr0: γ̄ = 0 (blue, circles), γ̄ = 0.5 (yellow, triangles), γ̄ = 1
(green, diamonds), and γ̄ = 1.5 (red, squares). There is no shear hardening.

the dimensionless surface tension γ̄, except that this threshold value is now less

than one.

Figure 8 shows what happens if one includes shear hardening for η = 0.1 and

no surface tension. The plots of figure 8 show cavitation behavior in the pres-

ence of strain hardening in the case that the κ/µ ratio is less than about one.

Recall that for incompressible systems, cavitation was suppressed even for a

shear hardening parameter that was ten times smaller than the current value of

η = 0.1. Once again, one sees that compressiblity promotes cavitation.
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Figure 8: Radial extension ratio versus dimensionless cavity pressure P/µ for
the neo-Hookean model for shear hardening parameter η = 0.1, no surface
tension and various values of κ/µ: κ/µ = 0.1 (blue, circles), κ/µ = 0.5 (yellow,
triangles), κ/µ = 1 (green, diamonds), κ/µ = 5 (red, squares), and κ/µ = 10
(purple, inverted triangles). The solid black curve represents the incompressible
solution, while the dashed black line shows the critical pressure P∞ = 5

2µ.

4.5.3 Cavitation in Polymer gels with Two-Component Solvents

With the experience of incompressible and compressible neo-Hookean materials,

we now can turn to the actual case of interest, namely, cavitation in polymer

gels. To describe this system, we will use the Flory-Huggins mean-field theory

of gels discussed in section 3.4.8.

Let the solvent be a two-component binary liquid where the majority component

is a good solvent for the monomers of the gel, while the minority component is

a poor solvent. In the absence of the gel, the thermodynamic work of formation

of a minority phase droplet in a homogeneous supersaturated binary solution is

W = −N∆µ+Fex. Here, N = V/v0 is the number of minority phase molecules
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in the droplet, V is the volume of the droplet, and v0 is the molecular volume of

the minority phase molecules. ∆µ is the difference in the chemical potential of

the minority phase molecules in the homogeneous mixture and those inside the

drop. Finally, Fex is the increase in free-energy of the surrounding environment

due to the presence of the drop. In clasical nucleation theory (CNT), only the

interfacial energy of the droplet is included in Fex, so Fex = γA, where γ is the

interfacial energy per unit area and A is the surface area of the droplet.

The radius R∗ of the droplet in a stationary state in which the droplet neither

grows nor shrinks is determined by the condition that the virtual work δW

associated with an infinitesimal change of the droplet radius is equal to zero [8].

The positive work by the chemical potential is given by δN∆µ = δV (∆µ/v0),

where Π = ∆µ/v0 can be interpreted as an osmotic pressure that drives droplet

swelling. The total work δW associated with an infinitesimal change δR of the

radius of the droplet is then

δW = γδA−ΠδV (177)

where δA = 8πRδR and δV = 4πR2δR. The radius of the stationary droplet

is then R∗ = 2γ/Π, which is known as the critical droplet size in CNT. A

stationary point with δW = 0 represents a thermodynamically stable state only

if the derivative of the osmotic pressure Π with repsect to the cavity volume is

positive. This derivative is negative, and thus this state is unstable - smaller

droplets shrink and disappear, while larger droplets grow without limit.

Now, assume that the droplet nucleates in a solvent-filled cavity inside a gel that

is originally in a state of swelling equilibrium. Let the initial radius be r0. Once

the radius of the growing droplet exceeds that of the cavity, the work of elastic

deformation of the gel by the growing droplet must be included as an additional

excess free-energy term in Fex. This work is given by the Flory-Huggins free-
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energy density in equation 52. The condition δW = 0 for a stationary state

corresponds to the stationary state of the variational free-energy expression

F [φ] = γ
(
4πR2

0

)
− P

(
4π

3
R3

0

)
+ 4π

∫ ∞

r0

dr r2
fFH
ϕ

(178)

provided P is interpreted as an osmotic pressure, and γ as an interfacial free-

energy per unit area. Here ϕ is the volume fraction of the monomers, and fFH/ϕ

is the free-energy density of the gel in the reference space - recall that, for the

Flory-Huggins model, the dry, solvent-free state is used as the reference state.

4.5.4 Variational Results for the Flory-Huggins Model

The density profile in a Flory-Huggins gel surrounding a minority phase droplet

under osmotic pressure is found in the same was as for neo-Hookean materials.

Results for the case of no interfacial energy and no strain hardening are shown

in figure 9. This density profile has a maximum near the cavity surface. For

Figure 9: Relative density ρ/ρswl versus distance from cavity surface for the
Flory-Huggins model, with final cavity radius twice that at swelling equilibrium,
cross-link separation Nx = 10, and various values of the Flory χ parameter. The
values of χ are χ = −0.4 (solid, blue), χ = −0.2 (dashed, yellow), χ = 0 (dashed,
green), χ = 0.2 (dotted, red), and χ = 0.4 (dash-dotted, purple).

Flory-Huggins gels, the snowplow effect apparently overcomes lateral stretch-
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ing, just the opposite of what we found for neo-Hookean materials. The density

profile is quite dependent on the Flory χ parameter. The excess density at the

surface increases as the solubility of the polymers for the mixed phase decreases,

i.e. for more negative values of χ, which agrees with physical intuition.

Figure 10 shows the dependence of radial extension on cavity pressure. The ra-

Figure 10: Radial extension ratio with respect to the equilibrium state versus
dimensionless cavity pressure P/µswl for the Flory-Huggins model with µswl the
shear modulus at swelling equilibrium. The cross-link separation is Nx = 10 and
there is neither surface tension nor shear hardening. The values of the Flory
χ parameter are χ = −0.4 (blue, circles), χ = −0.2 (yellow, triangles), χ = 0
(green, diamonds), χ = 0.2 (red, squares), and χ = 0.4 (purple, inverted trian-
gles). The black line shows the relation between radial extension and pressure
for an incompressible material.

dial extension plots for different values of Nx and χ are surprisingly similar and

close to that of incompressible materials (black line). Differences become visible

only for dimensionless pressures close to the critical 5/2 ratio for incompressible

materials.

