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and Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States

It is well-known that the human visual system is adapted to the statistical structure
of natural scenes. Yet there are important classes of images – for example, medical
images – that are not natural scenes, and therefore, that are expected to have
statistical properties that deviate from the class of images that shaped the evolution
and development of human vision. Here, focusing on structural brain MRI images,
we quantify and characterize these deviations in terms of a set of local image statistics
to which human visual sensitivity has been well-characterized, and that has previously
been used for natural image analysis. We analyzed MRI images in multiple databases
including T1-weighted and FLAIR sequence types, and simulated MRI images based
on a published image simulation procedure for T1 images, which we also modified to
generate FLAIR images. We first computed the power spectra of MRI images; spectral
slopes were in the range −2.6 to −3.1 for T1 sequences, and −2.2 to −2.7 for FLAIR
sequences. Analysis of local image statistics was then carried out on whitened images.
For all of the databases as well as for the simulated images, we found that the three-
point correlations contributed substantially to the differences between the “texture”
of randomly selected ROIs. The informative nature of three-point correlations for brain
MRI was greater than for natural images, and also disproportionate to human visual
sensitivity. As this finding was consistent across databases, it is likely to result from
brain geometry at the scale of brain MRI resolution, rather than characteristics of specific
imaging and reconstruction methods.

Keywords: magnetic resonance imaging, brain, image statistics, human vision, efficient coding

INTRODUCTION

Development of image processing systems and algorithms is often guided by the strategies used
by the human visual system. A main motivation for this approach is that drawing inferences from
images is a complex and ill-posed problem, but one that the human visual system, as a result of
evolutionary and developmental forces, has become reasonably effective at solving.
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What is unclear, however, is the level of detail at which
human vision should be used as a source to guide machine
analysis of medical images: not only does human vision operate
under different constraints than machine vision, but also, it is
matched to the statistical properties of images that result from
projections of the natural environment onto the retina. This
matching is at a surprising degree of detail, encompassing
not only the well-recognized stage of redundancy reduction
by removal of global correlations (Atick and Redlich, 1992;
Rucci and Victor, 2015), but also the allocation of resources
to the analysis of local image statistics in a way that is closely
matched to their informative value (Hermundstad et al., 2014).
While the computational strategies used by human vision are
sufficiently robust and general to enable perceptual judgments
about images that are highly non-natural – for example, modern
art – there is ample evidence that these strategies reflect a specific
allocation of computational resources: for example, some kinds
of local correlations are readily perceptible, while others, which
are of comparable mathematical complexity, escape our notice
(Tkacik et al., 2010).

Therefore, understanding the extent to which a particular
image class shares the statistical properties of natural images is
likely to be helpful in translating the lessons learned by the human
visual system into specific applications. Here, we focus on this
comparison for structural brain MRI.

Because the human visual system is matched to natural images
both in terms of their global and local statistical properties, we
consider these aspects of brain MRI images independently. With
regard to characterization of the global statistical properties, we
use the power spectrum (McVeigh et al., 1985), as it is a principled
approach that provides a full and concise characterization of the
correlation structure of a stationary Gaussian image ensemble.
However, it is well-recognized that medical images are non-
Gaussian (Burgess et al., 2001; Theocharakis et al., 2009; Abbey
et al., 2012) and, moreover, that these non-Gaussian aspects
are functionally important, as they affect the ability to detect
abnormalities (Burgess et al., 2001).

In contrast to approaches for analysis of the Gaussian aspects
of an image set – for which the power spectrum is pre-
eminent – there are many options for quantification of non-
Gaussian characteristics. The basic reason for this diversity is
that Gaussianity is a strong assumption, so it can be tested
in many ways. For example, in a stationary Gaussian image
ensemble, the output of any linear filter will have a Gaussian
distribution, so any deviation from this distribution – for any
filter shape – is a candidate measure of non-Gaussian behavior.
Thus, deviations from Gaussian behavior can be captured by
direct characterization of the moments of such distributions
(Theocharakis et al., 2009), or indirect characterizations, e.g., via
the entropy of the best-fitting Laplacian (Abbey et al., 2012).

While these approaches are effective ways of capturing non-
Gaussian aspects of medical images, here, we use another
strategy for assessment of non-Gaussian aspects of an image
set, which, along with entropic methods (Abbey et al., 2012),
is motivated by relevance to human vision (Victor and Conte,
2012; Hermundstad et al., 2014). However, in contrast to
the strategy used previously (Abbey et al., 2012) that takes

the viewpoint of physiology, here we take the viewpoint of
perception. That is, rather than measure non-Gaussian aspects
of an image set by characterizing the outputs of filters designed
to model the receptive fields of cortical neurons (i.e., Gabor
functions Marcelja, 1980), we analyze images according to
statistics motivated by analyses of human perceptual sensitivity
(Victor and Conte, 2012; Victor et al., 2013, 2015; Hermundstad
et al., 2014). The analysis is carried out on whitened images, so it
is independent of any overall differences in the power spectrum,
and allows for a direct comparison to a previous analysis of
natural images (Hermundstad et al., 2014).

The motivation for taking a perceptual approach rather than
a physiological one is that current models of cortical visual
processing at the neuronal level are quite incomplete: they
provide a reasonable account for responses to simple stimuli
such as sinusoidal gratings and noise (Rust and Movshon, 2005),
but they account for less than half of the variance for responses
to more naturalistic stimuli (Willmore et al., 2010), and they
especially fail when high-order correlations are present (Joukes
et al., 2017). So, although it is anticipated that visual perception is
ultimately explainable on the basis of neural function, at present
there is a substantial gap between models of visual processing
based on neurons as filters, and perception.

