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Associations among Wine Grape Microbiome, Metabolome, and
Fermentation Behavior Suggest Microbial Contribution to Regional
Wine Characteristics

Nicholas A. Bokulich,a,b,c* Thomas S. Collins,b,d* Chad Masarweh,a Greg Allen,e Hildegarde Heymann,b Susan E. Ebeler,b,d

David A. Millsa,b,c

Department of Food Science and Technology, University of California, Davis, California, USAa; Department of Viticulture and Enology, University of California, Davis,
California, USAb; Foods for Health Institute, University of California, Davis, California, USAc; Food Safety and Measurement Facility, University of California, Davis, California,
USAd; Far Niente and Nickel & Nickel Wineries, Oakville, California, USAe

* Present address: Nicholas A. Bokulich, Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, USA; Thomas S. Collins, Viticulture and Enology
Program, Washington State University, Richland, Washington, USA.

ABSTRACT Regionally distinct wine characteristics (terroir) are an important aspect of wine production and consumer appreci-
ation. Microbial activity is an integral part of wine production, and grape and wine microbiota present regionally defined pat-
terns associated with vineyard and climatic conditions, but the degree to which these microbial patterns associate with the chem-
ical composition of wine is unclear. Through a longitudinal survey of over 200 commercial wine fermentations, we demonstrate
that both grape microbiota and wine metabolite profiles distinguish viticultural area designations and individual vineyards
within Napa and Sonoma Counties, California. Associations among wine microbiota and fermentation characteristics suggest
new links between microbiota, fermentation performance, and wine properties. The bacterial and fungal consortia of wine fer-
mentations, composed from vineyard and winery sources, correlate with the chemical composition of the finished wines and
predict metabolite abundances in finished wines using machine learning models. The use of postharvest microbiota as an early
predictor of wine chemical composition is unprecedented and potentially poses a new paradigm for quality control of agricul-
tural products. These findings add further evidence that microbial activity is associated with wine terroir.

IMPORTANCE Wine production is a multi-billion-dollar global industry for which microbial control and wine chemical compo-
sition are crucial aspects of quality. Terroir is an important feature of consumer appreciation and wine culture, but the many
factors that contribute to terroir are nebulous. We show that grape and wine microbiota exhibit regional patterns that correlate
with wine chemical composition, suggesting that the grape microbiome may influence terroir. In addition to enriching our un-
derstanding of how growing region and wine properties interact, this may provide further economic incentive for agricultural
and enological practices that maintain regional microbial biodiversity.
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Regional variations in wine quality traits, collectively referred to
as “terroir,” have been documented empirically for centuries,

but few conclusive links have been drawn between regional factors
and wine sensory properties. Wines made from identical grape
cultivars but grown in different regions are appreciated for their
distinctive features, increasing the consumer demand for and eco-
nomic value of many regional products. Consequently, geograph-
ical pedigree is legally protected, e.g., through the Protected
Designation of Origin regulations in Europe and American Viti-
cultural Areas (AVAs) in the United States. Moreover, such re-
gionality can be distinguished by chemical composition (1–3) and
sensory characteristics (4–7), but establishing which conditions
drive quality outcomes remains tenuous. These chemico-sensory
differences are most commonly ascribed to environmental factors
that influence grapevine growth and development, involving in-
teractions between environmental, temporal, geologic, plant-

genetic, human, and other factors (8). Thus, terroir is an impor-
tant aspect of consumer acceptance, identity, and economic
appreciation of wine production. Defining factors that contribute
to terroir is important for preserving the diversity and enhancing
the value of wine and other regional agricultural commodities.

Microbial biogeography is another factor that potentially con-
tributes to regional wine characteristics. Traditional winemaking
practices encourage or rely entirely on “native” (noninoculated)
microbiota to conduct fermentations, a practice that adherents
regard as enhancing regional typicity. In spite of the well-defined
role microbial interactions play in grapevine health, fruit quality,
and wine quality (9), the influence of grape microbiota on regional
characteristics of wines is undefined. We previously demonstrated
that regional, grape varietal, and climatic factors shape the bacte-
rial and fungal communities of wine grapes across multiple grow-
ing years (10). Other authors have demonstrated regional fungal
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biodiversity patterns on grapes elsewhere globally (11–13). Re-
gional strains of Saccharomyces cerevisiae, the principal yeast spe-
cies involved in wine fermentations, produce distinct wine chem-
ical compositions, demonstrating one prominent route by which
regional microbes influence terroir (14). Beyond Saccharomyces
yeasts, wine fermentation is a complex, multispecies process, and
the synergistic effects of these consortia on wine chemistry are yet
unclear. An overwhelming body of evidence has defined the influ-
ences of numerous bacteria and fungi on the chemical and sensory
properties of wines in pure culture (reviewed in reference 15), and
nonfermentative grape-associated microbiota produce many
sensory-active compounds associated with wine aroma, highlight-
ing their potential in early flavor formation (16). However, the
relationship between regional microbial patterns and wine metab-
olite profiles is unknown. Evidence of their interaction would im-
plicate microbial activity in shaping the regional wine qualities
that are important for defining product identity.

Furthermore, high-throughput sequencing techniques have
expanded our knowledge of microbial diversity on grapes and in
wine fermentations, but the possible roles and dynamics of

these microbes during wine fermentation are understudied
(10, 13, 17–19). In addition to directly influencing wine chem-
ical composition, understudied microbes could indirectly alter
wine quality— e.g., by inhibiting fermentation progress or
malolactic fermentations.