A plot of the ratio of osmotic and shear moduli of the Flory-Huggins model as

a function of χ is shown in figure 11. For Nx large compared to one, the ratio

of osmotic and shear moduli approaches 5/3 for χ less than 1/2, independent

of either χ or Nx. Since the ratio of the shear and osmotic moduli of a Flory-
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Figure 11: Dependence of the ratio of shear and bulk moduli of the FH model at
swelling equilibrium on the Flory χ parameter for different values of Nx: Nx = 1
(blue), Nx = 10 (yellow), Nx = 100 (green), and Nx = 1000 (red).

Huggins gel near swelling equilibrium is of the order of one, one would have

expected a significant reduction of the critical cavitation pressure as compared

to that of incompressible materials, based on the earlier results for the modified

neo-Hookean model, but this is not the case. Another surprise is the presistent

lack of dependence of the radial extension on the Flory χ parameter and Nx

outside the regime where linear elasticity holds. Recall that the density profile

did not show this universality.

Figure 12 shows the effect of surface tension on the radial extension versus pres-

sure plot, and compares it with incompressible materials. The effect of surface

tension on cavitation in Flory-Huggins gels is practically the same as the effect

of surface tension on cavitation for incompressible systems.

Next, we include strain hardening, replacing the first term in fFH by equation

57. Figure 13 shows the effect of this term on plots of the radial extension as

a function of pressure. For a strain-hardening parameter η = 0.01, there is no

cavitation, just a somewhat higher rate of radial expansion for higher pressures.
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Figure 12: Radial extension ratio versus dimensionless cavity pressure P/µswl for
the FH model, with cross-link separation Nx = 10, Flory χ parameter χ = −0.2,
no shear hardening, and various values of dimensionless surface tension γ̄ =
γ/µswlrswl. The values of γ̄ are γ̄ = 0 (blue, circles), γ̄ = 0.5 (yellow, triangles),
γ̄ = 1 (green, diamonds), and γ̄ = 1.5 (red, squares). The black dashed line
shows the critical pressure for the incompressible solution, P∞ = 5

2µswl. The
solid lines show the corresponding radial extension curves of an incompressible
material.

Strain hardening suppresses cavitation in Flory-Huggins gels even more effec-

tively than in incompressible systems with the same shear modulus. Next, the

radial expansion plots are now significantly dependent on the Flory χ parameter

for higher pressures: the suppression of cavitation becomes more pronounced

as the solubility of the polymers for the mixed solvent is reduced. Similarly,

if the cross-link separation Nx is increased, then cavitation is suppressed more

effectively. This plot must be compared with figure 8 for modified neo-Hookean

materials. There, compressiblity significantly enhanced cavitation for an η value

that was ten times higher than for the present case. Strain hardening suppresses

cavitation very effectively for Flory-Huggins gels.
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Figure 13: Radial extension ratio versus dimensionless cavity pressure P/µswl
for FH gels with µswl the shear modulus at swelling equilibrium, cross-link
separation Nx = 10, no surface tension, shear hardening parameter η = 0.01,
and various values of the Flory χ parameter: χ are χ = −0.4 (blue, circles),
χ = −0.2 (yellow, triangles), χ = 0 (green, diamonds), χ = 0.2 (red, squares),
and χ = 0.4 (purple, inverted triangles). The solid black curve shows the radial
extension/pressure plot of an incompressible material for the same amount of
strain hardening and the same shear modulus.

4.5.5 Finite Element Method and the Variational Ansatz

In section 4.5.2, in collaboration with Amit R. Singh from the Birla Institute

of Technology and Science Department of Mechanical Engineering, we used the

FEBIO STUDIO [14] software package to perform a finite element analysis for a

sphere with a concentric spherical cavity made up of compressible neo-Hookean

material. The simulations were force controlled, i.e., the pressure acting on the

surface of the cavity was an input and displacements of the nodes of the finite

element mesh were the output. We used 20-node quadratic hexahedral elements.

Taking advantage of the spherical symmetry of the problem, we modeled only

one-eighth of the sphere with appropriate symmetric boundary conditions. We

chose the outer radius of the sphere to be 100 times the radius of the cavity. We

checked for convergence by comparing the critical pressure for a mesh with 3552
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elements and a mesh with 24057 elements. The resulting deformation map was

shown in section 4.5.2, and compared with the map obtained by the variational

method.

The density profile and radial extension versus pressure profiles obtained by

the FEM are shown in figure 14. According to the top figure, there is a density

Figure 14: (Top) Radial density profiles obtained from the finite-element method
(FEM) for different values of the ratio κ/µ between bulk and shear moduli.
(Bottom) Cavity extension versus dimensionless cavity pressure P/µ using the
FEM, for the same values of κ/µ. The values of κ/µ are 0.5 (blue circles), 1
(yellow triangles), 5 (green diamonds), and 10 (red squares).

excess instead of the density deficit that was obtained by the variational method.

According to the bottom figure, there is qualitative agreement between the

radial expansion plots of the FEM and the variational methods. However, the

critical cavitation pressure predicted by the FEM is significantly smaller than

the one predicted by the variational method, and appears to be only weakly
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dependent on κ/µ. In particular, the FEM critical cavitation pressure does

not approach the known critical cavitation pressure P = 5
2µ of incompressible

systems for large values of κ/µ as it should.