In brief, our approach characterizes the non-Gaussian aspects
of an image in terms of the intensity patterns that occur within
a 2 × 2 region of checks (Tkacik et al., 2010; Victor and Conte,
2012; Hermundstad et al., 2014; Victor et al., 2015), and organizes
this characterization into measures of two-, three-, and four-
point correlations. We find commonalities of these fingerprints
of non-Gaussian behavior across T1-weighted and FLAIR
sequences – specifically, that three-point correlations are of
greater importance in brain MRI images than in natural images,
and therefore disproportionately large compared to human visual
sensitivity. We speculate on the basis of these findings, and their
possible relevance for the interpretation of brain MRI.

MATERIALS AND METHODS

Databases and Image Selection
Analyses were carried out on de-identified human brain MRI
images obtained from three databases and on simulated MRI
images computed by BrainWeb (Coscosco et al., 1996; Kwan
et al., 1996, 1999; Collins et al., 1998). The human MRI databases
were: the Open Access Series of Imaging Studies (OASIS)
(Marcus et al., 2007) the Alzheimer Disease Neuroimaging
Initiative (ADNI) (Mueller et al., 2005) and a dataset from
healthy volunteers and individuals diagnosed with a variety of
neuroinflammatory diseases (mostly multiple sclerosis) collected
in the Translational Neuroradiology Section of National Institute
of Neurologic Disorders and Stroke (NINDS), here designated
the TNS dataset. The TNS dataset was provided by Daniel S.
Reich at the NINDS.

All images were analyzed as sagittal slices, with a voxel size of
1.0 mm × 1.0 mm × 1.0 mm for the ADNI and TNS databases,
and 1.0 mm × 1.0 mm × 1.25 mm for the OASIS database.
For the OASIS and ADNI databases, images were obtained
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FIGURE 1 | Example images from the structural brain MRI databases. (A,B)
T1 images from the OASIS and ADNI databases. (C,D) T2-weighted FLAIR
images from the TNS database (healthy subject, C; patient subject, D).

using T1-weighted sequences (Mueller et al., 2005; Marcus et al.,
2007). For the TNS database, images were obtained with a
T2-weighted FLAIR sequence.

Example images from these databases are shown in Figure 1.
T1-weighted and T2-weighted FLAIR images differ in the
aspects of brain tissue that determine image intensity. Briefly,
in a T1-weighted MRI image, intensity depends predominantly
on the spin-lattice relaxation time of tissue; fat and white
matter appear bright. In a T2-weighted MRI image, intensity
depends predominantly on the spin-spin relaxation time of
tissue; normal white matter appears dark, while CSF and many
brain lesions appear bright. In T2-weighted FLAIR, signal from
CSF is suppressed.

Characteristics of the databases are summarized in Table 1.
The OASIS database, 380 image datasets, consists of healthy
subjects and patients with a variety of diagnoses, age range
18–96 years. The ADNI database, 119 image datasets, consists
of patients diagnosed with Alzheimer’s disease, age range
55–90 years. The TNS database had two subsets: one with images
from 39 healthy subjects and one with images from 255 patients
suspected of having neuroinflammatory diseases, such as multiple

sclerosis; combined age range was 18–83 years. All databases
included male and female subjects, and all the images in each
database were analyzed. As detailed below, this yielded a total
of 67,908 regions of interest (ROIs) from 793 brain volumes
(Table 1). Note that the analyzed sets of images differed not only
in the medical status of the individuals who were imaged, and but
also in age range. Additionally, there were likely subtle differences
in imaging and reconstruction methods, subject selection criteria,
movement artifact, and other factors. Our intent was not to
identify statistical features of images that were specific to any of
these factors, but rather, to identify statistical features shared by
all the datasets, and thus, were common to brain MRI as a whole.

To help distinguish between the influences of brain structure
and the influences of acquisition noise and reconstruction,
we also analyzed simulated T1-weighted and FLAIR images.
Simulated T1 weighted MRI images were calculated using the
BrainWeb simulator (Kwan et al., 1996, 1999; Collins et al.,
1998). We used the system defaults, namely, a voxel size of
1.0 mm × 1.0 mm × 1.0 mm and spoiled FLASH with
TR = 18 ms, TE = 10 ms, flip angle 30◦. FLAIR MRI images with
CSF suppression were not supported by the online BrainWeb
simulator. To obtain these images, we modified the simulator
code to use a T1 relaxation time of 4500 ms for CSF instead
of the default value of 2569 ms, and a T2 relaxation time of
2300 ms for CSF rather than the default value of 329 (Condon
et al., 1987) and simulated an inversion-recovery sequence with
TR = 11000 ms, TE = 140 ms, TI = 4600 ms. These modifications
required recompiling the simulator code locally, using Ubuntu
16.04.2. For both types of images, noise was simulated as additive
Gaussian white noise, and its standard deviation was specified as
a fraction of the most intense tissue value (0, 3, 5, or 7%).

Processing Pipeline
For each database, the processing pipeline consisted of
three stages: (i) extraction of regions of interest (ROIs), (ii)
computation of the power spectra within each database and
whitening of the ROIs via these spectra, and (iii) computation of
local image statistics from whitened, binarized ROIs. The second
and third stages were identical to those used by Hermundstad
et al. (2014) in the analysis of natural images, and will be
summarized here for the reader’s convenience.

To extract individual ROIs that were fully contained
within brain parenchyma in an automated, unbiased fashion,

TABLE 1 | Characteristics of the MRI databases used in this study.