To address these issues, we conducted an exploratory study to
assess (i) whether the grape microbiota and wine metabolomes
exhibit distinct patterns of distribution at small geographic scales
(e.g., neighboring vineyards), (ii) whether regional wine micro-
biomes and metabolomes are correlated, and (iii) associations
between the microbiome, fermentation performance, and prefer-
mentation grape must/juice characteristics. We employed high-
throughput marker gene sequencing to longitudinally profile the
bacterial and fungal consortia of over 200 commercial fermenta-
tions and musts (crushed grapes) of grapes grown throughout
Napa and Sonoma Counties, CA (Fig. 1; see Table S1 in the sup-
plemental material). We used ultra-high-pressure liquid chroma-
tography (UHPLC)/quadrupole time of flight mass spectrometry
(QTOF MS) for nontargeted metabolite profiling of a subset of
these must and wine samples, identifying marker metabolites that
differentiate AVAs. We demonstrate that the grape/wine microbi-
ota and metabolites are regionally distinct, the must and wine
microbiota correlate with the wine metabolome and fermentation
performance, and grape must microbial composition predicts the
metabolite composition of the finished wine, suggesting that mi-
crobial dispersion patterns may contribute to regional wine char-
acteristics.

RESULTS AND DISCUSSION

All samples were collected from Far Niente and Nickel & Nickel
wineries, located approximately 2 km apart in Oakville, CA (Napa
County). Cabernet Sauvignon (dry red wine) and Chardonnay
(dry white wine) grape musts and fermentations were longitudi-
nally sampled across fermentation and aging (Table 1). Red and
white wine fermentations were sampled at different time points, as
they are processed differently: white grapes are crushed and
pressed immediately, and the clarified juices are fermented,
whereas red grapes are crushed and fermented as must, which is
only pressed after fermentation is complete (Table 1). Addition-
ally, only the red wines underwent malolactic fermentation
(MLF), a secondary bacterial fermentation during which Oenococ-
cus oeni and other lactic acid bacteria deacidify wine by conversion
of malic to lactic acid, accompanied by various sensory changes.

FIG 1 Map of sampling sites across Napa and Sonoma Counties. Each point
represents an individual vineyard from which grapes were harvested for the
fermentations monitored in this study. Points are colored by AVA designation,
as indicated in the key. The inset illustrates the position of this sampling area
within California.

TABLE 1 Fermentation stages and sample collection schematic

Stagea Process

Chardonnay Cabernet Sauvignon

Statusb Sitec Status Site

Crush Crush Juice PP
Must Prior to inoculation Juice T Must T
Early Early fermentation ~22 °Brix T
Mid Mid-fermentation ~20 °Brix T
Late Near end of fermentation ~1 °Brix B Pressed T
End End of fermentation pre-SO2 Dry (wine) B
MLF End of MLF ML—dry B
Wine Aged Prior to bottling B Prior to racking B
a Stage name indicates the name used in subsequent figures.
b Status indicates the material type and sugar concentration (°Brix) at that stage. Musts are unfermented crushed grapes containing both pomace and juice. Juice is unfermented,
pressed grape must. The product is considered wine after the end of fermentation (“end” stage). Empty entries indicate no sample collected at that stage, as red and white wines are
processed differently.
c PP, press pan; T, fermentation tank; B, barrel; MLF, malolactic fermentation.
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Microbial biodiversity distinguishes vineyards and viticul-
tural areas (AVAs). We have previously demonstrated that differ-
ent grape-growing regions of California possess distinct, identifi-
able microbial patterns across large distances, correlated with
local weather conditions (10). Thus, we first sought to test whether
microbial patterns can be distinguished between contiguous
AVAs and individual vineyards within a single growing region,
Napa County, CA, and nearby sites in Sonoma County at different
stages of fermentation (Fig. 1; see Table S1 in the supplemental
material).

Individual AVAs and vineyards were distinguished based on
the microbial consortia present in the grape must/juice (Fig. 2; see
Table S2 in the supplemental material). Permutational multivar-
iate analysis of variance (MANOVA) tests (see Table S2) con-
firmed that microbial composition is significantly different be-
tween at least two AVAs (Chardonnay bacteria, P � 0.001, R2 �
0.262, and fungi, P � 0.001, R2 � 0.233; Cabernet bacteria, P �
0.001, R2 � 0.154, and fungi, P � 0.002, R2 � 0.105) and vineyards
(Chardonnay bacteria, P � 0.001, R2 � 0.599, and fungi, P �
0.001, R2 � 0.408; Cabernet bacteria, P � 0.001, R2 � 0.353, and
fungi, P � 0.001, R2 � 0.320). Random forest machine learning
models confirm that all vineyards are distinguishable at classifica-
tion accuracies between 79% (Chardonnay juice) and 82% (Char-
donnay wine), 3.7- to 4.4-fold more accurate than random error
rates (see Table S3 in the supplemental material). This separation
was also dependent upon the grape variety: Chardonnay demon-
strated stronger AVA differentiation for both bacterial and fungal
profiles than Cabernet Sauvignon (Fig. 2; see Table S2). Thus,
local conditions appear to modulate microbial communities in
addition to regional effects. Numerous microclimatic, viticul-

tural, and geophysical factors could explain variation among vine-
yard sites beyond the scope of our measurements and are impor-
tant questions for future studies. Intravineyard monitoring could
elucidate which of these factors hold the greatest influence over
localized microbial patterns, potentially yielding insight into ma-
nipulable elements for controlling local microbial communities:
e.g., to reduce disease pressure or increase plant-beneficial popu-
lations.

Both AVA and vineyard-specific microbial signatures dimin-
ished during fermentation (Fig. 2) as growth of fermentative or-
ganisms reshaped the community structure, richness, and diver-
sity of the wines (Fig. 3 and Fig. 4; see Fig. S1 in the supplemental
material). This effect was largely dependent on grape variety and
winery: Chardonnay vineyards and AVAs retained significantly
different bacterial profiles at end of fermentation (P � 0.001)
(Fig. 2; see Table S2 and Fig. S1 in the supplemental material) and
Cabernet fungi differentiated vineyard origin of at least one vine-
yard (P � 0.001) (Fig. 2 and 4; see Table S2), but Cabernet bacte-
rial profiles became less distinct due to growth of Leuconostocaceae
(O. oeni) during MLF conducted in these wines but not in the
Chardonnays. Nevertheless, random forest classification models
could still distinguish vineyards at accuracies of 81% (Cabernet)
and 82% (Chardonnay) based on microbial profiles in the finished
wine, indicating that vineyard-specific signatures are still retained
through fermentation (see Table S3 in the supplemental material).