The density at the surface of the cavity is determined by the slope φ′ (r0) of

the deformation map through ρ(r0)
ρ0

= 1
λ2
0φ

′(r0)
, where λ0 = R0/r0 is the stretch

ratio at the cavity surface. A density excess will occur at the cavity surface

if 0 < φ′ (r0) < λ−2
0 , while a density deficit occurs when φ′ (r0) > λ−2

0 . For

λ0 = 6, the variational method gives φ′ (r0) ≈ 0.1763, which exceeds 1/λ20,

corresponding to a density deficit. The FEM analysis gives for λ0 = 5.52 a

slope of φ′ (r0) ≈ 0.0187, and for λ0 = 6.16 a slope of φ′ (r0) ≈ 0.0119, both

of which are less than 1/λ20. As a result, both correspond to a surface density

excess. So, even though the deformation maps of the variational and FEM

methods appear to be similar in the region of smaller r, there is a substantial

difference between the slopes of the deformation maps at the cavity surface. The

origin of this discrepancy is not clear, but because the FEM does not reproduce

for large κ/µ the exact result for incompressible systems, we believe that the

variational method is more reliable in this case.

5 Dynamical Finite Strain Elasticity

5.1 Formalism for Dynamical Finite Strain Elasticity

When adapting the Lagrangian formalism to dynamics, as briefly discussed in

section 3, the first main change is that now the deformation map φ is time-

dependent. The other major addition is that we must now take energy dissi-

pation into account. In a purely elastic system, energy dissipation is typically

ignored, but for visco-elastic systems such as biogels it becomes very important.

Let’s start by discussing the rate of change of some important quantities in the
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Lagrangian formalism. We have already defined the material and convective ve-

locities in section 3, vi (x, t) = ∂φi

∂t and uα (x, t) =
(
A−1
t

)α
i
vi respectively. Now

consider the rate of change of the deformation gradient matrix. There is a sub-

tlety involved with taking the time derivative at fixed reference space position,

resulting from the fact that the deformation gradient matrix has a deformed

space index. If one were to directly take the time derivative of ∂φ
i

∂xα , the commu-

tativity of time and spatial derivatives would lead one to obtain ∂vi

∂xα . However,

the indices on the deformation gradient matrix are tensorial, so this is not quite

correct. Let êα (x) denote the reference space basis vectors, and Êi (φ (x, t))

denote the deformed space basis vectors. Evaluating the full derivative of the

“two-point” tensor, we see

∂A

∂t
=

∂

∂t

[
∂φi

∂xα
Êi (φ (x, t))⊗ êα (x)

]
=

∂2φi

∂t∂xα

(
Êi ◦ φ

)
⊗ êα +

∂φi

∂xα
∂

∂t

(
Êi ◦ φ

)
⊗ êα

=
∂vi

∂xα

(
Êi ◦ φ

)
⊗ êα +Aiα

(
Γ̄kij ◦ φ

)
vj
(
Êk ◦ φ

)
⊗ êα

(179)

Define the covariant derivative of the material velocity (a vector whose index

lives in a different space than its argument) as

Dvi

Dxα
=

∂vi

∂xα
+Aiα

(
Γ̄ijk ◦ φ

)
vj (180)

Thus we have the time derivative of the deformation gradient matrix is equiv-

alent to the reference space covariant derivative of the material velocity, ∂A∂t =

∇ ⊗ v⃗. A similar subtlety occurs when evaluating the time derivative of the

material velocity. Performing a similar argument, we find

∂v⃗

∂t
=

(
∂vi

∂t
+
(
Γ̄ijk ◦ φ

)
vjvk

)
Êi ◦ φ (181)
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The equation of motion, originally given in the static case by equation #, will

now include an inertial term. In addition, in the case of a viscous or visco-

elastic system, the stress must now include a dissipative piece. For a general

first Piola-Kirchhoff stress, the equation of motion is written as

ρ0

(
∂vi

∂t
+
(
Γ̄ijk ◦ φ

)
vjvk

)
=
DSiα

Dxα
+ JBi (182)

For an isotropic system, we know that the viscous part of the Cauchy stress is

a function of the symmetrized spatial velocity gradient, Σij =
1
2

(
DVi

DXj +
DVj

DXi

)
.

This tensor is commonly referred to as the Eulerian strain rate. The reason for

this name is as follows. In the reference frame, it is fairly straightforward to

show that

DV i

DXj

∣∣∣∣
φt(x)

=
Dvi

Dxα
(
A−1

)α
j
=

(
dA

dt

)i
α

(
A−1

)α
i

(183)

The pull-back of Σ is thus given by

φ∗
tΣαβ = Aiα (Σij ◦ φt)A

j
β =

1

2

(
Aiα

dAiβ
dt

+
dAiα
dt

Aiβ

)
=
∂Uαβ
∂t

(184)

Clearly, the dissipative pieces of the first and second Piola-Kirchoff stress tensors

are functions of the Lagrangian strain rate, ∂U∂t .

While we have seen in section 4.4 that directly solving the equation of motion

is possible for an incompressible material, if one wants to explore dissipative

dynamics of compressible materials an analogue to minimizing the free-energy

would be more approachable. To develop such an analogue, a brief discussion of

thermodynamics will be necessary [7, 15, 16]. As with our original discussion of

stress in section 3, we start in the deformed frame Bt. Let E (X, t) be the internal

energy per unit volume (note this is not the free-energy density), R (X, t) the

incoming heat per unit volume, and H
(
X, t, N̂

)
be the rate of heat conduction
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across a surface element with unit normal N̂ , i.e. the heat flux. We will assume

that we can write the heat flux in terms of a vector field Q⃗, where H
(
X, t, N̂

)
=

−Q⃗ (X, t) · N̂ , similar to how we wrote the surface force in terms of a tensor

field, the Cauchy stress. The first law of thermodynamics in the deformed frame

can then be written in both integral and local form as

d

dt

∫
Bt

dV

(
E +

1

2

∣∣∣V⃗ ∣∣∣2) =

∫
Bt

dV
(⃗
b · V⃗ +R

)
+

∮
∂Bt

dS N̂i
(
σijV

j −Qi
)

(185)

DE

Dt
+
DQi

DXi
= σijΣij +R (186)

In the reference frame, we have

∂e

∂t
+
Dqα

Dxα
= sαβ

∂Uαβ
∂t

+ r (187)

where e = (E ◦ φ) /J is the internal energy density per unit undeformed vol-

ume, q⃗ = Jφ∗
t Q⃗ is the Piola transformation of the heat flux vector field, and

r = (R ◦ φ) /J is the incoming heat per unit undeformed volume.