Field Number of Number of Mean ROIs

Database Age Gender Diagnosis Sequence strength brains ROIs per brains

Min Max Mean SD

OASIS 18 96 M+F Various T1 1.5T 380 28951 76.2

ADNI 55 90 M+F AD T1 3T 119 9500 79.8

TNS healthy 20 64 36.3 12.5 M+F Healthy FLAIR 3T 39 4289 110.0

TNS patient 18 83 48.2 12.5 M+F MS FLAIR 3T 255 25168 98.7

Total 793 67908 85.6

AD, Alzheimer’s Disease; MS, multiple sclerosis.
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FIGURE 2 | Processing pipeline for spectral analysis. Images of each sagittal
plane were processed by (1) removal of the skull, (2) identification of the
convex hull of the resulting image, (3) selection of the largest rectangle, and (4)
selection of a random 64 × 64 pixel square ROI within this convex hull. The
power spectrum was then computed from the mean of the squared
amplitudes of the Fourier components obtained from these ROIs. Optionally,
the image was then downsampled by averaging within 2 × 2 blocks prior to
Fourier transformation.

we proceeded as follows (Figure 2). For each sagittal section, the
skull was stripped using Freesurfer’s “watershed.” Then, using
Matlab’s bwconvhull, the convex hull was determined, and the
largest rectangle that fit inside this region was then found.
Next, we randomly selected one 64 × 64 ROI from inside each
rectangle (slices whose convex hulls were too small to contain
a 64 × 64 rectangle were discarded). To probe the possible
effects of high-frequency artifacts in the reconstruction, a parallel
analysis was carried out after downsampling the 64 × 64 ROIs
to 32 × 32, by averaging the intensities in 2 × 2 blocks. We
present data from both the full-resolution and the down-sampled
analyses in parallel.

To compute spatial power spectra, we applied Matlab’s fft2 in
each ROI, and averaged the squared magnitudes of the Fourier
components across all slices from each database. Spectra were
computed both with and without twofold padding. Padding
had minimal effect and was not used in the figures below.
For simplicity, we did not use windowing; the use of windows
(e.g., a multitaper approach Mitra and Pesaran, 1999) would have
little effect because the spectra are broadband.

The shape of the power spectra was summarized by power-
law fits. These were obtained by regressing the logarithm of
the spectral densities against the logarithm of spatial frequency

FIGURE 3 | Processing pipeline for analysis of local image statistics. The ROIs
extracted for spectral analysis (Figure 2) were whitened by a linear filter
whose amplitude is given by the square root of the power spectrum for that
dataset. The resulting images were then binarized at the median value of the
whitened images. Local image statistics were determined by tabulating the
configurations of black and white checks within 2 × 2 neighborhoods.

(using Matlab’s regress), over the frequency range from 2 cycles
per ROI (0.031 cycles/mm) to 10% below the Nyquist frequency
(0.45 cycles/mm for the full-resolution images, 0.225 cycles/mm
for the downsampled images). The zero-frequency power, which
depends on the arbitrary choice of the image intensity values,
has no influence on this analysis as it only considered spatial
frequencies beginning at 2 cycles per ROI.

The final stage of the pipeline is the computation of local image
statistics. These statistics capture the local correlations that are
present in small neighborhoods after whitening via the empirical
spectra (not the power-law fits), and therefore reflect non-
Gaussian aspects of the images. We focused on characterizing
the distribution of colorings of 2 × 2 blocks of binarized pixels.
As described below, these distributions can be described by
a discrete set of nine parameters. As mentioned above, the
corresponding image statistics are known to be perceptually
relevant: their salience to human observers has been well-
characterized individually and in combination (Hermundstad
et al., 2014; Victor et al., 2015).

To extract these statistics (Figure 3), we used the procedure
developed in Hermundstad et al. (2014) (their Figure 2),
with parameters R (ROI size) and N (downsampling) of
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(R,N) = (64, 1) and (R,N) = (32, 2). The larger (R,N) parameter
values used by Hermundstad et al. (2014) for natural images
(R× N > 64) could not be used, because the limited number
of voxels per plane in the MRI images would often not allow
for randomized placement of these patches within brain. As
in Hermundstad et al. (2014), we whitened these ROIs by
filtering them in the frequency domain, attenuating each Fourier
component by the inverse square-root of the power spectrum
(across the entire frequency range), computed over all the ROIs
within the image’s database. Then, these images were binarized
at the median point, where the median was determined from
all of the ROIs drawn from the same brain. Note again that the
zero-frequency power does not influence the results: although it
scales the intensity range via the whitening process, the effect of
scaling is removed once images are binarized at their median.
The binarized images were then parceled into 2 × 2 blocks, after
removing a one-pixel border to avoid edge artifacts due to the
whitening operation.

Continuing as in Hermundstad et al. (2014), we parameterized
the distribution of colorings of these 2 × 2 blocks within an ROI
as follows. Since each of the pixels in a block were either black
or white, there are 16 (22×2) different ways that a 2 × 2 block
can be colored. However, fewer than 16 degrees of freedom are
required to describe them. These constraints arise because (a)
the 16 probabilities add up to 1, and (b) the left two pixels of
one block are also the right two pixels of the next (and similarly,
for top and bottom). To take these constraints into account,
we used the parameter set of Victor and Conte (2012), which
linearly transforms the 16 interdependent raw block probabilities
into 10 independent statistics.