Wine metabolite profiles segregate growing regions. We next
sought to test whether AVAs and vineyards produced differentia-
ble wine metabolite patterns, and whether regional microbial pat-
terns could translate to metabolomic differences in wines. Using
ultra-high-pressure liquid chromatography (UHPLC)/quadru-

FIG 2 Microbiota exhibits regional variation in musts and wines. (A) Chardonnay. (B) Cabernet Sauvignon. Shown are PCoA comparisons of bacterial
weighted UniFrac distance (left two columns) and fungal Bray-Curtis dissimilarity (right two columns) in musts and wines (see column labels), categorized by
vineyard (color) and AVA source (shape). Each point represents an individual sample, and sample proximity on the plot is a function of similarity in bacterial and
fungal community composition.
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pole time of flight mass spectrometry (QTOF MS), we analyzed
the metabolite profiles of 13 Chardonnay and 27 Cabernet Sauvi-
gnon wines in triplicate, representing distinct AVAs and vineyards
tested with biological replication (minimum duplicate). These
were finished and barreled but unblended fermentations (MLF
stage for Cabernets, and “end” stage for Chardonnays [Table 1]),
enabling metabolite profiles to be compared directly to the micro-

bial communities inhabiting the musts from which these wines
were made. All vineyards and AVAs were represented by biologi-
cal replicates: i.e., at least two separate vineyard blocks were ana-
lyzed per vineyard, and at least two separate vineyards were ana-
lyzed per AVA whenever possible.

Raw QTOF profiles revealed 1,585 mass features in Cabernet
Sauvignon wines and 1,054 in Chardonnay wines. Profiles were
filtered to remove putative metabolites that were not observed
consistently across technical replicates or detected in low abun-
dance. Only low-molecular-mass putative metabolites (�300
m/z) were analyzed to focus on compounds that are most likely
aroma-active volatile compounds. (Larger compounds were pri-
marily identified as grape-derived phenolic compounds and ig-
nored in this study.) Of the remaining putative metabolites, we
retained only those observed at significantly different abundances
between regions (one-way analysis of variance [ANOVA] false
discovery rate [FDR]-corrected P value of �0.05). In all, Cabernet
Sauvignon wines contained 16 regionally differential low-mass
features (see Table S4 in the supplemental material). Chardonnay
wines contained 27 (see Table S5 in the supplemental material). In
several cases, exact identities could be confidently determined by
mass and tandem MS (MS/MS) spectrum matches to the metab-
olite databases or accurate run time and mass matches to authen-
tic standards. In most cases, only approximate identities or no
identity could be obtained. This is a common issue, as the QTOF
analysis as used here is a nontargeted method and the reference
databases are not tailored to wine metabolites. Many of these com-
pounds represent acids, esters, and aldehydes, some of which are
likely microbial. Others, such as tartaric acid, are strictly grape
derived. Many of the grape-derived compounds, such as the phe-
nolic compounds coumaric acid, gallic acid, catechin, epicatechin,
and caffeic acid, are modified by microbial metabolism during
wine fermentation (20–22).

Within grape varieties, wine metabolite profiles clearly splay
out with principal-component analysis (PCA), associated
with numerous significantly discriminant metabolites (FDR-

FIG 3 Stage of fermentation influences microbial richness. Shown are the
mean � standard deviation (SD) bacterial (A) and fungal (B) richness (ob-
served OTU) in Cabernet Sauvignon and Chardonnay by stage of fermenta-
tion. Different lowercase letters indicate significantly different means.

FIG 4 Stage of fermentation influences microbial composition of Cabernet Sauvignon. (A and B) Bacterial weighted UniFrac (A) and fungal Bray-Curtis (B)
PCoA comparing similarity among all Cabernet samples, colored by stage of fermentation. (C and D) Relative abundance of bacteria (C) and fungi (D) that
differed significantly by stage of fermentation. Only taxa detected at �1% relative abundance are shown in panels C and D. False discovery rate (FDR)-corrected
P values are listed for each taxon. The taxon “Leuconostocaceae” represents O. oeni, which belongs to this bacterial family, and all OTU assigned to this taxonomy
matched O. oeni by BLASTn.
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corrected P value of �0.05) (see Fig. S2 in the supplemental
material). Chardonnay wines demonstrated greater discrimi-
nation between both growing regions and vineyards (see
Fig. S2A), whereas separation was weaker among Cabernet
Sauvignon wines, for which many vineyards were indistin-
guishable from each other (see Fig. S2B). The reasons why
Chardonnay microbiota better differentiate region are unclear,
but the use of MLF in all Cabernet wines studied (but not the
Chardonnays) is one possibility. The Chardonnay vineyards
sampled in this study also came from more distant and diverse
regions across Napa and Sonoma Counties (e.g., Carneros,
Coombsville, Oakville, Russian River), compared to Cabernet
(St. Helena, Oakville, Rutherford, and Yountville are contigu-
ous regions on the valley floor), and thus differences in climate,
topography, and regional distance are all possible causes that
cannot be unraveled in the present study.