Let N (X, t) denote the entropy per unit deformed volume and Θ (X, t) the tem-

perature. The second law of thermodynamics is then expressed in the deformed

frame as

d

dt

∫
Bt

dV N ≥
∫
Bt

dV
R

Θ
+

∮
∂Bt

dS
H

Θ
(188)

or, in local form,

θ
DN

Dt
≥ R−Θ

D

DXi

(
Qi

Θ

)
= R− DQi

DXi
+

1

Θ
Qi

∂Θ

∂Xi
(189)

Here DN
Dt −R/Θ+

D(Qi/Θ)
DXi is referred to as the entropy production rate in the

literature.

Let η (x, t) = (N ◦ φ) /J and θ (x, t) = Θ ◦ φ. Then in the reference frame we
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have

θ
∂η

∂t
≥ r − θ

D

Dxα

(
qα

θ

)
= r − Dqα

Dxα
+

1

θ
qα

∂θ

∂xα
(190)

The free-energy density in the reference space is formally defined as a Legendre

transformation of the internal energy, f = e−θη. The second law can be written

in terms of f as

θ
∂η

∂t
=
∂f

∂t
− ∂e

∂t
− η

∂θ

∂t
≥ r − Dqα

Dxα
+

1

θ
qα

∂θ

∂xα

⇒ ∂f

∂t
− η

∂θ

∂t
− sαβ

∂Uαβ
∂t

+
1

θ
qα

∂θ

∂xα
≥ 0

(191)

The second law implies that we can no longer simply minimize the free-energy

to determine the state of the system, but it suggests a replacement in the form

of the entropy production rate. In the case of a velocity-dependent dissipative

force like friction or viscosity, this is most commonly described in terms of the

Rayleigh dissipation functional R, a measure of the rate of energy dissipation

in the system. It is most naturally defined in the deformed space as

R =
1

2

∫
dV ζijV

iV j (192)

The motion of the system can then be found by minimizing the functional dFdt +R

with respect to variations in the velocity flow field V⃗ .

In many ways the Eulerian formalism is a more natural formalism for dynamics.

As discussed in section 3.5, it is built off of the formalism of fluid dynamics,

with the motion of a body described by its (spatial) velocity flow field V⃗ (X, t).

The equation of motion is written as

ρ
DV i

Dt
=
Dσij

DXj
+ bi (193)

where D
Dt =

∂
∂t +∇V⃗ denotes the material time derivative.
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5.2 Dynamics of Cavitation

5.2.1 Dynamics for Cavitation in an Elastic Incompressible Material

As in the static case, the form of the deformation map for cavitation in an

incompressible material is fixed by mass conservation. The only difference is

that now the cavity radius is a function of time:

φ (r, t) =
(
r3 +R3

0 (t)− r30
)1/3

(194)

Note that as a result of this the material and spatial velocities will take on

simple forms:

v (r, t) =
R2

0 (t)

φ2 (r, t)

dR0

dt
, V (R, t) =

R2
0 (t)

R2

dR0

dt
(195)

Because the spatial velocity is particularly simple, it is actually more straightfor-

ward to solve the equation of motion in the Eulerian formalism rather than the

Lagrangian one. In the Eulerian formalism the Cauchy stress of an incompress-

ible, perfectly elastic system may be written as σij = µ
(
AiαA

jα −Gij
)
− pGij ,

where p (R, t) is the hydrostatic pressure. The equation of motion is given by

ρ
DV i

Dt
=
Dσij

DXj
⇒ ρ

(
∂V

∂t
+ V

∂V

∂R

)
=
∂σRR
∂R

+
2

R

(
σRR − σθθ

)
(196)

Let Λ (R, t) = R/φ−1
t (R) be the radial stretch ratio in the Eulerian frame. Then

we may write σRR = µ
(
Λ−4 − 1

)
− p and σθθ = µ

(
Λ2 − 1

)
− p. Plugging both

these and our expression for V into the equation of motion and simplifying, we

obtain

ρ

(
R2

0R̈0

R2
+ 2

R0Ṙ
2
0

R2
− 2

R4
0Ṙ

2
0

R5

)
= − ∂p

∂R
+ 2µ

Λ3 − 1

Λ5

∂Λ

∂R
(197)
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As in section 4.4.3, we may directly integrate this equation at fixed time, ob-

taining

P = ρ

(
R0R̈0 +

3

2
Ṙ2

0

)
+

2γ

R0
+ µ

(
5

2
− 2

Λ0
− 1

2Λ4
0

)
= ρr20

(
Λ0Λ̈0 +

3

2
Λ̇2
0

)
+ µ

(
5

2
+

2 (γ̄ − 1)

Λ0
− 1

2Λ4
0

) (198)

where Λ0 (t) = Λ (R0 (t) , t) = R0 (t) /r0, and we have made use of the fact that

p (R0 (t) , t) = P − 2γ
R0(t)

due to the continuity of the stress tensor. This result is

identical to that obtained in the static case, but now with a new inertial term.