These co-occurrence statistics, each of which ranges from −1
to 1, may be summarized as follows (Figure 4). There are four
two-point statistics, denoted β|, β_, β\, and β/. These describe
the statistics of pairs of pixels, in directions corresponding to the
subscript. For example, β| is defined as the probability that two
vertically adjacent checks match, minus the probability that they
do not match. So β| = 1 means that all 2 × 1 (vertical) blocks
are either both black or both white, while β| = − 1 means that
all 2 × 1 pixel blocks contain mis-matching pixels. Similarly,
β_ is the probability of matching vs. mismatching pixels in a
1 × 2 (horizontal) block. β\ and β/ describe the probability that
pixels which share a common corner either match or mismatch.
Together, β| and β_ will be referred to as the cardinal β’s; β/, and
β\ will be referred to as the oblique β ’s.

There are four three-point statistics, denoted θp, θq, θy, and
θx. These coordinates indicate the probability of that L-shaped
regions containing an even or an odd number of white pixels. θ =
1 means that there is always an odd number of white pixels in
such a region, and θ = − 1 means that there is always an even
number of white pixels in the such a region, i.e., an odd number
of black pixels. As shown in Figure 4, high or low θ values create
regions with triangular shapes.

The four-point statistic α indicates the probability that the
parity of the number of white pixels in a 2 × 2 block is even:
α = 1 means that 2 × 2 blocks always contain an even number of
white pixels and α = − 1 means that 2× 2 blocks always contain
an odd number of white pixels.

FIGURE 4 | Parameterization of local image statistics. Each local statistic (γ,
β|, β_, β\, and β/, θp, θq, θy, θx, and α) describes a specific kind of
correlation between one or more pixels that form a template within a 2 × 2
neighborhood. Values of each statistic range from −1 to +1, with 0 indicating
randomness. The strip above each template shows this gamut. Statistics are
defined as follows. The one-point statistic γ is the difference between the
probability that a check is white, vs. black: +1 means all white, −1 means all
black. The two-point statistics β|, β_, β\, and β/ specify the probability that
two nearby pixels match, minus the probability that they do not match: +1
means that they always match; −1 means that they always mismatch. The
three-point statistics θp, θq, θy, and θx specify the difference between the
fraction of L-shaped regions that contain an odd number of white pixels, and
the fraction containing an even number: +1 produces an excess of white
regions, while −1 produces an excess of black regions. The four-point
statistic α specifies the difference between the probability that the number of
white pixels in a 2 × 2 block is even, vs. odd: +1 means that 2 × 2 blocks
always contain an even number of white pixels, −1 means that 2 × 2 blocks
always contain an odd number of white pixels. Since the present analysis was
carried out after binarization at the median, γ was always close to zero, and
not analyzed; it is shown for completeness. Adapted from Figure 1 of Victor
et al. (2015), with permission of the copyright holder, Elsevier B.V.

For completeness, we mention that a complete parameteri-
zation of 2× 2 block probabilities includes the one-point statistic,
γ, which is defined as the probability of a white check minus the
probability of a black check. However, since block probabilities
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were computed after binarization at the median, this statistic was
forced to zero, and was not analyzed.

Thus, the nine quantities {β|, β_, β\, and β/, θp, θq, θy, θx,
and α} are independent parameters that specify the probabilities

of the 2 × 2 blocks. We determined these quantities for each
ROI, and then examined their means, variances, and covariances
across the ROI’s within each database. To determine confidence
limits on these estimates, we used a bootstrap procedure
(500 resamplings). Resamplings were done with replacement
of each slice. Each time a slice was drawn, a new square
ROI was randomly chosen from the maximal rectangle within
its convex hull.

To enable a direct comparison to natural images, we
accompany the analysis of MRI images by a parallel analysis of
natural scenes, recomputed from the raw data of Hermundstad
et al. (2014), which was provided by Ann Hermundstad. As
in that study, natural images were only analyzed after twofold
downsampling (N = 2,R = 32), to avoid possible camera-
related artifacts.

RESULTS

We begin by describing the power spectra of each database
of images. We then describe the two-, three-, and four-point
correlations of the whitened binarized images, as these capture
non-Gaussian aspects of image patches.

Spectral Analysis
Figure 5 shows the spatial power spectra of images in the
T1-weighted databases, plotted as a function of the magnitude
of spatial frequency, along with the corresponding quantities
computed from simulated T1-weighted data. For each database,
there is a broad range in which the power spectrum is
approximately a power-law function of spatial frequency, i.e.,
P(Ek) ≈ A|Ek|−λ. The spectral slope (Table 2) is slightly shallower
for the OASIS database (λ in the range 2.6–3.0) than for the
ADNI database (3.0–3.2). Within each database, the spectral
slope is similar for images analyzed at full resolution or
after downsampling, and for horizontal vs. vertical vs. oblique
spatial frequencies (Figure 5). Across these analyses, there is
a flattening of the slope at the highest spatial frequencies,
suggesting that noise in the imaging process, which would be
expected to be approximately white (McVeigh et al., 1985),
is a contributing factor in this range. Spectra computed from
simulated T1-weighted images have a similar spectral slope
(bottom row of Figure 5), and, as expected, the spectral slope for
simulated images becomes progressively flatter as more noise is
added (Table 2).

The two-dimensional power spectra (Figure 6) show that
the MRI image spectra have moderate anisotropies. In both
T1-weighted databases, there is a prominent excess of power
along the horizontal and vertical axes, amounting to a 10-fold
excess at the highest spatial frequencies. Away from the axes,
the iso-intensity contours show a mild deviation from circularity,
indicating a relative decrease of power in the oblique directions.
Simulated T-weighted images share these features: they also have

an excess of power along the horizontal and vertical axes, to a
similar extent as the MRI images drawn from the database.