Microbial patterns correlate to regional metabolite profiles.
To further dissect the relationship between regionally differential
must microbiota and wine metabolites, multifactorial analysis
(MFA) (23) was used to investigate underlying relationships be-
tween putative metabolite profiles, grape microbiota, and region
of origin (Fig. 5). MFA is a generalization of principal-component
analysis (PCA), in which sample similarity is decided by multiple
different sets of observations (in this case, both metabolites and
taxonomic features) to determine a consensus ordination. This
analysis calculates sample similarity (as ordination plots akin to
PCA), the degree of similarity between each set of observations,

and correlations between individual observations. MFA could
confidently separate wines by growing region and vineyard based
on putative metabolite profiles and grape microbiota (Fig. 5A and
E). Highly similar ordination patterns of regional and site-specific
segregation were observed based on metabolite, bacterial, and
fungal profiles (Fig. 5B and F), and numerous correlations were
detected between variables in all three groups (Fig. 5C and G),
demonstrating close correspondence between microbial and met-
abolic profiles. In Chardonnay wines, fungal profiles were more
closely associated with putative metabolite profiles than with re-
gion alone (Fig. 5C), and several interesting correlations emerged
between the microbiome and metabolome (Fig. 5D): notably, be-
tween Leuconostocaceae (O. oeni is the top BLAST hit for all Leu-
conostocaceae sequences detected) and entity 136.0498@0.9307
(i.e., accurate mass of 136.0498 at LC run time of 0.9307 min)
(possible hits, methylbenzoate, phenyl acetate, or p-anisealde-
hyde); Hanseniaspora uvarum and entity 120.0577@3.3848 (pos-
sible hits, acetophenone, phenylacetaldehyde, or 3-methyl benz-
aldehyde), and Pichia guilliermondii and entities 144.1169@
7.3606 (octanoic acid) and 114.0702@2.2747 (C6H10O2 acid,
ester, or lactone) (Fig. 5D). These microbes are all known fermen-
tative organisms (some with poorly characterized phenotypes);
these putative metabolites are all important sensory-active wine
components or potentially sensory-active metabolites, and all are
correlated by MFA with vineyards in Carneros, one of the most
renowned, cold-weather AVAs for Chardonnay production
within Napa County.

FIG 5 Must microbiome is correlated with the wine metabolome. Shown are the results from multifactorial analysis (MFA) of must microbiome and wine
metabolome profiles of Chardonnay (A to D) and Cabernet Sauvignon (E to G). (A and E) An MFA sample ordination plot demonstrates regional and vineyard
segregation of Chardonnay (A) and Cabernet Sauvignon (E). (B and F) A partial-axis MFA plot illustrates category correspondence between metabolite (orange),
bacterial (blue), and fungal (red) subcategory coordinates. Partial mean individuals (means of sample ordination for bacterial, fungal, or metabolite profiles) are
linked to the subcategory common mean (centroid of all samples for a given region of origin). (C and G) MFA group representations illustrate the relationship
between bacterial, fungal, and metabolite profiles with wine origin (region and vineyard). (D) An MFA correlation circle depicts correlations in normalized
abundance between all Chardonnay must bacterial taxa (blue), fungal taxa (red), and wine metabolites (orange) along the MFA axes. Metabolite nominal masses
are used for clarity; accurate masses are provided in Table S5 in the supplemental material. To improve readability of the plots, only the top correlations in each
dimension are shown.
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Cabernet Sauvignon bacterial profiles were more closely as-
sociated with putative metabolite profiles than with region
alone (Fig. 5G), and there was a weaker correlation between
fungal and metabolic profiles (Fig. 5F). The stronger
bacterium-metabolite correlation may reflect that the Caber-
net Sauvignons underwent MLF (a bacterial fermentation) and
longer maturation, muting fungal contributions. Hence, wine
production methods and wine style may ultimately determine
the degree to which different microbial activities contribute to
wine chemical composition. The close correspondence be-
tween must microbial composition and putative wine metabo-
lite profiles may indicate that the grape microbiota influences
the chemical properties of the finished wine and/or that both
are strongly shaped by the same regional factors.

Microbial profiles predict abundance of wine metabolites.
Wine is a complex chemical and biological matrix, and many of
the sensory-active constituents are produced, consumed, or mod-
ified by multiple microbial species (15). Relationships between
microbial composition and wine metabolite profiles are unlikely
to be one dimensional and linear. Thus, models incorporating
multiple microbial predictors can be expected to more accurately
predict such relationships. We employed random forest (24) clas-
sification models to predict wine metabolite composition as a
function of grape must microbiome composition. Within the
metabolome, a few select putative wine metabolites were pre-
dicted relatively well by these models (pseudo-R2 � 0.50 to 0.98)
(Fig. 6; see Tables S6 and S7 in the supplemental material). Me-
tabolite entity 130.0617@3.1301 (pseudo-R2 � 0.61), a C6 keto-
acid, is best predicted by the presence of the grape-associated fil-
amentous fungus Cladosporium and Bacillaceae; fermentative
yeasts S. cerevisiae and Wickerhamomyces anomalus were also top
features in the optimized predictive model (Fig. 6A). Pichia
guilliermondii, closely correlated by MFA with entity
114.0702@2.2747 (C6H10O2 acid, ester, or lactone), is the princi-
pal feature for predicting abundance of this metabolite in Char-
donnays (pseudo-R2 � 0.80) (Fig. 6B). Several other regionally
discriminant metabolites were closely linked to microbiota com-
position (see Tables S6 and S7). For many of these metabolites,
the top predictive features include fermentative yeasts and bacte-
ria such as Saccharomyces, H. uvarum, W. anomalus, P. guillier-
mondii, Lactobacillales, and Acetobacteraceae, and dominant grape

epiphytes, such as Cladosporium, Botryotinia fuckeliana, Bacil-
laceae, Enterobacteriaceae, Pseudomonas, Sphingomonas, and
Methylobacterium (see Tables S6 and S7). Metabolites predicted
with high accuracy include mass features 136.0498@0.9307
(pseudo-R2 � 0.83; possible hits, methylbenzoate, phenyl acetate,
or p-anisealdehyde), 120.0577@3.3848 (pseudo-R2 � 0.86; possi-
ble hits, acetophenone, phenylacetaldehyde, or 3-methyl benzal-
dehyde), 204.1179@5.5837 (pseudo-R2 � 0.85; possible mercap-
tol hexyl butyrates), 272.1797@5.7748 (pseudo-R2 � 0.89;
unknown compound), and 164.0446@1.4888 (pseudo-R2 � 0.97;
coumaric acid) (see Tables S6 and 7). The important sensory-
active medium-chain fatty acid octanoic acid was predicted mod-
erately well in Chardonnay (entity 144.1169@7.3606; pseudo-
R2 � 0.53).