It is now a non-linear ordinary differential equation for Λ0 (t).

Numerical solutions to equation 198 for various values of P̄ in the absence of

Figure 15: Radial extension ratio R0/r0 as a function of dimensionless time

t 1
r0

√
µ
ρ = tvs/r0 for cavitation in a purely elastic medium obtained via Mathe-

matica’s numerical differential equation solver, for various values of the dimen-
sionless cavity pressure P/µ. The dimensionless cavity pressures are P/µ = 1
(solid, blue), P/µ = 1.5 (dashed, yellow), P/µ = 2 (dashed, green), P/µ = 2.5
(dotted, red), and P/µ = 3 (dash-dotted, purple).
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surface tension are shown in figure 15. Below the cavitation critical pressure,

the cavity oscillates anharmonically about its equilibrium value, as one would

expect in a system with no energy dissipation. Above the critical pressure, cav-

itation occurs, with Λ0 (t) ∼ t at long times. It should be noted that the value

of the critical pressure, 5
2µ, is unchanged by the introduction of the inertial term.

5.2.2 Cavitation in a Maxwell Material

This approach for finding the equation of motion for cavitation in an incom-

pressible material can be easily adapted for any kind of incompressible material,

not just perfectly elastic ones. When applied to a viscous fluid, the resulting

equation is known as the Rayleigh-Plesset equation,

P = ρr20

(
Λ0Λ̈0 +

3

2
Λ̇2
0

)
+

2γ

r0Λ0
+ 4η

Λ̇0

Λ0
(199)

As in the purely elastic case, the Rayleigh-Plesset equation predicts cavitation,

with Λ0 ∼ t at long times. The main difference is that now there is no cavitation

critical pressure. Instead, cavitation will occur for all pressures greater than the

Laplace capillary pressure, while below the Laplace pressure the cavity collapses.

Note that this implies that cavitation is not really a result of elasticity, but rather

a result of the non-linear nature of large deformations.

For a visco-elastic system, the relationship between the Cauchy stress and the

strain is more complex. One of the simpler non-linear models of visco-elasticity

is the upper-convected Maxwell model, a generalization of the linear Maxwell

model, whose constituative equation is given by

σij + τ
Dσij

Dt
= 2ηΣij (200)
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Figure 16: Radial extension ratio R0/r0 as a function of dimensionless time
tη/ρr20 = tν/r20 for cavitation in a viscous fluid obtained via Mathematica’s
numerical differential equation solver, for various values of the dimensionless
cavity pressure P ∗ = Pρr20/η

2. The dimensionless cavity pressures are P ∗ = 0.5
(solid, blue), P ∗ = 1 (dashed, yellow), P ∗ = 1.5 (dashed, green), P ∗ = 2
(dotted, red), and P ∗ = 2.5 (dash-dotted, purple).

where τ = η/µ is a relaxation time, while η represents the viscosity. To get some

intuition regarding the solution of these equations, let’s first consider method of

solving the problem exclusively in the Eulerian picture, making use of a limiting

case. Suppose that the stress relaxation time is small. We can then approximate

the Cauchy stress to first order in τ as

σij = −pGij + 2ηΣij − τ
Dσ′ij

Dt
≈ −pGij + 2η

(
Σij − τ

DΣij

Dt

)
≈ −pGij + 2η

[
Σij − τ

(
∂Σij

∂t
+ V k

DΣij

DXk
− DV i

DXk
Σkj − Σik

DV j

DXk

)] (201)
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Due to the spherical symmetry of the system, the velocity gradient is diagonal,

and thus Σij =
DV i

DXj =
DVj

DXi
. Hence

σij = −pδij + 2η

[
Σij − τ

(
∂Σij
∂t

+ V k
DΣij
DXk

− 2
(
Σ2
)i
j

)]
(202)

In spherical coordinates,

σRR = −p− 4η
R2

0

R3
Ṙ0 + 4ητ

R2
0

R3
R̈0 + 8ητ

R0

R3
Ṙ2

0 + 4ητ
R4

0

R6
Ṙ2

0 (203)

σθθ = −p+ 2η
R2

0

R3
Ṙ0 − 2ητ

R2
0

R3
R̈0 − 4ητ

R0

R3
Ṙ2

0 + 10ητ
R4

0

R6
Ṙ2

0 (204)

The divergence of the Cauchy stress is thus given by

∂σRR
∂R

+
2

R

(
σRR − σθθ

)
= − ∂p

∂R
− 36ητ

R4
0Ṙ

2
0

R7
(205)

Plugging this into the equation of motion, we have

ρ

(
∂V i

∂t
+ V jΣij

)
=
Dσij

DXj

⇒ ρ

(
R2

0R̈0

R2
+ 2

R0Ṙ
2
0

R2
− 2

R4
0Ṙ

2
0

R5

)
= − ∂p

∂R
− 36ητ

R4
0Ṙ

2
0

R7

(206)

Integrating over R at fixed time, we obtain

ρ

(
R0R̈0 +

3

2
Ṙ2

0

)
= p (R0)− 6ητ

Ṙ2
0

R2
0

(207)

Here, using the continuity of the stress tensor,

p (R0) = P − 2γ

R0
− 4ητ

Ṙ0

R0
+ 4ητ

R̈0

R0
+ 12ητ

Ṙ2
0

R2
0

(208)

88



Therefore,

ρR0R̈0 +
3

2
ρṘ2

0 = P − 2γ

R0
− 4η

Ṙ0

R0
+ 4ητ

R̈0

R0
+ 6ητ

Ṙ2
0

R2
0

⇒ P = ρ

(
R0R̈0 +

3

2
Ṙ2

0

)
+

2γ

R0
+ 4η

Ṙ0

R0
− 4

ητ

R2
0

(
R0R̈0 +

3

2
Ṙ2

0

) (209)