Power spectra of FLAIR images, taken from the TNS database,
show similar characteristics (Figures 7, 8 and Table 2). The
TNS database was subdivided into images from both healthy
volunteers and patients; slopes were closely similar for the two
subsets: 2.82 vs. 2.85 (healthy volunteers vs. patients) without
downsampling, 2.25 vs. 2.21 with downsampling; overlapping
confidence limits in both cases. Healthy volunteers and patients
also both showed an excess of power, primarily along the
vertical axis, of approximately a factor of three at the highest
spatial frequencies. The spectral slope of the FLAIR images was
reproduced by simulated FLAIR images with 7% noise added
(lower row of Figures 7, 8). Simulated FLAIR images also showed
anisotropy to a similar degree, but (in contrast to the database
images) greater power along the horizontal axis than the vertical
axis – suggesting that this anisotropy results from aspects of the
imaging process that are not captured by the simulations.

In sum, across imaging modalities, MRI spectra had slopes
in the range 2.2–3, a range that was consistent with simulated
MRI images with modest amounts of noise added. There were
moderate anisotropies as well, most of which were present in
the spectra of the simulated images, indicating that most of the
anisotropies are likely consequences of brain anatomy, rather
than of image acquisition or reconstruction. Such anisotropies
are not surprising, as subjects are positioned in the scanner in
a stereotyped fashion, and brain anatomy at the MRI scale has
numerous anisotropic structures, such as the corpus callosum.
However, not all of the anisotropies of the FLAIR images
were recapitulated by the simulated images, indicating that
anisotropies due to imaging and reconstruction also play a role
in the TNS datasets.

Local Image Statistics
We now consider the local image statistics of MRI images.
In brief (see section “Materials and Methods,” Figure 3, and
Hermundstad et al., 2014), the approach consists of whitening
the images followed by binarization, and then tabulating the
configurations in 2 × 2 neighborhoods of pixels within each
ROI. This tabulation is carried out in terms of a 9-parameter set
of descriptors (Figure 4), which are grouped into co-occurrence
statistics involving two points that share an edge (β_, β|), two
points that share a corner (β/, and β\), three points in an
L-shaped configuration (θp,θq, θy, and θx), and four points
in a 2 × 2 neighborhood (α). Note that this local statistical
analysis is complementary to the characterization via power
spectra, and focuses on non-Gaussian aspects of the images: for
a Gaussian image ensemble, the whitening step would remove all
correlations, and these nine parameters, which are the multipoint
correlations of the binarized, whitened, images, would all be zero.

We consider the mean and standard deviations of these
local statistics measured in each ROI. The mean values capture
the average characteristics of all ROIs within a database, and
thus focus on overall characteristics of each set of images. The
standard deviations describe the characteristics that distinguish
one ROI from another, and thus focus on characteristics that are
useful for analyzing individual MRI images.
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FIGURE 5 | Power spectra of T1 MRI images, log-log plot. The simulated T1 images were constructed with 3% added noise; for further details, see text. Spectral
estimates along the horizontal axis are shown in red, vertical in green, and oblique in magenta. The regression line and the frequency range used to determine the
regression are shown for the full-resolution images in cyan and for the 2 × 2 downsampled images in blue (with the latter superimposed on the full-resolution
analysis for comparison purposes).
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TABLE 2 | Spectral slopes of brain MRI images and simulated images.

Full resolution Downsampled

Slope Confidence Limits Slope Confidence Limits

T1 images

OASIS 2.61 2.67 2.56 2.88 3.00 2.75

ADNI 3.09 3.15 3.03 3.11 3.24 2.97

Simulated, no noise 3.86 3.98 3.73 3.27 3.45 3.09

Simulated, 3% noise 3.03 3.11 2.94 3.18 3.36 3.01

Simulated, 5% noise 2.16 2.22 2.09 2.87 3.02 2.73

Simulated, 7% noise 1.86 1.92 1.81 2.70 2.82 2.58

FLAIR images

TNS healthy 2.82 2.92 2.71 2.25 2.43 2.07

TNS patient 2.85 2.96 2.75 2.21 2.36 2.05

Simulated, no noise 3.64 3.74 3.55 2.56 2.67 2.46

Simulated, 3% noise 3.39 3.47 3.31 2.55 2.66 2.44

Simulated, 5% noise 3.12 3.18 3.06 2.53 2.63 2.42

Simulated, 7% noise 2.84 2.89 2.79 2.49 2.60 2.39

Slopes were determined by regression of log(power) vs. log(spatial frequency)
from 0.031 cycles/mm to 10% below the Nyquist frequency (0.45 cycles/mm
for images processed at full resolution, 0.225 cycles/mm for the downsampled
images); this range is shown by the vertical blue and cyan lines in Figures 5, 7.
Confidence limits (95%) were determined via t statistics, as implemented by
Matlab’s regress.m routine.

Figure 9 shows the mean values of the image statistics for
images analyzed at full resolution (Figures 9A,B), and after
twofold downsampling (Figures 9C,D). At both scales, there
were substantial differences in mean statistics obtained from
the different databases. For example, at full resolution, vertical
two-point correlations (β|) were zero or slightly positive for the
T1 databases (Figure 9A) but negative for the FLAIR databases
(Figure 9B), while horizontal two-point correlations (β_) were
negative for the T1 databases (Figure 9A) but positive for the
FLAIR databases (Figure 9B). Other differences were present
for three- and four-point correlations at full resolution, and for
many of the statistics after twofold downsampling (e.g., β_ and
the three-point correlations θ in Figures 9C vs. 9D). In the
downsampled analysis, there were also differences between the
two T1 databases across all local image statistics (Figure 9C). For
the simulated MRI images, many of the mean values differ from
mean values obtained from actual MRI images, for both sequence
types and at both scales.