Many of these microbiota-metabolite associations corroborate
the well-defined metabolic characteristics of these organisms in
pure culture fermentations (15). For the many organisms with
unknown roles in wine fermentations, these results raise sugges-
tive associations between grape microbiota and wine chemistry.
The grape epiphytes in particular are not well studied for their
potential contributions to wine, although they are numerically
dominant on grapes and in early fermentations. We recently cul-
tured two of these bacteria, Sphingomonas and Methylobacterium,
from finished wines (17), and Enterobacteriaceae, Pseudomonas,
Sphingomonas, and Methylobacterium appear to increase in rela-
tive abundance during fermentation (not necessarily an indica-
tion of growth) in this study and the work of others (13, 18, 19,
25), increasing the probability that these bacteria contribute to
wine characteristics directly or indirectly. Plant-associated, non-
fermentative, and numerically minor populations could still exert
a substantial effect on metabolite profiles directly— e.g., through
prefermentation activity or release of metabolites with low sen-
sory thresholds—and indirectly through metabolism or release of
small molecules and enzymes following cell death and lysis. Inter-
actions among regional microbiota may also influence the
metabolome and deserve further study. For example, release of
inhibitory molecules by less fermentative organisms present in
grape musts could alter Saccharomyces metabolism, altering wine
profiles. However, the DNA profiling techniques as employed
here do not differentiate active populations within the microbiota,
yielding little insight on such relationships. Metatranscriptomics

FIG 6 Microbial composition accurately predicts metabolite abundance of select metabolites. Shown are the results from random forest regression of predicted
versus observed metabolite intensity in validation samples using a sparse set of predictors (inset, model using all taxa as predictors) to predict abundance of a C6

keto acid in Cabernet Sauvignon wines (A) and a C6 acid, ester, or lactone in Chardonnay wines (B). Trend lines indicate a true 1:1 ratio. Bar plots were used to
display the ranked feature importance of bacterial (blue bars) and fungal (red bars) taxa used to train the optimized models. MW, molecular weight; MDA, mean
decrease in model accuracy if that feature is removed from the model.
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would distinguish the functional behavior of active populations
during the fermentations, inferring whether populations make
direct versus indirect contributions to wine metabolite profiles
and bolstering the microbiota-metabolite associations detected
here.

While these findings cannot claim causation, they demonstrate
that the microbial composition of grapes accurately predicts the
chemical composition of wines made from these grapes and are
therefore biomarkers for predicting wine metabolite composition
(a quantifiable feature of terroir). An alternative explanation for
the correlation between the prefermentation microbiome and
wine metabolome is that both are influenced by the same regional
factors (e.g., climate or soil chemistry) and by the metabolite pro-
files of the grapes. More work must be done to establish the pos-
sible roles of these organisms in wine fermentation and flavor
production, and sensory studies are necessary to determine
whether microbial associations extend to human-perceptible dif-
ferences in wine traits. We provide a rich exploratory data set that
will support mechanistic studies focusing on the roles of these
understudied organisms in wine fermentations.

Microbial profiles correlate with juice chemistry and fer-
mentation behavior. Next, we sought to detect correlations be-
tween microbiota, must/juice chemistry, and fermentation char-
acteristics, with an emphasis on detecting microbiota that could
influence fermentation behavior. Correlations between the mi-
crobiota, fermentation rate, and MLF length are particularly im-
portant for discovering factors that may contribute to sluggish or
stuck fermentations (26).

Numerous significant correlations (FDR-corrected Spear-
man P value of �0.05) were detected between initial must/juice
composition and microbial abundance in musts and at the end
of fermentation (Fig. 7). Notably, fermentation rate was nega-
tively correlated with several taxa, as well as bacterial richness
in Chardonnay musts and wines, suggesting that high bacterial
diversity inhibits alcoholic fermentation, most likely because
greater richness increases the chances of antagonistic species
being present. Among the negatively correlated taxa,
H. uvarum, Gluconobacter, and Lactobacillus spp. are already
known to inhibit fermentation rate through competition for
nutrients with S. cerevisiae (26, 27), so recovery of these corre-
lations is reassuring. The repeated negative correlation be-
tween Enterobacteriaceae and fermentation rate in musts and
wines is particularly suggestive of another potential interac-
tion, although the species involved will need to be clarified.
(The group detected here represents operational taxonomic
units [OTU] identifiable only to the family level.) Erwinia and
other Enterobacteriaceae have been observed abundantly in
botrytized (17, 25) and table wine fermentations (13, 18, 19),
but the nature and role of this group in wines have been un-
clear. Various Enterobacteriaceae are typically present in and
contribute to the flavor of some spontaneous beer fermenta-
tions (28) but hinder the fermentation rate in beer (29) and
could be similarly problematic in some wine fermentations.
Several other organisms were positively correlated with fer-
mentation rate, most notably Pseudomonas, which was signifi-
cantly correlated in both Cabernet and Chardonnay, both in
musts and at the end of fermentation (Fig. 7). The possibility
that this bacterium may enhance fermentation rate is an inter-
esting finding worth further investigation.