The first three terms recover the Rayleigh-Plesset equation. The order τ cor-

rection term has a similar dependence on R0 as the inertial term. The effect

of adding a weak elasticity to the system is thus to essentially add a time-

dependent correction to the density. Let l2 = ητ/ρ = µτ2/ρ = (τvs)
2
, where

vs =
√
µ/ρ is the speed of sound. We then have

P = ρ

(
1− 4l2

R2
0

)(
R0R̈0 +

3

2
Ṙ2

0

)
+ 4η

Ṙ0

R0
+

2γ

R0
(210)

At long times, when R0 ≫ l, the correction to the inertial term will go to zero

as t−2, and the growth of the cavity will be well approximated by the Rayleigh-

Plesset equation. At shorter time-scales, the effect of elasticity is to cause the

medium to appear less dense than it actually is. It also should be noted that

when l exceeds r0/2 the inertial term in equation 210 will change sign. This

suggests the presence of a shock wave instability, which is reasonable to expect

when Ṙ0 approaches vs.

While this method of approximating the solution provides some insight into how

the density is renormalized as a result of elasticity, it should be noted that, even

if we were to continue the perturbative expansion to arbitrarily high powers of

τ , it cannot be an exact solution. We know from linear theory that in a Maxwell

material the elastic response decays exponentially with time-scale τ . However,

equation 210 shows that the correction terms introduced by the perturbative

expansion will decay as power laws. Clearly, a purely Eulerian approach to

solving this problem is insufficient.
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To derive a full equation of motion for a Maxwell material, we can perform a

similar iterative calculation, but now within the Lagrangian picture. If we pull

the constituitive equation back to the reference frame, noting that J = 1 due

to incompressibility, we may write it as

sαβ + τ
∂sαβ

∂t
= −η ∂

∂t

((
A−1

)α
i

(
A−1

)βi)
(211)

where
(
A−1

)α
i

(
A−1

)βi
=
(
φ∗
tG

−1
)αβ

is the pullback of the deformed frame

inverse metric. If we now integrate over time and add in the hydrostatic pressure,

we obtain

sαβ = −π
(
A−1

)α
i

(
A−1

)βi − µ
((
A−1

)α
i

(
A−1

)βi − gαβ
)
− 1

τ

∫ t

0

dt′ s′αβ (212)

where µ = η/τ is the shear modulus, π (r, t) = p (φ (r, t) , t), and s′αβ = sαβ −

π
(
A−1

)α
i

(
A−1

)βi
is the visco-elastic contribution to the second Piola-Kirchhoff

stress.

If we now iterate similarly to before, we find

sαβ = −π
(
A−1

)α
i

(
A−1

)βi − µ
((
A−1

)α
i

(
A−1

)βi − gαβ
)

−µ
∞∑
n=1

(
n∏
k=1

(
−1

τ

)∫ tn−1

0

dtn

)((
A−1

)α
i

(
A−1

)βi − gαβ
) (213)

where t0 ≡ t. Define the linear functional

Lt [f (s)] = f (t)− 1

τ

∫ t

0

ds f (s) +
1

τ2

∫ t

0

dt′
∫ t′

0

ds f (s)− . . . (214)

Note that

d

dt
Lt [f (s)] = f ′ (t)− 1

τ
f (t) +

1

τ2

∫ t

0

ds f (s)− · · · = f ′ (t)− 1

τ
Lt [f (s)] (215)

90



and therefore

Lt [f (s)] = f (0) e−t/τ +

∫ t

0

dt′ e−(t−t
′)/τf ′ (t′)

= f (t)− 1

τ

∫ t

0

dt′ e−(t−t
′)/τf (t′)

(216)

We can then write

sαβ = −π
(
A−1

)α
i

(
A−1

)βi − µLt
[(
A−1

)α
i

(
A−1

)βi − gαβ
]

(217)

The components of the second Piola-Kirchhoff stress tensor are thus given by

srr (r, t) = −π (r, t)λ4 (r, t)− µLt
[
λ4 (r, s)− 1

]
(218)

and

sθθ (r, t) = −π (r, t)λ−2 (r, t)− µLt
[
λ−2 (r, s)− 1

]
(219)

where λ (r, t) = φ (r, t) /r. Pushing this back to the deformed frame, we see that

the components of the Cauchy stress are given by

σRR (R, t) = Λ−4 (R, t) srr
(
φ−1
t (R) , t

)
= −p (R, t)− µLt

[(
1− R3

0 (t)−R3
0 (s)

R3

)4/3

− Λ−4 (R, t)

]
(220)

and

σθθ (R, t) = Λ2 (R, t) sθθ
(
φ−1
t (R) , t

)
= −p (R, t)− µLt

[(
1− R3

0 (t)−R3
0 (s)

R3

)−2/3

− Λ2 (R, t)

]
(221)
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where Λ (R, t) = λ
(
φ−1
t (R) , t

)
= R/φ−1

t (R). Plugging the components into

the equation of motion and simplifying, we obtain

ρ

(
R2

0R̈0

R2
+ 2

R0Ṙ
2
0

R2
− 2

R4
0Ṙ

2
0

R5

)
= − ∂p

∂R

−2µLt

{
1

R

(
R3

0 (t)−R3
0 (s)

R3

)2(
1− R3

0 (t)−R3
0 (s)

R3

)−2/3

+
Λ3 (R, t)− 1

Λ5 (R, t)

∂Λ

∂R
(R, t)

}
(222)

Integrating over R at fixed time, we find

P = ρr20

(
Λ0 (t) Λ̈0 (t) +

3

2
Λ̇2
0 (t)

)
+

2γ

r0Λ0 (t)

+µLt
[
2
Λ0 (s)− 1

Λ0 (t)
+

1

2

Λ4
0 (s)− 1

Λ4
0 (t)

]
= ρr20

(
Λ0 (t) Λ̈0 (t) +

3

2
Λ̇2
0 (t)

)
+

2γ

r0Λ0 (t)
+ µ

[(
5

2
− 2

Λ0 (t)

− 1

2Λ4
0 (t)

)
− 1

τ

∫ t

0

dt′ e−(t−t
′)/τ

(
2
Λ0 (t

′)− 1

Λ0 (t)
+

1

2

Λ4
0 (t

′)− 1

Λ4
0 (t)

)]
(223)

In the limit τ → ∞, the integral term becomes negligible and we recover the

case for pure elasticity found in equation 198.