This complex pattern of variations shows that the local
statistical analysis is sensitive to non-Gaussian aspects of the
MRI images, and validates that they can identify distinguishing
features of the databases. Such variation in the mean values of
the local statistics is not surprising, as these databases differ in
the MRI intensity histogram, the physics of signal generation
and, possibly, differences in the reconstruction process and
instrument noise.

Figures 9C,D also shows the mean values of local image
statistics obtained from natural images. Note that this analysis
shows a different pattern: for example, three-point statistics for
natural images have a mean near zero, rather than the negative
values seen in all the MRI databases.

FIGURE 6 | Power spectra of T1 MRI images (data of Figure 5), as a
heatmap. Note that the color scale is logarithmic, and that the spatial
frequency axes are expanded for the downsampled images (right column).

Figure 10 shows the standard deviations of these image
statistics within each database, which assays the extent to which
the image statistics serve to distinguish one ROI from another.
In contrast to the behavior of the means of the statistics, the
standard deviations show a simpler and more consistent pattern.
Across all databases, two-point statistics in the vertical and
horizontal directions (β_, β|) have the largest standard deviations,
followed by two-point statistics in the oblique directions (β/, and
β\). Three-point (θ’s) and four-point (α) statistics smaller but
comparable standard deviations. This pattern is seen for images
at full resolution (Figures 10A,B) and after 2 × 2 downsampling
(Figures 10C,D), and also for the simulated T1 and FLAIR MRI
images. The pattern is also consistent between images obtained
from normal volunteers and patients within the TNS database.

While these characteristics are common to images from all
the MRI databases and the simulated images, they differ from
natural images (Figures 10C,D). This comparison is of interest
because for natural images, the standard deviation of each
parameter is closely correlated to human visual sensitivity for the
corresponding feature (Figure 3 of Hermundstad et al., 2014), and
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FIGURE 7 | Power spectra of FLAIR MRI images, log–log plot. The simulated FLAIR images were constructed with 7% added noise; for further details, see text.
Plotting conventions as in Figure 5.

this matching enables efficient processing of natural images. In
comparison to natural images, horizontal and vertical two-point
statistics of MRI images (β| and β_ of Figures 10C,D) are less
variable than in natural images. The opposite pattern is present
for three-point statistics (θ’s): standard deviations for the MRI
statistics are above the corresponding values for natural images.
These differences are consistent across real and simulated MRI
images, and are substantially in excess of the confidence limits.
That is, two-point correlations are relatively more stereotyped
for MRI images than for natural images, while three-point
correlations are relatively more stereotyped for natural images
than for MRI. In other words, the relative importance of two-
and three-point local image statistics for distinguishing among

patches of MRI images differs from their relative importance
in natural images.

The parametric descriptors of local image statistics shown in
Figure 9 (mean) and Figure 10 (standard deviation) capture the
main characteristics of their distributions in MRI images, and
how they differ from the corresponding local image statistics of
natural images. In contrast to the distribution of image statistics
derived from filtering gray-level natural images, which typically
have a substantial skewness (absolute value often greater than 1)
and kurtosis (excess kurtosis often greater than 5) (Brady and
Field, 2000; Lyu and Simoncelli, 2009; Hu and Victor, 2016), the
skewnesses and kurtoses of the distribution of the local image
statistics considered here are small: absolute value of skewness
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FIGURE 8 | Power spectra of FLAIR MRI images (data of Figure 7), as a
heatmap. Note that the color scale is logarithmic, and that the spatial
frequency axes are expanded for the downsampled images (right column).

typically less than 0.3 and excess kurtosis typically less than
0.5 at the two resolutions. These are comparable to the values
obtained from a parallel analysis of the natural image database.
Additionally, of the 72 image statistics examined (nine kinds
of statistics, four databases, two resolutions), all but one had a
unimodal distribution; the exception (β_ in the OASIS database
at full resolution) had a minor second mode accounting for
approximately 20% of the mass. Finally, the covariances of the
image statistics in the four MRI databases (not shown) are also
similar to those of the corresponding statistics of natural images.

DISCUSSION

Here we present an analysis the image statistics of anatomical
T1-weighted and FLAIR brain MRI images, focusing on
specific aspects of non-Gaussianity – multipoint spatial
correlations – for which human visual sensitivity is well-
characterized (Hermundstad et al., 2014; Victor et al., 2015).
The basic motivation for this focus is that fundamental
image features such as lines and edges correspond to local
high-order correlations, rather than to spectral characteristics
(Oppenheim and Lim, 1981), and such high-order correlations

are also critical to visual detection of these features
(Morrone and Burr, 1988).

As in prior work characterizing natural scenes (Tkacik et al.,
2010; Hermundstad et al., 2014), these aspects of non-Gaussianity
are quantified by multipoint correlations, computed from ROIs
that have been subjected to spectral whitening. Consequently, the
statistical characterization of an image set via local multipoint
correlations is complementary to characterization of its global
statistics via the power spectrum. Thus, the spatial power spectra
of brain MRI’s are of interest in their own right, not only
as a preliminary step in determining the multipoint image
statistics. Perhaps surprisingly, previous studies of the spatial
power spectrum of brain MRI images do not appear to be
available [an extensive search revealed only Ramon et al. (2009),
which considered the power spectrum of the cortical volume as a
whole, and work such as McVeigh et al. (1985), which examined
the power spectrum of imaging noise]. We first discuss these
power spectra, and then the multipoint correlations.