Conclusions. Microbial terroir likely involves multiple inter-
acting aspects of microbial distribution, strain diversity, and
plant-microbial interactions. The present study explores issues of
regional distribution of microbial populations in grapes and
wines, building on previous evidence that these patterns exist over
larger regions, correlating with climate conditions (10). Not all
regions and vineyards are microbiologically unique, and the pat-
terns that distinguish them are not random. Instead, climate and
distance between regions are associated with regional microbial
patterns (10), and many other factors are likely involved, includ-
ing processes that are selective (e.g., soil type, topography,
human-driven agricultural practices) and neutral (e.g., species
dispersal limitation across large distances) (30). Vineyard soil mi-
crobiota demonstrate similar regional distribution patterns, asso-
ciated instead with edaphic factors (31, 32), and plant-microbial
interactions above and below ground may contribute to plant
growth and development, leading to changes in fruit quality (32).
Geographic distribution of microbial strains displaying diverse
phenotypes appears to be another factor (14). Knight and cowork-
ers (14) found that S. cerevisiae genotypes and phenotypes were
correlated with geographic dispersion in New Zealand, and re-
gional strains produced distinct metabolite profiles in experimen-
tal wine fermentations. Regional strain diversity may also explain
dispersion of wine spoilage traits, such as geographic patterns of
histamine decarboxylase genes in lactic acid bacteria in wineries
across Bordeaux, France (33). Regional strain diversity in the
many other bacterial and fungal species involved in wine produc-
tion may similarly contribute to microbial terroir and deserves
further investigation.

The intricacies of wine flavor are not determined by microbial
composition alone. We conjecture that microbial activity contrib-
utes to the mixture of abiotic and biotic factors that underlie wine
terroir, with the scale of this contribution depending upon the
winemaking techniques and style of wine produced. We have
demonstrated that the microbial constituents of grape musts are
biomarkers for predicting features of wine metabolite composi-
tion before fermentation has even commenced. These markers
could provide actionable information to winemakers to improve
wine characteristics or mitigate problem fermentations—and are
unprecedented as early predictors of the wine metabolome. Such
information could be practical for predicting the suitability of
potential vineyard sites or acquisitions or for preventing microbi-
ological issues in abnormal vintages. We doubt that microbial
biomarkers could be used to artificially replicate all aspects of wine
terroir, as many other interacting, nonmanipulable factors also
contribute (e.g., climate). Terroir is the regional fingerprint of a
wine, not solely an engineered feature of winemaking.

Wine is a useful model for testing the theory of microbial ter-
roir, as regional wine qualities are already a well-recognized and
celebrated part of wine identity. However, the connection be-
tween microbial regionality and food properties is not unique to
wine, and these results suggest that similar phenomena likely oc-
cur in other food products. Thus, these findings argue for explor-
ing and characterizing the connection between environmental
conditions, microbial patterns, and chemico-sensory characteris-
tics in other agricultural products (both food and nonfood) im-
pacted by microbial activities. Microbial terroir may provide fur-
ther incentive for preserving regional biodiversity through
sustainable agricultural practices, in recognition of the economic
values provided by regional product identity (14).
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Together, these results illustrate a complex relationship between
microbial communities in grape musts and wine fermentations with
the chemical compositions of the resulting wines. Microbial commu-
nities can be distinguished on regional, AVA, and vineyard-specific
scales, correlating with multiple environmental parameters (10). The
microbial consortium of wine fermentation, influenced by vineyard

and winery sources (34), is associated with the chemical composition
of the finished wine, suggesting that—if indeed the microbial connec-
tion is causative and these changes result in sensory-active effects—
microbial biogeography is a quantitative, definable feature of wine
terroir. We identify numerous associations between the wine micro-
biome and metabolome, and future studies are necessary to establish

FIG 7 Microbiota correlations with must/juice and fermentation characteristics. Shown is the Spearman correlation between must/juice chemistry, fermen-
tation characteristics, and microbiota in musts (left columns) and end of fermentations (EOF [right columns]). Only significant correlations (FDR-corrected P
value of �0.05) are shown. As chemical composition was only measured in musts and juices, no data appear for must/juice correlations at end of fermentation
(gray boxes at top right corner). NH3, ammonia concentration; NOPA, total nitrogen by o-phthaldialdehyde assay; YAN, yeast assimilable nitrogen.
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causative links between the microbial consortia, wine metabolites,
and sensory characteristics.

MATERIALS AND METHODS
Sampling and DNA extraction. Samples were collected from Far Niente
Winery and Nickel & Nickel Winery, both located in Oakville, Napa
County, CA. All samples were collected from the 2011 vintage. These
wineries use grapes harvested from throughout Napa County, represent-
ing several major viticultural areas (Fig. 1; see Table S1 in the supplemen-
tal material). The primary wine and grape varieties collected were Char-
donnay (a dry white wine) and Cabernet Sauvignon (a dry red wine).

Samples consisted of longitudinal wine fermentation samples (n �
777), each corresponding to individual vineyard lots. Samples were col-
lected at five predetermined time points in duplicate. As red and white
grapes are processed differently, these times points depended on grape
type (Table 1). Red grape fermentations were collected as grape must
(destemmed, crushed grapes prior to fermentation), at mid-fer-
mentation, at the end of fermentation following pressing but prior to
barreling, at the end of malolactic fermentation (in barrels), and after
several months of barrel aging. White grape fermentations were collected
as juice, following racking (clarification) prior to inoculation, early fer-
mentation prior to barreling, near the end of fermentation (in barrels), at
the end of fermentation (in barrels), and after several months of matura-
tion in barrels.

Samples were frozen immediately, shipped on ice, and stored at
�80°C until processing. Sample processing was performed as described
previously (17). Briefly, must samples were thawed and centrifuged at
4,000 � g for 15 min, washed 3 times in ice-cold phosphate-buffered
saline (PBS), suspended in 200 �l DNeasy lysis buffer (20 mM Tris-Cl
[pH 8.0], 2 mM sodium EDTA, 1.2% Triton X-100) supplemented with
40 mg/ml lysozyme, and incubated at 37°C for 30 min. From this point,
the extraction proceeded following the protocol of the Qiagen fecal DNA
extraction kit protocol (Qiagen, Valencia, CA), with the addition of a bead
beater cell lysis step of 2 min at maximum speed using a FastPrep-24 bead
beater (MP Bio, Solon, OH). DNA extracts were stored at �20°C until
further analysis.