At short times, we then expect the solution to equation 223 to resemble the

solution found for the pure elastic case - oscillatory if P < 5
2µ, and monotonically

increasing for P > 5
2µ. Assuming t≪ τ , we may approximate the integral term

using the trapezoidal rule,

∫ t

0

dt′ e−(t−t
′)/τ

(
2
Λ0 (t

′)− 1

Λ0 (t)
+

1

2

Λ4
0 (t

′)− 1

Λ4
0 (t)

)
≈ 1

2
t

(
5

2
− 2

Λ0 (t)
− 1

2Λ4
0 (t)

) (224)
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Hence, for t≪ τ ,

P ≈ ρr20

(
Λ0Λ̈0 +

3

2
Λ̇2
0

)
+

2γ

r0Λ0
+ µ

(
1− t

τ

)(
5

2
− 2

Λ0
− 1

2Λ4
0

)
(225)

Numerical solutions to equation 225 are shown in figure 17. The oscillatory

behavior is fairly weak at small values of l, but become more visible as l increases.

At long times, the system will forget the elastic response, and the cavity radius

should eventually grow linearly in time regardless of the value of the cavity

pressure, as in the Rayleigh-Plesset equation. Note that, if t ≫ τ , the integral

term in equation 223 will be dominated by the region where t − t′ ≪ τ . As

such, it is reasonable to expand Λ0 (t
′) about t. We may then approximate the

integral term in equation 223 as

∫ t

0

dt′ e−(t−t
′)/τ

(
2
Λ0 (t

′)− 1

Λ0 (t)
+

1

2

Λ4
0 (t

′)− 1

Λ4
0 (t)

)
≈
∫ t

0

dt′ e−(t−t
′)/τ

[(
5

2
− 2

Λ0 (t)
− 1

2Λ4
0 (t)

)
− 4

Λ̇0 (t)

Λ0 (t)
(t− t′)

+
2

Λ2
0 (t)

(
Λ0 (t) Λ̈0 (t) +

3

2
Λ̇2
0 (t)

)
(t− t′)

2
+ . . .

] (226)

Noting that
∫ t
0
dt′ e−(t−t

′)/τ (t− t′)
n
= τn+1 (n!− Γ (n+ 1, t/τ))

= n!τn+1
[
1− e−t/τ

∑n
k=0

(t/τ)k

k!

]
, define Gn (t) = 1 − Γ (n+ 1, t/τ) /n!. We

may then write

∫ t

0

dt′ e−(t−t
′)/τ

(
2
Λ0 (t

′)− 1

Λ0 (t)
+

1

2

Λ4
0 (t

′)− 1

Λ4
0 (t)

)
≈ τ

(
5

2
− 2

Λ0
− 1

2Λ4
0

)
G0 (t)− 4τ2

Λ̇0

Λ0
G1 (t)

+
4τ3

Λ2
0

(
Λ0Λ̈0 +

3

2
Λ̇2
0

)
G2 (t) + . . .

(227)

where G0 (t) = 1− e−t/τ , G1 (t) = 1− e−t/τ
(
1 + t

τ

)
,

G2 (t) = 1 − e−t/τ
(
1 + t

τ + 1
2

(
t
τ

)2)
, etc.. Equation 223 may then be approxi-
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Figure 17: Radial extension ratio R0/r0 as a function of dimensionless time t/τ
for cavitation in a Maxwell material at short times, obtained via Mathematica’s
numerical differential equation solver, at various values of dimensionless cavity
pressure P ∗ = P/µ. In the top image, the length-scale l has a value of r0, while
in the bottom image it has a value of 10r0. The dimensionless cavity pressures
are P ∗ = 1 (solid, blue), P ∗ = 1.5 (dashed, yellow), P ∗ = 2 (dashed, green),
P ∗ = 2.5 (dotted, red), and P ∗ = 3 (dash-dotted, purple). The data is plotted
on a log-log scale to make the oscillatory behavior below the critical pressure
more visible.

mated at long times (or, equivalently, at small τ) as

P ≈ 2γ

r0Λ0
+ µe−t/τ

(
5

2
− 2

Λ0
− 1

2Λ4
0

)
+ 4ηG1 (t)

Λ̇0

Λ0

+ρ

(
r20 −

4l2

Λ2
0

G2 (t)

)(
Λ0Λ̈0 +

3

2
Λ̇2
0

)
+ . . .

(228)
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As t→ ∞, equation 228 approaches the Rayleigh-Plesset equation, as expected.

The elastic response decays exponentially, as it should for a Maxwell material.

In addition, the viscosity is renormalized by G1 (t). Finally, the density is again

renormalized, although with a more complicated correction term. Clearly, to

obtain the full solution the method of utilizing both the Eulerian and Lagrangian

formulations is required.

Numerical solutions to equation 228 with two different values for the length-

scale l = τ
√
µ/ρ are shown in figure 18, although it should be noted that our

approximations will become less accurate at times less than or on the scale of τ .

Because we are limited to small values of l to avoid the shock wave instability,

the oscillatory behavior at shorter times is too small to be visible in these

approximations.