The power spectra of T1-weighted and FLAIR MRI images,
along with simulations, have spectral slopes that are in the range
2.2–3 (Figures 5–8 and Table 2). Similar values (2.8–3) have
been reported for digital breast mammograms (Burgess et al.,
2001; Abbey et al., 2012). However, this apparent similarity does
not take into account the expected differences between imaging
processes that involves projection, such as mammography, and
those that involve section, such as tomography. As Metheany
et al. (2008) showed, under the assumption that a power law
describes anatomical correlations, slopes are expected to be
one unit lower for tomographic sections than for projections,
i.e., λsection = λproj − 1. Consistent with this prediction, breast
computed tomograms have a shallower spectral slope (∼1.86,
Metheany et al., 2008) than digital breast mammograms. The
slopes reported for breast computed tomograms are substantially
shallower than the slopes that we find for the sectioned
images of brain MRI.

The spectral slopes of MRI images also differ substantially
from that of images of natural scenes, which is well-known to be
1.8 to 2.2 (Field, 1987; Ruderman and Bialek, 1994; Ruderman,
1997; Torralba and Oliva, 2003). As in radiographs, image
formation in natural scenes involves projection. However, the
effect of projection vs. section on spectral slope, determined in
Metheany et al. (2008), cannot be rigorously applied to natural
images: the analysis of Metheany et al. (2008) treats projection
as linear superposition, but in contrast to objects in radiographs,
objects in natural scenes are largely opaque. Nevertheless, it is
unlikely that the difference in spectral slope between images
of natural scenes and MRI sections is due to opacity vs.
transparency, as Metheany et al. (2008) predicts that tomographic
slices should have a shallower, rather than a steeper, slope.
Moreover, Zylberberg et al. (2012) found that transparency vs.
opacity has little effect on the spectral slope. Rather, in the context
of a “dead leaves” model, the main determinant of spectral slope is
the object size distribution (Ruderman, 1997). But while opacity
and occlusion may not be important for determining spectral
slope, they are likely critical for other key aspects of natural
images (Zoran and Weiss, 2012), such as T-junctions, which are
manifest in local image statistics (see below).
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FIGURE 9 | Means of local image statistics for real (solid symbols) and simulated (open symbol) MRI images. (A,B) Full resolution [(R, N) = (64, 1)]; (C,D) after 2 × 2
downsampling [(R, N) = (32, 2)]. In panels (C,D), values for the natural image database of Hermundstad et al. (2014) are shown (shaded symbols). For MRI images,
error bars indicate 95% confidence intervals for the mean across ROIs, computed via bootstrap. Symbols are jittered horizontally to avoid overlap.

The analysis of local image co-occurrence statistics reveals
substantial non-Gaussian spatial characteristics of MRI images
(Figures 9, 10). These differences are independent of the spectral
slope of the original images, as the image statistics are calculated
after spectral whitening. The mean values of these statistics
(Figure 9) depend on the imaging sequence, which is not
surprising given that each MRI sequence has its own tradeoffs
between bandwidth, noise, contrast and artifacts, and, a priori,
any of these could have had a role in determining the statistics of
resulting images.

While these mean values reflect the typical values of image
statistics and therefore characterize each database as a whole,
their standard deviations across ROIs (Figure 10) reflect the
features that distinguish one ROI from another, and therefore
(along with many other features) that may be useful for
making diagnostic distinctions. The standard deviations of the
statistics vary somewhat across sequence types (T1-weighted and
pre-contrast FLAIR), but there are prominent commonalities.
Variability of two-point statistics in horizontal and vertical
directions was greatest; variability of two-point statistics in
oblique directions was less, and variability of three- and four-
point statistics were comparable to each other and less than the
variability of the two-point statistics.

Based on this consistency across three databases representing
two sequence types as well as simulated structural brain MRI
images, we infer that the statistical characteristics presented here
are not due to the physics specific to each kind of MRI sequence,
or filtering and artifacts that might arise in the process of data
acquisition or reconstruction. Rather, they appear to reflect the
geometry of the underlying brain tissue at the resolution of MRI.

Figures 10C,D shows a consistent difference between the
multipoint statistics of MRI images and those of natural scenes:
three-point statistics are substantially more variable in the former
than in the latter. The basis for this difference is unclear, but
factors related both to material properties (“stuff” Adelson, 2001)
and shape may contribute. With regard to material properties, the
three-point statistic is, explicitly, a texture statistic (Victor and
Conte, 2012; Victor et al., 2015), so differences between three-
point statistics may arise from differences in material properties.
With regard to shape, three-point statistics reflect, at least in part,
the characteristics of T-junctions. This is because the binarization
step of the image-processing pipeline transforms T-junctions
into configurations of checks based on the relative intensities
of the three regions that meet at a point. While T-junctions are
present in both MRI images and images of natural scenes, they
arise by different mechanisms. For sections of a 3D volume of
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FIGURE 10 | Standard deviations of local image statistics for real (solid symbols) and simulated (open symbol) MRI images. (A,B) Full resolution [(R, N) = (64, 1)];
(C,D): after 2 × 2 downsampling [(R, N) = (32, 2)]. For MRI images, error bars indicate 95% confidence intervals for standard deviation across ROIs, computed via
bootstrap. Other details as in Figure 9.

space-filling structures – such as brain MRI – T-junctions arise
whenever the section passes through loci where three structures
meet. In images of natural scenes generated by projection,
however, T-junctions arise when the boundary between two
objects is partially occluded by a third object that is closer. MRI
images, being tomographic, would be expected to have very few
T-junctions generated by occlusion.