Sequencing library construction. Amplification and sequencing were
performed as described previously for analysis of bacterial (10) and fungal
(35) communities. Briefly, the V4 domain of bacterial 16S rRNA genes
was amplified using primers F515 (5=-NNNNNNNNGTGTGCCAGCM
GCCGCGGTAA-3=) and R806 (5=-GGACTACHVGGGTWTCTAAT-3=)
(36), with the forward primer modified to contain a unique 8-nucleotide
(nt) bar code (italicized poly-N section of primer above) and 2-nt linker
sequence (boldface portion) at the 5= terminus. PCR mixtures contained 5
to 100 ng DNA template, 1� GoTaq Green master mix (Promega), 1 mM
MgCl2, and 2 pmol of each primer. Reaction conditions consisted of an
initial 94°C for 3 min, followed by 35 cycles of 94°C for 45 s, 50°C for 60 s,
and 72°C for 90 s, and a final extension of 72°C for 10 min. Fungal internal
transcribed spacer 1 (ITS1) loci were amplified with primers BITS (5=-N
NNNNNNNCTACCTGCGGARGGATCA-3=) and B58S3 (5=-GAGATC
CRTTGYTRAAAGTT-3=) (35), with a unique 8-nt bar code and linker
sequence incorporated in each forward primer. PCR mixtures contained 5
to 100 ng DNA template, 1� GoTaq Green master mix (Promega, Mad-
ison, WI), 1 mM MgCl2, and 2 pmol of each primer. Reaction conditions
consisted of an initial 95°C for 2 min, followed by 40 cycles of 95°C for
30 s, 55°C for 30 s, and 72°C for 60 s, and a final extension of 72°C for
5 min. Amplicons were combined into two separate pooled samples
(keeping bacterial and fungal amplicons separate) at roughly equal am-
plification intensity ratios, purified using the Qiaquick spin kit (Qiagen),
and submitted to the UC, Davis Genome Center DNA Technologies Core
for Illumina paired-end library preparation, cluster generation, and
250-bp paired-end sequencing on an Illumina MiSeq instrument in two
separate runs.

Data analysis. Raw Illumina fastq files were demultiplexed, quality
filtered, and analyzed using QIIME v1.7.0 (37). Reads were truncated at

any site containing �3 consecutive bases receiving a quality score of
�1e�5, and any read containing one or more ambiguous base calls was
discarded, as were truncated reads of �190 nt. Operational taxonomic
units (OTU) were assigned using QIIME’s uclust-based (38) open-
reference OTU-picking work flow, with a threshold of 97% pairwise iden-
tity. Sequence prefiltering (discarding sequences with �60% pairwise
identity to any reference sequence) and reference-based OTU picking
were performed using a representative subset of the greengenes bacterial
16S rRNA database (13_5 release) (39) or the UNITE fungal internal
transcribed spacer (ITS) database (9_12 release) (40), filtered to remove
incomplete and unannotated taxonomies (35). OTU were classified tax-
onomically using the RDP classifier (41). Bacterial 16S rRNA gene se-
quences were aligned using PyNAST (42) against a template alignment of
the greengenes core set filtered at 97% similarity. From this alignment,
chimeric sequences were identified and removed using ChimeraSlayer
(43), and a phylogenic tree was generated from the filtered alignment
using FastTree (44). Sequences failing alignment or identified as chimeric
were removed prior to downstream analysis. Any OTU representing less
than 0.001% of the total filtered sequences was removed to avoid inclu-
sion of erroneous reads, leading to inflated estimates of diversity (45), as
were samples represented by less than 500 (bacterial) or 100 (fungal)
sequences following all quality-filtering steps.

Beta-diversity (similarity between samples) was calculated within QI-
IME using the weighted UniFrac (46) distance between samples (evenly
sampled at 1,000 reads per sample) to assess similarity among bacterial
communities and Bray-Curtis dissimilarity for fungal communities. Prin-
cipal coordinates were computed from the resulting distance matrices to
compress dimensionality intro three-dimensional principal-coordinate
analysis (PCoA) plots, enabling visualization of sample relationships. In
order to determine whether sample classifications (AVA, variety, and
vineyard) contained differences in phylogenetic diversity, permutational
MANOVA (47) with 999 permutations was used to test significant differ-
ences between sample groups based on weighted UniFrac (bacterial) or
Bray-Curtis (fungal) distance matrices. For all categorical classifications
(AVA, variety, and vineyard) rejecting this null hypothesis, Kruskal-
Wallis tests were used to determine which taxa differed between sample
groups.

All other statistical tests were performed in R software (v 2.15.0).
Principal-component analysis (PCA) and multifactorial analysis (MFA)
(23) were performed in R with the FactoMineR package (48) to assess
regional variations between wine metabolites, must and wine microbiota,
and regional affiliations. Only metabolites and taxa demonstrating signif-
icant regional differences (ANOVA and Kruskal-Wallis FDR-corrected P
value of �0.05, respectively) were used in MFA and random forest anal-
yses.

Random forest (24) supervised learning models were employed to
predict wine metabolite composition as a function of must microbial
composition (regression model), to predict region of origin as a function
of microbial composition (classification model), and to predict region of
origin as a function of metabolite composition (classification). Model
predictions were made using the out-of-bag error cross-validation,
whereby random samples are removed from the model one by one (with
replacement) and used to cross-validate the prediction accuracy of the
restrained model. Models were optimized using 100-fold cross-validation
to select the minimal number of features (taxa or metabolites) necessary
to minimize prediction error, and secondary models were trained using
only these features. The resulting feature importance for each feature
(metabolite or taxon) describes the relative importance of that feature to
that model, quantified as the increase in mean square error when that
feature is removed from the prediction model.