6 Conclusion

Our goal in this dissertation was to explore the use of non-linear elasticity in

describing the physics of biogels and biogel-like materials, a regime that falls in

between the more well explored areas of incompressible solids and viscous flu-

ids. In particular, we chose to focus on cavitation as an example phenomenon

due to its relevance to the physics of biogels, as well as the simplifications pro-

vided by the spherical symmetry inherent to the problem. First exploring the

static case, we made use of a variational approximation to explore the effects

of compressibility, strain-hardening, and droplet surface/interfacial tension on

cavitation in both neo-Hookean materials similar to those previously explored

in the engineering literature, and Flory-Huggins gels. The results for these two

types of materials were then compared.

The effect of surface tension on cavitation is described by the dimensionless
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Figure 18: Radial extension ratio R0/r0 as a function of dimensionless time
t/τ for cavitation in a Maxwell material obtained via Mathematica’s numerical
differential equation solver, at various values of dimensionless cavity pressure
P ∗ = P/µ. In the top image, the length-scale l has a value of 0.1r0, while
in the bottom image it has a value of r0. The dimensionless cavity pressures
are P ∗ = 1 (solid, blue), P ∗ = 1.5 (dashed, yellow), P ∗ = 2 (dashed, green),
P ∗ = 2.5 (dotted, red), and P ∗ = 3 (dash-dotted, purple)

parameter γ̄ = γ
µr0

. If γ̄ is less than a number close to one then the effects of

surface tension on cavitation are secondary, but if γ̄ is greater than this threshold

number then cavitation is replaced by activated droplet nucleation-and-growth.

Biomolecular condensates in aqueous environments have interfacial energies in

the range of 10−4 mN/m to 100 mN/m [26]. If the cavity radius r0 for the dry
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gel is estimated to be of the order of the size of a monomer of a synthetic flexible

polymer (of the order of one nm) and µ is taken to be of the order of the G’

modulus of hydrogels (about 103 Pa), then γ̄ falls in the range of 0.1 to 103. This

estimate suggests that both the case of cavitation and nucleation-and-growth

are possible.

The second important result found for the static case is that compressibility

significantly reduces the critical cavitation pressure of neo-Hookean materials

provided the compressional modulus is comparable to (or less than) the shear

modulus. For Flory-Huggins gels on the other hand, the critical cavitation

pressure is practically the same as that of incompressible materials. Because

the shear and compressional moduli of a Flory-Huggins gel are comparable at

swelling equilibrium, this was surprising. In fact, the elastic properties of Flory-

Huggins gels were also in other respects more similar to incompressible materials

than compressible ones with similar elastic moduli. We encountered this for the

case of surface tension, strain hardening, and density profile. The observation

that Flory-Huggins gels behave in some respects as incompressible materials was

actually made before in an experimental study of the responsse of hydrogels to

externally applied osmotic pressure [2]. The proposed explanation there was

that this effect is due to the pre-stress in the state of swelling equilibrium.

While compressibility seemed to have a very minimal effect on cavitation in

Flory-Huggins gels, we instead saw that it is very sensitive to strain hardening.

We found that cavitation is suppressed for strain hardening parameters η as

small as 0.01. Shear hardening in biogels strongly depends on cross-linking den-

sity. While synthetic polymer gels composed of highly flexible polymers with

low cross-linking densities show no observable strain hardening [19], sythetic

biomimetic gels do, with effective η values in the range of one to ten [5, 19]. For

collagen gel, the η value increase from about 101 to about 103 under increasing
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cross-linking density [24]. All of these η values are well above 0.01, which would

mean that none of these systems ought to show cavitation according to our re-

sults.

In chapter five we explored the dynamics of cavitation. Seeing as we previously

found that cavitation in compressible Flory-Huggins gels appeared qualitatively

similar to that in incompressible materials, we focused exclusively on incom-

pressible materials. Our main result is that, while purely elastic solids can

be described entirely within either a Lagrangian or Eulerian frame of reference,

visco-elastic materials such as the Maxwell materials we explored cannot be fully

described without making use of both reference frames. In particular, we saw

that to properly derive the exponentially decaying elastic response, the equation

of motion had to first be pulled back to the reference frame. What makes this

possible to do is that the deformation map φ is known for an incompressible

material, being forced to take on a specific form by mass conservation. Unfor-

tunately, this means that performing a similar calculation for a compressible

material, where we do not know the form of φ ahead of time, is not feasible in

general. A variational ansatz could potentially be used to approximate the form

of the deformation map, as we did in the static case, although the presence of

dissipative terms in the free energy would make determining the correct values

of any variational parameters more complicated.

In the case of the incompressible Maxwell material, we found that the effects

of finite-strain elasticity was to renormalize the viscosity and density in a time-

dependent way, in addition to the exponentially decaying elastic response. The

renormalized density, in particular, can become negative when the stress re-

laxation time becomes very large, which suggests the presence of a shock-wave

like instability. While the presence of this instability could be derived when

staying exclusively in the Eulerian frame, as in equation 210, properly deriving
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time dependence of both the density and the viscosity renormalization, like the

elastic response, requires the use of both the Eulerian and Lagrangian frames

of reference. The final equation, equation 228, acts as something of a union of

both approaches.

As long as the deformation map φ is known, similar calculations may be per-

formed for other models of visco-elastic materials. When it comes to the Flory-

Huggins gels we explored in chapter four, however, the deformation map is sadly

not fixed by incompressibility. This is because of the fact that Flory-Huggins

gels are two-component systems - while the full system of polymer and solvent

together is incompressible, the polymer network and solvent individually are not.

The elastic response will be determined by the deformation map of the poly-

mer network alone, and as such translating between a Lagrangian and Eulerian

frame of reference is no longer feasible. While we could, in principle, derive a set

of differential equations for the deformation maps of both the polymer network

and solvent, these equations would be incredibly complex and infeasible to solve.
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