Analysis Scale
Natural scenes are often considered to be scale-invariant, or
at least approximately so. Approximate scale invariance is the
expected consequence of images that are formed by random
occlusive objects with a wide range of sizes, viewed from a
wide range of distances (Field, 1987; Ruderman and Bialek,
1994; Ruderman, 1997). However, there is no corresponding
expectation of scale-invariance for brain MRI: human brains
are quite similar in size, and MRI images of them are typically
viewed only at a narrow range of distances. Thus, while it is
likely that brain MRI image statistics will vary according to
analysis scale, there is a restricted range of scales at which they
are viewed. For example, a same-size brain image acquired and

displayed with 1 mm resolution, viewed at 57 cm, provides
pixels that are 0.1◦, i.e., 6 arc-min. Viewing a smaller image will
decrease the angular subtense of a pixel; enlarging the image or
decreasing the viewing distance will increase it – but not typically
by more than a factor of two. Thus, the typical resolution with
which brain MRIs are viewed is approximately 3–12 arc-min per
pixel, similar to the range in which human sensitivity to local
image statistics is approximately scale-invariant [2.8 to 14 arc-
min per pixel (Victor et al., 2015)], and corresponding to spatial
frequencies (2.5–10 cycles per degree) for which human contrast
sensitivity is highest (Campbell and Robson, 1968). This is the
range we focused on.

As described above, we found a consistent difference between
local image statistics at this scale, and a parallel analysis of natural
images (Hermundstad et al., 2014). In the direct comparison,
analysis parameters were (R,N) = (32, 2), i.e., local images
statistics were calculated from square regions of 32 × 32 blocks,
each of which was obtained by 2 × 2 downsampling of the
original image pixels. The natural image analysis did not use the
full image resolution, both out of concern for camera artifacts
and to ensure that the blocks used in the analysis were within
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the range of human resolution (1.3 arc-min per pixel with
2× 2 downsampling).

This matching of image-processing parameters necessarily
leads to a mismatch between the angular resolution of the MRI
and the natural-image patches from which local image statistics
are determined, since the original images have quite different
native resolutions. However, it is unlikely that the resolution
difference accounts for our finding that third-order local image
statistics carry a disproportionate amount of information in brain
MRI. As Figures 10A,B show, doubling the resolution of the
MRI analysis to the range of 3 arc-min as typically viewed, by
taking N = 1 (no downsampling), does not change the finding
that third-order statistics almost as variable as fourth-order
statistics. Conversely, as shown in Figure 3 of Hermundstad et al.
(2014), halving the resolution of the natural-image analysis to
2.6 arc-min per pixel, by taking N = 4, leaves the relationship
between the informativeness of third-order statistics, on the one
hand, and second- and fourth-order statistics, on the other,
substantially unchanged.

Potential Implications
Above, we considered possibilities for the origin of the distinctive
aspects of three-point statistics in brain MRI images. We now
turn to speculation about their relevance for image interpretation:
understanding human expertise, and possible implications for
machine vision algorithms.

With regard to expertise, we first note that the relative
un-importance of three-point statistics in natural scenes is
mirrored by a relative lack of visual sensitivity to them. That is,
in natural scenes, four-point local statistics are more informative
than three-point ones, and, correspondingly, typical human
observers are more sensitive to textures defined by four-point
correlations than to textures defined by three-point correlations
(Hermundstad et al., 2014; Victor et al., 2015). This finding
has been interpreted (Hermundstad et al., 2014) as a form of
efficient coding (Barlow, 1961): an evolutionary (or possibly
developmental) adaptation in which a sensory system’s limited
computational resources are allocated to process the most
critical aspects of sensory stimuli. The matching of typical
human visual sensitivity to the informative statistics of natural
images necessarily implies a mismatch, albeit a subtle one, to the
statistics that characterize MRI images.

Clearly the mismatch is not so severe as to prevent
effective interpretation of these images, but its existence raises
the possibility that development of expertise during clinical
training – along with cognitive factors – may also have
a component due to, or be accompanied by, an increase
in clinicians’ sensitivities to these low-level visual features.
Additionally, there are modest inter-individual differences in
sensitivity to local image statistics (Victor and Conte, 2012; Victor
et al., 2015); raising the possibility that individuals with relatively
greater sensitivity to the third-order statistics that are informative
in brain MRI images will more readily develop neuroradiographic
expertise. Further work is needed to determine the significance
of these factors.

The subtle mismatch between brain MRI image statistics and
those of natural scenes also raises the possibility of developing

image-processing algorithms to modify standard MRI images
so that their statistics are closer to those of natural images.
We mention this only as a speculation, recognizing that the
considerable challenges of this approach include the need for
experts to become accustomed to altered images.

With regard to machine vision applications, a common
strategy is to use local image statistics as features that are
the inputs to a machine-learning algorithm. For example, one
recent study demonstrated the utility of second-order statistics
in distinguishing T2 MRI images of normals and patients with
Alzheimer’s disease (Aggarwal and Agrawal, 2012); a second
demonstrated superiority of machine analysis of MRI images to
human analysis in distinguishing brain tumor from radionecrosis
(Tiwari et al., 2016). While the use of image statistics to
capture texture is prevalent, explicit use of three-point statistics –
which could be extracted by application of a non-linearity with
substantial odd-order components to local neighborhoods in the
image in an otherwise-standard CNN architecture – appears to
have been overlooked. The present study suggests that these
statistics may be important for brain MRI images. However,
diagnostic utility of a set of texture features depends not only on
their variability across ROIs – the present focus – but also on the
extent to which they can discriminate images from normal and
diseased brains.
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