UHPLC/QTOF MS. A set of 13 Chardonnay and 27 Cabernet Sauvi-
gnon wines were selected for metabolite profiling, representing the main
growing AVAs and vineyards analyzed in this study in biological repli-
cates. Samples were diluted 1:4 in molecular-grade deionized water ana-
lyzed in triplicate in random order. A control was analyzed in quadrupli-
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cate at the start of the sample set, in triplicate at the end of the sample set,
and singly after every tenth sample to monitor for variation in mass accu-
racy and retention time. Each sample was analyzed in an untargeted data-
dependent MS/MS mode after the individual sample’s triplicate single MS
analyses were done, as described below.

Chromatography was performed using an Agilent 1290 ultra-high-
pressure liquid chromatograph (UHPLC) coupled to an Agilent 6530
quadrupole time of flight mass spectrometer QTOF MS) (Agilent Tech-
nologies, Santa Clara, CA). Triplicate 5-�l injections were tested for each
sample. Chromatographic separation was accomplished using a Zorbax
Eclipse Plus C18 column (5-cm by 2.1-mm inside diameter [i.d.], 1.8-�m
particle size; Agilent Technologies, Santa Clara, CA). The column heater
was set to 60°C throughout the analysis. A reversed-phase gradient was
used, with 0.1% acetic acid in water as mobile phase A and 20% mobile
phase A– 80% HPLC-grade methanol as mobile phase B. From an initial
condition of 97% A–3% B, the concentrations changed in a linear gradient
from 97% A at 1.00 min to 100% B at 9.00 min, followed by a second linear
gradient change from 100% B at 10.00 min to 97% A at 11.00 min, with a
total time of 12.00 min for each analysis. The mobile phase flow rate was
held at 0.6 ml/min throughout the analysis. An Agilent Jet Stream dual-
spray electrospray ionization (ESI) source was used in negative mode to
focus the liquid chromatography (LC) effluent and separately introduce
reference compounds to generate ions for analysis. The system was cali-
brated using the manufacturer’s recommended procedure prior to each
analysis run. Mass spectral data were acquired in profile and centroid
mode over an m/z range from 100 to 1,700; the transient accumulation
rate was 1.41 spectra/s. The ESI source parameters were as follows: drying gas
temperature, 350°C; drying gas flow rate, 10 liters/min; nebulizer pressure, 45
lb/in2; sheath gas temperature, 400°C; sheath gas flow rate, 11 liters/min;
capillary voltage, 3,000 V; and nozzle voltage, 1,000 V. The QTOF MS settings
were fragmentor voltage, 175 V, skimmer voltage, 65 V, and octopole 1 radio
frequency (RF) voltage, 750 V. A reference solution containing purine and
hexakis(1H,1H,3H-tetrafluoropropoxy)phosphazine (HP-921) was contin-
uously introduced just prior to the ESI source using an isocratic pump into a
separate sprayer of the dual Jet Stream source, producing signals of m/z
119.0362 (proton-abstracted purine) and 980.0164 (acetate adduct of HP-
921) in negative mode; these signals were used for continuous internal mass
calibration throughout the analysis, in order to ensure high mass accuracy for
ions detected during the analysis.

MS/MS profiling was conducted in the automated data-dependent
MS/MS mode, using a collision energy of 20 eV for all compounds. The Jet
Stream ESI source settings were the same as for the QTOF MS experi-
ments. The MS data were collected with an acquisition rate of 3 spectra/s
over a mass range of 75 to 1,500 m/z. A maximum of two precursor ions
were allowed for each MS scan. The minimum precursor threshold of 200
counts was used, and precursors were selected based on their abundance.
Active exclusion was enabled to exclude precursor ions after 2 spectra
were collected, so that spectra of other suitable precursor ions could also
be collected. Excluded precursor ions were released after 0.1 min, so that
spectra of isomers with differing retention times could be collected if
present. The MS/MS data were collected with an acquisition rate of 3.0
spectra/s over an MS/MS mass range of 50 to 1,450 m/z, with a medium
isolation width of ~4 Da: the isolation width was 0.3 Da to the left of the
precursor ion and 3.7 Da to the right, which allowed for the inclusion of
the isotopes of the precursor ion in the collision cell.

Raw LC-MS data were processed using the Agilent MassHunter Qual-
itative Analysis software, version 6.00 (Agilent Technologies, Inc., Santa
Clara, CA) to mine the data for the presence of nonredundant mass fea-
tures using isotope peaks, for the presence of adduct ions, to eliminate
noise, and to filter those entities found with a minimum abundance
(peaks with counts of �1 � 106). Raw MS profiles were processed using
the Agilent Mass Profiler Professional (MPP) software, version 12.6 (Agi-
lent Technologies, Inc.), to align mass and retention time data across the
samples within the set and to define profiling parameters. Only low-mass
entities (�300 m/z) were retained for analysis, in order to focus on mass

features that are most likely microbial and are most likely aroma active.
Mass features displaying inconsistent presence/absence of detection
across replicates for any sample were removed, and all remaining mass
features were tested using one-way ANOVA with FDR correction, retain-
ing only mass features that differed significantly between AVAs (FDR-
corrected P value of �0.05). PCA and MFA of mass feature data were
performed in R, as described above. Putative compound identities were
obtained based on matches to the METLIN metabolite database (https://
metlin.scripps.edu). A 30-ppm mass window was used for identification,
and putative identifications were based on matching the accurate mass,
the retention time, and MS/MS spectra of a given entity to those available
in databases. When possible, identifications were confirmed with authen-
tic standards.

Data availability. All raw marker gene sequencing data have been
publicly deposited in the QIITA database (http://qiita.ucsd.edu) under
accession no. 10119 (http://qiita.ucsd.edu/study/description/10119) and
in EBI under accession number ERP015814.
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